EP0979988B1 - Method of evaluating relative linear movements between permanent magnets and sensors - Google Patents

Method of evaluating relative linear movements between permanent magnets and sensors Download PDF

Info

Publication number
EP0979988B1
EP0979988B1 EP99115790A EP99115790A EP0979988B1 EP 0979988 B1 EP0979988 B1 EP 0979988B1 EP 99115790 A EP99115790 A EP 99115790A EP 99115790 A EP99115790 A EP 99115790A EP 0979988 B1 EP0979988 B1 EP 0979988B1
Authority
EP
European Patent Office
Prior art keywords
magnet
measuring method
sensors
bar
magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99115790A
Other languages
German (de)
French (fr)
Other versions
EP0979988A1 (en
Inventor
Martin Dr. Grönefeld
Jürgen Gerhartz
Michael Ohmer
Thomas Dr. Reininger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Windhorst Beteiligungsgesellschaft mbH
Festo SE and Co KG
Original Assignee
Windhorst Beteiligungsgesellschaft mbH
Festo SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Windhorst Beteiligungsgesellschaft mbH, Festo SE and Co KG filed Critical Windhorst Beteiligungsgesellschaft mbH
Publication of EP0979988A1 publication Critical patent/EP0979988A1/en
Application granted granted Critical
Publication of EP0979988B1 publication Critical patent/EP0979988B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields

Definitions

  • the invention relates to measuring methods for contactless magnetic Detection of linear relative movements between Permanent magnets and electronic sensors according to the generic terms of claims 1 and 12. With the aid of these methods linear movements should be contactless by means of magnetic Interaction between one or more permanent magnets and magnetic sensors can be detected and evaluated.
  • a non-contact Movement detection offers the advantage of Freedom from wear.
  • the non-contact measurement methods are the most common optical and magnetic.
  • optical methods due to the small wavelength guarantee a very high accuracy of the light, magnetic methods are far less sensitive to pollution and damage, especially due to the fact that magnets and sensors completely in a non-magnetic shell can be encapsulated (see e.g. Dettman F. et al. "Magnet-based and yet highly precise. Length measurement with magnetoresistive microsystems ", electronics, DE, Franzis Verlag GmbH, Kunststoff Vol 44, No. 25, pages 86-88, 90-92).
  • Magnetic processes generally use a multi-pole Magnetic stripe used as a donor magnet. By capturing the pole transitions by an electronic magnetic field sensor an incremental shift is detected, the means that after counting the zero crossings a digital one is obtained Signal.
  • Hall sensors for example, magnetoresistive elements or inert gas switches or Reed relay used.
  • Another known method for direct analog measurement the shift at which the measurement signal is in contrast to the Incremental measurement changes continuously with the shift consists in measuring the radial field strength in addition an axially magnetized bar magnet, in which the sensor is moved parallel to the bar axis.
  • This area can be measured from the Field strength clearly infered from the position become.
  • This method of measurement has two limitations, the Limit accuracy and applicability. So becomes the measured field strength due to temperature fluctuations, Positional tolerances of the sensor in relation to the rod axis and Tolerances of the sensor itself affect what is an apparent Pretending shift.
  • Second is the measurable area limited to the transition between two poles, since outside a reversal of the flow direction occurs in this area, which is an ambiguous assignment of field strengths to the sensor position causes.
  • the invention is based, measuring methods according to the task the preamble of claim 1 with a magnet and sensor arrangement and to create evaluation methods with which Relocations without the aforementioned restrictions in be detected more easily, reliably and precisely can.
  • This object is achieved according to the invention in a first method variant solved in that for the detection of the linear Relative movements by means of the electronic sensors one location two mutually perpendicular field components be recorded, the quotient evaluated for position detection becomes.
  • the method according to the invention can be used Measurement procedures can also be carried out so that for detection the linear relative movements by means of the electronic Sensors in two places two perpendicular to each other Field components are recorded, their quotient for position detection is evaluated.
  • axially magnetized bar magnet it is particularly advantageous if one for signaling axially magnetized bar magnet is used, at least two sensors arranged laterally from it the radial and detect the axial field component. It can be useful a permanent magnet made of an AlNiCo material for signaling be used.
  • the Signaling but also a diametrically helical magnetized bar magnet can be used, the side of which sensors arranged the field components vertically to the rod axis.
  • simplified embodiment can instead of the two oppositely magnetized bar magnets a profile magnet with a central web part for signaling and two thickened outdoor areas is used at the outer areas are magnetized in a helical shape and vertically the two field components via its web sensors to the rod axes.
  • This profile magnet can be in an inexpensive embodiment made of a plastic-bound isotropic magnetic material consist of and by a magnetizing arrangement two screwdriver-shaped conductors, namely one running energized conductor and a returning energized conductor, magnetized above the profile by a current pulse become.
  • four or more diametrically helical magnetized bar magnets used in parallel on a pitch circle the sensor axis are arranged.
  • a continuous increase in the absolute field strength can in a modified embodiment but also by Change in cross section of the encoder magnet or magnets Magnetic axis are generated.
  • a further improvement in the measurement results can be found in the above mentioned second method variant after the secondary Claim 12 can further be achieved in that the radial field components of two sensors at two points of a diametrically helical magnetized bar magnet be measured that the two sensors are coupled and moved parallel to the central axis of the rod-shaped transmitter magnet and that the radii from the magnetic axis to the Sensors are at right angles to each other.
  • Measuring method according to claim 14 also possible that instead of diametrically helical magnetized bar magnets one or more twisted bar magnets with square Cross section of an anisotropic plastic-bound elastic Magnetic material with the magnetization perpendicular to Bar axis can be used.
  • a sensor element 3 is displaceable parallel to the bar axis 2 along a straight line 3a, which in the example detects a radial field component B rad and an axial field component B axi .
  • This method is according to the invention in accordance with FIGS. 2 to 6 have been further developed that instead of an axial magnetized bar magnets 1 one or more bar magnets be used which is a diametrically helical Have magnetization, so similar to those above measuring rulers described any measuring range can be painted over.
  • Such a diametrical magnetization as with the bar magnet 1 shown in Fig. 2 is made by special magnetizing coils with a screwdriver-shaped current curve imprinted in a pulse discharge. Without magnetizing coil can a magnet with comparable characteristics from one elastic plastic-bonded bar magnet with square Cross section can be produced. Such a magnet that is magnetized transversely to the rod axis, can be twisted in such a way that a helical magnetization is shown is. This allows anisotropic in a simple manner Use magnetic materials.
  • a sensor element 3 moves parallel to the rod axis, with which a radial field component B rad and a tangential field component B tan standing perpendicular to it (in FIG. 2 perpendicular to the plane of representation) are measured.
  • the two field components B rad and B tan are plotted in FIG. 2 in the superimposed diagram as a function of the position relative to the bar magnet 1.
  • the position can be derived from the angle alpha between field direction and radial direction over a range of 60 mm according to the above formula.
  • a sensor element 3 moves along the straight line 3a parallel to the rod axis 2, with which a radial field component B rad and a tangential field component B standing perpendicular to it tan (as in Fig. 2 perpendicular to the plane of representation) can be measured.
  • the two field components B rad and B tan are plotted in FIG. 3 in the superimposed diagram as a function of the position of the sensor element 3. With this arrangement, the position can be derived from the angle alpha between field direction and radial direction over a range of 60 mm according to the above formula.
  • 4 shows the arrangement with the corresponding field components B rad and B tan .
  • This arrangement also allows the position to be determined a coarser position determination via the angle alpha about the recorded absolute field strength. By considering ambiguity of both signals can be excluded, which infer from the angle alpha to the position results if an area larger than 60mm is covered will, that is if the screw of magnetization more than describes a full revolution.
  • a profile magnet is a cost-effective variant, for example 3 10 made of an isotropic material used on the two outer sides of a central web part 10a the two 3 and 4 comparable thickenings 10b and bears 10c.
  • a screwdriver-shaped magnetizing coil becomes a current pulse from the discharge of a capacitor bank used to magnetize the profile magnet 10.
  • the arrangement shown in Fig. 5 shows the profile magnet 10 with a current-carrying conductor 11 and one returning current-carrying conductor 12.
  • the profile magnet 10 then takes the place of the two bar magnets 1 of Fig. 3.
  • the absolute field strength depends on the magnetic material used changed compared to example 2, but the course accordingly.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

