EP0972110B2 - Method for producing high dry-strength paper, pulpboard and cardboard - Google Patents

Method for producing high dry-strength paper, pulpboard and cardboard Download PDF

Info

Publication number
EP0972110B2
EP0972110B2 EP98921399A EP98921399A EP0972110B2 EP 0972110 B2 EP0972110 B2 EP 0972110B2 EP 98921399 A EP98921399 A EP 98921399A EP 98921399 A EP98921399 A EP 98921399A EP 0972110 B2 EP0972110 B2 EP 0972110B2
Authority
EP
European Patent Office
Prior art keywords
starch
cationic
weight
paper
polymers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98921399A
Other languages
German (de)
French (fr)
Other versions
EP0972110B1 (en
EP0972110A1 (en
Inventor
Rainer Dyllick-Brenzinger
Primoz Lorencak
Hubert Meixner
Peter Baumann
Ellen KRÜGER
Andreas Stange
Martin Rübenacker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7825332&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0972110(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by BASF SE filed Critical BASF SE
Publication of EP0972110A1 publication Critical patent/EP0972110A1/en
Publication of EP0972110B1 publication Critical patent/EP0972110B1/en
Application granted granted Critical
Publication of EP0972110B2 publication Critical patent/EP0972110B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/06Paper forming aids
    • D21H21/10Retention agents or drainage improvers
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/18Reinforcing agents
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides
    • D21H17/28Starch
    • D21H17/29Starch cationic
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/41Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
    • D21H17/44Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups cationic
    • D21H17/45Nitrogen-containing groups
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/41Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
    • D21H17/44Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups cationic
    • D21H17/45Nitrogen-containing groups
    • D21H17/455Nitrogen-containing groups comprising tertiary amine or being at least partially quaternised
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/46Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/54Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen
    • D21H17/55Polyamides; Polyaminoamides; Polyester-amides
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/46Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/54Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen
    • D21H17/56Polyamines; Polyimines; Polyester-imides
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H23/00Processes or apparatus for adding material to the pulp or to the paper
    • D21H23/76Processes or apparatus for adding material to the pulp or to the paper characterised by choice of auxiliary compounds which are added separately from at least one other compound, e.g. to improve the incorporation of the latter or to obtain an enhanced combined effect
    • D21H23/765Addition of all compounds to the pulp

Definitions

  • the invention relates to a process for the production of paper, paperboard and cardboard with high dry strength by adding cationic, anionic and / or amphoteric starch as a dry strength agent to the paper stock and dewatering of the stock under sheet formation.
  • graft copolymers prepared by grafting dextran, a naturally occurring polymer having a molecular weight of 20,000 to 50 million, with cationic monomers, eg diallyldimethylammonium chloride, mixtures of diallyldimethylammonium chloride and acrylamide or mixtures of acrylamide and basic methacrylates, such as dimethylaminoethyl methacrylate become.
  • the graft polymerization is preferably carried out in the presence of a redox catalyst.
  • a process for cationizing starch which comprises starch cooking in an alkaline medium in the presence of water-soluble quaternary ammonium polymers and an oxidizing agent.
  • Suitable quaternary ammonium polymers include, inter alia, quaternized diallyldialkylaminopolymers or quaternized polyethylenimines.
  • the oxidizing agent used for example, ammonium persulfate, hydrogen peroxide, sodium hypochlorite, ozone or tert-butyl hydroperoxide.
  • the modified cationic starches which can be prepared in this way are added as a dry strength agent in the production of paper to the paper stock.
  • the wastewater is burdened by a very high COD (chemical oxygen demand).
  • a process for producing cationic starch which is used for surface sizing and coating of paper and paper products.
  • an aqueous slurry of oxidized starch is digested together with a cationic polymer in a continuous digester.
  • Suitable cationic polymers are condensates of epichlorohydrin and dimethylamine, polymers of diallyldimethylammonium chloride, quaternized reaction products of ethylene chloride and ammonia and quaternized polyethyleneimine.
