EP0985881B1 - Flame monitoring system - Google Patents
Flame monitoring system Download PDFInfo
- Publication number
- EP0985881B1 EP0985881B1 EP99112232A EP99112232A EP0985881B1 EP 0985881 B1 EP0985881 B1 EP 0985881B1 EP 99112232 A EP99112232 A EP 99112232A EP 99112232 A EP99112232 A EP 99112232A EP 0985881 B1 EP0985881 B1 EP 0985881B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- flame
- signal
- frequency
- periodic
- monitoring system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/02—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
- F23N5/08—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
- F23N5/082—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2229/00—Flame sensors
- F23N2229/08—Flame sensors detecting flame flicker
Definitions
- the invention relates to a flame monitoring system mentioned in the preamble of claim 1 Type, and a method for monitoring a flame according to the preamble of claim 9.
- the filtering of the streak frequencies specified in various publications with up to 3 Hz be is relatively easy to carry out by means of high passes, which by the combustion process generated flame frequencies above 10 Hz can not be trimmed. problematic and it becomes more complex, however, when the harmonics of the mains frequency are filtered out must be suppressed. This method also means loss of information from the flame, especially when the network frequency is subject to large tolerances or different nominal frequency ranges must be covered.
- EN298 also allows the possibility that a corresponding fastening system of the flame sensor its shutdown is achieved when it is off the attachment is removed. In any case, the ambient light security is also when viewing Ensure first and second errors according to EN298. This should be the case with the latter method extremely difficult to fulfill because the functionality e.g. of a limit switch only the actual distance of the flame sensor from its mounting can be checked.
- EP 320 082 A1 describes a flame monitoring circuit in which only the Evaluation of the alternating light component of a flame as a measure for a fail-safe Flame detection is used.
- this solution only offers security against flame simulation, as long as the safety-relevant ambient light mentioned there is concerned Acts like light.
- Light from mostly AC-powered external light sources leads very well to fake a flame and thus to an unsafe burner operation.
- EP 334 027 A1 discloses a solution that is suitable in this regard, but the effort is a consequence the full two-channel system is disproportionately high and immunity to network frequencies Alternating light signals are achieved with frequency selective arrangements, the disadvantage of which Loss of flame signal information has already been mentioned.
- the object of the present invention is to provide a flame monitoring system and a method for Monitoring a flame to create immunity to harmonics Has input signals with the least loss of flame signal information and for use with Burners in continuous operation is suitable.
- the present invention solves the problem in that a flame sensor first of all Flame outgoing radiation converts into a flame signal, which in turn by a Flame signal amplifier is converted into an output signal.
- a frequency selective arrangement that is arranged in parallel to the flame signal amplifier, also receives the flame signal itself and checks for the presence of periodic signals. Will the presence of non-periodic signals detected by the frequency selective arrangement, the Flame signal amplifier activated while in the detection of periodic signals or in the In the absence of a flame signal the flame signal amplifier is deactivated. About that it is also possible to overwrite the flame signal with a test signal so that the Input of the flame signal amplifier as well as the input of the frequency selective arrangement the test signal itself can be applied, so that failures within the Flame monitoring circuit, for example the failure of individual components can be detected.
- the frequency-selective arrangement has a frequency detector which detects the presence non-periodic flame signals are detected and the flame signal amplifier via appropriate switching means activated or deactivated accordingly. This can be done in different ways become.
- the flame signal it is possible to first amplify the flame signal and convert it into a square-wave signal convert, whereby any reference signal can be used for this conversion.
- This square wave signal then serves as a control signal for a bipolar current or voltage source in turn feeds an integrator, so that the output signal of the integrator with periodic input signals of the frequency detector fluctuates around a constant mean value.
- the bipolar current or voltage source charges the integrator depending on the fluctuation range of the input or the flame signal, so that with periodic input signals the average integration value is approximately zero.
- the frequency-selective arrangement also has a coupler or a switch that first determines whether the output signal of the frequency detector, that is, the integrated Input signal within a defined switching threshold around a certain average remains in order to then operate a switch which activates the flame signal amplifier accordingly or deactivated. If the frequency detector detects that a purely periodic signal is present, then guarantees the above Switching threshold that residual fluctuations in the integrated signal around the constant mean value or slight deviations around the zero value are disregarded, which, depending on the cutoff frequency of the integrator, is also caused by purely periodic input signals can be.
- the frequency detector receives the input signal, ie
- the flame signal is integrated over previously defined periods and the frequency-selective arrangement uses the integrated output signal to actuate a switch, which in turn activates or deactivates the flame signal amplifier.
- the frequency-selective arrangement uses the integrated output signal to actuate a switch, which in turn activates or deactivates the flame signal amplifier.
- Extraneous light components that follow the AC voltage of the mains frequency are filtered out sharply, so that all other frequencies, ie flame signals in particular, are almost loss-free can be detected. It makes sense to use the frequency detector after each integration of the defined periods back to their original state, otherwise a drift the integrator output voltage could lead to flame simulation, which is a component fault when tested would be recognized.
- the flame signal can be overwritten with a periodic test signal, so that the Frequency detector then evaluates the test signal, which is the verification of the circuit as such enables and the failure of individual components is detected.
- the frequency detector activates the switch so that the flame signal amplifier at one non-periodic flame signal provides a valid output signal while in the detection of periodic input signals at the frequency detector of the flame signal amplifier is deactivated, so that no valid signal is supplied at the output of the flame signal amplifier.
- the periodic test signal is advantageously applied at regular time intervals to always To have certainty about the proper functioning of the flame monitoring circuit.
- the signal voltage U 1 is based on a mass m.
- a bipolar current source 4 is now driven, which charges a first integrator 5 positively or negatively with respect to a reference voltage U Ref .
- the polarity and duration of the respective charging cycles depend on the state of the output of the Schmitt trigger 3 and thus directly on the signal voltage U 1 of the sensor 1.
- the integrator 5 has a low-pass behavior, the cut-off frequency of the low-pass typically being around 80 Hz.
- the signal voltage U 2 at the output of the Schmitt trigger 3 is secondly processed by means of a circuit 6 for controlling an n-channel JFET 7 (junction field effect transistor) operating as a switch.
- the circuit 6 is designed as a charge pump consisting of two capacitors and two diodes, which transforms the alternating output signal U 2 of the Schmitt trigger 3 into a direct voltage signal U 3 of negative polarity.
- the DC voltage signal U 3 is fed to the control input of the JFET 7 via a second switch 8 controlled by the output signal U 4 of the integrator 5.
- the control input of the JFET 7 is connected to the reference voltage U Ref via a capacitor 9 for smoothing the control voltage.
- the second switch 8 is designed as the light-receiving side of an optocoupler 10, the light-transmitting side of which the signal voltage U 4 is supplied to the output of the integrator 5 via a rectifier 11.
- the rectifier 11 and the downstream optocoupler 10 represent a load for the integrator 5.
- the integrator 5 is now charged or discharged at irregular intervals on the one hand by the current source 4 according to the state of the output of the Schmitt trigger 3.
- the integrator 5 is loaded insofar as the amount of the signal voltage U 2 at its output is above the switching threshold of the optocoupler 10.
- the charging current supplied by the current source 4 for the integrator 5 is significantly greater than the discharge current due to the load by the rectifier 11 and the optocoupler 10, so that the Integrator 5 can be charged to a comparatively large positive as well as negative potential.
- the discharge current due to the load by the rectifier 11 and the optocoupler 10 is significantly greater than the charging current supplied by the current source 4, so that the signal voltage U 2 remains at the output of the integrator 5 below the switching threshold of the optocoupler 10.
- the signal voltage U 1 is now secondly fed to a second input amplifier 12 with high-pass behavior, rectified by means of a second rectifier 13 and fed to a second integrator 14. If the JFET 7 blocks, then the signal voltage U 1 is amplified by the second input amplifier 12 and the voltage U 5 at the output of the second integrator 14 has a value which is different from the potential of the ground m. If, however, the JFET 7 is in the conductive state, then the signal voltage U 1 at the input of the amplifier 12 becomes ineffective, so that the voltage U 5 at the output of the integrator 14 assumes the potential of the ground m.
- the signal voltage U 2 is mostly above the switching threshold 16 of the optocoupler 10. As can be seen from the figure, however, the optocoupler 10 is switched on and off at irregular intervals.
- the JFET remains in the blocking state, so that the flame signal U 1 reaches the second input amplifier 12 and the voltage U 5 at the output of the second integrator 14 has a value, the "flame.” available "means.
