EP0984716B1 - Visualisation dynamique et fonctionnelle d'objets biologiques a l'aide d'un porte-objet non rigide - Google Patents

Visualisation dynamique et fonctionnelle d'objets biologiques a l'aide d'un porte-objet non rigide Download PDF

Info

Publication number
EP0984716B1
EP0984716B1 EP98914268A EP98914268A EP0984716B1 EP 0984716 B1 EP0984716 B1 EP 0984716B1 EP 98914268 A EP98914268 A EP 98914268A EP 98914268 A EP98914268 A EP 98914268A EP 0984716 B1 EP0984716 B1 EP 0984716B1
Authority
EP
European Patent Office
Prior art keywords
resilient membrane
electromagnetic radiation
assembly
breast
resilient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98914268A
Other languages
German (de)
English (en)
Other versions
EP0984716A4 (fr
EP0984716A2 (fr
Inventor
Eduard E. Godik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dobi Medical Systems Inc
Original Assignee
Dobi Medical Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dobi Medical Systems Inc filed Critical Dobi Medical Systems Inc
Publication of EP0984716A2 publication Critical patent/EP0984716A2/fr
Publication of EP0984716A4 publication Critical patent/EP0984716A4/fr
Application granted granted Critical
Publication of EP0984716B1 publication Critical patent/EP0984716B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0091Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for mammography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/43Detecting, measuring or recording for evaluating the reproductive systems
    • A61B5/4306Detecting, measuring or recording for evaluating the reproductive systems for evaluating the female reproductive systems, e.g. gynaecological evaluations
    • A61B5/4312Breast evaluation or disorder diagnosis

