EP0981931B1 - Induction oven for melting metals - Google Patents

Induction oven for melting metals Download PDF

Info

Publication number
EP0981931B1
EP0981931B1 EP98925719A EP98925719A EP0981931B1 EP 0981931 B1 EP0981931 B1 EP 0981931B1 EP 98925719 A EP98925719 A EP 98925719A EP 98925719 A EP98925719 A EP 98925719A EP 0981931 B1 EP0981931 B1 EP 0981931B1
Authority
EP
European Patent Office
Prior art keywords
cavity
zones
branch
induction
lateral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98925719A
Other languages
German (de)
French (fr)
Other versions
EP0981931A1 (en
Inventor
François-Marie FRANCI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Internova International Innovation Co BV
Original Assignee
Internova International Innovation Co BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Internova International Innovation Co BV filed Critical Internova International Innovation Co BV
Publication of EP0981931A1 publication Critical patent/EP0981931A1/en
Application granted granted Critical
Publication of EP0981931B1 publication Critical patent/EP0981931B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/22Furnaces without an endless core
    • H05B6/24Crucible furnaces

Definitions

  • the present invention relates to an induction heating device for raising the temperature of metals with a view to their hot melting or transformation, this device comprising at least one cavity defined by a pocket arranged for receive metals intended to be brought to a temperature greater than or equal to their melting temperature or by an oven arranged to receive metal billets intended to be brought to a temperature below their melting temperature, this temperature being determined for forging metals, as well as means of induction heating of said pocket or said oven.
  • Induction heaters are well known in the art of metal smelting, forging metal billets for hot machining, the transformation or production of metals or alloys.
  • the induction coil (s) are wound around the cavity receiving the metal and are usually cooled by a cooling circuit at water. There may be a risk of leaks in the cooling system, which is fully prescribed for working with molten metals.
  • the yield obtained by this configuration does not generally exceed 40 to 60%. This efficiency is proportional to the ratio of the area of the inductor and the area of tank.
  • the magnetic field created by the induction coils is a field open. Consequently, the losses are substantial and amount to approximately 1/3 of the total power applied.
  • all the magnetic fields are radial that is, the field lines cross the axis of the cavity and cross it axially right through. These magnetic fields create an induction current limited to the periphery of said cavity and generating a rise in temperature of the metal in this zone, the rest of the metal being heated by conduction. These different devices, and even the one providing for a rotating field, remain very efficient weak, the effective part of the field used for heating being reduced.
  • the present invention proposes to overcome the drawbacks of the prior art and to meet the requirements of the standards in force by means of a heating device by induction which achieves yields close to 80 to 95%, with smaller induction coils, with a higher power factor (cosine ⁇ of 0.8 instead of 0.05 or 0.1) and requiring less consumption of electrical energy.
  • the present invention makes it possible to accelerate the rise in temperature therefore the metal smelting or hot machining, thus also saving money energy.
  • the energy savings obtained by the present invention allow to consider a return on investment in about two years, which is commercially very appreciable.
  • Each cylinder head advantageously comprises an elongated branch extending from end to other end of the cavity, arranged substantially parallel to the axis of this cavity and carrying at least one induction coil arranged to generate a said active heating zones.
  • each cylinder head has a L-shaped profile and has said elongated branch and a side branch extending substantially perpendicular to said elongated branch and substantially radially with respect to one end of the cavity.
  • Said cavity may be a pocket, said lateral branch extending radially by compared to the bottom of this pocket towards its center.
  • each cylinder head has a U-shaped profile and has said elongated central branch and two branches lateral extending substantially perpendicular to said central branch elongated and substantially radially with respect to the two ends of the cavity.
  • the cavity is preferably an oven and at least one of said lateral branches extends to near the longitudinal wall delimiting said cavity.
  • each cylinder head has a shaped profile of C and comprises said elongated central branch and two lateral branches extending substantially perpendicular to said elongated central branch and substantially radially with respect to the two ends of the cavity.
  • At least one of said lateral branches extends as close as possible of the side wall delimiting said cavity.
  • Said cavity can be a pocket, one of the lateral branches extending radially relative to the bottom of this pocket and the other side branch being a free section attached to a cover intended to close said pocket and extending radially by relative to this cover until near the side wall delimiting said cavity.
  • the cylinder head has an I-shape and comprises said elongated branch and two lateral branches extending substantially perpendicular to said elongated branch and substantially radially with respect to at both ends of the cavity.
  • At least one of said lateral branches extends radially up to the proximity of the side wall delimiting said cavity.
  • each of said coils extends substantially over the entire length of the elongated branch of each cylinder head.
  • the heating means advantageously comprise a number n of cylinder heads evenly distributed around the periphery of the cavity.
  • the coils can be supplied individually by an alternating electric current, this supply being shifted in phase from one coil to another, this shift in the supply of a reel to another which can be determined by an arithmetic progression.
  • the different coils can also be powered by several generators arranged to create a rotating field.
  • the induction heating device 10 comprises a cavity 11 formed by a pocket 12 generally made of a material refractory and intended to receive the metal to be melted, as well as heating means by induction arranged to raise the temperature of the metal by a magnetic flux until it merges.
  • These heating means include independent magnetic yokes 13 arranged around the pocket 12 at a distance d sufficient to allow the setting places induction coils 14.
  • Each cylinder head 13 has a general L shape comprising an elongated branch 13a substantially parallel to the axis of the pocket 12 and extending substantially over the entire height of said pocket 12 and a branch lateral 13b perpendicular to the elongated branch 13a and extending radially in direction of the bottom of said pocket 12.
  • the ends of the branches 13a and 13b are curved to get as close as possible to the wall of the pocket 12.
  • the cylinder heads 13 can have a C or I profile or even include that said elongated branch 13a.
  • the elongated branch 13a magnetic yokes 13 extends substantially over the entire height of the pocket 12 and the lateral branch is oriented radially and preferably extends up to proximity to the wall of the pocket 12.
  • the lateral branches may constitute a free section arranged perpendicularly to the branch elongated by folding, for example near the bottom of the pocket or by folding close to the upper edge of the pocket if these branches are attached under a cover to close the pocket.
  • the side branches can extend to the center of the bottom of the pocket.
  • these side branches can be profiled in such a way that they partially cover the bottom surface from the pocket.
  • the two lateral branches 13b of the same cylinder head 13 do not both extend to the center of pocket 12, one at less should stop near the edge of this pocket.
  • These magnetic yokes 13 are number n equal to eight (in FIGS. 1 and 2) and to six (in Figures 3 and 4) and are regularly arranged at equal distance one of the other all around pocket 12. This number is not limitative It may as well be lower than higher, even or odd, depending on the type of pocket and its notebook loads: capacity in tonnes of metal, heating power, etc.
  • a tank 15 for protection and insulation may be provided with a cover or a door (not shown), this tank being tilting mount on a chassis or a stem not shown around an axis articulation 16 passing through two ears 17 secured to said tank 15.
  • this tank 15 can be hermetically sealed or not and can be placed under air vacuum to optimize the functioning of the induction heating means. After the metal has melted, the cover or the door opens, the tank 15 swings around of its articulation 16 to empty the pocket 12 of its molten metal content in molds for example and in the same way as in art devices prior.
  • Each induction coil 14 is arranged around the elongated branch 13a of each magnetic yoke 13 and extends substantially over its entire length. These induction coils 14 are supplied individually by an alternating current and generate a magnetic flux, the field lines of which are shown in the figure 6A. Thanks to the magnetic yokes 13, this magnetic flux is channeled, directed and closed in an inner peripheral zone of the pocket 12 near said cylinder head, through the metal to be heated. Only a small part of the flow goes to outside. The losses are then low.
  • Figure 6B illustrates the field lines of a device of the prior art which is not equipped with a magnetic yoke and allows visualize very clearly the improvement in the concentration of the field lines around of the pocket 12 obtained using the device of the invention with reference to FIG. 6A.
  • the coils14 are all oriented in the same direction, their north pole being placed on one side of the cylinder heads and their south pole on the other side.
  • the poles of the same nature repel each other by repelling their respective magnetic fields, thus creating zones of zero magnetic field 40 alternating with non-zero field areas 41, shown schematically on the Figure 7A. Therefore, the nonzero field areas are centered on radial planes 42 passing through the cylinder head axes 13 and extending on either side of a zone of maximum field, near the periphery of the cavity 11.
  • These non-field fields null 41 thus include a central zone of maximum field and two zones with decreasing field gradient arranged on either side of the field area maximum up to the neighboring zero field areas 40.
  • the null field zones 40 delimit active zones 41, constituted by the zones of maximum field and the field areas with decreasing field gradient, corresponding metal heating zones. Therefore, unlike the devices of the prior art in which the heating zones 51 extend over the periphery of the ends of the cavity 11 as shown in FIG. 7B, the active heating zones 41 are delimited on defined angular portions of the periphery of said cavity 11.
  • the magnetic field induces a current 43 generating a heating power, this current being forced to close on it even forming a loop in this active area, whereas in the devices of the art anterior, the induced current 53 extends all around the periphery of the cavity.
  • the induced current generates a heating power directly proportional to the volume of metal traversed by said current. Therefore, the fact that the currents induced 43 by the coils 14 are located in said zones active 41 significantly increases the volume of metal traversed by all of the induced currents, in comparison with the volume of metal traversed by the current induced on the periphery. The result is an increase in the volume of metal heated for the same induced current and therefore much better performance.
  • FIGS. 8A and 8B make it possible to compare the distribution of the power of heating between the devices of the prior art and that of the invention, the zones white representing the highest heating power, this power going decreasing in darker areas. At these different power levels of heating of course correspond to different temperature levels.
  • These figures are illustrations of real tests carried out for the same induced current therefore the same magnetic field generated by each coil.
  • the white areas correspond to the heating areas 51 and are limited to the periphery of the ends of the cavity, the interior being completely dark.
  • FIG. 8A which illustrates the present invention, the white areas are distributed on the periphery of the cavity and over its entire length.
  • the distance d which separates the elongated branch 13a from the magnetic yoke 13 supporting the induction coil 14 of the pocket 12 can be relatively large to increase the thickness of the refractory walls of the pocket 12 and limit heat losses.
  • induction coils 14 of smaller diameters, weaker powers and stronger power factors than those of art can be used. Therefore, the Joules effect losses are also limited and the induction coils 14 do not need to be cooled by specific water circulation. Air ventilation is sufficient to ensure their cooling.
  • the temperature of the metal rises more quickly in certain areas causing displacement or mixing automatic between hot and cold metal masses, so that at their their temperature also rises until a homogeneous molten mixture is obtained.
  • This brewing is greatly improved and accelerated by individually feeding the induction coils 14 with an offset of the supply from one coil to the next and so on, clockwise or vice versa.
  • This shift in feeding phase generates inside the pocket 12 a circumferential mixing and helical metal.
  • the direct consequence of this form of mixing is a faster homogenization of the temperature gradient in the metal allowing significantly shorten the time required for softening and melting resulting in significant energy savings.
  • This forced mixing can be also obtained by supplying each coil with an independent generator. All the generators can then be synchronized so as to obtain a rotating field creating the effect of a helix in the molten metal.
  • FIG. 5 illustrates an alternative embodiment of the invention in which the device 30 comprises a cavity 31 formed by an oven 32 generally produced in a refractory material and intended to receive metal billets 35 to be machined hot as well as induction heating means 33, 34 arranged to raise the temperature said billets at a temperature below their melting temperature, by a flow magnetic.
  • These heating means include, as in the previous example independent magnetic yokes 33 arranged longitudinally around the oven 32 and at a distance d sufficient to accommodate induction coils 34.
  • Each cylinder head 33 has an elongated central branch 33a and at least one branch lateral 33b, 33c perpendicular to the elongated central branch 33a.
  • Branch elongated central unit 33a of the magnetic yokes 33 extends substantially over the entire length of the oven 32 and the two end branches 33b and 33c extend radially up to near the furnace 32.
  • the cylinder heads 33 have a general U-shape.
  • Each induction coil 34 is arranged around the elongated central branch 33a of each magnetic yoke 33 and extends substantially over its entire length.
  • the present invention is not limited to the embodiments described but extends any modification and variant obvious to a person skilled in the art.
  • the number of magnetic yokes and induction coils is not limited.
  • the shape of the cylinder heads can vary depending on the pocket or the oven.
  • the cylinder heads can also be formed from several free sections. The management of the supply of the coils can also be delayed.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Induction Heating (AREA)
  • Furnace Details (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