  • a process for producing a cationic starch which comprises heating a slurry of starch in water together with a polyalkyleneimine or polyalkylenepolyamine having a molecular weight of at least 50,000 at a temperature of about 70 to 110 ° C for about 0.5 to 5 hours ,
  • the mixture contains from 0.5 to 40% by weight of polyalkyleneimine or polyalkylenepolyamine and from 99.5 to 60% by weight of starch.
  • a polyethyleneimine having an average molecular weight of about 200,000 in dilute aqueous solution with potato starch is heated at a temperature of 90 ° C for 2 hours.
  • the modified potato starch can be precipitated in a mixture of methanol and diethyl ether.
  • the in the US-A-3,467,608 described reaction products of starch and polyethyleneimine or polyalkylenepolyamines are used as flocculants.
  • the dry strength agent used is reaction products obtained by heating native potato starch with cationic polymers such as polymers containing vinylamine, N-vinylimidazoline or diallyl dimethyl ammonium units or polyethyleneimines in aqueous medium to temperatures above the gelatinization temperature of the starch in the absence of oxidizing agents, Polymerization initiators and alkali are available.
  • From the US-A-4,880,497 and the US-A-4,978,427 discloses a process for producing high dry and wet strength paper comprising adding to the surface of the paper or to the stock prior to sheet formation a hydrolyzed copolymerization solidifying agent which is prepared by copolymerizing N-vinylformamide and ethylenically unsaturated monomers, such as For example, vinyl acetate, vinyl propionate or alkyl vinyl ethers and hydrolyzing from 30 to 100 mol% of the formyl groups of the copolymer to form amino groups is available.
  • the hydrolyzed copolymers are used in amounts of 0.1 to 5 wt .-%, based on dry fibers.
  • WO-A-96/13525 is a method for the cationic modification of starch by reacting starch with polymers containing amino and / or ammonium groups in aqueous medium at temperatures of 115 to 180 ° C under elevated pressure known, wherein at most 10 wt .-% of the starch used are degraded ,
  • the invention is therefore based on the object to provide a process for the production of paper, paperboard and cardboard with high dry strength, wherein one achieves an increased retention of starch in the paper and thus lower COD values in paper machine wastewater and wherein also compared to the state
  • the technique achieves an acceleration of the drainage rate.
  • the object is achieved according to the invention by a process for the production of paper, paperboard and cardboard with high dry strength by adding starch obtainable by reaction of native, cationic, anionic and / or amphoteric starch with synthetic cationic polymers, as a dry strength agent to the paper stock and Dewatering the stock in the presence of sheet retention aids when employing polymers containing cationic vinylamine unit starch.
  • the invention further provides the use of polymers containing vinylamine units as cationic polymeric retention aids for increasing the retention of dry strength agents from starch obtainable by reacting native, cationic, anionic and / or amphoteric starch with synthetic cationic polymers in the manufacture of paper , Cardboard and cardboard.
  • Particularly preferred is the use of hydrolyzed homo- or copolymers of N-vinylformamide having a degree of hydrolysis of 1 to 100% and a K value of at least 30 (determined according to H. Fikentscher in aqueous solution at a polymer concentration of 0.5% by weight). %, a temperature of 25 ° C and a pH of 7) in amounts of 0.01 to 0.3 wt .-%, based on dry pulp, as a retention aid for cationic, anionic and / or amphoteric starch.
  • Suitable pulps for the production of the pulps are all qualities customary for this purpose, for example wood pulp, bleached and unbleached pulp and pulps from all annual plants.
  • Wood pulp includes, for example, groundwood, thermomechanical pulp (TMP), chemothermomechanical pulp (CTMP), pressure groundwood, semi-pulp, high yield pulp and refiner mechanical pulp (RMP).
  • Suitable pulps are, for example, sulphate, sulphite and soda pulps.
  • Suitable annual plants for the production of paper stocks For example, rice, wheat, sugarcane and kenaf. Waste paper is also used alone or in admixture with other fibers to make the pulps.
  • Waste paper also belongs to waste paper, which gives rise to the white pitch due to the content of binders for coating and printing inks.