Die Erfindung betrifft Meßverfahren zur berührungslosen magnetischen Erfassung linearer Relativbewegungen zwischen Dauermagneten und elektronischen Sensoren nach den Oberbegriffen der Ansprüche 1 bzw. 12. Mit Hilfe dieser Verfahren sollen lineare Bewegungen berührungslos mittels magnetischer Wechselwirkung zwischen einem oder mehreren Permanentmagneten und magnetischen Sensoren erfaßt und ausgewertet werden.The invention relates to measuring methods for contactless magnetic Detection of linear relative movements between Permanent magnets and electronic sensors according to the generic terms of claims 1 and 12. With the aid of these methods linear movements should be contactless by means of magnetic Interaction between one or more permanent magnets and magnetic sensors can be detected and evaluated.

Die Messung linearer Bewegungen findet zum Beispiel in Werkzeugmaschinen, in Pneumatik, in der Automatisierungstechnik und Robotronik sowie im Automobilbereich Anwendung. Eine berührungslose Erfassung von Bewegungen bietet den Vorteil der Verschleißfreiheit. Unter den berührungslosen Meßverfahren sind die optischen und magnetischen am weitesten verbreitet. Während die optischen Verfahren aufgrund der kleinen Wellenlänge des Lichtes eine sehr hohe Genauigkeit garantieren, sind magnetische Verfahren weit unempfindlicher gegen Verschmutzung und Beschädigung, insbesondere dadurch, daß Magnete und Sensoren in einer nichtmagnetischen Hülle vollständig gekapselt werden können (siche z.B. Dettman F. et al. "Auf Magnet-Basis und doch hochgenau. Langenmessung mit magnetoresistiven Mikrosystemen", Elektronik, DE, Franzis Verlag GmbH, München Bd 44, Nr. 25, Seite 86-88, 90-92).The measurement of linear movements takes place, for example, in machine tools, in pneumatics, in automation technology and robotronics as well as in the automotive sector. A non-contact Movement detection offers the advantage of Freedom from wear. Among the non-contact measurement methods are the most common optical and magnetic. During the optical process due to the small wavelength guarantee a very high accuracy of the light, magnetic methods are far less sensitive to pollution and damage, especially due to the fact that magnets and sensors completely in a non-magnetic shell can be encapsulated (see e.g. Dettman F. et al. "Magnet-based and yet highly precise. Length measurement with magnetoresistive microsystems ", electronics, DE, Franzis Verlag GmbH, Munich Vol 44, No. 25, pages 86-88, 90-92).

Bei den magnetischen Verfahren wird im allgemeinen ein mehrpoliger Magnetstreifen als Gebermagnet verwendet. Durch Erfassung der Polübergänge durch einen elektronischen Magnetfeldsensor wird eine Verschiebung incremental erfaßt, das heißt man erhält nach Auszählen der Nulldurchgänge ein digitales Signal. Als Sensoren werden beispielsweise Hall-Sensoren, magnetoresistive Elemente oder Schutzgasschalter bzw. Reed-Relais eingesetzt.Magnetic processes generally use a multi-pole Magnetic stripe used as a donor magnet. By capturing the pole transitions by an electronic magnetic field sensor an incremental shift is detected, the means that after counting the zero crossings a digital one is obtained Signal. Hall sensors, for example, magnetoresistive elements or inert gas switches or Reed relay used.

Bei den Verfahren mit mehrpoligen Magnetstreifen ist die Auflösung durch die Polbreite und diese wiederum durch den Abstand zwischen Sensor und Magnetstreifen begrenzt. Es gibt die Möglichkeit, die Auflösung zu erhöhen, indem die Höhe der Feldstärke zwischen den Polen ausgewertet und daraus die Lage zwischen zwei Poldurchgängen interpoliert wird. In der Nähe der Feldmaxima ist jedoch die Änderung der Feldstärke gering, so daß die Meßgenauigkeit hier beschränkt ist.In the case of the processes with multipole magnetic strips, the Resolution by the pole width and this in turn by the Distance between sensor and magnetic stripe limited. There are the ability to increase the resolution by increasing the amount Field strength between the poles evaluated and the location is interpolated between two pole passes. Nearby the field maxima, however, the change in field strength is small, so that the measurement accuracy is limited here.

Ein anderes bekanntes Verfahren zur direkten analogen Messung der Verschiebung, bei dem das Meßsignal sich im Gegensatz zur Incrementalmessung kontinuierlich mit der Verschiebung ändert, besteht in der Vermessung der radialen Feldstärke neben einem axial magnetisierten Stabmagneten, bei dem der Sensor parallel zur Stabachse verschoben wird. Im Bereich zwischen den beiden Stabpolen variiert die gemessene Feldstärke kontinuierlich zwischen einem Maximum auf Höhe des Nordpoles und einem gleich starken aber im Vorzeichen umgekehrten Minimum auf Höhe des Südpoles. In diesem Bereich kann aus der gemessenen Feldstärke eindeutig auf die Position zurückgeschlossen werden. Dieses Meßverfahren hat zwei Einschränkungen, die die Genauigkeit und die Anwendbarkeit begrenzen. So wird zum einen die gemessene Feldstärke durch Temperaturschwankungen, Lagetoleranzen des Sensors in Bezug auf die Stabachse und Toleranzen des Sensors selber beeinflußt, was eine scheinbare Verschiebung vortäuscht. Zum zweiten ist der meßbare Bereich beschränkt auf den Übergang zwischen zwei Polen, da außerhalb dieses Bereiches eine Umkehrung der Flußrichtung entsteht, die eine mehrdeutige Zuordnung von Feldstärken zur Sensorposition bewirkt.Another known method for direct analog measurement the shift at which the measurement signal is in contrast to the Incremental measurement changes continuously with the shift, consists in measuring the radial field strength in addition an axially magnetized bar magnet, in which the sensor is moved parallel to the bar axis. In the area between The measured field strength varies continuously in the two pole poles between a maximum at the north pole and an equally strong but reversed sign at the level of the south pole. This area can be measured from the Field strength clearly infered from the position become. This method of measurement has two limitations, the Limit accuracy and applicability. So becomes the measured field strength due to temperature fluctuations, Positional tolerances of the sensor in relation to the rod axis and Tolerances of the sensor itself affect what is an apparent Pretending shift. Second is the measurable area limited to the transition between two poles, since outside a reversal of the flow direction occurs in this area, which is an ambiguous assignment of field strengths to the sensor position causes.

Der Erfindung liegt die Aufgabe zugrunde, Meßverfahren nach dem Oberbegriff des Anspruches 1 mit einer Magnet- und Sensoranordnung und Auswerteverfahren zu schaffen, mit denen Lageverschiebungen ohne die vorgenannten Einschränkungen in einfacher, zuverlässiger und genauer Weise detektiert werden können.The invention is based, measuring methods according to the task the preamble of claim 1 with a magnet and sensor arrangement and to create evaluation methods with which Relocations without the aforementioned restrictions in be detected more easily, reliably and precisely can.