PCT No. PCT/FR98/00971 Sec. 371 Date Nov. 12, 1999 Sec. 102(e) Date Nov. 12, 1999 PCT Filed May 15, 1998 PCT Pub. No. WO98/53642 PCT Pub. Date Nov. 26, 1998An induction heating device which raises the temperature of a metal to be heated for one of melting or hot machining while providing considerably energy saving, increasing yield and observing current safety standards. The device (10) uses a cavity (11) to receive the metal to be heated and at least two magnetic yokes (13) arranged around a periphery of cavity (11), each yoke supporting an independent induction coil (14). The induction coils are mounted and wound in the same direction such that a north pole, of each coil, is located on one side of the cavity and a south pole is located on an opposite side of the cavity. The inductive coils are arranged so as to generate active non null magnetic field zones and inactive zones of null magnetic fields distributed about the periphery of the cavity. An inactive zone of null magnetic fields is located between each adjacent active non null magnetic field zone. The induced current is self-enclosed thereby producing high heating power and the invention is applicable to melting, forging, reheating, transforming, and working metals by induction.

Description

La présente invention concerne un dispositif de chauffage par induction pour élever la température de métaux en vue de leur fusion ou de leur transformation à chaud, ce dispositif comportant au moins une cavité définie par une poche agencée pour recevoir des métaux destinés à être portés à une température supérieure ou égale à leur température de fusion ou par un four agencé pour recevoir des billettes de métal destinées à être portées à une température inférieure à leur température de fusion, cette température étant déterminée pour forger les métaux, ainsi que des moyens de chauffage par induction de ladite poche ou dudit four.The present invention relates to an induction heating device for raising the temperature of metals with a view to their hot melting or transformation, this device comprising at least one cavity defined by a pocket arranged for receive metals intended to be brought to a temperature greater than or equal to their melting temperature or by an oven arranged to receive metal billets intended to be brought to a temperature below their melting temperature, this temperature being determined for forging metals, as well as means of induction heating of said pocket or said oven.