Definitions

  • This invention relates generally to dynamic functional imaging of biological objects and, more particularly, to the utilization of a non-rigid object holder in conjunction therewith, and, even more specifically, for use in the screening for breast cancer.
  • breast cancer diagnostics are applied when a patient appears in a doctor's office or hospital with an already existing breast problem.
  • Breast cancer screening relates to cancer detection prior to symptoms occurring. It is hoped with a proper breast cancer screening program that the treatment of breast cancer and potential breast cancer can take place at an early stage and, therefore, effect a high cure rate.
  • One of the common breast cancer screening procedures in use today involves the use of X-ray radiation during mammography as well as during breast cancer diagnostics with the utilization of stereotaxic mammography which is utilized to localize the pathology, and simultaneously perform a needle biopsy in conjunction therewith to identify the malignancy.
  • Such screening and diagnostic techniques based on revealing of morphological changes in the breast, many times comes about too late for appropriate treatment, is expensive to perform and in many instances is harmful to the patient by exposing them to X-ray radiation.
  • diagnosis obtained through mammography results in a high rate of false positive diagnoses, approximately five times as many patients are exposed to unnecessary X-ray radiation than necessary.
  • An additional problem for the mammography application to breast cancer screening is the strong compression (up to 30 psi) of the breast between two rigid plates (holder) to immobilize the breast during examination to decrease x-ray scattering in breast tissue.
  • This compression creates substantial discomfort as well as pain for the patient and may even be harmful since there is a danger of cancerous cells disseminating if a lesion is disrupted.
  • the X-ray radiation itself may be harmful to the patient.
  • another disadvantage of current mammography techniques is that the X-ray radiation can reveal only morphological contrast.
  • Effective breast cancer screening should be safe and highly accurate in detecting cancers, and should be started from puberty.
  • the procedure should be inexpensive and digital in operation so that comparison between personal results of multiple sequential examinations would be possible. To date, extensive use of such safe breast cancer screening procedures is not a practicality.
  • Another technique under development today involves optical mammoscopy with spectroscopy which investigates definite changes produced by cancer in the physiological patterns of tissues, dominantly in the steady state distributions of blood content, oxygenation and metabolic rate.
  • This technique is directed dominantly to achieving as high spatial resolution as in that in morphological imaging.
  • the utilization of lasers to overcome strong multiple scattering of light in the biological tissues makes such a technique rather expensive and questionably safe for screening.
  • the present inventor has developed a dynamic functional imaging technique of the type described in U.S. Patent Applications Serial Nos. 08/565,747 and 08/678,786 ; and more specifically to an optical functional mammoscopy technique as described in U.S. Patent Application No. 08/664,189 .
  • DFOM dynamic functional optical mammoscopy
  • near infrared radiation in the wave length range of 0.6-1.1 microns is utilized.
  • This near infrared radiation is very similar to regular background illumination and, therefore, eliminates many of the problems associated with past devices which rely upon lasers.
  • the intensity applied (10-30 mW/cm 2 ) is comparable with that of background thermal infrared radiation.
  • this technique applies the transient functional patterns of tissues with the pixels being temporal signatures of spontaneous tissue functioning and reactivities in response to selected stimuli which are reflective of a whole organ's synergy.
  • Such an approach is extremely effective for the examination of mammary glands or breasts characterized by high symmetrical physiological functioning and structure, biologically directed to the nipple.
  • temporal sequences of optical images are recorded.
  • the interframe intervals should be differentially small against the time constant of the physiological process.
  • US Patent 5,026,366 discloses an assembly for holding a catheter in a blood vessel comprising an inflatable component, a light source and an optical detection system.
  • US Patent 5,603,325 discloses the use of a holder assembly having first and second resilient membranes to fix position of a heel in an ultrasonic densitometer.
  • an object of this invention to provide a dynamic functional optical imaging system which can be utilized in conjunction with the study of biological objects and utilizing a non-rigid object holder therewith.
  • the present invention incorporates a non-rigid biological object holder within a dynamic functional imaging system, and, in particular, a dynamic functional mammoscopy system which is capable of performing accurate breast cancer screening.
  • this holder is not limited to use as only a breast holder and may be used, for example with other parts of the body such as the abdomen, muscles or even an entire body as in the case of an infant or other biological objects.
  • a biological object such as the breast can be placed between two flexible, elastic, resilient membranes that form parts of two inflatable bags.
  • a single flexible member may also be used as part of the present invention.
  • the examination takes place under controlled external pressure and thereby overcomes many of the problems associated with past hard plate holders as used in mammography or optical mammoscopy systems.
  • the external pressure control together with the optical system of the dynamic functional imaging system operates in a synergistic fashion with the non-rigid holders of the present invention.
  • the design of the present invention made up of a number of different embodiments, overcomes the problems associated with past breast cancer screening techniques, examples of which are described above, and enables the breast cancer screening technique to take place in a safe, inexpensive and highly accurate manner.
  • the object or breast 10 under examination is softly compressed between two non-rigid elastic resilient membranes 1 and 4 (considered the soft holder) attached to transparent plates 2 and 3, preferably made of Plexiglas® to create two inflatable bags 1' and 4', respectively.
  • the membranes 1 and 4 are framed by nontransparent members or plates 5 and 5' which still enable transparent plates 2 and 3 to be adjusted with respect to each other.
  • This type of non-rigid holder substantially eliminates any discomfort to the patient during examination as previously encountered with the rigid holders necessitated by prior mammography procedures.
  • a near-infrared (NIR) light source 14 is associated with membrane 4 and transilluminates the lower bag 4', object (the breast 10) and the upper bag 1' covering the breast.
  • the optical recording system 12 includes a CCD camera 15 (with zoom lens 16) and dynamic interface board (frame grabber) 23 for acquisition of the sequences of the optical frames for transmission to a conventional computer 25, which may be a personal computer (PC).
  • a conventional computer 25 which may be a personal computer (PC).
  • the computer 25 via PC interface board 24 and the pneumatic unit 20 controls the pressures created by compressor 21 in the both bags 1' and 4' and via electronic interface unit 22 controls the illumination conditions created by the illuminator or light source 14.
  • the recording system 12 is utilized for measuring and analyzing relative spatial-temporal variations of the intensity of the light passed through the breast 10 due to the modulation of the optical parameters (absorbance and scattering) of the breast tissues by its physiological functioning (blood, oxygenation and metabolic rate redistribution).