Diese Aufgabe wird gemäß der Erfindung in einer ersten Verfahrensvariante dadurch gelöst, daß zur Erfassung der linearen Relativbewegungen mittels der elektronischen Sensoren an einem Ort zwei zueinander senkrechtstehende Feldkomponenten erfaßt werden, deren Quotient zur Lageerkennung ausgewertet wird.This object is achieved according to the invention in a first method variant solved in that for the detection of the linear Relative movements by means of the electronic sensors one location two mutually perpendicular field components be recorded, the quotient evaluated for position detection becomes.

In einer zweiten Verfahrensvariante kann das erfindungsgemäße Meßverfahren auch so durchgeführt werden, daß zur Erfassung der linearen Relativbewegungen mittels der elektronischen Sensoren an zwei Orten zwei zueinander senkrechtstehende Feldkomponenten erfaßt werden, deren Quotient zur Lageerkennung ausgewertet wird.In a second variant of the method, the method according to the invention can be used Measurement procedures can also be carried out so that for detection the linear relative movements by means of the electronic Sensors in two places two perpendicular to each other Field components are recorded, their quotient for position detection is evaluated.

Besonders vorteilhafte Weiterbildungen der erfindungsgemäßen Verfahren sind in den Ansprüchen 2 bis 11 bzw. 13 und 14 gekennzeichnet. Particularly advantageous developments of the invention Methods are in claims 2 to 11 or 13 and 14 characterized.

Mit den erfindungsgemäßen Meßverfahren werden an einem Ort zwei orthogonale Feldkomponenten detektiert, aus deren Verhältnis die Position zurückgerechnet wird. Dies hat den Vorteil, daß jeweils in Bereichen, wo eine Feldkomponente einen Extremalwert annimmt und daher kleine Verschiebungen nicht detektiert werden, die andere Feldkomponente auf Verschiebungen stark reagiert, so daß im ganzen Meßbereich eine gleich hohe Meßgenauigkeit gegeben ist.With the measuring method according to the invention are in one place detected two orthogonal field components from their relationship the position is calculated back. This has the advantage that in areas where a field component has a Assumes extreme value and therefore not small shifts be detected, the other field component on shifts strongly reacts, so that an equal in the entire measuring range high measuring accuracy is given.

Weiterhin sind diese erfindungsgemäßen Meßverfahren sehr viel unempfindlicher gegenüber einer Veränderung der absoluten magnetischen Feldstärke, da Verhältniszahlen zwischen den Feldkomponenten zur Positionserfassung genutzt werden.Furthermore, these measuring methods according to the invention are very much less sensitive to a change in the absolute magnetic field strength, since ratio numbers between the Field components can be used for position detection.

Besonders vorteilhaft ist es dabei, wenn zur Signalgabe ein axial magnetisierter Stabmagnet verwendet wird, wobei mindestens zwei seitlich davon angeordnete Sensoren die radiale und die axiale Feldkomponente erfassen. Dabei kann zweckmäßig zur Signalgabe ein Dauermagnet aus einem AlNiCo-Werkstoff verwendet werden.It is particularly advantageous if one for signaling axially magnetized bar magnet is used, at least two sensors arranged laterally from it the radial and detect the axial field component. It can be useful a permanent magnet made of an AlNiCo material for signaling be used.

In einer demgegenüber abgewandelten Ausführungsform kann zur Signalgabe aber auch ein diametral schraubenlinienförmig magnetisierter Stabmagnet verwendet werden, wobei die seitlich davon angeordneten Sensoren die Feldkomponenten senkrecht zur Stabachse erfassen.In a modified embodiment, the Signaling but also a diametrically helical magnetized bar magnet can be used, the side of which sensors arranged the field components vertically to the rod axis.

Besonders genaue Meßergebnisse können aber auch dadurch gewonnen werden, daß zur Signalgabe zwei diametral schraubenlinienförmig entgegengesetzt magnetisierte Stabmagnete verwendet werden, die in einer Ebene parallel zueinander angeordnet sind, über der die Sensoren die Feldkomponenten senkrecht zu den Stabachsen erfassen. However, particularly precise measurement results can also be obtained in this way be that for signaling two diametrically helical oppositely magnetized bar magnets are used be arranged in a plane parallel to each other over which the sensors are perpendicular to the field components capture the bar axes.

In einer demgegenüber vereinfachten Ausführungsform kann statt der beiden entgegengesetzt magnetisierten Stabmagnete zur Signalgabe auch ein Profilmagnet mit einem mittigen Stegteil und zwei verdickten Außenbereichen verwendet wird, bei dem die Außenbereiche schraubenlinienförmig magnetisert sind und über dessen Steg Sensoren die zwei Feldkomponenten senkrecht zu den Stabachsen erfassen.In a comparison, simplified embodiment can instead of the two oppositely magnetized bar magnets a profile magnet with a central web part for signaling and two thickened outdoor areas is used at the outer areas are magnetized in a helical shape and vertically the two field components via its web sensors to the rod axes.

Dieser Profilmagnet kann in einer kostengünstigen Ausführungsform aus einem kunststoffgebundenen isotropen Magnetwerkstoff bestehen und durch eine Magnetisieranordnung aus zwei schraubenzieherförmigen Leitern, nämlich einem hinlaufend bestromten Leiter und einem rücklaufend bestromten Leiter, über dem Profil durch einen Stromimpuls magnetisiert werden.This profile magnet can be in an inexpensive embodiment made of a plastic-bound isotropic magnetic material consist of and by a magnetizing arrangement two screwdriver-shaped conductors, namely one running energized conductor and a returning energized conductor, magnetized above the profile by a current pulse become.

In einer weiteren Ausführungsform können zur Signalgabe vier oder mehr diametral schraubenlinienförmig magnetisierte Stabmagnete verwendet werden, die parallel auf einem Teilkreis um die Sensorachse angeordnet sind.In a further embodiment, four or more diametrically helical magnetized bar magnets used in parallel on a pitch circle the sensor axis are arranged.

Zur Erweiterung des erfaßbaren Meßbereiches können bei diesen Verfahrensvarianten mittels elektronischer Sensoren zwei orthogonale Feldkomponenten eines oder mehrerer diametral schraubenlinienförmig magnetisierten Stabmagnete oder entsprechender Profilmagnete detektiert werden, wobei Quotient und absolute Stärke der Feldkomponenten zur Lageerkennung ausgewertet werden, derart, daß der Arcus Tangens aus dem Verhältnis der Feldkomponenten die Feinerfassung der Position und die absolute Feldstärke eine Groberfassung entsprechend der Anzahl der erfolgten Durchgänge von 360° auf 0° ergibt. Hierbei ist es möglich, eine kontinuierliche Zunahme der absoluten Feldstärke durch eine Abnahme des Abstandes von Gebermagneten zu Sensoren, vorzugsweise durch leichtes Kippen von Bewegungsachse und Magnetachse, zu erzeugen. To expand the measurable measuring range, you can use these Process variants using electronic sensors two orthogonal field components of one or more diametrically helical magnetized bar magnets or equivalent Profile magnets are detected, with quotient and absolute strength of the field components for position detection be evaluated in such a way that the arc tangent from the Ratio of field components to fine-tune the position and the absolute field strength corresponds to a rough survey the number of passes made from 360 ° to 0 °. Here it is possible to continuously increase the absolute Field strength due to a decrease in the distance from encoder magnets to sensors, preferably by tilting them slightly of motion axis and magnetic axis.