Les dispositifs de chauffage par induction sont bien connus dans le domaine de la fusion des métaux, du forgeage de billettes de métal en vue de leur usinage à chaud, de la transformation ou de l'élaboration de métaux ou d'alliages. Néanmoins, dans les dispositifs connus, la ou les bobines d'induction sont enroulées autour de la cavité recevant le métal et sont habituellement refroidies par un circuit de refroidissement à eau. Il peut y avoir des risques de fuites dans le circuit de refroidissement, ce qui est totalement prescrit dans le travail des métaux en fusion. Par ailleurs, le rendement obtenu par cette configuration ne dépasse généralement pas les 40 à 60 %. Ce rendement est proportionnel au rapport de la surface de l'inducteur et de la surface de la cuve. De plus, le champ magnétique créé par les bobines d'induction est un champ ouvert. Par conséquent, les pertes sont conséquentes et s'élèvent environ à 1/3 de la puissance totale appliquée.Induction heaters are well known in the art of metal smelting, forging metal billets for hot machining, the transformation or production of metals or alloys. However, in the known devices, the induction coil (s) are wound around the cavity receiving the metal and are usually cooled by a cooling circuit at water. There may be a risk of leaks in the cooling system, which is fully prescribed for working with molten metals. In addition, the yield obtained by this configuration does not generally exceed 40 to 60%. This efficiency is proportional to the ratio of the area of the inductor and the area of tank. In addition, the magnetic field created by the induction coils is a field open. Consequently, the losses are substantial and amount to approximately 1/3 of the total power applied.

Dans ce domaine d'application, les principales contraintes techniques à prendre en compte sont :

  • la protection des personnes contre les champs électromagnétiques, déterminée par les normes françaises et les directives européennes (CENELEC et DG5),
  • le rendement, et
  • la sécurité (il faut éviter absolument tout contact de l'eau avec le métal en fusion).
In this field of application, the main technical constraints to take into account are:
  • the protection of people against electromagnetic fields, determined by French standards and European directives (CENELEC and DG5),
  • performance, and
  • safety (absolutely avoid any contact of water with the molten metal).

D'autres dispositifs de chauffage par induction ont tenté d'apporter une solution au premier problème posé. Certains dispasitifs sont décrits dans les publications DE-C-266 566, US-A-1 834 725 et BE-A-351 671 et comportent au moins deux culasses disposées autour de la cavité recevant le métal à chauffer et présentant une forme en L ou C de telle manière que les extrémités convergent vers l'intérieur de ladite cavité. Chaque culasse porte une bobine électrique créant un champ magnétique se refermant à travers ladite cavité. Un perfectionnement à ce type de construction est décrit dans la publication DE-C-277 870 qui prévoit trois culasses dont les bobines sont alimentées individuellement et décalées en phase de manière à créer un champ tournant. Dans toutes ces réalisations, tous les champs magnétiques sont radiaux c'est-à-dire que les lignes de champ traversent l'axe de la cavité et la traversent axialement de part en part. Ces champs magnétiques créent un courant d'induction limité à la périphérie de ladite cavité et générant une élévation de température du métal dans cette zone, le reste du métal étant chauffé par conduction. Ces différents dispositifs, et même celui prévoyant un champ tournant, restent d'un rendement très faible, la partie efficace du champ servant au chauffage étant réduite.Other induction heaters have attempted to provide a solution to the first problem posed. Certain devices are described in publications DE-C-266 566, US-A-1 834 725 and BE-A-351 671 and have at least two cylinder heads arranged around the cavity receiving the metal to be heated and having an L-shape or C in such a way that the ends converge towards the interior of said cavity. Each cylinder head carries an electric coil creating a closing magnetic field through said cavity. An improvement to this type of construction is described in publication DE-C-277 870 which provides for three cylinder heads whose coils are supplied individually and shifted in phase so as to create a field turning. In all these realizations, all the magnetic fields are radial that is, the field lines cross the axis of the cavity and cross it axially right through. These magnetic fields create an induction current limited to the periphery of said cavity and generating a rise in temperature of the metal in this zone, the rest of the metal being heated by conduction. These different devices, and even the one providing for a rotating field, remain very efficient weak, the effective part of the field used for heating being reduced.

La présente invention se propose de pallier les inconvénients de l'art antérieur et de répondre aux exigences des normes en vigueur au moyen d'un dispositif de chauffage par induction qui permet d'atteindre des rendements proches de 80 à 95 %, avec des bobines d'induction plus petites, d'un facteur de puissance supérieur (cosinus ϕ de 0,8 au lieu de 0,05 ou 0,1) et nécessitant moins de consommation en énergie électrique. De plus, la présente invention permet d'accélérer la montée en température donc la fusion ou l'usinage à chaud du métal, favorisant ainsi également les économies d'énergie. Les économies d'énergie obtenues par la présente invention permettent d'envisager un retour sur l'investissement en environ deux ans, ce qui est commercialement très appréciable.The present invention proposes to overcome the drawbacks of the prior art and to meet the requirements of the standards in force by means of a heating device by induction which achieves yields close to 80 to 95%, with smaller induction coils, with a higher power factor (cosine ϕ of 0.8 instead of 0.05 or 0.1) and requiring less consumption of electrical energy. In addition, the present invention makes it possible to accelerate the rise in temperature therefore the metal smelting or hot machining, thus also saving money energy. The energy savings obtained by the present invention allow to consider a return on investment in about two years, which is commercially very appreciable.

Ce but est atteint par un dispositif tel que défini en préambule et caractérisé en ce que les bobines d'induction sont montées dans le même sens de sorte que leur pôle nord est localisé d'un côté de la cavité et leur pôle sud du côté opposé, en ce qu'elles sont agencées de manière à générer des zones de champ magnétique nul disposées alternativement entre des zones de champ non nul réparties à la périphérie de la cavité, les zones de champ non nul comportant chacune une zone de champ maximal associée à deux zones à gradient de champ décroissant disposées de part et d'autre de ladite zone de champ maximal et s'étendant jusqu'aux zones de champ nul voisines, ainsi qu'une zone de champ nul localisée au centre de cette cavité, les zones de champ non nul formant des zones actives de chauffage séparées par lesdites zones de champ nul formant des zones inactives.This object is achieved by a device as defined in the preamble and characterized in that the induction coils are mounted in the same direction so that their north pole is located on one side of the cavity and their south pole on the opposite side, in that they are arranged to generate zones of zero magnetic field arranged alternately between areas of non-zero field distributed around the periphery of the cavity, the non-zero field areas each having a maximum field area associated with two zones with decreasing field gradient arranged on either side of said maximum field area and extending to neighboring zero field areas, as well as a zero field zone located in the center of this cavity, the field zones non-zero forming active heating zones separated by said field zones null forming inactive zones.

Chaque culasse comporte, avantageusement, une branche allongée s'étendant d'une extrémité à l'autre extrémité de la cavité, disposée sensiblement parallèlement à l'axe de cette cavité et portant au moins une bobine d'induction agencée pour générer une desdites zones actives de chauffage.Each cylinder head advantageously comprises an elongated branch extending from end to other end of the cavity, arranged substantially parallel to the axis of this cavity and carrying at least one induction coil arranged to generate a said active heating zones.

Dans une première forme de réalisation de l'invention, chaque culasse présente un profil en forme de L et comporte ladite branche allongée et une branche latérale s'étendant sensiblement perpendiculairement à ladite branche allongée et sensiblement radialement par rapport à une extrémité de la cavité.In a first embodiment of the invention, each cylinder head has a L-shaped profile and has said elongated branch and a side branch extending substantially perpendicular to said elongated branch and substantially radially with respect to one end of the cavity.