  • the reason for the formation of so-called stickies is given by adhesives derived from self-adhesive labels and envelopes, as well as glues from the backsliding of books and so-called hotmelts.
  • the fibers mentioned can be used alone or mixed with one another.
  • the pulps of the type described above contain varying amounts of water-soluble and water-insoluble impurities.
  • the impurities can be detected quantitatively, for example, with the aid of the COD value or else with the aid of the so-called cationic requirement.
  • Cationic requirement is understood to be that amount of a cationic polymer which is necessary in order to bring a defined amount of the white water to the isoelectric point.
  • Example 3 of the standardization DE-B-2 434 816 obtained condensation product obtainable by grafting a polyamidoamine of adipic acid and diethylenetriamine with ethyleneimine and subsequent crosslinking with a Polyethylenglykoldichlorhydrinether.
  • the pulps containing impurities have, for example, COD values of 300 to 40,000, preferably 1,000 to 30,000 mg of oxygen per kg of the aqueous phase and a cationic requirement of more than 50 mg of said cationic polymer per liter of white water.
  • Thickeners used are starches which are obtainable by reaction of native cationic, anionic and / or amphoteric starch with synthetic cationic polymers.
  • Cationic, anionic and amphoteric starches are known and commercially available.
  • Cationic starches are prepared, for example, by reacting native starches with quaternizing agents such as 2,3- (epoxypropyl) trimethylammonium chloride.
  • quaternizing agents such as 2,3- (epoxypropyl) trimethylammonium chloride.
  • starches having an amylopectin content of at least 99% by weight are preferred. Such starches can be obtained, for example, by starch fractionation of conventional native starches or by plant growth techniques from plants which produce substantially pure amylopectin starch. Starches having an amylopectin content of at least 95, preferably at least 99% by weight are available on the market. They are offered, for example, as waxy maize starch, waxy potato starch or waxy wheat starch. The native starches can be modified either alone or in admixture with cationic polymers.
  • the modification of the native starches and of cationic, anionic and / amphoteric starch with synthetic cationic polymers is carried out by known methods by heating starches in an aqueous medium in the presence of cationic polymers at temperatures above the gelatinization temperature of the starches. Methods of this type are, for example, from the references cited in the prior art EP-B-0 282 761 and the WO-A-96/13525 known.
  • all synthetic polymers which contain amino and / or ammnium groups are suitable. These compounds are referred to below as cationic polymers.
  • Suitable cationic polymers are, for example, homopolymers and copolymers containing vinylamine units.
  • Polymers of this type are prepared by known processes by polymerizing N-vinylcarboxamides of the formula in which R and R 1 are identical or different and are H or C 1 - to C 6 -alkyl, alone or in the presence of other monomers copolymerizable therewith and hydrolysis of the resulting polymers with acids or bases with elimination of the grouping and forming units of the formula in which R has the meaning given in formula (I).
  • Suitable as comonomers are 2) unsaturated amides such as, for example, acrylamide, methacrylamide and N-alkyl mono- and diamides with alkyl radicals of 1 to 6 carbon atoms, such as, for example, N-methylacrylamide, N, N-dimethylacrylamide, N-methylmethacrylamide, N-ethylacrylamide, N-propylacrylamide and tert-butylacrylamide and basic (meth) acrylamides, e.g.
  • unsaturated amides such as, for example, acrylamide, methacrylamide and N-alkyl mono- and diamides with alkyl radicals of 1 to 6 carbon atoms, such as, for example, N-methylacrylamide, N, N-dimethylacrylamide, N-methylmethacrylamide, N-ethylacrylamide, N-propylacrylamide and tert-butylacrylamide and basic (meth) acrylamides, e.g.
  • N-vinylpyrrolidone N-vinylcaprolactam
  • acrylonitrile methacrylonitrile
  • N-vinylimidazole and substituted N-vinylimidazoles
  • N-vinyl-2-methylimidazole N-vinyl-4-methylimidazole
  • N-vinyl-5-methylimidazole N-vinyl-2-ethylimidazole
  • N-vinylimidazolines e.g. Vinylimidazoline, N-vinyl-2-methylimidazoline, and N-vinyl-2-ethylimidazoline.