- the sensor 1 (FIG. 1) is released from its holder and placed next to the burner, the light coming from a neon tube, for example, the fundamental frequency of which is approximately 100 Hz, then striking the output of the Schmitt trigger 3 a signal voltage U 2 , which consists of a regular sequence of pulses 15, the duty cycle of which is 1.
- the pulses 15 charge and discharge the integrator 5 by means of the current source 4 for periods of the same length, so that the signal voltage U 4 at the output of the integrator 5 is already a triangular voltage after a short time, the peak values of which due to the low-pass behavior of the integrator 5 below the switching threshold of the Optocoupler 10 lie.
- the optocoupler 10 then remains permanently switched off and the JFET 7 becomes conductive. As a result, the flame signal is no longer amplified by the second input amplifier 12 and the voltage U 5 at the output of the second integrator 14 takes on the value of the mass m, which means "flame not present".
- FIG. 2 also shows the profile of the signal voltage U 4 in the event that the sensor 1 was released from its holder at the time t 1 (FIG. 1).
- the switching thresholds 16 of the optocoupler 10 are also shown.
- the signal voltage U 4 which happens to have a high value at time t 1 , so that the JFET blocks, gradually decreases due to the low-pass behavior of the integrator 5 and, finally, is no longer able to control the optocoupler 10 ,
- a control input is also shown in FIG. 1, via which a test signal T can be superimposed on the signal voltage U 1 .
- a test signal T is, for example, a 100 Hz signal which simulates a light source operated with alternating current. If the test signal T is applied from the point in time t 1 , the output signal U 4 of the integrator 5 runs against the reference voltage U Ref due to the damping of the coupler 19, that is to say the rectifier 11 and the optocoupler 10, after falling below the switching threshold 16 and after Expiry of the time period ⁇ t the output voltage U 5 at the output of the flame signal amplifier 40 assumes the value of the mass m. 2 there is thus an output signal which, despite the sensor being strongly illuminated with artificial light, gives the evaluation “flame not present”.
- the solution according to FIG. 1 is not only limited to the blocking of certain frequencies, but in principle forms the mean value 0 at every constant frequency at the integrator 5.
- the instantaneous voltage reaches more or less depending on the frequency of the input signal U 1 and on the time constant of the integrator 5 high values, so that a periodic pulse control of the coupler 19 is possible under certain system conditions.
- the integrator 5 with a series resistor to form a simple RC low-pass filter and to design the current source 4 as a voltage source, for example. a bipolar voltage source, so that for Schmitt trigger pulses with a duty cycle of 1 there is only a moderately increasing attenuation above the cut-off frequency of 6 decibels per octave.
- Fig. 3 shows a solution that is specifically designed for blocking defined harmonic network frequencies, that is, for example 50 Hz, 100 Hz, 150 Hz, etc.
- the mean value is newly formed over each network period and read out in such a way that sensor signals which are harmonic to the network frequency always lead to the readout value zero, while signals with a different frequency provide values whose magnitudes are different from zero, in order to thus detect a valid flame signal U 1 .
- the integration time is directly dependent on the current network frequency, which enables a clear distinction between useful and interference signals.
- the input amplifier 20 with low-pass characteristic is used for preamplification of the sensor signal U 1 with simultaneous damping of high-frequency interference voltages. This is followed by a further amplifier 21 with a high-pass characteristic, in which the low streak frequencies are damped as mentioned above.
- the output signal of this amplifier 21 is used in three different ways for different purposes further processed.
- the integration is carried out over a respective network period.
- the averager 22 is integrated after each integration interval by means of the switch shown in FIG. 22 is reset to zero.
- the current one Value of the integrator is read out by closing switch 23 and via the two-way rectifier 24 connected as a trigger pulse to the input of the monoflop 25. With the differentiator 26 from the leading edge of the monoflop pulse the control pulse for the RESET switch of the integrator or averager 22 won.
- the mains ripple voltage becomes 30 in the Schmitt trigger ⁇ U generates a trigger pulse for the monoflop 29, which in turn is the readout switch 23 operated synchronously.
- the dependence of the RESET pulse for the integrator 22 on the leading edge of the monoflop 25 - and not directly from the control pulse for the readout switch 23 - should ensure that the content of the integrator 22 is always read out before it is triggered by the RESET pulse is deleted.
- the output signal U 4 of the integrator 22 is also used indirectly here to release the sensor signal U 1, which in this case is preamplified, for further processing.
- the preamplified sensor signal U 1 is first fed to the Schmitt trigger 28, the output pulses of which are used to generate a negative voltage with the aid of the charge pump 6.
- the negative voltage serves to block the self-conducting JFET 7, as a result of which the input of the active filter stage 33 is released for the preamplified sensor signal U 1 .
- This stage in turn has a high-pass characteristic to further attenuate the streak frequency signals.
- the analog output voltage U 5 is obtained from the preamplified sensor signal U 1 .
- the amplifier supply voltage U S is equal to U B plus ⁇ U.
- the phases operation and test are shown in FIG. 4 in such a way that the test voltage is present between the times t 'and t ".
- the time from the start of the readout to the end of the reset, that is to say to the beginning of the next integration interval, can be kept so short compared to the network period duration ⁇ T, that is to say the interval itself, that the "measurement error" can be neglected despite integration in each of the successive network periods.
- the active filter stage 33 can be omitted if the attenuation of the streak frequencies in the high-pass amplifier 21 is already sufficient to prevent a flame simulation.
- the Schmitt trigger 30 is also not necessary because the monoflop 29 is directly from the Line ripple voltage ⁇ U can be controlled.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Control Of Combustion (AREA)
Description
Die Erfindung betrifft ein Flammenüberwachungssystem der im Oberbegriff des Anspruchs 1 genannten
Art, sowie ein Verfahren zur Überwachung einer Flamme nach dem Oberbegriff des Anpruches 9.The invention relates to a flame monitoring system mentioned in the preamble of claim 1
Type, and a method for monitoring a flame according to the preamble of
Zur Überwachung von Öl-, Gas- oder Kohlenstaubflammen werden u.a. auch solche Flammenüberwachungssysteme bzw. Verfahren eingesetzt, die die Intensitätsschwankungen der Flamme im infraroten Spektralbereich ausnützen. Vorteil solcher Systeme ist, dass sie alle Brennstoffarten abdecken, und somit keine brennstoffspezifischen Überwachungsarten bei Mehrstoffbrennern - z.B. Erfassung der UV-Strahlung bei Gas und der sichtbaren Strahlung bei Schweröl - erforderlich werden. Nachteile der IR-Überwachung sind allerdings, dass sowohl die langsamen Intensitätsänderungen einer nachglühenden Ofenwand - die sog. Schlierenfrequenzen - als auch die schnellen Änderungen von in der Regel mit Netzwechselspannung betriebenen Lichtquellen eine Flamme vortäuschen können. Kommt es zu einer Einstrahlung von künstlichem Licht in den Brennerraum während des Betriebes oder auch während der Wartung von Brennersystemen, würde eine IR- Überwachung das Vorhandensein einer Flamme vortäuschen.To monitor oil, gas or coal dust flames, i.a. also such flame monitoring systems or methods used that the intensity fluctuations of the flame in exploit the infrared spectral range. The advantage of such systems is that they are all types of fuel cover, and thus no fuel-specific monitoring types for multi-fuel burners - e.g. Detection of UV radiation for gas and visible radiation for heavy oil - may be required. Disadvantages of IR monitoring are, however, that both the slow changes in intensity of one afterglowing furnace wall - the so-called streak frequencies - as well as the rapid changes of in Usually, light sources operated with AC voltage can simulate a flame. If there is artificial light coming into the burner chamber during operation or even during burner system maintenance, IR monitoring would be present to fake a flame.