Ladite cavité peut être une poche, ladite branche latérale s'étendant radialement par rapport au fond de cette poche en direction de son centre.Said cavity may be a pocket, said lateral branch extending radially by compared to the bottom of this pocket towards its center.

Dans une deuxième forme de réalisation de l'invention, chaque culasse présente un profil en forme de U et comporte ladite branche centrale allongée et deux branches latérales s'étendant sensiblement perpendiculairement à ladite branche centrale allongée et sensiblement radialement par rapport aux deux extrémités de la cavité.In a second embodiment of the invention, each cylinder head has a U-shaped profile and has said elongated central branch and two branches lateral extending substantially perpendicular to said central branch elongated and substantially radially with respect to the two ends of the cavity.

Dans cette variante, la cavité est de préférence un four et au moins une desdites branches latérales s'étend jusqu'à proximité de la paroi longitudinale délimitant ladite cavité.In this variant, the cavity is preferably an oven and at least one of said lateral branches extends to near the longitudinal wall delimiting said cavity.

Dans une troisième forme de réalisation, chaque culasse présente un profil en forme de C et comporte ladite branche centrale allongée et deux branches latérales s'étendant sensiblement perpendiculairement à ladite branche centrale allongée et sensiblement radialement par rapport aux deux extrémités de la cavité.In a third embodiment, each cylinder head has a shaped profile of C and comprises said elongated central branch and two lateral branches extending substantially perpendicular to said elongated central branch and substantially radially with respect to the two ends of the cavity.

Dans cette variante, au moins une desdites branches latérales s'étend jusqu'à proximité de la paroi latérale délimitant ladite cavité.In this variant, at least one of said lateral branches extends as close as possible of the side wall delimiting said cavity.

Ladite cavité peut être une poche, une des branches latérales s'étendant radialement par rapport au fond de cette poche et l'autre branche latérale étant un tronçon libre rapporté à un couvercle destiné à fermer ladite poche et s'étendant radialement par rapport à ce couvercle jusqu'à proximité de la paroi latérale délimitant ladite cavité.Said cavity can be a pocket, one of the lateral branches extending radially relative to the bottom of this pocket and the other side branch being a free section attached to a cover intended to close said pocket and extending radially by relative to this cover until near the side wall delimiting said cavity.

Dans une quatrième forme de réalisation, la culasse présente une forme en I et comporte ladite branche allongée et deux branches latérales s'étendant sensiblement perpendiculairement à ladite branche allongée et sensiblement radialement par rapport aux deux extrémités de la cavité.In a fourth embodiment, the cylinder head has an I-shape and comprises said elongated branch and two lateral branches extending substantially perpendicular to said elongated branch and substantially radially with respect to at both ends of the cavity.

Dans cette variante, au moins une desdites branches latérales s'étend radialement jusqu'à proximité de la paroi latérale délimitant ladite cavité.In this variant, at least one of said lateral branches extends radially up to the proximity of the side wall delimiting said cavity.

De préférence, chacune desdites bobines s'étend sensiblement sur toute la longueur de la branche allongée de chaque culasse.Preferably, each of said coils extends substantially over the entire length of the elongated branch of each cylinder head.

Les moyens de chauffage comportent, avantageusement, un nombre n de culasses réparties régulièrement à la périphérie de la cavité.The heating means advantageously comprise a number n of cylinder heads evenly distributed around the periphery of the cavity.

Selon la nature du chauffage que l'on cherche à réaliser, les bobines peuvent être alimentées individuellement par un courant électrique alternatif, cette alimentation étant décalée en phase d'une bobine à une autre, ce décalage de l'alimentation d'une bobine à une autre pouvant être déterminé par une progression arithmétique.Depending on the nature of the heating that one seeks to achieve, the coils can be supplied individually by an alternating electric current, this supply being shifted in phase from one coil to another, this shift in the supply of a reel to another which can be determined by an arithmetic progression.

Les différentes bobines peuvent aussi être alimentées par plusieurs générateurs agencés pour créer un champ tournant.The different coils can also be powered by several generators arranged to create a rotating field.

La présente invention et ses avantages apparaítront mieux dans la description suivante de deux exemples de réalisation, en référence aux dessins annexés, dans lesquels :

  • la figure 1 est une vue en coupe axiale d'un dispositif selon l'invention destiné à la fusion du métal,
  • la figure 2 est une vue de dessus en coupe suivant les flèches II-II du four de la figure 1,
  • les figures 3 et 4 sont des vues en perspective du dispositif de la figure 1 respectivement vue de dessus et vue de dessous,
  • la figure 5 est une vue en coupe longitudinale d'un dispositif selon l'invention destiné au forgeage du métal,
  • les figures 6A et 6B sont des schémas représentant les lignes du champ magnétique respectivement du dispositif de l'invention et d'un dispositif classique,
  • les figures 7A et 7B représentent la cavité en vue de dessus et schématiquement la circulation des courants induits respectivement du dispositif de l'invention et d'un dispositif classique, et
  • les figures 8A et 8B sont des schémas représentant la répartition de la puissance de chauffage respectivement du dispositif de l'invention et d'un dispositif classique.
The present invention and its advantages will appear better in the following description of two exemplary embodiments, with reference to the appended drawings, in which:
  • FIG. 1 is a view in axial section of a device according to the invention intended for melting metal,
  • FIG. 2 is a top view in section along the arrows II-II of the furnace of FIG. 1,
  • FIGS. 3 and 4 are perspective views of the device of FIG. 1 respectively seen from above and seen from below,
  • FIG. 5 is a view in longitudinal section of a device according to the invention intended for forging metal,
  • FIGS. 6A and 6B are diagrams representing the lines of the magnetic field respectively of the device of the invention and of a conventional device,
  • FIGS. 7A and 7B show the cavity in top view and schematically the circulation of the currents induced respectively from the device of the invention and from a conventional device, and
  • FIGS. 8A and 8B are diagrams showing the distribution of the heating power respectively of the device of the invention and of a conventional device.

En référence aux figures 1 à 4, le dispositif de chauffage par induction 10 comporte une cavité 11 formée par une poche 12 réalisée généralement en une matière réfractaire et destinée à recevoir le métal à fondre, ainsi que des moyens de chauffage par induction agencés pour élever la température du métal par un flux magnétique jusqu'à sa fusion.Referring to Figures 1 to 4, the induction heating device 10 comprises a cavity 11 formed by a pocket 12 generally made of a material refractory and intended to receive the metal to be melted, as well as heating means by induction arranged to raise the temperature of the metal by a magnetic flux until it merges.

Ces moyens de chauffage comportent des culasses magnétiques 13 indépendantes disposées autour de la poche 12 à une distance d suffisante pour permettre la mise en place des bobines d'induction 14. Chaque culasse 13 présente une forme générale en L comportant une branche allongée 13a sensiblement parallèle à l'axe de la poche 12 et s'étendant sensiblement sur toute la hauteur de ladite poche 12 ainsi qu'une branche latérale 13b perpendiculaire à la branche allongée 13a et s'étendant radialement en direction du fond de ladite poche 12. Les extrémités des branches 13a et 13b sont recourbées pour se rapprocher au maximum de la paroi de la poche 12.These heating means include independent magnetic yokes 13 arranged around the pocket 12 at a distance d sufficient to allow the setting places induction coils 14. Each cylinder head 13 has a general L shape comprising an elongated branch 13a substantially parallel to the axis of the pocket 12 and extending substantially over the entire height of said pocket 12 and a branch lateral 13b perpendicular to the elongated branch 13a and extending radially in direction of the bottom of said pocket 12. The ends of the branches 13a and 13b are curved to get as close as possible to the wall of the pocket 12.