  • N-vinylimidazoles and N-vinylimidazolines are also used, except in the form of the free bases, in neutralized or quaternized form with mineral acids or organic acids, the quaternization preferably being carried out with dimethyl sulfate, diethyl sulfate, methyl chloride or benzyl chloride.
  • sulfo-containing monomers such as vinyl sulfonic acid, Allylsulfonic acid, methallylsulfonic acid, styrenesulfonic acid or 3-sulfopropyl acrylate in question.
  • basic comonomers 2 e.g. Basic acrylic esters and amides can often be dispensed with hydrolysis of the N-vinylcarboxamides.
  • the copolymers include terpolymers and those polymers which additionally contain at least one further monomer in copolymerized form.
  • hydrolysis of the ester groups occurs to form vinyl alcohol units.
  • Polymerized acrylonitrile is also chemically altered on hydrolysis, e.g. Amide, cyclic amidine and / or carboxyl groups are formed.
  • the hydrolyzed poly-N-vinylformamides may optionally contain up to 20 mole% of amidine structures formed by reaction of formic acid with two adjacent amino groups in the polyvinylamine or by reaction of a formamide group with an adjacent amino group.
  • Suitable cationic polymers furthermore include ethyleneimine units in copolymerized form.
  • these are polyethyleneimines obtainable by polymerizing ethyleneimine in the presence of acidic catalysts such as ammonium bisulfate, hydrochloric acid or chlorinated hydrocarbons such as methyl chloride, ethylene chloride, carbon tetrachloride or chloroform.
  • acidic catalysts such as ammonium bisulfate, hydrochloric acid or chlorinated hydrocarbons such as methyl chloride, ethylene chloride, carbon tetrachloride or chloroform.
  • Such polyethyleneimines have, for example, in 50 wt .-% aqueous solution has a viscosity of 500 to 33,000, preferably 1,000 to 31,000 mPa ⁇ s (measured according to Brookfield at 20 ° C and 20 rpm).
  • the polymers of this group also include polyamidoamines grafted with ethyleneimine, which may optionally be crosslinked by reaction with an at least bifunctional crosslinker.
  • Products of this type are prepared, for example, by condensing a dicarboxylic acid such as adipic acid with a polyalkylenepolyamine such as diethylenetriamine or triethylenetetramine, optionally grafting with ethyleneimine and reaction with an at least bifunctional crosslinker, eg bischlorohydrin ether of polyalkylene glycols, cf. US-A-4,144,123 and U.S.-A-3,642,572 ,
  • polymers of this type are known.
  • polymers of diallyldimethylammonium chloride are meant primarily homopolymers and copolymers with acrylamide and / or methacrylamide.
  • the copolymerization can be carried out in any monomer ratio.
  • the K value of the homo- and copolymers of diallyldimethylammonium chloride is at least 30, preferably 95 to 180.
  • the substituent X - in the formulas (IV) and (V) can in principle be any desired acid radical of an inorganic and an organic acid.
  • the monomers of formula (IV) are obtained by neutralizing the free bases, ie 1-vinyl-2-imidazolines, with the equivalent amount of an acid.
  • the vinylimidazolines can also be neutralized with trichloroacetic acid, benzenesulfonic acid or toluenesulfonic acid, for example.
  • salts of 1-vinyl-2-imidazolines quaternized 1-vinyl-2-imidazolines are also suitable.
  • quaternizing agents are, for example, C 1 -C 18 -alkyl chlorides or bromides, benzyl chloride or bromide, epichlorohydrin, dimethyl sulfate and diethyl sulfate.
  • epichlorohydrin benzyl chloride, dimethyl sulfate and methyl chloride.
  • the compounds of the formulas (IV) or (V) are preferably polymerized in an aqueous medium.
  • Suitable cationic polymers are copolymers of 1 to 99 mol%, preferably 30 to 70 mol% of acrylamide and / or methacrylamide and 99 to 1 mol%, preferably 70 to 30 mol% of dialkylaminoalkyl acrylates and / or methacrylates , eg Copolymers of acrylamide and N, N-dimethylaminoethyl acrylate or N, N-diethylaminoethyl acrylate.