  • the optical images In order to formulate continuous temporal sequences of the optical images, they are recorded at intervals differentially small as compared with time constants of the tissues physiological dynamics, that is, several frames per second is a sufficient rate.
  • the frames sequences are accumulated in the computer memory.
  • the relative temporal variation of the intensity, that is, the temporal signature (TS) is calculated two ways: 1) by subtracting the first frame from any sequential one and normalizing the difference on the intensity distribution on the first frame or 2) applying the logarithmic derivative.
  • the Functional Segmentation (FS) is applied by various options, including but not limited to, the cross-correlation of the FS over the image.
  • the soft holder of this invention is substantially more effective than past holders for examination of functional physiological parameters of soft tissues since it is the pressure applied to the object under examination that controls the tissues' hemodynamics, and thereby, such related parameters as tissue elasticity, oxygenation, metabolic rate, skin perspiration, etc. Furthermore, since the soft holder of this invention is naturally compatible with soft tissue and does not create pain or any discomfort for patients it is a substantial advancement over past holders used in breast examination.
  • soft holder of this invention is in breast examination with the dynamic functional optical imaging (DFOI) in a transillumination or reflectometry scheme.
  • the soft holder is also applicable for dynamic functional imaging of the abdominal cavity (in reflectometry scheme) and muscles (both transillumination and reflectometry schemes).
  • the present soft holder can also be utilized for gentle immobilization during DFOI examination of the brain, abdomen, and even the whole body of newborns in baby-incubators.
  • a latex film with a thickness of 30 - 150 ⁇ m is preferred for the upper measuring membrane 1.
  • Such latex being stretched and thereby made thinner (almost in half) after inflation of the bag 1' so as to become sufficiently transparent for the functional imaging to take place when the spatial resolution is not so critical.
  • the stretched latex interferes no more with the light propagation than the diffusive thin layer of the skin.
  • the low bag membrane 4 is used for shaping of the breast during the examination and to push the pathology closer to the upper breast surface. Therefore, a thicker latex film having a thickness of approximately 100-300 ⁇ m, or plastic film (for example, polyethylene film with thickness of 20 - 50 ⁇ m) can be used. As shown in Fig.
  • the lower bag 4' can be made from several sections of material thereby even further controlling compression. This gives rise to the possibility of selectively compressing portions of the breast or object in order to control the distribution of thickness of the breast or other object under investigation or to equalize the thickness of the breast being compressed in the soft holder. It is especially useful to concentrate compression of the breast adjacent the area of pathology. Equalization of the thickness of the object (breast) directly results in effecting the intensity of the light passing through the object, which is important for the necessary expansion of the dynamic range of the recording system, as described below. It should be further noted that the soft holders can be rotated in order to pass light through the breast in any direction, for example, the top instead of the bottom. Even further, duplicate light sources and receivers can be associated with each bag, if so desired. In addition, the membranes can not only be made of latex, but also any other suitable transparent film such as polyethylene.
  • the breast Prior to the examination process, the breast is placed over the low bag 4' which is initially inflated up to 30-80 mmHg so that the edge of the supporting transparent Plexiglas® plate 3, framed by the metal plate 5, is positioned adjacent the chest wall.
  • An optimum breast positioning angle between supporting plate 3,5 and support 6 is approximately 20 - 30 degrees.
  • the breast is covered by the latex membrane 1 of the upper bag 1' which is inflated up to an initial pressure of approximately 2-5 mm Hg. This action is accomplished by rotating plate 2 about the horizontal axis 7 in order to position membrane 1 against the breast. Once in position it can be secured in place with any suitable clamping mechanism 8.
  • the lower bag 4' is inflated up to approximately 100-200 mm Hg for the breast shaping.
  • both bags 1' and 4' are inflated in a controlled fashion by control valves 13 and 13' under pressuremeters 11 and 19 which monitor the operation.
  • the soft holder of this invention, with elastic resilient membranes 1 and 4. is an active and interactive part of both the DFOM method and apparatus of the present invention as described below.
  • a smooth compression of the breast takes place by slow inflation (0.5-2 mm Hg/sec) of the upper bag 1' from the initial pressure of 5-10 mmHg up to approximately 10 - 60 mm Hg (this pressure being more than one order of magnitude less than level of the pressure applied in mammography).
  • the temporal valuation of the optical image during this procedure reveal differences (the contrast) in the tissues' compressibility.
  • the less compressible (palpable) area decreases less of the thickness and so there is less of an increase of the transparency during the compression.
  • the period of the pressure variation described above is close to that of spontaneous oscillations of blood content into the breast so it is possible to synchronize the external pressure variations with this internal oscillation in real time based upon feedback from the changes in light intensity.
  • Such interactive procedure substantially increases the possibility to reveal the pathology.
  • the pressure protocol can also include an investigation of the DFOM-image evaluation after one or more pressure increases or jumps, or after completion of the final pressure jump or increase, that is when the pressure is stabilized for 3-10 minutes at a "pressure plateau.”
  • evaluation is performed at the constant pressure in order to determine possible contrast in long term tissue reactivity.
  • the constant or pressure plateau can be decreased by sequential downward steps or jumps, a single decrease in pressure or a sequence of pressure drops until the initial pressure of 5-10 mmHg has been reached. Thereafter a sequential investigation or evaluation can take place at the 5-10 mmHg pressure level for 3-10 minutes to reveal any possible contrast in long term tissue relaxation.
  • the first contribution, ⁇ K/K reflects the modulation of the tissues optical parameters by blood and oxygenation changes initiated by the tests directly.
  • the second contribution, ⁇ D/D reflects differential variations of the breast volume and shape due to redistribution of the blood and lymph in the breast initiated by the tests.
  • the relative temporal variations of the light intensity transmitted through the object such as the breast ⁇ I/I (x,y,t) are proportional to the variations of the light attenuation by the breast tissues ⁇ (K X D), where K(x,y,t) is the tissues attenuation coefficient, combining the scattering and the absorption, and D(x,y,t) is the thickness of the breast;
  • ⁇ (K X D) consists of the two contributors ⁇ K X D and ⁇ D X K: the first one is responsible for the conventional optical diffusion projection and the additional second one represents a new opportunity - dynamic optical deformoscopy (DOD).
  • DOD contrasts the pathology based on the differences in the dynamical compressibility of the tissue. It is, in actuality, the mechanical projection of the pathology from the tissue's depth so the spatial resolution is not restricted by light diffusion.