Eine kontinuierliche Zunahme der absoluten Feldstärke kann in einer abgewandelten Ausführungsform aber auch durch eine Querschnittsveränderung des oder der Gebermagnete über die Magnetachse erzeugt werden.A continuous increase in the absolute field strength can in a modified embodiment but also by Change in cross section of the encoder magnet or magnets Magnetic axis are generated.

Eine weitere Verbesserung der Meßergebnisse kann in der oben erwähnten zweiten Verfahrensvariante nach dem nebengeordneten Anspruch 12 weiterhin dadurch erreicht werden, daß mittels zweier Sensoren an zwei Punkten die radialen Feldkomponenten eines diametral schraubenlinienförmig magnetisierten Stabmagneten gemessen werden, daß die beiden Sensoren gekoppelt und parallel zur Mittelachse des stabförmigen Gebermagneten bewegt werden, und daß die Radien von der Magnetachse zu den Sensoren in einem rechten Winkel zueinander stehen.A further improvement in the measurement results can be found in the above mentioned second method variant after the secondary Claim 12 can further be achieved in that the radial field components of two sensors at two points of a diametrically helical magnetized bar magnet be measured that the two sensors are coupled and moved parallel to the central axis of the rod-shaped transmitter magnet and that the radii from the magnetic axis to the Sensors are at right angles to each other.

Schließlich ist es bei beiden Varianten des erfindungsgemäßen Meßverfahrens gemäß Anspruch 14 auch möglich, daß anstelle von diametral schraubenlinienförmig magnetisierten Stabmagneten ein oder mehrere verdrillte Stabmagnete mit quadratischem Querschnitt aus einem anisotropen kunststoffgebundenen elastischem Magnetwerkstoff mit der Magnetisierung senkrecht zur Stabachse eingesetzt werden. Finally, it is in both variants of the invention Measuring method according to claim 14 also possible that instead of diametrically helical magnetized bar magnets one or more twisted bar magnets with square Cross section of an anisotropic plastic-bound elastic Magnetic material with the magnetization perpendicular to Bar axis can be used.

Besonders vorteilhafte Ausführungsbeipiele für das erfindungsgemäße Meßverfahren und die dafür verwendeten Sensorund Magnetanordnungen zur berührungslosen magnetischen Erfassung linearer Relativbewegungen sind in der Zeichnung schematisch dargestellt. Es zeigen

Fig. 1
eine erste Meßanordnung mit überlagertem Diagramm der radialen und axialen Feldkomponenten in ihrem Verlauf,
Fig. 2
eine gegenüber Fig. 1 abgewandelte zweite Ausführungsform einer Meßanordnung ebenfalls mit überlagertem Diagramm,
Fig. 3
eine weitere abgewandelte Ausführungsform einer Meßanordnung mit zwei parallelen Stabmagneten und mit überlagertem Diagramm,
Fig. 4
noch eine weitere Meßanordnung mit zwei parallelen Stabmagneten und mit überlagertem Diagramm,
Fig. 5
eine weitere Ausführungsform eines Stabmagneten mit zwei im Querschnitt verdickten parallelen Außenbereichen mit Magnetisierspule für eine derartige Meßanordnung und
Fig. 6
eine Meßanordnung mit zwei Sensorelementen um einen Stabmagneten aus einem kunststoffgebundenem isotropen Hartferritwerkstoff und mit zugehörigem Diagramm.
Particularly advantageous exemplary embodiments for the measuring method according to the invention and the sensor and magnet arrangements used therefor for the contactless magnetic detection of linear relative movements are shown schematically in the drawing. Show it
Fig. 1
a first measuring arrangement with a superimposed diagram of the radial and axial field components in their course,
Fig. 2
1 modified embodiment of a measuring arrangement also with a superimposed diagram,
Fig. 3
another modified embodiment of a measuring arrangement with two parallel bar magnets and with a superimposed diagram,
Fig. 4
yet another measuring arrangement with two parallel bar magnets and with a superimposed diagram,
Fig. 5
a further embodiment of a bar magnet with two parallel outer regions thickened in cross section with a magnetizing coil for such a measuring arrangement and
Fig. 6
a measuring arrangement with two sensor elements around a bar magnet made of a plastic-bound isotropic hard ferrite material and with an associated diagram.

Bei dem in Fig. 1 dargestellten Stabmagneten 1 ist parallel zur Stabachse 2 ein Sensorelement 3 entlang einer Geraden 3a verschiebbar angeordnet, das in dem Beispiel eine radiale Feldkomponente Brad und eine axiale Feldkomponente Baxi erfaßt. In the bar magnet 1 shown in FIG. 1, a sensor element 3 is displaceable parallel to the bar axis 2 along a straight line 3a, which in the example detects a radial field component B rad and an axial field component B axi .

Der Stabmagnet 1 hat einen Durchmesser D = 10mm und seine Stabachse 2 befindet sich in einem gleichen radialen Abstand von r = 10mm von dem Sensorelement 3. Im überlagerten Diagramm sind die beiden Feldkomponenten Brad und Baxi in ihrem Verlauf gezeigt. Während die radiale Komponente Brad in bekannter Weise zur Lageerkennung zwischen den Polen (im Beispiel über eine Länge von z = 60mm) zur Positionserkennung genutzt werden kann, kann aus der radialen und der axialen Komponente der Winkel Alpha über den Zusammenhang alpha = arc tan (Brad/Baxi) bestimmt werden, der über den Bereich zwischen den Polen hinaus eine eindeutige Positionserfassung erlaubt.The bar magnet 1 has a diameter D = 10 mm and its bar axis 2 is at the same radial distance of r = 10 mm from the sensor element 3. The two field components B rad and B axi are shown in their course in the superimposed diagram. While the radial component B rad can be used in a known manner for position detection between the poles (in the example over a length of z = 60 mm) for position detection, the angle alpha can be determined from the radial and the axial component via the relationship alpha = arc tan (B wheel / B axi ) be determined, which allows a clear position detection beyond the area between the poles.

Da die beiden Feldkomponenten Brad und Baxi durch Temperaturoder Lagetoleranzen in gleicher Weise beeinflußt werden, ist der Quotient der beiden Werte in erster Linie hierdurch nicht verfälscht. Magnetwerkstoffe mit einer magnetischen relativen Permeabilität größer 2 sind für solche Anordnungen besonders geeignet, da der Winkelverlauf relativ gleichmäßig ist. Legierungen aus Al, Ni, Co und Fe (sogenannte AlNiCo-Legierungen) sind daher für dieses Verfahren besonders geeignet.Since the two field components B rad and B axi are influenced in the same way by temperature or position tolerances, the quotient of the two values is primarily not falsified by this. Magnetic materials with a magnetic relative permeability greater than 2 are particularly suitable for such arrangements, since the angular profile is relatively uniform. Alloys made of Al, Ni, Co and Fe (so-called AlNiCo alloys) are therefore particularly suitable for this process.

Dieses Verfahren ist gemäß Fig. 2 bis 6 erfindungsgemäß dahingehend weiterentwickelt worden, daß anstelle eines axial magnetisierten Stabmagneten 1 ein oder mehrere Stabmagnete verwendet werden, die eine diametral schraubenlinienförmige Magnetisierung aufweisen, so daß ähnlich wie bei den oben beschriebenen Meßlinealen ein beliebig langer Meßbereich überstrichen werden kann.This method is according to the invention in accordance with FIGS. 2 to 6 have been further developed that instead of an axial magnetized bar magnets 1 one or more bar magnets be used which is a diametrically helical Have magnetization, so similar to those above measuring rulers described any measuring range can be painted over.