  • Basic acrylates are preferably present in acids neutralized or quaternized form. The quaternization can be carried out, for example, with methyl chloride or with dimethyl sulfate.
  • the cationic polymers have K values of 30 to 300, preferably 100 to 180 (determined according to H. Fikentscher in 5% strength aqueous sodium chloride solution at 25 ° C. and a polymer concentration of 0.5% by weight). At a pH of 4.5, they have a charge density of at least 4 meq / g polyelectrolyte.
  • the basic acrylamides and methacrylamides are also preferably present in acids neutralized or quaternized form.
  • N-trimethylammoniumethylacrylamide chloride N-trimethylammoniumethylmethacrylamidechloride, trimethylammoniumethylacrylamidemethosulphate, trimethylammoniumethylmethacrylamidemethosulphate, N-ethyldimethylammoniumethylacrylamideethosulphate, N-ethyldimethylammoniumethylmethacrylamidethosulphate, trimethylammoniumpropylacrylamidechloride, trimethylammoniopropylmethacrylamidechloride, trimethylammoniopropylacrylamidemethosulphate, trimethylammoniumpropylmethacrylamidemethosulphate and N-ethyldimethylammoniumpropylacrylamidethosulphate.
  • Preferred is trimethylammonium propylmethacrylamide chloride.
  • cationic polymers are also polyallylamines into consideration.
  • Polymers of this type are obtained by homopolymerization of allylamine, preferably in acids neutralized or in quaternized form or by copolymerizing allylamine with other monoethylenically unsaturated monomers, corresponding to the previously described copolymers with N-vinylcarboxamides.
  • an aqueous suspension of at least one kind of starch with one or more of the cationic polymers is heated to temperatures above the gelatinization temperature of the native or modified starches, e.g. to temperatures of 90 to 180 ° C, preferably 115 to 145 ° C.
  • the reaction is carried out under elevated pressure, the reaction being carried out in such a way that at most 10% by weight of the starch undergoes a molecular weight reduction.
  • Aqueous slurries of starch contain, for example, per 100 parts by weight of water 0.1 to 10, preferably 2 to 6 parts by weight of starch.
  • Suitable cationic polymers are preferably partially or completely hydrolyzed homo- or copolymers of N-vinylformamide, polyethyleneimines, ethyleneimine-grafted and crosslinked polyamidoamines and / or polydiallyldimethylammonium chlorides.
  • starch digestion is meant the conversion of the solid starch granules into a water-soluble form whereby superstructures (helix formation, intramolecular hydrogen bonds, etc.) are abolished without degradation of the starch-building amylose and / or amylopectin moieties to oligosaccharides or glucose.
  • the aqueous starch suspensions containing a cationic polymer dissolved are heated in the reaction to temperatures above the gelatinization temperature of the starches.
  • the starch used is digested to at least 90, preferably to> 95 wt .-% and modified with the cationic polymer.
  • the strength is clearly solved.
  • the reaction is preferably carried out at elevated pressure. This is usually the pressure which the reaction medium has in the temperature range above the boiling points of water, e.g. developed at 115 to 180 ° C. It is for example at 1 to 10, preferably 1.2 to 7.9 bar.
  • the reaction mixture is subjected to shear. If the reaction is carried out in a stirred autoclave, stirring the reaction mixture, for example, with 100 to 2,000, preferably 200 to 1,000 revolutions / minute.
  • the reaction can be carried out in virtually all apparatuses in which starch is digested in the art, e.g. in a jet cooker.
  • the residence times of the reaction mixture at the above-mentioned temperatures of 115 to 180 ° C, for example, 0.1 seconds to 1 hour and are preferably in the range of 0.5 seconds to 30 minutes.
  • At least 90% of the starch used is digested and modified.
  • the native starch types may also be subjected to a pretreatment, e.g. oxidatively, hydrolytically or enzymatically degraded or chemically modified.
  • a pretreatment e.g. oxidatively, hydrolytically or enzymatically degraded or chemically modified.