  • This new, additional modality of the DFOM is similar to palpation but with the advantages of being objective and, even more importantly, being dynamic imaging modality which reveals not only static masses, but also a dynamical pattern of the tissue's compressibility. This pattern reflects the corresponding dynamic functional pattern of the blood (and lymph) circulation in the mammary gland or object under examination.
  • Such dynamic "palpascopy” opens the possibility of recording data with high accuracy and storing, in a computer memory, dynamic "molds" of the mammary gland, specific to various physiological conditions.
  • a coherent laser source and system for projecting some type of interference pattern (grating or grid) on the membrane surface, covering the breast are necessary.
  • CCD complementary metal-oxide-semiconductor
  • Such a procedure and system gives rise to the possibility for the Dynamic Optical Deformascopy of the breast or other part of the body in a reflective mode; the sensitivity being sufficient to record blood redistribution dynamics in the skin as an alternative to the rather expensive infrared thermovision procedure.
  • the present invention also incorporates therein, but is not limited to further embodiments as set forth below.
  • variations in the type of illuminators used two of which are shown in the drawings.
  • a scanning mechanism as shown in Figure 8 can also be used.
  • the LED array 14 is made up of the several (up to 25) sections whose intensities are independently controlled by electronic unit 22 to equalize the intensity distribution on the first frame before test applications begin. It is necessary to expand the dynamic range of the recording system to get high accuracy. Examples of ranges of four spectral bands picked are at wavelengths of 0.6-0.78 ⁇ m, 0.78-0.82 ⁇ m, 0.82-0.93 ⁇ m, and 0.93-1.2 ⁇ m. The range of 0.6-0.78 ⁇ m is specific for the venular blood absorbance that is much stronger in the cancerous tissues. This band is very sensitive to changes in the tissues oxygenation.
  • the band range of the isobestic point 0.78-0.82 ⁇ m for oxy- and dezoxyhemoglobin absorbance is sensitive only to changes of the blood volume and so it is a good reference for the band 0.6-0.78 ⁇ m and 0.82-0.93 ⁇ m to separate contributions of the blood volume and the oxygenation changes.
  • the band in the range of 0.93-1.2 ⁇ m is sensitive to water content and temperature, those both being increased in cancerous tissues versus normal ones.
  • the LED's, with the four wavelengths mentioned were distributed by groups along the illuminator 14. Similar LED's (one from each group) are switched alternatively to obtain one multispectral frame, the four spectral subframes being recorded sequentially.
  • a nontransparent diaphragm 27, adjustable to the breast size, was used to protect against leakage of the illuminating light next to the breast.
  • Fiberoptic illuminator 9 includes a light source such as halogen lamp 28, a filter wheel 29 with alternately changeable filters 30 controlled by PC-board 24 corresponding to the spectral bands explained above, reflective thermofilter 31 and fiberoptic guide 32.
  • the recording system for the DFOM of this invention obtains maximum accuracy in measuring relative temporal changes of the intensity along the optical image.
  • the CCD with a maximum dynamic range should be utilized.
  • a CCD with a large size of the pixel, 128x128 pixels are appropriate, since Dynamic Functional Optical Imaging is less reliant on spatial resolution than in morphological imaging.
  • the intensity in the first frame should be maximally equalized
  • controlled optical transparency can be obtained by the use of, for example, liquid crystal film 18 for final intensity equalization before the CCD.
  • a nontransparent screen 26 with transparent window 2 for the CCD and spectral filter 17 capable of eliminating light with wavelengths of less than 0.6 ⁇ m (that cannot pass through the breast) are utilized with the present invention.
  • the membrane 1 is attached to the perimeter of metal frame 26 adjacent the chest wall for breast examination.
  • front view projection is very important for breast examination with the present invention since the breast functioning and morphology are symmetrical around the nipple.
  • the design of the non-rigid or soft holder of this invention for front examination is shown in the embodiments of Figures 4 and 5.
  • the latex membrane 1 compresses the breast against chest wall of the patient.
  • the support 26 should be attached to the chest wall or other part of the body under investigation by any suitable securing means such as a strap or adhesive may be used with the present invention.
  • a transparent plastic adapter 33 taken from a set of adapters of different size and shape determined by various breast sizes and shapes, is placed under the breast.
  • the adapter 33 is connected with fiberoptic guide 32' providing light from light source 32 as shown in Figures 4 and 5.
  • the optical recording system 12 is similar to the system shown in Fig. 1 and is located adjacent a transparent window 2'.
  • the resilient membranes 39 and 39' are substantially identical and formed of two separate "mirror image" components A and B. These components are made of non-transparent frame portions 37 and 37', respectively, and transparent windows 38 and 38', respectively, to which the resilient membranes 39 and 39' are attached.
  • the transparent windows are in optical alignment with the optical source and detecting systems 40, 40' and 42, 42'.
  • the membranes 39 and 39' are controllably inflated by a pressure system (not shown) similar to the system used for controllably inflating membranes 1 and 4 within Figure 1 of the drawings.
  • the non-rigid holder of the type shown in Figure 7 of the drawings is primarily used with a patient lying down and when the breast symmetry around the nipple is not disturbed by its weight.
  • the two components A and B are held together by flexible members 44 and 44' which enable the frames to be adjustably moved with respect to one another when placed around a breast or other object to be examined.
  • beam directors (partially reflective) 46 and 46' are utilized to both direct and redirect the light source radiation to and from the object under examination. It is clear in this embodiment that the light source(s) and light detector(s) are located on the same side.
  • Figure 8 of the drawings illustrates a non-rigid holder which includes a single resilient member 39 attached to a nontransparent frame 37 and a transparent window 38 together with a scanning system 50 for light emission from source 52.
  • the scanning system enables the light source to be in the form of a single source scanned over a preselected area of the breast or object under examination.
  • a detecting system is incorporated within the embodiment of Figure 8, preferably on the same side of the breast as the source.
  • a partially reflective beam director 36 is utilized therewith as with the embodiment of Fig. 7.
  • the light source is located on the same side and is used to record a radial distribution of intensity around the illuminating beam to obtain the necessary distribution of physiological pigments (blood, oxygen, etc.) over a preselected depth in the illuminated area.
  • the non-rigid holder is utilized in combination with a single channel photo detector, placed on the other side of the breast to record integral intensity of the transilluminating light for different locations of the illumination beam.
  • a single channel photo detector placed on the other side of the breast to record integral intensity of the transilluminating light for different locations of the illumination beam.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Gynecology & Obstetrics (AREA)
  • Reproductive Health (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Eye Examination Apparatus (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Claims (21)