Selon le cas, les culasses 13 peuvent avoir un profil en C ou en I ou encore ne comporter que ladite branche allongée 13a. Dans tous les cas, la branche allongée 13a des culasses magnétiques 13 s'étend sensiblement sur toute la hauteur de la poche 12 et la branche latérale est orientée radialement et s'étend de préférence jusqu'à proximité de la paroi de la poche 12. Dans certains cas, les branches latérales peuvent constituer un tronçon libre disposé perpendiculairement par rapport à la branche allongée en se rabattant par exemple à proximité du fond de la poche ou en se rabattant à proximité du bord supérieur de la poche si ces branches sont rapportées sous un couvercle destiné à fermer la poche. Dans d'autres cas, les branches latérales peuvent s'étendre jusqu'au centre du fond de la poche. Enfin, ces branches latérales peuvent être profilées de telle manière qu'elles recouvrent en partie la surface du fond de la poche. Il faut dans tous les cas que les deux branches latérales 13b d'une même culasse 13 ne s'étendent pas toutes les deux jusqu'au centre de la poche 12, l'une au moins doit s'arrêter à proximité du bord de cette poche.Depending on the case, the cylinder heads 13 can have a C or I profile or even include that said elongated branch 13a. In all cases, the elongated branch 13a magnetic yokes 13 extends substantially over the entire height of the pocket 12 and the lateral branch is oriented radially and preferably extends up to proximity to the wall of the pocket 12. In certain cases, the lateral branches may constitute a free section arranged perpendicularly to the branch elongated by folding, for example near the bottom of the pocket or by folding close to the upper edge of the pocket if these branches are attached under a cover to close the pocket. In other cases, the side branches can extend to the center of the bottom of the pocket. Finally, these side branches can be profiled in such a way that they partially cover the bottom surface from the pocket. In all cases, the two lateral branches 13b of the same cylinder head 13 do not both extend to the center of pocket 12, one at less should stop near the edge of this pocket.

Ces culasses magnétiques 13 sont au nombre n égal à huit (dans les figures 1 et 2) et à six (dans les figures 3 et 4) et sont disposées régulièrement à égale distance l'une de l'autre tout autour de la poche 12. Ce nombre n n'est pas limitatif Il peut aussi bien être inférieur que supérieur, pair ou impair, selon le type de poche et son cahier de charges : capacité en tonnes de métal, puissance de chauffe, etc.These magnetic yokes 13 are number n equal to eight (in FIGS. 1 and 2) and to six (in Figures 3 and 4) and are regularly arranged at equal distance one of the other all around pocket 12. This number is not limitative It may as well be lower than higher, even or odd, depending on the type of pocket and its notebook loads: capacity in tonnes of metal, heating power, etc.

L'ensemble décrit ci-dessus et formé par la poche 12, les culasses magnétiques 13 et les bobines d'induction 14, est logé dans une cuve 15 de protection et d'isolation pouvant être pourvue d'un couvercle ou d'une porte (non représenté), cette cuve étant montée basculante sur un châssis ou une potence non représenté autour d'un axe d'articulation 16 passant par deux oreilles 17 solidaire de ladite cuve 15. En cours de fusion, cette cuve 15 peut être fermée hermétiquement ou non et peut être mise sous vide d'air pour optimiser le fonctionnement des moyens de chauffage par induction. Après la fusion du métal, le couvercle ou la porte s'ouvre, la cuve 15 bascule autour de son articulation 16 pour vider la poche 12 de son contenu de métal en fusion dans des moules par exemple et de la même manière que dans les dispositifs de l'art antérieur.The assembly described above and formed by the pocket 12, the magnetic yokes 13 and the induction coils 14, is housed in a tank 15 for protection and insulation may be provided with a cover or a door (not shown), this tank being tilting mount on a chassis or a stem not shown around an axis articulation 16 passing through two ears 17 secured to said tank 15. In the process of melting, this tank 15 can be hermetically sealed or not and can be placed under air vacuum to optimize the functioning of the induction heating means. After the metal has melted, the cover or the door opens, the tank 15 swings around of its articulation 16 to empty the pocket 12 of its molten metal content in molds for example and in the same way as in art devices prior.

Chaque bobine d'induction 14 est disposée autour de la branche allongée 13a de chaque culasse magnétique 13 et s'étend sensiblement sur toute sa longueur. Ces bobines d'induction 14 sont alimentées individuellement par un courant alternatif et génèrent un flux magnétique, dont les lignes de champ sont représentées à la figure 6A. Grâce aux culasses magnétiques 13, ce flux magnétique est canalisé, dirigé et fermé dans une zone périphérique intérieure de la poche 12 à proximité de ladite culasse, au travers du métal à chauffer. Seule une faible partie du flux passe à l'extérieur. Les pertes sont alors faibles. La figure 6B illustre les lignes de champ d'un dispositif de l'art antérieur qui n'est pas équipé de culasse magnétique et permet de visualiser très clairement l'amélioration de la concentration des lignes de champ autour de la poche 12 obtenue grâce au dispositif de l'invention en référence à la figure 6A.Each induction coil 14 is arranged around the elongated branch 13a of each magnetic yoke 13 and extends substantially over its entire length. These induction coils 14 are supplied individually by an alternating current and generate a magnetic flux, the field lines of which are shown in the figure 6A. Thanks to the magnetic yokes 13, this magnetic flux is channeled, directed and closed in an inner peripheral zone of the pocket 12 near said cylinder head, through the metal to be heated. Only a small part of the flow goes to outside. The losses are then low. Figure 6B illustrates the field lines of a device of the prior art which is not equipped with a magnetic yoke and allows visualize very clearly the improvement in the concentration of the field lines around of the pocket 12 obtained using the device of the invention with reference to FIG. 6A.