Die Filterung der Schlierenfrequenzen, die in diversen Veröffentlichungen mit bis zu 3 Hz angegeben werden, ist relativ einfach mittels Hochpässen durchführbar, wobei die durch den Verbrennungsvorgang erzeugten Flammenfrequenzen oberhalb von 10 Hz dadurch nicht beschnitten werden. Problematischer und aufwendiger wird es allerdings, wenn die Harmonischen der Netzfrequenz durch Ausfilterung unterdrückt werden müssen. Diese Methode bedeutet zwangsläufig auch den Verlust von Information aus der Flamme, besonders dann, wenn die Netzfrequenz grossen Toleranzen unterliegt bzw. verschiedene Nennfrequenzbereiche abgedeckt werden müssen. Die für Flammenüberwachungseinrichtungen relevante europäische Gerätenorm EN298 lässt auch die Möglichkeit zu, dass durch ein entsprechendes Befestigungssystem des Flammenfühlers seine Abschaltung erreicht wird, wenn er aus der Befestigung entfernt wird. In jedem Falle ist die Fremdlichtsicherheit auch bei Betrachtung von Erst- und Zweitfehlern gemäss EN298 zu gewährleisten. Bei der letztgenannten Methode dürfte dies ausserordentlich schwer zu erfüllen sein, da die Funktionsfähigkeit z.B. eines Endschalters nur durch die tatsächliche Entfernung des Flammenfühlers aus seiner Befestigung geprüft werden kann.The filtering of the streak frequencies specified in various publications with up to 3 Hz be, is relatively easy to carry out by means of high passes, which by the combustion process generated flame frequencies above 10 Hz can not be trimmed. problematic and it becomes more complex, however, when the harmonics of the mains frequency are filtered out must be suppressed. This method also means loss of information from the flame, especially when the network frequency is subject to large tolerances or different nominal frequency ranges must be covered. The for flame monitoring devices Relevant European device standard EN298 also allows the possibility that a corresponding fastening system of the flame sensor its shutdown is achieved when it is off the attachment is removed. In any case, the ambient light security is also when viewing Ensure first and second errors according to EN298. This should be the case with the latter method extremely difficult to fulfill because the functionality e.g. of a limit switch only the actual distance of the flame sensor from its mounting can be checked.
Es ist daher ein Bestreben, die Immunität gegen netzfrequenzmodulierte Fremdlichtquellen auf elektronischem Wege zu erreichen, sei es durch in sich fehlersichere Schaltungen oder durch zyklischen Test- bei für Dauerbetrieb konzipierten Überwachungssystemen selbstverständlich während des Brennerbetriebs.It is therefore an endeavor to establish immunity to mains frequency-modulated extraneous light sources to reach electronically, be it by inherently fail-safe circuits or by cyclical Test of monitoring systems designed for continuous operation of course during the Burner operation.
In der EP 320 082 A1 ist eine Flammenüberwachungsschaltung beschrieben, bei der alleine die Auswertung der Wechsellichtkomponente einer Flamme als Massnahme für eine fehlersichere Flammenerkennung herangezogen wird. Diese Lösung bietet jedoch nur Sicherheit gegen Flammenvortäuschung, so lange es sich bei dem dort erwähnten, sicherheitsrelevanten Umgebungslicht um Gleichlicht handelt. Licht von meist wechselspannungsbetriebenen Fremdlichtquellen führt dagegen sehr wohl zur Vortäuschung einer Flamme und damit zu einem unsicheren Brennerbetrieb. Darüberhinaus besteht die Gefahr, dass ein interner Bauteilfehler im IC trotz fehlender Flamme die Ansteuerung des Brennstoffventils aufrechterhält. Alleine aus diesem Grund verbietet sich schon der Einsatz an Brennern im Dauerbetrieb.EP 320 082 A1 describes a flame monitoring circuit in which only the Evaluation of the alternating light component of a flame as a measure for a fail-safe Flame detection is used. However, this solution only offers security against flame simulation, as long as the safety-relevant ambient light mentioned there is concerned Acts like light. Light from mostly AC-powered external light sources, on the other hand, leads very well to fake a flame and thus to an unsafe burner operation. In addition, there is a risk that an internal component error in the IC despite the missing flame Control of the fuel valve is maintained. For this reason alone, the Use on burners in continuous operation.
Die EP 334 027 A1 offenbart eine diesbezüglich geeignete Lösung, allerdings ist der Aufwand infolge der vollständigen Zweikanaligkeit unverhältnismässig hoch und die Immunität gegen netzfrequente Wechsellichtsignale wird mit frequenzselektiven Anordnungen erreicht, deren Nachteil bezüglich Verlust von Flammensignalinformation bereits erwähnt wurde.EP 334 027 A1 discloses a solution that is suitable in this regard, but the effort is a consequence the full two-channel system is disproportionately high and immunity to network frequencies Alternating light signals are achieved with frequency selective arrangements, the disadvantage of which Loss of flame signal information has already been mentioned.
Eine Lösung, die diesen Mangel beseitigt, ist in der EP 229 265 A1 aufgezeigt. Dort werden netzfrequenzharmonische Signale mit hoher Selektivität gesperrt, so dass der Informationsverlust aus dem Flammensignal sehr gering gehalten wird. Allerdings ist die Anwendbarkeit an Brennern im Dauerbetrieb fraglich, weil ein interner Bauteilfehler bsp. des Flip-Flops - mit Flammensimulation als Folge - im Betrieb nicht festgestellt wird, und auch die Immunität gegen netzfrequente Wechsellichtsignale allenfalls bei Brennerstillstand festgestellt werden könnte.A solution that eliminates this deficiency is shown in EP 229 265 A1. There will be grid frequency harmonic signals locked with high selectivity, so that the loss of information the flame signal is kept very low. However, the applicability to burners in the Continuous operation questionable because of an internal component error e.g. the flip-flop - with flame simulation as Consequence - is not determined in operation, and also immunity to network frequencies Alternating light signals could only be detected when the burner is at a standstill.
Aufgabe der vorliegenden Erfindung ist es, ein Flammenüberwachungssystem bzw. ein Verfahren zur Überwachung einer Flamme zu schaffen, das Immunität gegen netzfrequenzharmonische Eingangssignale bei geringstem Verlust an Flammensignalinformation aufweist und für den Einsatz bei Brennern im Dauerbetrieb geeignet ist.The object of the present invention is to provide a flame monitoring system and a method for Monitoring a flame to create immunity to harmonics Has input signals with the least loss of flame signal information and for use with Burners in continuous operation is suitable.
Die genannte Aufgabe wird erfindungsgemäss durch die Merkmale der unabhängigen Ansprüche 1 und
9 gelöst. Vorteilhafte Ausgestaltungen ergeben sich durch die Unteransprüche.The stated object is achieved according to the invention by the features of
Die vorliegende Erfindung löst das Problem dadurch, daß ein Flammensensor zunächst die von einer Flamme ausgehende Strahlung in ein Flammensignal umwandelt, welches wiederum durch einen Flammensignalverstärker in ein Ausgangssignal umgesetzt wird. Eine frequenzselektive Anordnung, die parallel zu dem Flammensignalverstärker angeordnet ist, empfängt ebenfalls das Flammensignal selbst und überprüft dieses auf das Vorhandensein von periodischen Signalen. Wird das Vorhandensein von nichtperiodischen Signalen durch die frequenzselektive Anordnung detektiert, wird der Flammensignalverstärker aktiviert, während bei der Detektion von periodischen Signalen oder bei dem Nichtvorhandensein eines Flammensignals der Flammensignalverstärker deaktiviert wird. Darüber hinaus besteht die Möglichkeit, das Flammensignal mit einem Testsignal zu überschreiben, so daß der Eingang des Flammensignalverstärkers als auch der Eingang der frequenzselektiven Anordnung durch das Testsignal selbst beaufschlagt werden kann, so daß Ausfälle innerhalb der Flammenüberwachungsschaltung, beispielsweise der Ausfall einzelner Bauteile detektiert werden kann. The present invention solves the problem in that a flame sensor first of all Flame outgoing radiation converts into a flame signal, which in turn by a Flame signal amplifier is converted into an output signal. A frequency selective arrangement that is arranged in parallel to the flame signal amplifier, also receives the flame signal itself and checks for the presence of periodic signals. Will the presence of non-periodic signals detected by the frequency selective arrangement, the Flame signal amplifier activated while in the detection of periodic signals or in the In the absence of a flame signal the flame signal amplifier is deactivated. About that it is also possible to overwrite the flame signal with a test signal so that the Input of the flame signal amplifier as well as the input of the frequency selective arrangement the test signal itself can be applied, so that failures within the Flame monitoring circuit, for example the failure of individual components can be detected.
Die frequenzselektive Anordnung weist dabei einen Frequenzdetektor auf, der das Vorhandensein nichtperiodischer Flammensignale detektiert und über entsprechende Schaltmittel den Flammensignalverstärker entsprechend aktiviert oder deaktiviert. Dies kann auf unterschiedliche Weise realisiert werden.The frequency-selective arrangement has a frequency detector which detects the presence non-periodic flame signals are detected and the flame signal amplifier via appropriate switching means activated or deactivated accordingly. This can be done in different ways become.