  1. Ensemble de porte-objet non rigide destiné être utilisé dans le cadre de l'examen d'un objet, ledit ensemble de porte-objet comportant :
    un support (6) ;
    un premier organe et un deuxième organe (5, 2) montés de manière mobile l'un par rapport à l'autre et par rapport audit support (6) ;
    un moyen (8) connecté de manière opératoire sur ledit premier organe et sur ledit deuxième organe (5, 2) pour déplacer de manière contrôlable lesdits organes l'un par rapport à l'autre et par rapport audit support (6) ;
    une première membrane élastique (4) attachée sur ledit premier organe (5) et une deuxième membrane élastique (I) attachée sur ledit deuxième organe (2), ladite première membrane élastique et ladite deuxième membrane élastique formant un premier composant gonflable et un deuxième composant gonflable (4', 1') pour tenir l'objet entre eux ;
    des moyens (19, 11) connectés de manière opératoire sur ledit premier composant gonflable et sur ledit deuxième composant gonflable (4', 1') pour gonfler de manière contrôlable chacun desdits composants gonflables ;
    une source de rayonnement électromagnétique (14) associée de manière optique auxdits composants gonflables pour la mise en oeuvre d'un faisceau de lumière sur l'objet ;
    ladite première membrane élastique et ladite deuxième membrane élastique (4, 1) et des portions à la fois dudit premier organe et dudit deuxième organe (5, 2) étant transparentes par rapport au rayonnement électromagnétique ; et
    un système de détection optique (15) aligné de manière optique sur ladite source de rayonnement électromagnétique pour recevoir ledit rayonnement électromagnétique passant au travers de l'objet et / ou étant rétrodiffusé en provenance de celui-ci.
  2. Ensemble selon la revendication 1, dans lequel ladite première membrane élastique
    (a) est utilisée pour former l'objet et a une épaisseur prédéterminée et ladite deuxième membrane élastique a une épaisseur qui est inférieure à ladite épaisseur prédéterminée ; ou
    (b) est réalisée en sections.
  3. Ensemble selon la revendication 1 ou la revendication 2, dans lequel ladite source de rayonnement électromagnétique se trouve de manière adjacente par rapport à ladite première membrane élastique et ledit système de détection optique se trouve de manière adjacente par rapport à ladite deuxième membrane élastique et, de préférence, dans lequel ladite source de rayonnement électromagnétique se trouve également de manière adjacente par rapport audit premier organe, et ledit système de détection optique se trouve également de manière adjacente par rapport audit deuxième organe.
  4. Ensemble selon l'une quelconque des revendications 1 à 3, comportant par ailleurs des moyens destinés à assujettir ledit premier organe et ledit deuxième organe dans une position prédéterminée l'un par rapport à l'autre
  5. Ensemble selon la revendication 3 ou la revendication 4, dans lequel une autre source de rayonnement électromagnétique se trouve de manière adjacente par rapport à ladite deuxième membrane élastique et un autre système de détection optique se trouve de manière adjacente par rapport à ladite première membrane élastique.
  6. Ensemble selon l'une quelconque des revendications 2 à 4, dans lequel ladite épaisseur de ladite première membrane élastique est d'environ 100 à 300 microns et ladite épaisseur de ladite deuxième membrane élastique est d'environ 30 à 150 microns.
  7. Ensemble selon l'une quelconque des revendications 1 à 6, dans lequel ladite source de rayonnement électromagnétique
    (a) est sous la forme d'une barrette de diodes électroluminescentes ; ou
    (b) est sous la forme d'un illuminateur à fibres optiques.
  8. Ensemble selon la revendication 7, comportant par ailleurs des moyens destinés à contrôler les intensités de chaque diode électroluminescente dans ladite barrette et dans lequel ladite barrette produit un rayonnement électromagnétique d'au moins deux bandes spectrales différentes et, de préférence, dans lequel il y a quatre bandes spectrales séparées de rayonnement électromagnétique, l'une étant d'environ 0,6 à 0,78 microns, une autre étant de 0,78 à 0,82 microns, une autre étant d'environ 0,82 à 0,93 microns et une autre étant d'environ 0,93 à 1,2 microns.
  9. Ensemble selon l'une quelconque des revendications 5 à 8, comportant par ailleurs un diaphragme non transparent se trouvant de manière adjacente par rapport à ladite première membrane élastique et à ladite deuxième membrane élastique.
  10. Ensemble selon l'une quelconque des revendications 1 à 9, dans lequel ledit porte-objet non rigide est mis en combinaison avec un système en vue d'effectuer une visualisation fonctionnelle dynamique de l'objet, et de préférence, dans lequel l'objet est un sein humain.
  11. Ensemble de porte-objet non rigide destiné à être utilisé dans le cadre de l'examen d'une portion d'un objet, ledit ensemble porte-objet comportant :
    un support (26), ledit support étant capable d'être attaché à l'objet de manière adjacente à la portion de l'objet examiné ;
    une membrane élastique (1) attachée audit support (26) et ladite membrane élastique (1) formant un composant gonflable (1') ;