Eine solche diametrale Magnetisierung, wie sie bei dem Stabmagneten 1 in Fig. 2 gezeigt ist, wird durch spezielle Magnetisierspulen mit einem schraubenzieherförmigen Stromverlauf in einer Impulsentladung aufgeprägt. Ohne Magnetisierspule kann ein Magnet mit vergleichbarer Charakteristik aus einem elastischen kunststoffgebundenen Stabmagneten mit quadratischem Querschnitt hergestellt werden. Ein solcher Magnet, der quer zur Stabachse magnetisiert ist, läßt sich derart verdrillen, daß eine schraubenlinienförmige Magnetisierung dargestellt ist. Hierdurch lassen sich in einfacher Weise anisotrope Magnetwerkstoffe verwenden.Such a diametrical magnetization, as with the bar magnet 1 shown in Fig. 2 is made by special magnetizing coils with a screwdriver-shaped current curve imprinted in a pulse discharge. Without magnetizing coil can a magnet with comparable characteristics from one elastic plastic-bonded bar magnet with square Cross section can be produced. Such a magnet that is magnetized transversely to the rod axis, can be twisted in such a way that a helical magnetization is shown is. This allows anisotropic in a simple manner Use magnetic materials.

Einige besonders vorteilhafte erfindungsgemäße Meßverfahren sind in den folgenden Beispielen in Verbindung mit Fig. 2 bis 6 beschrieben.Some particularly advantageous measuring methods according to the invention are in the following examples in connection with Fig. 2 to 6 described.

Beispiel 1:Example 1:

Ein Stabmagnet aus einem kunststoffgebundenen Seltenerdwerkstoff, wie er unter der markenrechtlich geschützten Bezeichnung Neofer 62/60p von der Magnetfabrik Bonn GmbH angeboten wird, mit einer Länge von L = 100mm und einem Durchmesser von D = 10mm ist diametral rechtsdrehend schraubenlinienförmig magnetisiert, wobei Nord- und Südpole (N und S) streifenförmig am Außendurchmesser mit einer Steigung von 60mm pro Umdrehung durch eine entsprechende Magnetisierspule aufgeprägt werden. Im Abstand von r = 10mm von der Stabachse 2 des Rundstabmagneten bewegt sich parallel zur Stabachse ein Sensorelement 3, mit dem eine radiale Feldkomponente Brad und eine darauf senkrecht stehende tangentiale Feldkomponente Btan (in Fig. 2 senkrecht zur Darstellungsebene) gemessen werden. Die beiden Feldkomponenten Brad und Btan sind in Fig. 2 in dem überlagerten Diagramm in Abhängigkeit von der Position gegenüber dem Stabmagneten 1 aufgetragen. Durch diese Anordnung kann nach der obigen Formel über einen Bereich von 60mm die Position aus dem Winkel Alpha zwischen Feldrichtung und radialer Richtung abgeleitet werden. A bar magnet made of a plastic-bound rare earth material, as it is offered by the Magnetfabrik Bonn GmbH under the trademark Neofer 62 / 60p, with a length of L = 100mm and a diameter of D = 10mm, is magnetized diametrically clockwise, with north and South poles (N and S) are stamped in stripes on the outer diameter with a pitch of 60mm per revolution by a corresponding magnetizing coil. At a distance of r = 10mm from the rod axis 2 of the round bar magnet, a sensor element 3 moves parallel to the rod axis, with which a radial field component B rad and a tangential field component B tan standing perpendicular to it (in FIG. 2 perpendicular to the plane of representation) are measured. The two field components B rad and B tan are plotted in FIG. 2 in the superimposed diagram as a function of the position relative to the bar magnet 1. With this arrangement, the position can be derived from the angle alpha between field direction and radial direction over a range of 60 mm according to the above formula.

Beispiel 2:Example 2:

Zwei Stabmagnete 1 aus einem kunststoffgebundenen Seltenerdwerkstoff, wie er unter der markenrechtlich geschützten Bezeichnung Neofer 62/60p von der Magnetfabrik Bonn GmbH angeboten wird, mit einer Länge von L = 100mm und einem Durchmesser von D = 10mm sind diametral rechtsdrehend schraubenlinienförmig magnetisiert, wobei Nord- und Südpole streifenförmig am Außendurchmesser mit einer Steigung von 60mm pro Umdrehung durch eine entsprechende Magnetisierspule aufgeprägt werden. Die beiden Stabmagnete 1 sind im Abstand von d = 20mm parallel zueinander angeordnet derart, daß gleiche Pole sich gegenüberstehen.Two bar magnets 1 made of a plastic-bonded rare earth material, as under the trademarked name Neofer 62 / 60p offered by Magnetfabrik Bonn GmbH with a length of L = 100mm and a diameter of D = 10mm are diametrically clockwise helical magnetized, with north and south poles in stripes on the outside diameter with a pitch of 60mm per revolution imprinted by an appropriate magnetizing coil become. The two bar magnets 1 are at a distance of d = 20mm arranged parallel to each other so that the same poles face.

Im Abstand von r = 10mm oberhalb der durch die beiden Stabachsen 2 aufgespannten Ebene und mittig zwischen den Stabmagneten 1 bewegt sich entlang der Geraden 3a parallel zur Stabachse 2 ein Sensorelement 3, mit dem eine radiale Feldkomponente Brad und eine darauf senkrecht stehende tangentiale Feldkomponente Btan (wie in Fig. 2 senkrecht zur Darstellungsebene) gemessen werden. Die beiden Feldkomponenten Brad und Btan sind in Fig. 3 in dem überlagerten Diagramm in Abhängigkeit von der Position des Sensorelementes 3 aufgetragen. Durch diese Anordnung kann über einen Bereich von 60mm die Position aus dem Winkel Alpha zwischen Feldrichtung und radialer Richtung nach der obigen Formel abgeleitet werden.At a distance of r = 10mm above the plane spanned by the two rod axes 2 and centrally between the rod magnets 1, a sensor element 3 moves along the straight line 3a parallel to the rod axis 2, with which a radial field component B rad and a tangential field component B standing perpendicular to it tan (as in Fig. 2 perpendicular to the plane of representation) can be measured. The two field components B rad and B tan are plotted in FIG. 3 in the superimposed diagram as a function of the position of the sensor element 3. With this arrangement, the position can be derived from the angle alpha between field direction and radial direction over a range of 60 mm according to the above formula.

Im Gegensatz zu Beispiel 1 ergibt sich hierbei eine lineare Abhängigkeit des Winkels Alpha von der Position des Sensorelementes 3.In contrast to Example 1, this results in a linear one Dependence of the angle alpha on the position of the sensor element Third

Werden entsprechend den beiden Stabmagneten 1 unterhalb des beweglichen Sensorelementes 3 zwei weitere Stabmagnete oberhalb des Sensorelementes in gleichem Abstand und mit entgegengesetzter Magnetisierung angeordnet, so erhält man in der Sensorachse Feldwerte doppelter Stärke, die bei leichten Abweichungen von der Sensorachse unverändert bleiben, so daß diese Anordnung besonders unempfindlich gegenüber Lagetoleranzen der Sensoren ist.Are according to the two bar magnets 1 below the movable sensor element 3 two further bar magnets above of the sensor element at the same distance and with the opposite Magnetization arranged, so you get in the Sensor axis field values of double strength, which at light Deviations from the sensor axis remain unchanged, so that this arrangement is particularly insensitive to positional tolerances the sensors is.