Zum einen ist es möglich, das Flammensignal zunächst zu verstärken und in ein Rechtecksignal umzuwandeln, wobei für diese Umwandlung ein beliebiges Referenzsignal herangezogen werden kann. Dieses Rechtecksignal dient dann als Steuersignal einer bipolaren Strom- oder Spannungsquelle, die wiederum einen Integrator speist, so daß das Ausgangssignal des Integrators bei periodischen Eingangssignalen des Frequenzdetektors um einen konstanten Mittelwert herumschwankt. In anderen Worten ausgedrückt, lädt und entlädt die bipolare Strom- bzw. Spannungsquelle den Integrator je nach der Schwankungsbreite des Eingangs bzw. des Flammensignals, so daß bei periodischen Eingangssignalen der gemittelte Integrationswert in etwa Null ist.On the one hand, it is possible to first amplify the flame signal and convert it into a square-wave signal convert, whereby any reference signal can be used for this conversion. This square wave signal then serves as a control signal for a bipolar current or voltage source in turn feeds an integrator, so that the output signal of the integrator with periodic input signals of the frequency detector fluctuates around a constant mean value. In other Expressed in words, the bipolar current or voltage source charges the integrator depending on the fluctuation range of the input or the flame signal, so that with periodic input signals the average integration value is approximately zero.
Die frequenzselektive Anordnung weist darüber hinaus einen Koppler bzw. einen Schalter auf, der zunächst feststellt, ob das Ausgangssignal des Frequenzdetektors, das heißt das integrierte Eingangssignal innerhalb einer definierten Schaltschwelle um einen bestimmten Mittelwert herum bleibt, um dann einen Schalter zu betätigen, der den Flammensignalverstärker entsprechend aktiviert oder deaktiviert. Stellt der Frequenzdetektor fest, daß ein reinperiodisches Signal vorliegt, so gewährleistet die o.g. Schaltschwelle, daß Restschwankungen des integrierten Signals um den konstanten Mittelwert herum bzw. leichte Abweichungen um den Nullwert unberücksichtigt bleiben, die je nach Grenzfrequenz des Integrators auch durch rein periodische Eingangssignale hervorgerufen werden können.The frequency-selective arrangement also has a coupler or a switch that first determines whether the output signal of the frequency detector, that is, the integrated Input signal within a defined switching threshold around a certain average remains in order to then operate a switch which activates the flame signal amplifier accordingly or deactivated. If the frequency detector detects that a purely periodic signal is present, then guarantees the above Switching threshold that residual fluctuations in the integrated signal around the constant mean value or slight deviations around the zero value are disregarded, which, depending on the cutoff frequency of the integrator, is also caused by purely periodic input signals can be.
Eine andere Möglichkeit besteht darin, daß der Frequenzdetektor das Eingangssignal, also beispielsweise das Flammensignal über vorher fest definierte Perioden hinweg integriert und die frequenzselektive Anordnung das integrierte Ausgangssignal zur Betätigung eines Schalters verwendet, der wiederum den Flammensignalverstärker aktiviert oder deaktiviert. Durch die Integration über diese definierten Perioden hinweg ist es möglich, eine sehr enge, das heißt schmalbandige Filterung diskreter Frequenzen vorzunehmen, die üblicherweise Vielfache der Netzfrequenz sind, so daß hier Fremdlichtkomponenten die der Wechselspannung der Netzfrequenz folgen, scharf ausgefiltert werden, so daß sämtliche anderen Frequenzen, das heißt insbesondere Flammensignale nahezu verlustfrei detektiert werden können. Dabei ist es sinnvoll, den Frequenzdetektor nach jeder Integration über eine der definierten Perioden hinweg in seinen Ausgangszustand zurückzusetzen, ansonsten ein Abdriften der Integratorausgangsspannung zur Flammensimulation führen könnte, was beim Test als Bauteilfehler erkannt würde. Another possibility is that the frequency detector receives the input signal, ie For example, the flame signal is integrated over previously defined periods and the frequency-selective arrangement uses the integrated output signal to actuate a switch, which in turn activates or deactivates the flame signal amplifier. By integrating over this defined periods, it is possible to use a very narrow, ie narrow-band filtering discrete To make frequencies that are usually multiples of the network frequency, so here Extraneous light components that follow the AC voltage of the mains frequency are filtered out sharply, so that all other frequencies, ie flame signals in particular, are almost loss-free can be detected. It makes sense to use the frequency detector after each integration of the defined periods back to their original state, otherwise a drift the integrator output voltage could lead to flame simulation, which is a component fault when tested would be recognized.
Das Flammensignal ist dabei mit einem periodischen Testsignal überschreibbar, so daß der Frequenzdetektor dann das Testsignal auswertet, welches die Überprüfung der Schaltung als solches ermöglicht und den Ausfall einzelner Bauteile detektiert.The flame signal can be overwritten with a periodic test signal, so that the Frequency detector then evaluates the test signal, which is the verification of the circuit as such enables and the failure of individual components is detected.
Der Frequenzdetektor aktiviert den Schalter derart, daß der Flammensignalverstärker bei einem nichtperiodischen Flammensignal ein gültiges Ausgangssignal liefert, während bei der Detektion von periodischen Eingangssignalen am Frequenzdetektor der Flammensignalverstärker deaktiviert wird, so daß am Ausgang des Flammensignalverstärkers kein gültiges Signal geliefert wird.The frequency detector activates the switch so that the flame signal amplifier at one non-periodic flame signal provides a valid output signal while in the detection of periodic input signals at the frequency detector of the flame signal amplifier is deactivated, so that no valid signal is supplied at the output of the flame signal amplifier.
Das periodische Testsignal wird vorteilhafterweise in regelmäßigen Zeitabständen angelegt, um stets Sicherheit über das einwandfreie Funktionieren der Flammenüberwachungsschaltung zu haben.The periodic test signal is advantageously applied at regular time intervals to always To have certainty about the proper functioning of the flame monitoring circuit.
Nachfolgend werden bevorzugte Ausführungsbeispiele der Erfindung anhand der Zeichnungen näher erläutert. Dabei zeigen:
- Fig. 1
- ein Flammenüberwachungssystem mit geeigneten Schaltelementen,
- Fig. 2
- die Signalverläufe des Flammenüberwachungssystems nach Fig. 1,
- Fig. 3
- ein anderes Flammenüberwachungssystem mit geeigneten Schaltelementen,
- Fig. 4
- ein Testsignal des Flammenüberwachungssystems nach Fig. 3,
- Fig. 5
- die Signalverläufe des Flammenüberwachungssystems nach Fig. 3, und
- Fig. 6
- ein vereinfachtes Flammenüberwachungssystems nach Fig. 3.
- Fig. 1
- a flame monitoring system with suitable switching elements,
- Fig. 2
- 1 the signal profiles of the flame monitoring system according to FIG. 1,
- Fig. 3
- another flame monitoring system with suitable switching elements,
- Fig. 4
- 3, a test signal of the flame monitoring system according to FIG. 3,
- Fig. 5
- the waveforms of the flame monitoring system of FIG. 3, and
- Fig. 6
- a simplified flame monitoring system according to FIG. 3.
Die Fig. 1 zeigt ein Flammenüberwachungssystem. Die von einem Sensor 1 aufgenommene und in ein
elektrisches Signal, die Signalspannung U1, gewandelte Flammenstrahlung wird erstens in einem ersten
Eingangsverstärker 2 mit Hochpassverhalten verstärkt und dem Eingang eines Schmitt-Triggers 3
zugeführt. Die Signalspannung U1 ist auf eine Masse m bezogen. Mit der Signalspannung U2 am
Ausgang des Schmitt-Triggers 3 wird nun erstens eine bipolare Stromquelle 4 angesteuert, die einen
ersten Integrator 5 bezüglich einer Referenzspannung URef positiv oder negativ lädt. Die Polarität und
Dauer der jeweiligen Ladezyklen sind vom Zustand des Ausgangs des Schmitt-Triggers 3 und somit
direkt von der Signalspannung U1 des Sensors 1 abhängig. Der Integrator 5 weist ein Tiefpassverhalten
auf, wobei die Grenzfrequenz des Tiefpasses typischerweise bei etwa 80 Hz liegt.1 shows a flame monitoring system. The flame radiation picked up by a sensor 1 and converted into an electrical signal, the signal voltage U 1 , is first amplified in a
Die Signalspannung U2 am Ausgang des Schmitt-Triggers 3 wird zweitens mittels eines Schaltkreises 6
zur Steuerung eines als Schalter arbeitenden n-Kanal JFET 7 (junction field effect transistor)
aufbereitet. Der Schaltkreis 6 ist als aus zwei Kondensatoren und zwei Dioden bestehende
Ladungspumpe ausgebildet, die das wechselförmige Ausgangssignal U2 des Schmitt-Triggers 3 in ein
Gleichspannungssignal U3 negativer Polarität transformiert. Das Gleichspannungssignal U3 wird über
einen vom Ausgangssignal U4 des Integrators 5 gesteuerten zweiten Schalter 8 dem Steuereingang des
JFET 7 zugeführt. Der Steuereingang des JFET 7 ist zur Glättung der Steuerspannung noch über einen
Kondensator 9 mit der Referenzspannung URef verbunden. Im Beispiel ist der zweite Schalter 8 als
lichtempfangende Seite eines Optokopplers 10 ausgebildet, dessen lichtsendender Seite die Signalspannung
U4 am Ausgang des Integrators 5 über einen Gleichrichter 11 zugeführt wird.The signal voltage U 2 at the output of the
Der Gleichrichter 11 und der nachgeschaltete Optokoppler 10 stellen für den Integrator 5 eine Last dar.