De plus, dans le dispositif de la présente invention, les bobines14 sont toutes orientées dans le même sens, leur pôle nord étant placé d'un côté des culasses et leur pôle sud de l'autre côté. Ainsi les pôles de même nature se repoussent en repoussant leurs champs magnétiques respectifs, créant ainsi des zones de champ magnétique nul 40 alternant avec des zones de champ non nul 41, représentées schématiquement sur la figure 7A. De ce fait, les zones de champ non nul sont centrées sur des plans radiaux 42 passant par les axes de culasses 13 et s'étendant de part et d'autre d'une zone de champ maximal, à proximité de la périphérie de la cavité 11. Ces zones de champ non nul 41 comprennent donc une zone centrale de champ maximal et deux zones à gradient de champ décroissant disposées de part et d'autre de la zone de champ maximal jusqu'aux zones de champ nul 40 voisines. Les lignes de champ sont disposées de part et d'autre symétriquement par rapport auxdits plans radiaux 42 passant par le centre de la cavité 11 et passant par l'axe des culasses 13. Ainsi, les zones de champ nul 40 délimitent des zones actives 41, constituées par les zones de champ maximal et les zones de champ à gradient de champ décroissant, correspondant aux zones de chauffage du métal. De ce fait, à l'inverse des dispositifs de l'art antérieur dans lesquels les zones de chauffage 51 s'étendent sur la périphérie des extrémités de la cavité 11 comme le montre la figure 7B, les zones actives de chauffage 41 sont délimitées sur des portions angulaires définies de la périphérie de ladite cavité 11. En d'autres termes, dans chaque zone active 41, le champ magnétique induit un courant 43 générant une puissance de chauffage, ce courant étant obligé de se refermer sur lui même formant une boucle dans cette zone active, alors que dans les dispositifs de l'art antérieur, le courant induit 53 s'étend tout autour de la périphérie de la cavité. On sait, par ailleurs, que le courant induit génère une puissance de chauffage directement proportionnelle au volume de métal traversé par ledit courant. Par conséquent, le fait que les courants induits 43 par les bobines 14 soient localisés dans lesdites zones actives 41 permet d'augmenter de manière sensible le volume de métal traversé par l'ensemble des courants induits, en comparaison avec le volume de métal traversé par le courant induit en périphérie. Le résultat ainsi obtenu est une augmentation du volume de métal chauffé pour un même courant induit et donc un bien meilleur rendement.In addition, in the device of the present invention, the coils14 are all oriented in the same direction, their north pole being placed on one side of the cylinder heads and their south pole on the other side. Thus the poles of the same nature repel each other by repelling their respective magnetic fields, thus creating zones of zero magnetic field 40 alternating with non-zero field areas 41, shown schematically on the Figure 7A. Therefore, the nonzero field areas are centered on radial planes 42 passing through the cylinder head axes 13 and extending on either side of a zone of maximum field, near the periphery of the cavity 11. These non-field fields null 41 thus include a central zone of maximum field and two zones with decreasing field gradient arranged on either side of the field area maximum up to the neighboring zero field areas 40. The field lines are arranged on either side symmetrically with respect to said radial planes 42 passing through the center of the cavity 11 and passing through the axis of the cylinder heads 13. Thus, the null field zones 40 delimit active zones 41, constituted by the zones of maximum field and the field areas with decreasing field gradient, corresponding metal heating zones. Therefore, unlike the devices of the prior art in which the heating zones 51 extend over the periphery of the ends of the cavity 11 as shown in FIG. 7B, the active heating zones 41 are delimited on defined angular portions of the periphery of said cavity 11. In in other words, in each active zone 41, the magnetic field induces a current 43 generating a heating power, this current being forced to close on it even forming a loop in this active area, whereas in the devices of the art anterior, the induced current 53 extends all around the periphery of the cavity. We know, moreover, that the induced current generates a heating power directly proportional to the volume of metal traversed by said current. Therefore, the fact that the currents induced 43 by the coils 14 are located in said zones active 41 significantly increases the volume of metal traversed by all of the induced currents, in comparison with the volume of metal traversed by the current induced on the periphery. The result is an increase in the volume of metal heated for the same induced current and therefore much better performance.

Les figures 8A et 8B permettent de comparer la répartition de la puissance de chauffage entre les dispositifs de l'art antérieur et celui de l'invention, les zones blanches représentant la puissance de chauffage la plus élevée, cette puissance allant en diminuant dans les zones plus foncées. A ces différents niveaux de puissance de chauffage correspondent bien entendu des niveaux de température différents. Ces figures sont des illustrations d'essais réels réalisés pour un même courant induit donc un même champ magnétique généré par chaque bobine. Dans la figure 8B, qui illustre l'art antérieur, les zones blanches correspondent aux zones de chauffage 51 et sont limitées à la périphérie des extrémités de la cavité, l'intérieur étant totalement sombre. Dans la figure 8A, qui illustre la présente invention, les zones blanches sont réparties sur le pourtour de la cavité et sur toute sa longueur. On constate plusieurs zones blanches réparties sur la périphérie de la cavité, s'étendant sur toute sa hauteur et se prolongeant légèrement en direction de l'intérieur. Ces zones blanches correspondent aux zones actives de chauffage 41 délimitées les unes des autres par lesdites zones de champ nul 40. On aperçoit alors aisément que la totalité de la surface couverte par les zones blanches dans la figure 8A est beaucoup plus importante que celle dans la figure 8B. Cette augmentation de surface a donc une incidence directe sur le rendement du chauffage par induction qui peut atteindre 80 à 95 %.FIGS. 8A and 8B make it possible to compare the distribution of the power of heating between the devices of the prior art and that of the invention, the zones white representing the highest heating power, this power going decreasing in darker areas. At these different power levels of heating of course correspond to different temperature levels. These figures are illustrations of real tests carried out for the same induced current therefore the same magnetic field generated by each coil. In Figure 8B, which illustrates prior art, the white areas correspond to the heating areas 51 and are limited to the periphery of the ends of the cavity, the interior being completely dark. In FIG. 8A, which illustrates the present invention, the white areas are distributed on the periphery of the cavity and over its entire length. There are several areas white distributed on the periphery of the cavity, extending over its entire height and extending slightly inward. These white areas correspond to the active heating zones 41 delimited from each other by said zones of zero field 40. It is then easy to see that the entire surface covered by the white areas in Figure 8A is much larger than that in Figure 8B. This increase in surface area therefore has a direct impact on the yield of the induction heating which can reach 80 to 95%.

D'autre part, la distance d qui sépare la branche allongée 13a de la culasse magnétique 13 supportant la bobine d'induction 14 de la poche 12 peut être relativement grande pour permettre d'augmenter l'épaisseur des parois réfractaires de la poche 12 et limiter les pertes thermiques. Par ailleurs, des bobines d'induction 14 de plus petits diamètres, de puissances plus faibles et de facteurs de puissance plus forts que celles de l'art antérieur peuvent être utilisées. Par conséquent, les pertes par effet Joules sont également limitées et les bobines d'induction 14 n'ont pas besoin d'être refroidies par une circulation d'eau spécifique. La ventilation par air est suffisante pour assurer leur refroidissement.On the other hand, the distance d which separates the elongated branch 13a from the magnetic yoke 13 supporting the induction coil 14 of the pocket 12 can be relatively large to increase the thickness of the refractory walls of the pocket 12 and limit heat losses. Furthermore, induction coils 14 of smaller diameters, weaker powers and stronger power factors than those of art can be used. Therefore, the Joules effect losses are also limited and the induction coils 14 do not need to be cooled by specific water circulation. Air ventilation is sufficient to ensure their cooling.

Sous l'effet des zones actives de chauffage 41, la température du métal s'élève plus vite dans certaines zones provoquant ainsi un déplacement ou un brassage automatique entre les masses de métal chaudes et celles plus froides, pour qu'à leur tour leur température s'élève également jusqu'à obtenir un mélange fondu homogène.Under the effect of the active heating zones 41, the temperature of the metal rises more quickly in certain areas causing displacement or mixing automatic between hot and cold metal masses, so that at their their temperature also rises until a homogeneous molten mixture is obtained.