Beispiel 3:Example 3:

Bei sonst gleichem Aufbau wie beim Beispiel 2 nimmt der Durchmesser der Stagmagnete 1 von einem Ende zum anderen Ende linear von D = 9mm auf D = 11mm zu, so daß die Magnetstäbe eine leicht konische Form haben. In Fig. 4 ist die Anordnung mit den entsprechenden Feldkomponenten Brad und Btan gezeigt.With otherwise the same structure as in Example 2, the diameter of the stanchion magnets 1 increases linearly from D end to the other end from D = 9 mm to D = 11 mm, so that the magnetic rods have a slightly conical shape. 4 shows the arrangement with the corresponding field components B rad and B tan .

Diese Anordnung erlaubt zusätzlich zur Bestimmung der Position über den Winkel Alpha eine gröbere Positionsbestimmung über die erfaßte absolute Feldstärke. Durch Berücksichtigung beider Signale kann eine Mehrdeutigkeit ausgeschlossen werden, die sich beim Rückschluß vom Winkel Alpha auf die Lageposition ergibt, wenn ein Bereich größer 60mm überstrichen wird, das heißt wenn die Schraube der Magnetisierung mehr als eine volle Umdrehung beschreibt.This arrangement also allows the position to be determined a coarser position determination via the angle alpha about the recorded absolute field strength. By considering ambiguity of both signals can be excluded, which infer from the angle alpha to the position results if an area larger than 60mm is covered will, that is if the screw of magnetization more than describes a full revolution.

Beispiel 4:Example 4:

Als kostengünstige Variante zum Beispiel 3 wird ein Profilmagnet 10 aus einem isotropen Werkstoff verwendet, der an den beiden Außenseiten eines mittigen Stegteiles 10a den beiden Stabmagneten von Fig. 3 und 4 vergleichbare Verdickungen 10b und 10c trägt. Durch eine schraubenzieherförmige Magnetisierspule wird ein Stromimpuls aus der Entladung einer Kondensatorbatterie zur Aufmagnetisierung des Profilmagneten 10 genutzt. Die in Fig. 5 gezeigte Anordnung zeigt den Profilmagneten 10 mit einem hinlaufend bestromten Leiter 11 und einem rücklaufend bestromten Leiter 12. A profile magnet is a cost-effective variant, for example 3 10 made of an isotropic material used on the two outer sides of a central web part 10a the two 3 and 4 comparable thickenings 10b and bears 10c. Through a screwdriver-shaped magnetizing coil becomes a current pulse from the discharge of a capacitor bank used to magnetize the profile magnet 10. The arrangement shown in Fig. 5 shows the profile magnet 10 with a current-carrying conductor 11 and one returning current-carrying conductor 12.

Der Profilmagnet 10 tritt danach an Stelle der zwei Stabmagnete 1 von Fig. 3.The profile magnet 10 then takes the place of the two bar magnets 1 of Fig. 3.

Je nach verwendetem Magnetmaterial ist die absolute Feldstärke gegenüber dem Beispiel 2 verändert, aber der Verlauf entsprechend.The absolute field strength depends on the magnetic material used changed compared to example 2, but the course accordingly.

Beispiel 5:Example 5:

Ein Stabmagnet 1 aus einem kunststoffgebundenen isotropen Hartferritwerkstoff, wie er unter der markenrechtlich geschützten Bezeichnung Sprox 3/19p von der Magnetfabrik Bonn GmbH angeboten wird, mit einer Länge von L = 100mm und einem Durchmesser von D = 10mm ist diametral rechtsdrehend schraubenförmig magnetisiert, wobei Nord- und Südpole streifenförmig am Außendurchmesser mit einer Steigung von 60mm pro Umdrehung durch eine entsprechende Magnetisierspule aufgeprägt werden.A bar magnet 1 made of a plastic-bound isotropic Hard ferrite material as it is protected under the trademark law Description Sprox 3 / 19p from the Magnetfabrik Bonn GmbH is offered, with a length of L = 100mm and a Diameter of D = 10mm is diametrically clockwise helical magnetized, with north and south poles in stripes on the outside diameter with a pitch of 60mm per revolution imprinted by an appropriate magnetizing coil become.

Im gemeinsamen Abstand von r = 10mm von der Stabachse 2 des Rundstabmagneten 1 und auf senkrecht zueinander stehenden Radien bewegen sich gekoppelt parallel zur Stabachse entlang der Geraden 3a zwei Sensoren 3.1 und 3.2, mit denen die radialen Feldkomponenten B1 und B2 senkrecht zueinander gemessen werden. Die beiden Feldkomponenten B1 und B2 sind in Fig. 6 in dem überlagerten Diagramm in Abhängigkeit von der Position aufgetragen. Durch diese Anordnung kann über einen Bereich von 60mm die Position aus dem Winkelverhältnis der gemessenen Feldkomponenten ebenfalls nach der obigen Formel abgeleitet werden. At a common distance of r = 10mm from the rod axis 2 of the Round bar magnets 1 and perpendicular to each other Coupled radii move parallel to the axis of the rod the straight line 3a two sensors 3.1 and 3.2, with which the radial Field components B1 and B2 measured perpendicular to each other become. The two field components B1 and B2 are shown in Fig. 6 in the superimposed diagram depending on the position applied. This arrangement can cover an area of 60mm the position from the angular ratio of the measured field components also according to the above formula be derived.

Liste der BezugszeichenList of reference numbers

11
Stabmagnetbar magnet
22
Stabachserod axis
33
Sensorelementsensor element
3.13.1
Sensorelementsensor element
3.23.2
Sensorelementsensor element
3a3a
GeradeJust
1010
Profilmagnetprofile magnet
10a10a
Stegteilweb member
10b10b
Verdickungthickening
10c10c
Verdickungthickening
1111
hinlaufend bestromter Leitercurrent-carrying conductor
1212
rücklaufend bestromter Leiterreturning current-carrying conductor
BB
magnetische Flußdichtemagnetic flux density
Brad B rad
radiale Feldkomponente von Bradial field component of B
Baxi B axi
axiale Feldkomponente von Baxial field component of B
Btan B tan
xtangentiale Feldkomponente von Bxtangential field component of B
B1B1
xradiale Feldkomponente von Bxradial field component of B
B2B2
radiale Feldkomponente von Bradial field component of B
NN
NordpolNorth Pole
SS
SüdpolSouth Pole

Claims (14)