    un moyen connecté de manière opératoire sur ledit composant gonflable (1') pour gonfler de manière contrôlable ledit composant gonflable ;
    une source de rayonnement électromagnétique (32) destinée à fournir de la lumière à des fins de transillumination de l'objet ; et
    un système de détection optique (15) aligné de manière optique sur ladite source de rayonnement électromagnétique pour recevoir ledit rayonnement électromagnétique passant au travers de l'objet.
  12. Ensemble selon la revendication 11, dans lequel l'objet est un sein et ladite source de rayonnement électromagnétique est connectée de manière opératoire par le biais d'un composant à fibres optiques sur un appareil d'adaptation inséré derrière une portion du sein se trouvant contre ledit organe élastique entre une paroi thoracique et le sein.
  13. Ensemble selon la revendication 12, dans lequel ledit porte-objet non rigide est mis en combinaison avec un système en vue d'effectuer une visualisation fonctionnelle dynamique de l'objet.
  14. Ensemble selon la revendication 13, dans lequel l'objet est un sein humain et ladite membrane élastique forme le sein contre une paroi thoracique.
  15. Ensemble selon l'une quelconque des revendications 11 à 14, dans lequel ledit premier composant gonflable et ledit deuxième composant gonflable sont symétriques.
  16. Ensemble selon la revendication 15, dans lequel ladite source de rayonnement électromagnétique se trouve également de manière adjacente par rapport audit premier organe, ledit système de détection optique se trouve également de manière adjacente par rapport audit deuxième organe, et ladite première membrane élastique et ladite deuxième membrane élastique et des portions à la fois dudit premier organe et dudit deuxième organe sont transparentes par rapport audit rayonnement électromagnétique.
  17. Procédé d'utilisation d'un ensemble de porte-objet non rigide au cours d'un examen de l'objet par visualisation fonctionnelle dynamique, l'ensemble porte-objet non rigide ayant un premier composant gonflable comprenant une première membrane élastique et un deuxième composant gonflable comprenant une deuxième membrane élastique, ledit procédé comportant les étapes consistant à :
    gonfler ledit premier composant selon une première pression prédéterminée et qui est, de préférence, d'environ 30 à 80 mmHg ;
    placer l'objet de manière adjacente par rapport à ladite première membrane élastique;
    déplacer ladite deuxième membrane élastique par rapport à ladite première membrane élastique de telle manière que ladite deuxième membrane élastique recouvre dans une large mesure l'objet;
    fixer la position de ladite deuxième membrane élastique par rapport à ladite première membrane élastique ;
    gonfler ledit deuxième composant selon une deuxième pression prédéterminée qui est inférieure à ladite première pression prédéterminée et dans lequel, de préférence, ladite deuxième pression prédéterminée est d'environ 2 à 5 mmHg ;
    augmenter dans une large mesure ladite première pression prédéterminée dudit premier composant afin que ladite première membrane élastique puisse former l'objet avant l'examen ; et
    gonfler de manière contrôlée ledit premier composant et ledit deuxième composant au cours de l'examen.
  18. Procédé selon la revendication 17, comportant par ailleurs l'étape consistant à gonfler progressivement ledit deuxième composant au cours de la partie initiale de l'examen et, dans lequel, de préférence, ledit gonflement se produit à environ 0,5 à 2 mmHg/s à partir d'une pression initiale de 5 à 10 mmHg à 10 à 60 mmHg.
  19. Procédé selon la revendication 17, comportant par ailleurs les étapes consistant à :
    gonfler rapidement ledit deuxième composant selon une troisième pression prédéterminée ; et
    maintenir ladite troisième pression prédéterminée pendant une durée présélectionnée au cours de l'examen.
  20. Procédé selon la revendication 17, comportant par ailleurs les étapes consistant à :
    gonfler lesdits deuxièmes composants en une série de plusieurs étapes séquentielles selon une série de nouvelles pressions prédéterminées ; et
    maintenir chacune des nouvelles pressions prédéterminées pendant une durée présélectionnée au cours de l'examen ; et, de préférence, dans lequel ladite chacune desdites plusieurs pressions prédéterminées séquentielles est d'environ 3 à 7 mmHg, ladite durée présélectionnée étant d'environ soit (a) 30 à 40 secondes entre lesdites étapes séquentielles ; soit (b) 3 à 10 minutes entre lesdites étapes séquentielles.
  21. Procédé selon l'une quelconque des revendications 17 à 20, dans lequel ladite pression prédéterminée dans une large mesure supérieure est d'environ 100 à 200 mmHg.
EP98914268A 1997-03-21 1998-03-20 Visualisation dynamique et fonctionnelle d'objets biologiques a l'aide d'un porte-objet non rigide Expired - Lifetime EP0984716B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US4103497P 1997-03-21 1997-03-21
US41034P 1997-03-21
PCT/US1998/005559 WO1998042248A2 (fr) 1997-03-21 1998-03-20 Visualisation dynamique et fonctionnelle d'objets biologiques a l'aide d'un porte-objet non rigide