Ce brassage est grandement amélioré et accéléré en alimentant individuellement les bobines d'induction 14 avec un décalage de l'alimentation d'une bobine à la suivante et ainsi de suite, dans le sens des aiguilles d'une montre ou inversement. Ce décalage en phase de l'alimentation génère à l'intérieur de la poche 12 un brassage circonférentiel et hélicoïdal du métal. La conséquence directe de cette forme de brassage est une homogénéisation plus rapide du gradient de température dans le métal permettant de raccourcir sensiblement le temps nécessaire à son ramollissement et à sa fusion entraínant ainsi des économies d'énergie importantes. Ce brassage forcé peut être également obtenu en alimentant chaque bobine par un générateur indépendant. Tous les générateurs peuvent alors être synchronisés de façon à obtenir un champ tournant créant ainsi l'effet d'une hélice dans le métal en fusion.This brewing is greatly improved and accelerated by individually feeding the induction coils 14 with an offset of the supply from one coil to the next and so on, clockwise or vice versa. This shift in feeding phase generates inside the pocket 12 a circumferential mixing and helical metal. The direct consequence of this form of mixing is a faster homogenization of the temperature gradient in the metal allowing significantly shorten the time required for softening and melting resulting in significant energy savings. This forced mixing can be also obtained by supplying each coil with an independent generator. All the generators can then be synchronized so as to obtain a rotating field creating the effect of a helix in the molten metal.

La figure 5 illustre une variante de réalisation de l'invention dans laquelle le dispositif 30 comporte une cavité 31 formée par un four 32 réalisé généralement dans une matière réfractaire et destiné à recevoir des billettes de métal 35 à usiner à chaud ainsi que des moyens de chauffage par induction 33, 34 agencés pour élever la température desdites billettes à une température inférieure à leur température de fusion, par un flux magnétique. Ces moyens de chauffage comportent comme dans l'exemple précédent des culasses magnétiques 33 indépendantes disposées longitudinalement autour du four 32 et à une distance d suffisante pour y loger des bobines d'induction 34. Chaque culasse 33 comporte une branche centrale allongée 33a et au moins une branche latérale 33b, 33c perpendiculaire à la branche centrale allongée 33a. La branche centrale allongée 33a des culasses magnétiques 33 s'étend sensiblement sur toute la longueur du four 32 et les deux branches d'extrémité 33b et 33c s'étendent radialement jusqu'à proximité du four 32. Dans l'exemple représenté, les culasses 33 ont une forme générale en U. Chaque bobine d'induction 34 est disposée autour de la branche centrale allongée 33a de chaque culasse magnétique 33 et s'étend sensiblement sur toute sa longueur.FIG. 5 illustrates an alternative embodiment of the invention in which the device 30 comprises a cavity 31 formed by an oven 32 generally produced in a refractory material and intended to receive metal billets 35 to be machined hot as well as induction heating means 33, 34 arranged to raise the temperature said billets at a temperature below their melting temperature, by a flow magnetic. These heating means include, as in the previous example independent magnetic yokes 33 arranged longitudinally around the oven 32 and at a distance d sufficient to accommodate induction coils 34. Each cylinder head 33 has an elongated central branch 33a and at least one branch lateral 33b, 33c perpendicular to the elongated central branch 33a. Branch elongated central unit 33a of the magnetic yokes 33 extends substantially over the entire length of the oven 32 and the two end branches 33b and 33c extend radially up to near the furnace 32. In the example shown, the cylinder heads 33 have a general U-shape. Each induction coil 34 is arranged around the elongated central branch 33a of each magnetic yoke 33 and extends substantially over its entire length.

Le nombre n de culasses magnétiques 33 et de bobines d'induction 34, leur fonctionnalité et leurs avantages sont identiques à ceux décrits précédemment. De même, il est également possible d'optimiser l'homogénéisation du gradient de température à l'intérieur et tout au long du four 32 en alimentant les bobines d'induction 34 avec un décalage en phase d'une bobine à la suivante ou par des générateurs indépendants synchronisés.The number n of magnetic yokes 33 and induction coils 34, their functionality and their advantages are identical to those described above. Of even, it is also possible to optimize the homogenization of the gradient of temperature inside and throughout the oven 32 by supplying the coils induction 34 with a phase shift from one coil to the next or by synchronized independent generators.

Il ressort clairement de cette description que l'invention atteint les buts prévus. Son avantage essentiel est bien entendu les économies d'énergie que ce dispositif de chauffage par induction permet de réaliser tout en respectant les normes de sécurité en vigueur. Par conséquent, même si ce dispositif nécessite un investissement global plus élevé par rapport à un dispositif classique et connu, les gains énergétiques réalisés lui permettent d'envisager un retour de l'investissement sur environ deux ans.It is clear from this description that the invention achieves the intended purposes. His essential advantage is of course the energy savings that this device induction heating allows to achieve while respecting safety standards in force. Therefore, even if this device requires more overall investment high compared to a conventional and known device, the energy savings achieved allow to consider a return on investment over approximately two years.

La présente invention n'est pas limitée aux exemples de réalisation décrits mais s'étend à toute modification et variante évidente pour un homme du métier. Comme précisé, le nombre des culasses magnétiques et des bobines d'induction n'est pas limité. De même, la forme des culasses peut varier en fonction de la poche ou du four. Les culasses peuvent aussi être formées de plusieurs tronçons libres. La gestion de l'alimentation des bobines peut également différée.The present invention is not limited to the embodiments described but extends any modification and variant obvious to a person skilled in the art. As precised, the number of magnetic yokes and induction coils is not limited. Of even, the shape of the cylinder heads can vary depending on the pocket or the oven. The cylinder heads can also be formed from several free sections. The management of the supply of the coils can also be delayed.

Claims (16)