Der Integrator 5 wird nun einerseits durch die Stromquelle 4 entsprechend dem Zustand des Ausgangs
des Schmitt-Triggers 3 in unregelmässigen Abständen geladen bzw. entladen. Andererseits wird der
Integrator 5, sofern der Betrag der Signalspannung U2 an seinem Ausgang über der Schaltschwelle des
Optokopplers 10 liegt, belastet. Bei Frequenzen der Signalspannung U1, die unterhalb der
Grenzfrequenz des Tiefpasses des Integrators 5 liegen, ist der von der Stromquelle 4 gelieferte Ladestrom
für den Integrator 5 deutlich grösser als der Entladestrom infolge der Belastung durch den
Gleichrichter 11 und den Optokoppler 10, so dass der Integrator 5 sowohl auf ein vergleichsweise
grosses positives wie negatives Potential geladen werden kann. Bei Frequenzen der Signalspannung U1,
die oberhalb der Grenzfrequenz des Tiefpasses des Integrators 5 liegen, ist hingegen der Entladestrom
infolge der Belastung durch den Gleichrichter 11 und den Optokoppler 10 deutlich grösser als der von
der Stromquelle 4 gelieferte Ladestrom, so dass die Signalspannung U2 am Ausgang des Integrators 5
unterhalb der Schaltschwelle des Optokopplers 10 bleibt.The rectifier 11 and the
Die Signalspannung U1 wird nun zweitens einem zweiten Eingangsverstärker 12 mit Hochpassverhalten
zugeführt, mittels eines zweiten Gleichrichters 13 gleichgerichtet und einem zweiten Integrator 14
zugeführt. Wenn der JFET 7 sperrt, dann wird die Signalspannung U1 vom zweiten Eingangsverstärker
12 verstärkt und die Spannung U5 am Ausgang des zweiten Integrators 14 hat einen vom Potential der
Masse m verschiedenen Wert. Wenn der JFET 7 hingegen im leitenden Zustand ist, dann wird die
Signalspannung U1 am Eingang des Verstärkers 12 unwirksam, so dass die Spannung U5 am Ausgang
des Integrators 14 das Potential der Masse m annimmt.The signal voltage U 1 is now secondly fed to a
Die Fig. 2 zeigt die Spannungssignale U1, U2 und U4 für den Fall, dass nur von der Flamme ausgehende
Strahlung auf den Sensor 1 fällt. Am Ausgang des Schmitt-Triggers 3 treten Impulse 15 unterschiedlicher
Länge auf. Solange ein Impuls 15 vorhanden ist, wird der Integrator 5 durch die Stromquelle 4
aufgeladen, in den Pausen zwischen den Impulsen 15 wird der Integrator 5 entladen. Die
Signalspannung U2 liegt dabei gemäss der obigen Beschreibung meistens über der Schaltschwelle 16
des Optokopplers 10. Wie der Figur zu entnehmen ist, wird der Optokoppler 10 jedoch in
unregelmässigen Abständen ein- und ausgeschaltet. Dank der Glättung des Ausgangssignals des
Optokopplers 10 durch den Kondensator 9 bleibt aber der JFET im sperrenden Zustand, so dass das
Flammensignal U1 auf den zweiten Eingangsverstärker 12 gelangt und die Spannung U5 am Ausgang
des zweiten Integrators 14 einen Wert hat, der "Flamme vorhanden" bedeutet.2 shows the voltage signals U 1 , U 2 and U 4 in the event that only radiation emanating from the flame falls on the sensor 1. At the output of the
Wird der Sensor 1 (Fig. 1) aus seiner Halterung gelöst und neben dem Brenner plaziert, wobei dann z.B.
das von einer Neonröhre stammende Licht, dessen Grundfrequenz bei etwa 100 Hz liegt, auf ihn
auftrifft, dann tritt am Ausgang des Schmitt-Triggers 3 eine Signalspannung U2 auf, die aus einer
regelmässigen Folge von Impulsen 15 besteht, deren Tastverhältnis 1 beträgt. Die Impulse 15 laden und
entladen den Integrator 5 mittels der Stromquelle 4 während jeweils gleich langen Zeiten, so dass die
Signalspannung U4 am Ausgang des Integrators 5 bereits nach kurzer Zeit eine Dreieckspannung ist,
deren Spitzenwerte wegen des Tiefpassverhaltens des Integrators 5 unterhalb der Schaltschwelle des
Optokopplers 10 liegen. Der Optokoppler 10 bleibt dann permanent ausgeschaltet und der JFET 7 wird
leitend. Demzufolge wird das Flammensignal vom zweiten Eingangsverstärker 12 nicht mehr verstärkt
und die Spannung U5 am Ausgang des zweiten Integrators 14 nimmt den Wert der Masse m an, der
"Flamme nicht vorhanden" bedeutet.If the sensor 1 (FIG. 1) is released from its holder and placed next to the burner, the light coming from a neon tube, for example, the fundamental frequency of which is approximately 100 Hz, then striking the output of the Schmitt trigger 3 a signal voltage U 2 , which consists of a regular sequence of
Die Fig. 2 zeigt ebenfalls den Verlauf der Signalspannung U4 für den Fall, dass der Sensor 1 zum
Zeitpunkt t1 (Fig. 1) aus seiner Halterung gelöst wurde. Eingezeichnet sind auch die Schaltschwellen 16
des Optokopplers 10. Die Signalspannung U4, die zum Zeitpunkt t1 zufällig einen hohen Wert aufweist,
so dass der JFET sperrt, nimmt wegen des Tiefpassverhaltens des Integrators 5 allmählich ab und
vermag schlussendlich den Optokoppler 10 nicht mehr anzusteuern.FIG. 2 also shows the profile of the signal voltage U 4 in the event that the sensor 1 was released from its holder at the time t 1 (FIG. 1). The switching
In der Fig. 1 ist noch ein Steuereingang eingezeichnet, über den der Signalspannung U1 ein Testsignal T
überlagert werden kann. Ein solches Testsignal T ist z.B. ein 100 Hz-Signal, das eine mit Wechselstrom
betriebene Lichtquelle vortäuscht. Wird das Testsignal T ab dem Zeitpunkt t1 angelegt, so läuft das
Ausgangssignal U4 des Integrators 5 aufgrund der Dämpfung des Kopplers 19, das heißt des Gleichrichters
11 und des Optokopplers 10 gegen die Referenzspannung URef, wobei nach Unterschreiten der
Schaltschwelle 16 und nach Ablauf der Zeitspanne Δt die Ausgangsspannung U5 am Ausgang des
Flammensignalverstärkers 40 den Wert der Masse m annimmt. Somit ergibt sich hier nach Fig. 2 ein
Ausgangssignal, das trotz starker Beleuchtung des Sensors mit Kunstlicht die Bewertung "Flamme nicht
vorhanden" abgibt.A control input is also shown in FIG. 1, via which a test signal T can be superimposed on the signal voltage U 1 . Such a test signal T is, for example, a 100 Hz signal which simulates a light source operated with alternating current. If the test signal T is applied from the point in time t 1 , the output signal U 4 of the
Oft wird jedoch ein Ausgangssignal gewünscht, das nicht nur das Vorhandensein einer Flamme meldet,
sondern auch ein Maß für die Stärke der vom Fühler erfaßten Flammenstrahlung darstellt. Aus diesem
Grund ist der eigentliche Flammensignalverstärker 40 als rein analoger Verarbeitungskanal mit den
Blöcken 12, 13 und 14 aufgebaut.However, an output signal is often required that not only reports the presence of a flame,
but also represents a measure of the strength of the flame radiation detected by the sensor. For this
The reason is the actual
Die Blöcke 18, 19 sowie 6 und 17 haben hier zwei verschiedene Aufgaben zu erfüllen:
Die Lösung nach Figur 1 ist nicht nur auf die Sperrung bestimmter Frequenzen beschränkt, sondern
bildet prinzipiell bei jeder konstanten Frequenz am Integrator 5 den Mittelwert 0. Die
Augenblicksspannung erreicht jedoch je nach Frequenz des Eingangssignals U1 und je nach
Zeitkonstante des Integrators 5 mehr oder weniger hohe Werte, so daß eine periodische pulsförmige
Ansteuerung des Kopplers 19 unter bestimmten Systembedingungen möglich ist. Hier empfiehlt sich die
Ergänzung des Integrators 5 mit einem Längswiderstand zu einem einfachen RC-Tiefpaß und die
Ausbildung der Stromquelle 4 als Spannungsquelle, bsp. einer bipolaren Spannungsquelle, so daß sich
für Schmitt-Trigger-Impulse mit Tastverhältnis 1 eine oberhalb der Grenzfrequenz immerhin mit 6
Dezibel pro Oktave nur mäßig zunehmende Dämpfung ergibt. Je mehr jedoch das Tastverhältnis auch
bei den höheren Frequenzen von 1 abweicht, desto weniger wirkt diese Dämpfung. Je nach dem
zeitlichen Verlauf des Flammensignals U1 entstehen am Kondensator des Integrators 5 Spannungen, die
mehr oder weniger häufig in Amplitude und Polarität wechseln. Selbst wenn davon ausgegangen wird,
daß die Strahlungsfrequenz netzbetriebener Lichtquellen das Doppelte der Netzfrequenz beträgt, also
beispielsweise 100 Hz, so muß die Grenzfrequenz des o.g. einfachen Tiefpasses sehr tief gelegt werden,
um zwischen Nutzsignal der Flamme und Störsignal von beispielsweise 100 Hz ausreichend genau
unterscheiden zu können. Um hier bei gleichem Störabstand eine größere Bandbreite für das Nutzsignal
zu erreichen, ist z. B. die Zwischenschaltung eines Tiefpasses höherer Ordnung am Ausgang des
Eingangsverstärkers 2 vorteilhaft.The solution according to FIG. 1 is not only limited to the blocking of certain frequencies, but in principle forms the mean value 0 at every constant frequency at the
Um jedoch die Bandbreite für das Flammensignal zu erhalten, die unabhängig von den netzfrequenzharmonischen Störsignalen ist, ist eine unendlich schmalbandige Sperre für diese Störfrequenzen erforderlich.However, in order to obtain the bandwidth for the flame signal, which is independent of the mains frequency harmonics Interference signals is an infinitely narrow band block for these interference frequencies required.