  1. Measuring method for non-contact magnetic detection of linear relative movements between permanent magnets and electronic sensors by means of a sensor and magnet assembly, characterised in that, to detect the linear relative movements by means of the electronic sensors at one point, two field components at right-angles to one another are detected, and their quotient is used for position detection.
  2. Measuring method according to claim 1, characterised in that an axially magnetised bar magnet (1) is used for signal transmission, with sensors arranged to either side of it detecting the radial and axial field components.
  3. Measuring method according to claim 1 or 2, characterised in that a permanent magnet made of an AlNiCo material is used for signal transmission.
  4. Measuring method according to claim 1, characterised in that a diametrically helically magnetised bar magnet (1) is used for signal transmission, with the sensors arranged to either side of it detecting the field components at right-angles to the bar axis (2).
  5. Measuring method according to claim 1, characterised in that two bar magnets (1) with diametrically opposed helical magnetisation are used for signal transmission, being arranged parallel to one another in a plane over which the sensors detect the field components at right-angles to the bar axes (2).
  6. Measuring method according to claim 1, characterised in that for signal transmission a profile magnet (10) with a central web section (10a) and two thickened outer sections (10b, 10c) is used, in which the outer sections are helically magnetised and over the web of which sensors detect the two field components at right-angles to the bar axes (2).
  7. Measuring method according to claim 6, characterised in that the profile magnet (10) is made of a plastic-bound isotropic magnetic material and is magnetised over the profile by a current pulse, by means of a magnetising assembly of two screwdriver-shaped conductors, namely a conductor (11) fed with inwards current and a conductor (12) fed with return current.
  8. Measuring method according to claim 1, characterised in that for signal transmission four or more bar magnets (1) magnetised diametrically and helically are used, and are mounted parallel on a graduated circle around the sensor axis.
  9. Measuring method according to claim 1 or any of claims 4 to 8, characterised in that by means of electronic sensors two orthogonal field components of one or more bar magnets (1) or corresponding profile magnets (10) magnetised diametrically and helically are detected, with the quotient and absolute strength of the field components being analysed for position detection in such a way that the arcus tangens from the ratio of the field components gives the fine detection of position and the absolute field strength a rough detection according to the number of passes made from 360° to 0°.
  10. Measuring method according to claim 9, characterised in that a continuous increase in absolute field strength is generated by a reduction in the distance between transmitter magnets and sensors, preferably by slight tilting of movement axis and magnet axis.
  11. Measuring method according to claim 9, characterised in that a continuous increase in absolute field strength is generated by a change in cross-section of the transmitter magnet or magnets across the magnet axis.
  12. Measuring method for non-contact magnetic detection of linear relative movements between permanent magnets and electronic sensors by means of a sensor and magnet assembly, characterised in that, to detect the linear relative movements by means of the electronic sensors at two points, two field components at right-angles to one another are detected, and their quotient is used for position detection.
  13. Measuring method according to claim 12, characterised in that, by means of two sensors at two points the radial field components of a bar magnet (1) magnetised diametrically and helically are measured, that the two sensors are coupled and moved parallel to the centre axis of the bar-shaped transmitter magnet, and that the radii from the magnet axis to the sensors are at right-angles to one another.
  14. Measuring method according to any of claims 1 and 4, 5, 8 to 11 or according to claims 12 and 13, characterised in that, instead of bar magnets (1) magnetised diametrically and helically, one or more twisted bar magnets with square cross-section, made from an anisotropic plastic-bound elastic magnetic material with magnetisation at right-angles to the bar axis (2), are used.
EP99115790A 1998-08-13 1999-08-11 Method of evaluating relative linear movements between permanent magnets and sensors Expired - Lifetime EP0979988B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19836599A DE19836599A1 (en) 1998-08-13 1998-08-13 Process for the contactless magnetic detection of linear relative movements between permanent magnets and electronic sensors
DE19836599 1998-08-13

Publications (2)

Publication Number Publication Date
EP0979988A1 EP0979988A1 (en) 2000-02-16
EP0979988B1 true EP0979988B1 (en) 2003-06-25

Family

ID=7877339

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99115790A Expired - Lifetime EP0979988B1 (en) 1998-08-13 1999-08-11 Method of evaluating relative linear movements between permanent magnets and sensors

Country Status (2)

Country Link
EP (1) EP0979988B1 (en)
DE (2) DE19836599A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1847810A1 (en) 2006-04-20 2007-10-24 Sick Ag Method and device for position detection
DE102011115302A1 (en) 2011-09-29 2013-04-04 Tyco Electronics Amp Gmbh Method for the contactless measurement of a relative position by means of a Hall sensor
DE102012203225A1 (en) 2012-03-01 2013-09-05 Tyco Electronics Amp Gmbh METHOD FOR CONTACTLESS MEASUREMENT OF A RELATIVE POSITION BY MEANS OF A 3D HALL SENSOR WITH MEASUREMENT SIGNAL MEMORY
WO2013153015A1 (en) 2012-04-11 2013-10-17 Tyco Electronics Amp Gmbh Displacement sensor for contactlessly measuring a relative position by means of a magnetic field sensor array on the basis of the hall effect
DE102017222674A1 (en) 2016-12-29 2018-07-05 Robert Bosch Gmbh displacement sensor
DE102019122525A1 (en) * 2019-08-21 2021-02-25 Samson Aktiengesellschaft Rotation angle measurement with a pole ring
DE102008006238B4 (en) * 2007-01-25 2021-03-04 Electricfil Automotive S.A.S. Magnetic position sensor
DE102019216988A1 (en) * 2019-11-05 2021-05-06 Vitesco Technologies GmbH Position measuring system

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1243897B1 (en) 2001-03-23 2013-12-18 Melexis Technologies NV Magnetic position sensor
EP1243898A1 (en) * 2001-03-23 2002-09-25 Sentron Ag Magnetic position sensor
US20040017187A1 (en) * 2002-07-24 2004-01-29 Van Ostrand Kent E. Magnetoresistive linear position sensor
FR2898189B1 (en) 2006-03-02 2008-10-17 Moving Magnet Tech POSITION SENSOR WITH VARIABLE MAGNET DIRECTION AND METHOD OF MAKING SAME
EP2009404A3 (en) 2007-06-29 2014-12-24 Melexis Technologies NV Magnetic structure for detecting a relative motion between the magnetic structure and a magnetic field sensor
DE102008045177A1 (en) 2008-08-30 2010-03-04 Festo Ag & Co. Kg Measuring method for the contactless detection of linear relative movements between a sensor arrangement and a permanent magnet
FR2953286B1 (en) 2009-11-27 2012-06-22 Electricfil Automotive METHOD AND MAGNETIC MEASURING SENSOR FOR NON-CONTACT DETECTION OF MOVEMENTS
DE102010003292A1 (en) 2010-03-25 2011-09-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Sensor arrangement and method for determining a magnetization device of a transmitter magnet
DE102010019077A1 (en) 2010-04-30 2011-11-03 Continental Automotive Gmbh Magnetic length measuring system, length measuring method and manufacturing method of a magnetic length measuring system
US8335659B2 (en) 2010-07-15 2012-12-18 Tyco Electronics Corporation Linear position sensor system
US9562758B2 (en) 2013-04-15 2017-02-07 Stemco Kaiser Incorporated Distance measurement sensor based on magnetic signal triangulation
FR3018113B1 (en) 2014-02-28 2017-09-01 Electricfil Automotive MAGNETIC SENSOR FOR DETERMINING THE RELATIVE POSITION BETWEEN A MAGNETIC TARGET AND A MEASURING SYSTEM
WO2017162538A1 (en) 2016-03-22 2017-09-28 Torque And More Gmbh Differential magnetic proximity sensor
CN109313006B (en) * 2016-05-17 2021-02-02 康斯博格股份有限公司 System, method and object for high accuracy magnetic position sensing
CN110088583B (en) 2016-12-12 2021-07-30 康斯博格股份有限公司 Dual-band magnetoelastic torque sensor
DE102017202365A1 (en) * 2017-02-15 2018-08-16 Robert Bosch Gmbh sensor device
DE212018000387U1 (en) * 2017-12-27 2020-07-29 Gefran S.P.A. Contactless linear displacement transducer
WO2019139613A1 (en) 2018-01-12 2019-07-18 Honeywell International Inc. Magnetic encoding for smart position sensor range extension
US20230114412A1 (en) 2020-02-11 2023-04-13 Brp Megatech Industries Inc. Magnetoelastic Torque Sensor With Local Measurement Of Ambient Magnetic Field
DE102020202147A1 (en) 2020-02-19 2021-08-19 Hawe Hydraulik Se Hydraulic component, hydraulic control system with such a hydraulic component and vehicle with such a hydraulic control system
DE102021112883A1 (en) 2021-05-18 2022-11-24 Windhorst Beteiligungsgesellschaft Mbh Magnetizing apparatus for magnetizing a magnetic body, method for manufacturing a permanent magnet having helical magnetization, and permanent magnet manufactured by the method
DE102023132999A1 (en) 2023-11-27 2024-07-11 Schaeffler Technologies AG & Co. KG Sensor arrangement