  1. Induction heating device (10, 30) to raise the temperature of metals with a view to melting or hot working them, this device comprising at least one cavity (11, 31) defined by a ladle (12) designed to receive metals to be brought up to a temperature greater than or equal to their melting point or by an oven (32) designed to receive billets of metal to be heated at a temperature which is lower than their melting point, this temperature being determined to forge the metals, as well as induction heating means (13, 14, 33, 34) for said ladle (12) or said oven (32), said induction heating means comprising at least two magnetic yokes (13, 33) arranged around this cavity (11, 31), extending over the height of the cavity (11, 31), each bearing at least one independent induction coil (14, 34), characterized in that the induction coils (14, 34) are fitted in the same direction so that their north pole is located on one side of the cavity (11, 31) and their south pole on the opposite side, in that they are arranged so as to generate null magnetic field zones (40) arranged alternately between non null field zones (41) spread out on the periphery of the cavity, the non null field zones each comprising a maximum field zone associated with two decreasing field gradient zones arranged on either side of said maximum field zone, extending as far as the neighbouring null field zones (40), as well as a null field zone (40) located in the center of this cavity, the non null field zones forming active heating zones separated by said null field zones forming inactive zones.
  2. Device according to claim 1, characterized in that each yoke (13, 33) comprises an elongated branch (13a, 33a) extending from one end of the cavity to the other, which is arranged substantially parallel to the axis of this cavity (11, 31) and bearing at least one induction coil (14, 34) designed to generate one of said active heating zones (41).
  3. Device according to claim 2, characterized in that each yoke (13) shows an L-shaped profile and comprises said elongated branch (13a) and a lateral branch (13b) extending substantially perpendicular to said elongated branch (13a) and substantially radially in relation to an end of the cavity (11).
  4. Device according to claim 3, characterized in that said cavity (11) is a ladle (12), and in that said lateral branch (13b) extends radially in relation to the bottom of this ladle in the direction of its center.
  5. Device according to claim 2, characterized in that each yoke (33) shows a U-shaped profile and comprises said central elongated branch (33a) and two lateral branches (33b, 33 c) extending substantially perpendicular to said central elongated branch (33 a) and substantially radially in relation to the two ends of the cavity (31).
  6. Device according to claim 5, characterized in that the cavity (31) is an oven (32) and in that at least one of said lateral branches (33b, 33c) extends as far as the vicinity of the longitudinal wall delimiting said cavity (31).
  7. Device according to claim 2, characterized in that each yoke shows a C-shaped profile and comprises said central elongated branch and two lateral branches extending substantially perpendicular to said central elongated branch and substantially radially in relation to the two ends of the cavity (11).
  8. Device according to claim 7, characterized in that at least one of said lateral branches extends as far as the vicinity of the lateral wall delimiting said cavity (11).
  9. Device according to claim 8, characterized in that said cavity (11) is a ladle (12), in that one of the lateral branches extends radially in relation to the bottom of this ladle and in that the other lateral branch is a free section directly attached to a cover designed to close said ladle and extending radially in relation to this cover as far as the vicinity of the lateral wall delimiting said cavity (11).
  10. Device according to claim 2, characterized in that each yoke is I-shaped and comprises said elongated branch and two lateral branches extending substantially perpendicular to said elongated branch and substantially radially in relation to the two ends of the cavity.
  11. Device according to claim 10, characterized in that at least one of said lateral branches extends radially as far as the vicinity of the lateral wall delimiting said cavity.
  12. Device according to claim 2, characterized in that each of said coils (14, 34) extends substantially over the whole length of the elongated branch (13a, 33a) of each yoke (13, 33).
  13. Device according to claim 1, characterized in that the heating means comprise a number n of yokes (13, 33) regularly spread out on the periphery of the cavity (11, 31).
  14. Device according to claim 13, characterized in that the coils (14, 34) are fed individually by an alternating electric current, this power supply being phase-shifted from one coil to another.
  15. Device according to claim 14, characterized in that the power supply shift from one coil to another is determined by an arithmetical progression.
  16. Device according to claim 13, characterized in that the various coils (14, 34) are fed by several generators designed to create a rotary field.
EP98925719A 1997-05-16 1998-05-15 Induction oven for melting metals Expired - Lifetime EP0981931B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9706279 1997-05-16
FR9706279 1997-05-16
PCT/FR1998/000971 WO1998053642A1 (en) 1997-05-16 1998-05-15 Induction oven for melting metals

Publications (2)

Publication Number Publication Date
EP0981931A1 EP0981931A1 (en) 2000-03-01
EP0981931B1 true EP0981931B1 (en) 2002-02-20

Family

ID=9507136

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98925719A Expired - Lifetime EP0981931B1 (en) 1997-05-16 1998-05-15 Induction oven for melting metals

Country Status (9)

Country Link
US (1) US6163562A (en)
EP (1) EP0981931B1 (en)
JP (1) JP2001525981A (en)
AT (1) ATE213583T1 (en)
AU (1) AU7773298A (en)
DE (1) DE69803927T2 (en)
DK (1) DK0981931T3 (en)
ES (1) ES2173588T3 (en)
WO (1) WO1998053642A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6942032B2 (en) * 2002-11-06 2005-09-13 Thomas A. La Rovere Resistive down hole heating tool
US8653425B2 (en) * 2011-07-11 2014-02-18 Bernard Lasko Rotary applicator
CN104285501B (en) * 2012-03-01 2016-07-20 伊诺瓦实验室公司 Device for the sensing heating of billet

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE351671A (en) *
DE277870C (en) *
DE266566C (en) *
US1834725A (en) * 1928-02-18 1931-12-01 Ajax Electrothermic Corp External field eliminator
US1879360A (en) * 1928-07-24 1932-09-27 Ajax Electrothermic Corp Electric induction furnace
US5090022A (en) * 1990-05-21 1992-02-18 Inductotherm Corp. Cold crucible induction furnace

Also Published As

Publication number Publication date
ES2173588T3 (en) 2002-10-16
WO1998053642A1 (en) 1998-11-26
DE69803927T2 (en) 2002-11-07
US6163562A (en) 2000-12-19
DE69803927D1 (en) 2002-03-28
AU7773298A (en) 1998-12-11
JP2001525981A (en) 2001-12-11
DK0981931T3 (en) 2002-06-10
EP0981931A1 (en) 2000-03-01
ATE213583T1 (en) 2002-03-15

Similar Documents

Publication Publication Date Title
EP0206963B1 (en) Inductor with a variable air gap for induction heating the edges of a metallurgical product
CA1320645C (en) Process for melting scrap metal and electric furnace for implementing the process
FR2531062A2 (en) Device for melting, by direct induction, dielectric substances of the glass or enamel type.
FR2821753A1 (en) Stimulating coil for magnetic stimulation of neuro muscular tissue, has ferromagnetic back arranged adjacent to one broadside of coil
EP0362022A1 (en) Composite cooking oven
EP0981931B1 (en) Induction oven for melting metals
WO1991017644A1 (en) Process and devices for the induction heating of a moving elongate metallurgical product
EP0081400B1 (en) Magnetic induction-heating device for rectangular metallic flat products moving lengthwise
FR2918511A1 (en) ROTARY ELECTRIC MACHINE
FR2558941A1 (en) DEVICE FOR HEATING ELECTROMAGNETICALLY INDUCED FLAT FLAT PRODUCTS
EP0255793A1 (en) Electrical direct current furnace for the fusion of iron scrap
FR2665249A1 (en) Furnace for smelting by induction in a cold crucible
EP0020215B1 (en) Induction reheating furnace with travelling field
FR2803134A1 (en) Braking motor vehicle crankshaft by using eddy current retarder which comprises inboard pulley for ancillaries and a stator and field winding coaxial with the crankshaft and located within a rotor
FR2602318A1 (en) ARC FURNACE SUPPLIED FROM A DIRECT CURRENT SOURCE FOR CONTINUOUS SCRAP FUSION
EP1155596B1 (en) Electromagnetic stirring of a melting metal
FR2485411A1 (en) Continuous casting of slabs in mould with electromagnetic stirrer - which produces horizontal row of circular or oval stirring fields across molten metal in mould
CA1086806A (en) Metallurgical pocket for inductive treatment of metals
WO2012127152A1 (en) Induction furnace crucible
WO2001064373A1 (en) Equipment for supplying molten metal to a continuous casting ingot mould and method for using same
CA2189789C (en) Underground hydro line with cooling device
BE726847A (en) Conveyor roller for elongated metal products
FR2663491A1 (en) Inductor for localised heating of metallurgical products
FR2465535A1 (en) BREWING METHOD AND DEVICE FOR IMPROVING THE QUALITY OF CONTINUOUSLY CAST METAL
EP0666325A1 (en) Direct curvent furnace for melting of metal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19991105

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB IT LI SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20010627

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB IT LI SE

REF Corresponds to:

Ref document number: 213583

Country of ref document: AT

Date of ref document: 20020315

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69803927

Country of ref document: DE

Date of ref document: 20020328

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: CABINET ROLAND NITHARDT CONSEILS EN PROPRIETE INDU

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020516

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2173588

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20021121

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030716

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030717

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030718

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20030722

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030723

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20030730

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030804

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030813

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20030908

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20031015

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040515

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040515

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040531

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040601

BERE Be: lapsed

Owner name: *INTERNOVA INTERNATIONAL INNOVATION CY B.V.

Effective date: 20040531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041201

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040515

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050515

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040517