Fig. 3 zeigt eine Lösung, die speziell für die Sperrung von definierten harmonischen Netzfrequenzen, das heißt beispielsweise 50 Hz, 100 Hz, 150 Hz usw. ausgelegt ist. Hier wird über jede Netzperiode der Mittelwert neu gebildet und derart ausgelesen, daß netzfrequenzharmonische Sensorsignale stets zum Auslesewert Null führen, während Signale mit davon abweichender Frequenz Werte liefern, deren Beträge von Null unterschiedlich sind, um so ein gültiges Flammensignal U1 zu detektieren. Bei diesem Prinzip ist die Integrationszeit direkt von der aktuellen Netzfrequenz abhängig, wodurch eine scharfe Unterscheidung zwischen Nutz- und Störsignal ermöglicht wird.Fig. 3 shows a solution that is specifically designed for blocking defined harmonic network frequencies, that is, for example 50 Hz, 100 Hz, 150 Hz, etc. Here, the mean value is newly formed over each network period and read out in such a way that sensor signals which are harmonic to the network frequency always lead to the readout value zero, while signals with a different frequency provide values whose magnitudes are different from zero, in order to thus detect a valid flame signal U 1 . With this principle, the integration time is directly dependent on the current network frequency, which enables a clear distinction between useful and interference signals.
Der Eingangsverstärker 20 mit Tiefpaßcharakteristik dient der Vorverstärkung des Sensorsignals U1 bei
gleichzeitiger Dämpfung hochfrequenter Störspannungen. Ihm folgt ein weiterer Verstärker 21 mit
Hochpaßcharakteristik, bei dem die niedrigen Schlierenfrequenzen wie oben erwähnt bedämpft werden.The
Das Ausgangssignal dieses Verstärkers 21 wird über drei verschiedene Wege für verschiedene Zwecke
weiterverarbeitet. Im Mittelwertbildner 22 wird die Integration über jeweils eine Netzperiode vorgenommen.
Der Mittelwertbildner bzw. -integrator 22 wird nach jedem Integrationsintervall mittels dem
in 22 dargestellten Schalter auf Null zurückgesetzt. Unmittelbar vor diesem RESET wird der aktuelle
Wert des Integrators durch Schließen des Schalters 23 ausgelesen und über den Zweiweggleichrichter
24 als Trigger-Impuls auf den Eingang des Monoflops 25 geschaltet. Mit dem Differenzierer 26 wird
aus der Vorderflanke des Monoflop-Impulses der Steuerimpuls für den RESET-Schalter des Integrators
bzw. Mittelwertbildners 22 gewonnen.The output signal of this
Für die Steuerung des Auslese-Schalters 23 wird im Schmitt-Trigger 30 aus der Netzbrummspannung
ΔU ein Triggerimpuls für das Monoflop 29 erzeugt, welches dann seinerseits der Auslese-Schalter 23
netzsynchron betätigt. Die Abhängigkeit des RESET-Impulses für den Integrator 22 von der Vorderflanke
des Monoflops 25 - und nicht etwa direkt vom Steuerimpuls für den Auslese-Schalter 23 - soll
gewährleisten, daß der Inhalt des Integrators 22 stets ausgelesen wird, bevor er durch den RESET-Impuls
gelöscht wird.In order to control the
Analog zu dem Prinzip nach Fig. 1 wird auch hier das Ausgangssignal U4 des Integrators 22 indirekt zur
Freigabe des - in diesem Fall vorverstärkten - Sensorsignals U1 für die weitere Verarbeitung benutzt.Analogously to the principle according to FIG. 1, the output signal U 4 of the
Dazu wird zunächst das vorverstärkte Sensorsignal U1 dem Schmitt-Trigger 28 zugeführt, dessen Ausgangsimpulse
zur Gewinnung einer negativen Spannung mit Hilfe der Ladungspumpe 6 herangezogen
werden. Die negative Spannung dient - wie in Fig. 1 - zur Sperrung des selbstleitenden JFET 7,
wodurch der Eingang der Aktivfilterstufe 33 für das vorverstärkte Sensorsignal U1 freigegeben wird.
Diese Stufe hat wiederum Hochpaßcharakteristik, um die Schlierenfrequenzsignale weiter zu
bedämpfen. Im nachfolgenden Zweiweg-Gleichrichter 34 mit Integrationskondensator wird aus dem
vorverstärkten Sensor-Signal U1 die analoge Ausgangsspannung U5 gewonnen.For this purpose, the preamplified sensor signal U 1 is first fed to the
Für den Test auf Abschaltung des Ausgangssignals U5 bei Auftreten netzfrequenzharmonischer
Sensorsignale U1 wird mittels Anhebung des Mittelwerts der Verstärkerspeisespannung US vom
Betriebswert UB auf den Testwert UT die Schwelle der Zehnerdiode 31 überschritten und der
Testschalter 32 geschlossen, wodurch die der Speisespannung UT überlagerte Netzbrummspannung ΔU
dem Sensorsignal U1 überlagert und somit ein netzfrequentes Störsignal eingekoppelt wird (vgl. Fig. 4).
Die so erzwungene Überschreibung des Sensorsignals durch die Netzbrummspannung führt dazu, daß
die am Integrator 22 über jede Netzperiode gemittelten Werte zu Null werden, so daß letztendlich der
Schalter 17, das heißt der JFET 7 leitend und das Ausgangssignal U5 ebenfalls Null werden muß.For the test for switching off the output signal U 5 when sensor signals U 1 harmonic to the mains frequency occur, by raising the mean value of the amplifier supply voltage U S from the operating value U B to the test value U T, the threshold of the
In Fig. 4 ist die Umschaltung der Speisespannung US von Betrieb UB auf Test UT und umgekehrt dargestellt. Diese Umschaltung kann auch mit einem Mikroprozessorsystem gesteuert werden. Die Fehlererkennung erfolgt nach demselben Prinzip wie für Fig. 1 beschrieben.4 shows the switching of the supply voltage U S from operation U B to test U T and vice versa. This switching can also be controlled with a microprocessor system. The error detection takes place according to the same principle as described for FIG. 1.