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE6910787U (en) * 1969-03-18 1969-11-27 Grundig Emv TAPE CASSETTE SET
DE2945895C2 (en) * 1979-11-14 1986-06-05 Festo-Maschinenfabrik Gottlieb Stoll, 7300 Esslingen Magnetic position transmitter for hydraulic or pneumatic working cylinders
DE3410534A1 (en) * 1984-03-22 1985-10-03 Feinmechanische Werke Mainz Gmbh, 6500 Mainz Displacement or speed pick-up for hydraulic or pneumatic cylinders or valves
DE4341810B4 (en) * 1993-12-08 2004-01-29 Festo Ag & Co Sensor device for position detection of a piston
DE19539134C2 (en) * 1995-10-20 2001-05-23 Ruf Electronics Gmbh Evaluation method for non-contact displacement / angle sensors with sinusoidal track signals
DE19600616A1 (en) * 1996-01-10 1997-07-17 Bosch Gmbh Robert Device for detecting deflections of a magnetic body
EP0810420A3 (en) * 1996-05-29 1998-04-15 Vibro-Meter AG Position measuring system

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1847810A1 (en) 2006-04-20 2007-10-24 Sick Ag Method and device for position detection
DE102008006238B4 (en) * 2007-01-25 2021-03-04 Electricfil Automotive S.A.S. Magnetic position sensor
DE102011115302A1 (en) 2011-09-29 2013-04-04 Tyco Electronics Amp Gmbh Method for the contactless measurement of a relative position by means of a Hall sensor
WO2013045430A1 (en) 2011-09-29 2013-04-04 Tyco Electronics Amp Gmbh Method for contactless measurement of a relative position by means of a hall sensor
DE102012203225A1 (en) 2012-03-01 2013-09-05 Tyco Electronics Amp Gmbh METHOD FOR CONTACTLESS MEASUREMENT OF A RELATIVE POSITION BY MEANS OF A 3D HALL SENSOR WITH MEASUREMENT SIGNAL MEMORY
WO2013127984A1 (en) 2012-03-01 2013-09-06 Tyco Electronics Amp Gmbh Method for contactlessly measuring a relative position by means of a 3d hall sensor having measurement signal store
WO2013153015A1 (en) 2012-04-11 2013-10-17 Tyco Electronics Amp Gmbh Displacement sensor for contactlessly measuring a relative position by means of a magnetic field sensor array on the basis of the hall effect
DE102012205903A1 (en) 2012-04-11 2013-10-17 Tyco Electronics Amp Gmbh METHOD FOR CONTACTLESSLY MEASURING A RELATIVE POSITION BY MEANS OF A MAGNETIC FIELD SENSOR ARRAY TO HALLE EFFECT BASE AND TRANSMITTER
DE102012205903B4 (en) * 2012-04-11 2014-01-30 Tyco Electronics Amp Gmbh METHOD FOR CONTACTLESSLY MEASURING A RELATIVE POSITION BY MEANS OF A MAGNETIC FIELD SENSOR ARRAY TO HALLE EFFECT BASE AND TRANSMITTER
CN104220844A (en) * 2012-04-11 2014-12-17 泰科电子Amp有限责任公司 Displacement sensor for contactlessly measuring a relative position by means of a magnetic field sensor array on the basis of the hall effect
CN104220844B (en) * 2012-04-11 2017-02-22 泰连德国有限公司 Displacement sensor for contactlessly measuring a relative position by means of a magnetic field sensor array on the basis of the hall effect
DE102017222674A1 (en) 2016-12-29 2018-07-05 Robert Bosch Gmbh displacement sensor
DE102017222677A1 (en) 2016-12-29 2018-07-05 Robert Bosch Gmbh sensor device
WO2018122284A1 (en) 2016-12-29 2018-07-05 Robert Bosch Gmbh Sensor device
CN110168318A (en) * 2016-12-29 2019-08-23 罗伯特·博世有限公司 Displacement sensor
WO2018122283A1 (en) 2016-12-29 2018-07-05 Robert Bosch Gmbh Displacement sensor
CN110168318B (en) * 2016-12-29 2022-03-22 罗伯特·博世有限公司 Displacement sensor
DE102019122525A1 (en) * 2019-08-21 2021-02-25 Samson Aktiengesellschaft Rotation angle measurement with a pole ring
DE102019216988A1 (en) * 2019-11-05 2021-05-06 Vitesco Technologies GmbH Position measuring system
WO2021089551A1 (en) 2019-11-05 2021-05-14 Vitesco Technologies GmbH Position measuring system

Also Published As

Publication number Publication date
EP0979988A1 (en) 2000-02-16
DE59906067D1 (en) 2003-07-31
DE19836599A1 (en) 2000-02-17

Similar Documents

Publication Publication Date Title
EP0979988B1 (en) Method of evaluating relative linear movements between permanent magnets and sensors
DE2933557C2 (en) Transmitter for non-contact distance or speed measurement
DE19818799C2 (en) Method and device for measuring angles
EP3563116B1 (en) Path sensor
EP0693673B1 (en) Magnetic displacement sensor
EP2564164B1 (en) Magnetic length measuring system, length measuring method and method for producing a magnetic length measuring system
DE3411773A1 (en) DEVICE FOR DETECTING THE SPEED AND / OR A TURNING ANGLE OF A SHAFT
WO2001051893A1 (en) Linear distance sensor and the use thereof as actuator for motor vehicles
EP1662232A1 (en) Linear position sensor
EP1556665B1 (en) Scanner head comprising a magnet and a hall element for use in a co-ordinate measuring device
DE10138908B4 (en) Magnetic detection device
EP3803278B1 (en) Absolute encoder
EP3707475B1 (en) Switch having a magnet arrangement
DE69820982T2 (en) Multipole magnetic ring
EP0425529B1 (en) A measuring device for determining an angle of rotation
EP2343506B1 (en) Length measuring device
EP1321743B1 (en) Absolute length measuring system with a measuring rod moving with respect to mutually spaced length sensors
DE10020764A1 (en) Arrangement for contactless distance measurement between damper piston and cylinder has information medium extending over piston stroke with magnetised position detection code
DE3408478C1 (en) Device for the incremental measurement of rotation angles or length
EP0966653A1 (en) Device for detecting the position of a moveable magnet to produce a magnetic field
EP3557188B1 (en) Magnetized piston rod for measuring displacement
EP0080055A2 (en) Electromagnetic displacement sensor
DE3927007A1 (en) Movements sensor for toothed disc - has flux conducting bod surrounded coil and with ends projecting at both sides on which magnets are arranged
DE102012000939A1 (en) Sensor unit for determining distance, has magnetic field forming element that is shaped to form magnetic field at different positions along movement range of sensor element with different magnetic field directions
EP3583388A1 (en) Sensor device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000627

AKX Designation fees paid

Free format text: DE FR GB IT

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 59906067

Country of ref document: DE

Date of ref document: 20030731

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20040326

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180824

Year of fee payment: 20

Ref country code: DE

Payment date: 20180614

Year of fee payment: 20

Ref country code: IT

Payment date: 20180823

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180709

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59906067

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20190810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20190810