Publications (3)

Publication Number Publication Date
EP0984716A2 EP0984716A2 (fr) 2000-03-15
EP0984716A4 EP0984716A4 (fr) 2004-09-08
EP0984716B1 true EP0984716B1 (fr) 2007-11-07

Family

ID=21914364

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98914268A Expired - Lifetime EP0984716B1 (fr) 1997-03-21 1998-03-20 Visualisation dynamique et fonctionnelle d'objets biologiques a l'aide d'un porte-objet non rigide

Country Status (7)

Country Link
US (1) US6243484B1 (fr)
EP (1) EP0984716B1 (fr)
AT (1) ATE377379T1 (fr)
AU (1) AU6866698A (fr)
CA (1) CA2303380A1 (fr)
DE (1) DE69838670D1 (fr)
WO (1) WO1998042248A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008011154A1 (de) * 2008-02-26 2009-09-03 Siemens Aktiengesellschaft Kompressionsvorrichtung für ein Mammographie-Röntgengerät

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6587578B2 (en) 1997-03-21 2003-07-01 Dobi Medical Systems, Inc. Dynamic-functional imaging of biological objects using a non-rigid object holder
US5978695A (en) * 1997-08-18 1999-11-02 Lucid Inc. System for imaging mechanically stabilized tissue
US6205353B1 (en) 1998-12-22 2001-03-20 Research Foundation Of Cuny Time-resolved optical backscattering tomographic image reconstruction in scattering turbid media
WO2000056206A1 (fr) * 1999-03-23 2000-09-28 Koninklijke Philips Electronics N.V. Dispositif de localisation destine a localiser un objet dans un milieu trouble
JP4781548B2 (ja) * 2001-03-14 2011-09-28 浜松ホトニクス株式会社 乳がん検出装置
US7809422B2 (en) * 2002-11-08 2010-10-05 Art Advanced Research Technologies Inc. Method and apparatus for optical imaging
US7822457B2 (en) * 2003-11-25 2010-10-26 General Electric Company Compression paddle membrane and tensioning apparatus for compressing tissue for medical imaging purposes
WO2007057798A2 (fr) * 2005-11-18 2007-05-24 Koninklijke Philips Electronics N.V. Dispositif d’imagerie de l’intérieur d’un milieu trouble
EP2063765A2 (fr) * 2006-09-07 2009-06-03 Koninklijke Philips Electronics N.V. Mesure par tomographie optique utilisant un bord adapté pour le volume de réception
WO2010058339A2 (fr) * 2008-11-21 2010-05-27 Koninklijke Philips Electronics N.V. Système pour imager un milieu trouble
WO2022175785A1 (fr) * 2021-02-17 2022-08-25 Sincronis Medical S.R.L. Dispositif de compression pour examens mammaires et appareil de diagnostic pour examens mammaires

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3906937A (en) * 1972-10-25 1975-09-23 Para Medical Instr Corp Blood pressure cuff and bladder and apparatus embodying the same
US4691333A (en) * 1985-12-27 1987-09-01 Gabriele Joseph M Breast compression and needle localization apparatus
US4943522A (en) * 1987-06-01 1990-07-24 Quidel Lateral flow, non-bibulous membrane assay protocols
US4998270A (en) * 1989-09-06 1991-03-05 General Electric Company Mammographic apparatus with collimated controllable X-ray intensity and plurality filters
US5204253A (en) * 1990-05-29 1993-04-20 E. I. Du Pont De Nemours And Company Method and apparatus for introducing biological substances into living cells
US5467767A (en) 1991-11-25 1995-11-21 Alfano; Robert R. Method for determining if tissue is malignant as opposed to non-malignant using time-resolved fluorescence spectroscopy
US5348018A (en) 1991-11-25 1994-09-20 Alfano Robert R Method for determining if tissue is malignant as opposed to non-malignant using time-resolved fluorescence spectroscopy
US5289520A (en) * 1991-11-27 1994-02-22 Lorad Corporation Stereotactic mammography imaging system with prone position examination table and CCD camera
DE69227463T2 (de) 1991-12-17 1999-06-10 Dynamics Imaging Inc Verfahren und vorrichtung zur diagnose von lebenden organismen
US5257956A (en) 1992-04-14 1993-11-02 Ewen Carol J Post-mastectomy garment
US5347656A (en) 1992-07-10 1994-09-20 Ccc Acquisitions Corp. Figure-enhancing pneumatic bathing suit
US5305365A (en) * 1992-11-24 1994-04-19 Bennett X-Ray Technologies Mammography system with rearwardly tilting mammograph
US5349954A (en) 1993-07-23 1994-09-27 General Electric Company Tumor tissue characterization apparatus and method
US5474072A (en) 1993-10-29 1995-12-12 Neovision Corporation Methods and apparatus for performing sonomammography
US5747789A (en) 1993-12-01 1998-05-05 Dynamics Imaging, Inc. Method for investigation of distribution of physiological components in human body tissues and apparatus for its realization
US5730133A (en) 1994-05-20 1998-03-24 Dynamics Imaging, Inc. Optical functional mamoscope
US5553111A (en) * 1994-10-26 1996-09-03 The General Hospital Corporation Apparatus and method for improved tissue imaging
US5499989A (en) 1994-12-22 1996-03-19 Labash; Stephen S. Breast biopsy apparatus and method of use