Die Verstärkerspeisespannung US ist gleich UB plus ΔU. Die Phasen Betrieb und Test sind in Fig. 4 derart dargestellt, daß die Testspannung zwischen den Zeitpunkten t' und t" anliegt.The amplifier supply voltage U S is equal to U B plus ΔU. The phases operation and test are shown in FIG. 4 in such a way that the test voltage is present between the times t 'and t ".
In Fig. 5 sind die Inhalte des Integrators bzw. Mittelwertbildners 22 dargestellt. Bei vcrschiedenen
Sensorsignalen U1 stehen jeweils unterschiedliche Ausgangssignale U4 mit unterschiedlichen Werten a,
b, c und d am Ausgang des Integrators 22 zum Auslesen bereit. Am Verlauf der Integratorspannung U4
ist erkennbar, daß das nullpunktsymmetrische Störsignal stets das Ergebnis Null liefern muß, wenn über
konstante Perioden ΔT integriert wird. Dies sind vorteilhafterweise Netzperioden oder Vielfache der
entsprechenden Netzperiode. Dabei spielt es keine Rolle, zu welchem Zeitpunkt das
Integrationsintervall beginnt. Die Zeit vom Beginn des Auslesens bis zum Ende des Rücksetzens, also
bis zu Beginn des nächsten Integrationsintervalls, kann gegenüber derNetzperiodendauer ΔT, also dem
Intervall selbst, so kurz gehalten werden, daß der "Meßfehler" trotz Integration in jeder der
aufeinanderfolgenden Netzperioden vernachlässigbar ist.5 shows the contents of the integrator or
Die Schaltung nach Fig. 3 kann auch noch variiert werden. Fig. 6 zeigt beispielhaft eine derartige
Variante der Schaltung nach Fig. 3. So ist es z. B. möglich, für die Ansteuerung der Ladungspumpe 6
das Ausgangssignal des Schmitt-Triggers 30 mitzubenutzen, um den Schmitt-Trigger 28 einzusparen.
Außer der Einsparung von Bauteilen hätte diese Variante den Vorteil der gleichmäßigeren und damit
zuverlässigeren Gate-Spannungserzeugung für den selbstleitenden JFET 7 infolge konstanter
Pumpfrequenz. Allerdings ginge dann eine jetzt vorhandene Eigenschaft verloren, die auch einen
gewissen Vorteil hat, nämlich die, daß die Ladungspumpe mit ihrem Hochpaßcharakter eine zusätzliche
Sicherheit gegen die Detektion von Schlierensignalen wie oben beschrieben, wenn sie wie in Fig. 3 vom
Nutzsignal abhängig ist, bietet.3 can also be varied. 6 shows such an example
Variant of the circuit of Fig. 3. So it is z. B. possible for the control of the
Des weiteren ist denkbar, daß die Aktivfilterstufe 33 entfallen kann, wenn die Dämpfung der Schlierenfrequenzen
im Hochpaßverstärker 21 bereits ausreicht, um eine Flammensimulation zu verhindern.It is also conceivable that the
Auch der Schmitt-Trigger 30 ist nicht erforderlich, weil das Monoflop 29 direkt von der
Netzbrummspannung ΔU angesteuert werden kann.The Schmitt trigger 30 is also not necessary because the
Eine weitere Variante mit Einsparung des Schmitt-Triggers 28 wäre die Ansteuerung der
Ladungspumpe 6 aus dem Monoflop 25. Als Folge dessen könnte der Transistor 27 entfallen, so daß die
Entladezeitkonstante der Ladungspumpe 6 so klein dimensioniert werden kann, daß der Test in der
dafür verfügbaren Zeit durchgeführt werden kann.Another variant with savings on the
Claims (12)
- A flame monitoring system comprising
a flame sensor (1) which converts the radiation emanating from the flame into a flame signal (U1),
a flame signal amplifier (40) which converts the flame signal (U1) into an output signal (U5), and
a frequency-selective arrangement (6, 17, 18, 19) which detects the presence of periodic signals in the flame signal (U1),
characterised in that
the frequency-selective arrangement (6, 17, 18, 19) activates the flame signal amplifier (40) when there is a non-periodic flame signal (U1), and
the frequency-selective arrangement (6, 17, 18, 19) deactivates the flame signal amplifier (40) when there is a flame signal (U1) with periodic signals or no flame signal (U1) or a test signal (T). - A flame monitoring system according to claim 1 characterised in that the frequency-selective arrangement (6, 17, 18, 19) has a frequency detector (18) which detects the presence of non-periodic flame signals (U1) and appropriately activates or deactivates the flame signal amplifier (40) by way of switching means (6, 17, 19).
- A flame monitoring system according to claim 1 or claim 2 characterised in that the frequency detector (18) converts the flame signal (U1) into a rectangular signal (U2) and uses the rectangular signal (U2) as a control signal of a bipolar current/voltage source (4) for feeding an integrator (5) so that the output signal (U4) of the integrator (5) fluctuates about a constant mean value (URef) with periodic flame signals (U1).
- A flame monitoring system according to claim 2 or claim 3 characterised in that the frequency-selective arrangement (6, 17, 18, 19) has a coupler (19) which, when the output signal (U4) of the frequency detector (18) remains within a defined switching threshold (16) around the constant mean value (URef) activates a switch (17) which deactivates the flame signal amplifier (40).
- A flame monitoring system according to claim 1 or claim 2 characterised in that the frequency detector (18) integrates the flame signal (U1) over defined periods and the frequency-selective arrangement (6, 17, 18) uses that integrated output signal (U4) for the actuation of a switch (17) which activates or deactivates the flame signal amplifier (40).
- A flame monitoring system according to claim 5 characterised in that the frequency detector (18) is resettable to its initial state after each integration over one of the defined periods.
- A flame monitoring system according to claim 5 or claim 6 characterised in that the defined periods are multiples of the mains periods.
- A flame monitoring system according to one of the preceding claims characterised in that the flame signal (U1) is overwritable with a periodic test signal (T) and the frequency detector (18) evaluates the test signal (T).
- A method of monitoring a flame, wherein
the radiation emanating from the flame is converted into a flame signal (U1) and same is converted into an output signal (U5), and
the presence of periodic signals in the flame signal (U1) is detected by a frequency-selective arrangement (6, 17, 18, 19),
characterised in that
the flame signal (U1) is converted into an output signal (U5) when there is a non-periodic flame signal (U1), and
the flame signal (U1) is converted into a zero signal (Um) when there is a flame signal (U1) with periodic signals or no flame signal (U1) or a test signal (T). - A method according to claim 9 characterised in that periodic flame signals (U1) are detected by means of integration of the flame signals (U1) over given periods and/or around a constant mean value (URef).
- A method according to claim 9 or claim 10 characterised in that if the integrated flame signal (U1) is nearly zero or remains within a defined switching threshold (16) around the constant mean value (URef). the flame signal (U1) is converted into the zero signal (Um).