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008011154A1 (de) * 2008-02-26 2009-09-03 Siemens Aktiengesellschaft Kompressionsvorrichtung für ein Mammographie-Röntgengerät
DE102008011154B4 (de) * 2008-02-26 2010-05-12 Siemens Aktiengesellschaft Kompressionsvorrichtung für ein Mammographie-Röntgengerät

Also Published As

Publication number Publication date
DE69838670D1 (de) 2007-12-20
US6243484B1 (en) 2001-06-05
CA2303380A1 (fr) 1998-10-01
EP0984716A4 (fr) 2004-09-08
ATE377379T1 (de) 2007-11-15
EP0984716A2 (fr) 2000-03-15
WO1998042248A2 (fr) 1998-10-01
WO1998042248A3 (fr) 1998-12-23
AU6866698A (en) 1998-10-20

Similar Documents

Publication Publication Date Title
US6587578B2 (en) Dynamic-functional imaging of biological objects using a non-rigid object holder
US10178967B2 (en) Dynamic optical tomographic imaging devices methods and systems
US6002958A (en) Method and apparatus for diagnostics of internal organs
Asao et al. Photoacoustic mammography capable of simultaneously acquiring photoacoustic and ultrasound images
EP0984716B1 (fr) Visualisation dynamique et fonctionnelle d'objets biologiques a l'aide d'un porte-objet non rigide
US20060155194A1 (en) Method for detecting occlusions and leakages in subcutaneous blood vessels
US8886284B2 (en) Devices and methods for combined optical and magnetic resonance imaging
JPH10511875A (ja) 生物組織の生体内検査用の光学カプラ
JP2003520637A (ja) 周波数掃引調節拡散断層撮影法を利用した宿主媒体内の異常を検出するための方法および装置
JPWO2005079661A1 (ja) 表在性化学種測定方法および測定装置
JPH03274444A (ja) ヒトの組織を定量検査し高解像度影像を得る方法と装置
RU2731309C2 (ru) Система диагностической визуализации, содержащая устройство для проведения обследования молочных желез
CA2524807C (fr) Systeme et procede d'identification et de classification de processus dynamiques thermodynamiques chez des mammaliens et de differenciation de tels processus
Huang et al. Dual-scan photoacoustic tomography for the imaging of vascular structure on foot
US20170055843A1 (en) Object information acquisition apparatus
JP4652643B2 (ja) 高解像度ダイナミックデジタル赤外線イメージングのための方法および装置
Zalev et al. Characterization of opto-acoustic color mapping for oxygen saturation of blood using biologically relevant phantoms
Barbour et al. Time-frequency analysis of functional optical mammographic images
Khalil et al. Dynamic contact-free continuous-wave diffuse optical tomography system for the detection of vascular dynamics within the foot
Younan Design and evaluation of a novel Transillumination SFDI system for quantitative assessment of tissuesections for rapid, label-free cancer margin detection
Kalmykov et al. Development of an Experimental Setup for Intraoperative Angiography System
Schmitz et al. A real-time system for dynamic optical tomography
Barbour et al. Dynamic functional imaging of the healthy and cancerous breast by optical tomography
CN109549615A (zh) 氧饱和度内窥镜监控光动力治疗效果的装置和方法
Watmough et al. ‘Son et lumière’: a new combined optical and Doppler ultrasound approach to the detection of breast cancer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19991021

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GODIK, EDUARD, E.

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DOBI MEDICAL SYSTEMS, LLC

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DOBI MEDICAL SYSTEMS, INC.

A4 Supplementary search report drawn up and despatched

Effective date: 20040728

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69838670

Country of ref document: DE

Date of ref document: 20071220

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080207

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071107

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071107

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080218

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071107

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071107

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071107

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080407

26N No opposition filed

Effective date: 20080808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080822

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080208

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080320

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331