- A method according to one of claims 9 to 11 characterised in that a periodic test signal (T) is applied in regular time intervals and the occurrence of the zero signal (Um) is checked.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19841475 | 1998-09-10 | ||
DE19841475A DE19841475C1 (en) | 1998-09-10 | 1998-09-10 | Flame monitoring system for gas-, oil- or coal-fired burner |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0985881A2 EP0985881A2 (en) | 2000-03-15 |
EP0985881A3 EP0985881A3 (en) | 2003-01-02 |
EP0985881B1 true EP0985881B1 (en) | 2004-04-21 |
Family
ID=7880553
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99112232A Expired - Lifetime EP0985881B1 (en) | 1998-09-10 | 1999-06-25 | Flame monitoring system |
Country Status (4)
Country | Link |
---|---|
US (1) | US6486486B1 (en) |
EP (1) | EP0985881B1 (en) |
JP (1) | JP4195760B2 (en) |
DE (2) | DE19841475C1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102023119330B3 (en) | 2023-07-21 | 2024-10-02 | Viessmann Climate Solutions Se | Flame detection device and method for operating a flame detection device |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10205198B4 (en) * | 2002-02-08 | 2004-01-15 | Karl Dungs Gmbh & Co. Kg | Two-pole flame detector |
US7244946B2 (en) * | 2004-05-07 | 2007-07-17 | Walter Kidde Portable Equipment, Inc. | Flame detector with UV sensor |
US7820977B2 (en) | 2005-02-04 | 2010-10-26 | Steve Beer | Methods and apparatus for improved gamma spectra generation |
DE502005009411D1 (en) * | 2005-05-06 | 2010-05-27 | Siemens Building Tech Ag | Method and device for flame monitoring |
US8300381B2 (en) * | 2007-07-03 | 2012-10-30 | Honeywell International Inc. | Low cost high speed spark voltage and flame drive signal generator |
US8085521B2 (en) * | 2007-07-03 | 2011-12-27 | Honeywell International Inc. | Flame rod drive signal generator and system |
US7764182B2 (en) * | 2005-05-12 | 2010-07-27 | Honeywell International Inc. | Flame sensing system |
US8310801B2 (en) * | 2005-05-12 | 2012-11-13 | Honeywell International, Inc. | Flame sensing voltage dependent on application |
US8066508B2 (en) | 2005-05-12 | 2011-11-29 | Honeywell International Inc. | Adaptive spark ignition and flame sensing signal generation system |
US7768410B2 (en) * | 2005-05-12 | 2010-08-03 | Honeywell International Inc. | Leakage detection and compensation system |
US8875557B2 (en) | 2006-02-15 | 2014-11-04 | Honeywell International Inc. | Circuit diagnostics from flame sensing AC component |
US8457835B2 (en) * | 2011-04-08 | 2013-06-04 | General Electric Company | System and method for use in evaluating an operation of a combustion machine |
US10208954B2 (en) | 2013-01-11 | 2019-02-19 | Ademco Inc. | Method and system for controlling an ignition sequence for an intermittent flame-powered pilot combustion system |
US9494320B2 (en) | 2013-01-11 | 2016-11-15 | Honeywell International Inc. | Method and system for starting an intermittent flame-powered pilot combustion system |
US9784449B2 (en) * | 2014-05-30 | 2017-10-10 | Jed Margolin | Flame sensing system |
US10402358B2 (en) | 2014-09-30 | 2019-09-03 | Honeywell International Inc. | Module auto addressing in platform bus |
US10288286B2 (en) | 2014-09-30 | 2019-05-14 | Honeywell International Inc. | Modular flame amplifier system with remote sensing |
US10042375B2 (en) | 2014-09-30 | 2018-08-07 | Honeywell International Inc. | Universal opto-coupled voltage system |
US10678204B2 (en) | 2014-09-30 | 2020-06-09 | Honeywell International Inc. | Universal analog cell for connecting the inputs and outputs of devices |
US10473329B2 (en) | 2017-12-22 | 2019-11-12 | Honeywell International Inc. | Flame sense circuit with variable bias |
US11236930B2 (en) | 2018-05-01 | 2022-02-01 | Ademco Inc. | Method and system for controlling an intermittent pilot water heater system |
US10935237B2 (en) | 2018-12-28 | 2021-03-02 | Honeywell International Inc. | Leakage detection in a flame sense circuit |
US11739982B2 (en) | 2019-08-14 | 2023-08-29 | Ademco Inc. | Control system for an intermittent pilot water heater |
US11656000B2 (en) | 2019-08-14 | 2023-05-23 | Ademco Inc. | Burner control system |
EP4397907A1 (en) | 2023-01-04 | 2024-07-10 | Siemens Aktiengesellschaft | Combustion sensor control |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DD261199A1 (en) * | 1985-12-23 | 1988-10-19 | Geraete & Regler Werke Veb | ALTERNATING RADIATION FLAME WEAPON WITH NOISE SIGNAL SUPPRESSION |
EP0320082A1 (en) * | 1987-12-08 | 1989-06-14 | Desa International, Inc. | Method and apparatus for a flame sensing digital primary safety control for fuel burning devices |
EP0334027B1 (en) * | 1988-03-25 | 1994-04-27 | Hartmann & Braun Leipzig GmbH | Dynamic auto-controlling circuit for flame detection |
US5164600A (en) * | 1990-12-13 | 1992-11-17 | Allied-Signal Inc. | Device for sensing the presence of a flame in a region |
ATE203118T1 (en) * | 1994-12-19 | 2001-07-15 | Siemens Building Tech Ag | METHOD AND ARRANGEMENT FOR DETECTING A FLAME |
US5495112A (en) * | 1994-12-19 | 1996-02-27 | Elsag International N.V. | Flame detector self diagnostic system employing a modulated optical signal in composite with a flame detection signal |
US5567144A (en) * | 1995-10-05 | 1996-10-22 | Desa International Inc. | Hot surface ignition controller for fuel oil burner |
-
1998
- 1998-09-10 DE DE19841475A patent/DE19841475C1/en not_active Expired - Fee Related
-
1999
- 1999-06-25 DE DE59909223T patent/DE59909223D1/en not_active Expired - Lifetime
- 1999-06-25 EP EP99112232A patent/EP0985881B1/en not_active Expired - Lifetime
- 1999-08-17 US US09/375,866 patent/US6486486B1/en not_active Expired - Lifetime
- 1999-09-09 JP JP25520099A patent/JP4195760B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102023119330B3 (en) | 2023-07-21 | 2024-10-02 | Viessmann Climate Solutions Se | Flame detection device and method for operating a flame detection device |
Also Published As
Publication number | Publication date |
---|---|
DE19841475C1 (en) | 2000-02-03 |
US6486486B1 (en) | 2002-11-26 |
EP0985881A2 (en) | 2000-03-15 |
DE59909223D1 (en) | 2004-05-27 |
JP2000088243A (en) | 2000-03-31 |
EP0985881A3 (en) | 2003-01-02 |
JP4195760B2 (en) | 2008-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0985881B1 (en) | Flame monitoring system | |
EP1719947B1 (en) | Method and device for flame monitoring | |
DE3618693C2 (en) | ||
DE10219126B4 (en) | Photoelectric sensor | |
EP0806610A2 (en) | Method and device for operating a gas burner | |
EP1154203A2 (en) | Measuring device for a flame | |
DE2937707A1 (en) | SMOKE DETECTOR | |
EP0953805A1 (en) | Flame monitor | |
EP1256763A2 (en) | Method and device for long-term safe flame monitoring | |
DE3603568C2 (en) | ||
WO1999019672A1 (en) | Method and device for monitoring a flame | |
DE3023784C2 (en) | Photoelectric detector | |
DE102013213458B4 (en) | Method for measuring the concentration of a gas component in a sample gas | |
EP1844634A1 (en) | Method for operating a high-pressure discharge lamp, operating appliance for a high-pressure discharge lamp, and illumination device | |
DE60014980T2 (en) | Flame monitoring in a burner | |
DE19631821C2 (en) | Method and device for safety flame monitoring in a gas burner | |
DE2448195A1 (en) | SMOKE DETECTOR WITH CIRCUIT TO OPERATE THESE | |
WO1998017008A1 (en) | Data transmission equipment | |
DE3026787A1 (en) | INTRINSICALLY SAFE FLAME GUARD | |
DE69528754T2 (en) | Electronic device for remote detection of malfunctions in lamps | |
EP1692604A1 (en) | Detector circuit for a wake-up signal | |
DE4214360C2 (en) | Light detector circuit | |
EP0971329B1 (en) | Device for testing smoke detectors of the light diffusion type | |
DE2809993B2 (en) | Flame monitor circuit for monitoring a burner flame | |
WO2008104461A1 (en) | Evaluation device for the ignition energy of a discharge lamp |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS BUILDING TECHNOLOGIES AG |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20030701 |
|
AKX | Designation fees paid |
Designated state(s): CH DE DK FR GB IT LI NL |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE DK FR GB IT LI NL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REF | Corresponds to: |
Ref document number: 59909223 Country of ref document: DE Date of ref document: 20040527 Kind code of ref document: P |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20040604 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040721 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20040729 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20050124 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20120626 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFUS Owner name: SIEMENS SCHWEIZ AG, CH Free format text: FORMER OWNER: SIEMENS BUILDING TECHNOLOGIES AG, CH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFUS Owner name: SIEMENS SCHWEIZ AG, CH Free format text: FORMER OWNER: SIEMENS BUILDING TECHNOLOGIES AG, CH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 59909223 Country of ref document: DE Owner name: SIEMENS SCHWEIZ AG, CH Free format text: FORMER OWNER: SIEMENS BUILDING TECHNOLOGIES AG, ZUG, CH Effective date: 20130429 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20130620 AND 20130626 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Owner name: SIEMENS SCHWEIZ AG, CH Effective date: 20131029 Ref country code: FR Ref legal event code: CD Owner name: SIEMENS SCHWEIZ AG, CH Effective date: 20131029 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130625 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20150608 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20150610 Year of fee payment: 17 Ref country code: NL Payment date: 20150602 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20150902 Year of fee payment: 17 Ref country code: DE Payment date: 20150821 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59909223 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20160701 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20160625 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20170228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160630 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160630 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170103 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160625 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160701 |