  • wax strengths such as waxy potato starch and waxy maize starch are of particular interest.
  • the reaction products thus obtainable have, for example, at a solids concentration of 3.5% by weight, a viscosity of 50 to 10,000, preferably 80 to 4,000 mPa.s, measured in a Brookfield viscometer at 20 revolutions / minute and a temperature of 20 ° C. ,
  • the pH of the reaction mixtures is, for example, in the range of 2.0 to 9.0, preferably 2.5 to 8.
  • the starches modified with cationic polymers are used as dry strength agents in the amount of, for example, from 0.5 to 10, preferably from 0.5 to 3.5, and particularly preferably from 1.2 to 2.5,% by weight, based on dry paper stock , added.
  • the paper stock is additionally metered with a cationic vinylamine units-containing polymer as retention aid for the above-described starches which have been modified with a polymer.
  • a cationic vinylamine units-containing polymer as retention aid for the above-described starches which have been modified with a polymer.
  • the retention agent Preferably, first the dry strength and then the retention agent.
  • Such mixtures can be prepared, for example, by adding to the disrupted starch retention aid, after cooling to 50 ° C or below.
  • the retention aid may also be added to the stock before the addition of the modified starch. This order of addition makes use of, for example, the processing of paper stocks which have a high level of impurities.
  • the dry strength agent used is preferably a cationic starch which is obtainable by reacting 100 parts by weight of a native, cationic, anionic and / or amphoteric starch with 0.5 to 10 parts by weight of a polymer comprising vinylamine units with a Value of 60 to 150 at temperatures above the gelatinization temperature of the starch.
  • a polymer comprising vinylamine units with a Value of 60 to 150 at temperatures above the gelatinization temperature of the starch.
  • polymers containing vinylamine units e.g. hydrolyzed homopolymers and copolymers of N-vinylformamide having a degree of hydrolysis of at least 60% are preferably used. These homopolymers and copolymers are added not only to the cationization of starch but also to the paper stock as a retention aid for the cationically modified starches.
  • the hydrolyzed homo- and copolymers of N-vinylformamide considered as retention aids for starch may generally have a degree of hydrolysis of from 1 to 100%.
  • the starches to be used as dry strength agents are used in amounts of from 0.5 to 10, preferably from 1 to 5,% by weight, based on dry paper stock.
  • the dewatering of the paper stock is carried out according to the invention always in the presence of at least one polymers containing vinylamine units as a retention aid for starch, wherein the retention agents are used in amounts of 0.01 to 0.3 wt .-%, based on dry paper pulp. This results in a considerably improved retention of the starch and an increase in the dewatering rate of the paper stock on the paper machine compared to the known methods.
  • cationic polymers used are a mixture of a polymer comprising vinylamine units, for example polyvinylamine and a cationic polyacrylamide, for example a copolymer of acrylamide and dimethylaminoethyl acrylate methochloride, and bentonite after the shear stage.
  • cationic polymers as retention aids for starches are mixtures of polymers containing vinylamine units and crosslinked polyamidoamines grafted with ethyleneimine and mixtures of polymers containing vinylamine units with polydiallyldimethylammonium chlorides.
  • Hydrolyzed polyvinylformamide having a K value of 90 and a degree of hydrolysis of 75 mol%.
  • Hydrolyzed polyvinylformamide having a K value of 90 and a degree of hydrolysis of 50 mol%.
  • a paper stock having a stock consistency of 7.6 g / l was prepared from an open finished commercial wave raw material based on recovered paper.
  • the pH of the stock was 8.0.
  • the amounts of solidifier 1 and the polymers 1-4 indicated in Table 1 were added in succession to samples of this paper stock. After mixing the paper stock with the additives, it was filtered off with suction and the starch content was determined from the absorbance measurement of the starch-iodine complex. The results obtained are shown in Table 1.
  • Another part of the paper stock was dewatered after metering solidifier 1 and the polymers indicated in Table 1 in each case with the aid of a Schopper-Riegler apparatus. The dewatering time was determined according to DIN ISO 5267 for 700 ml filtrate. The results are given in Table 1, Example 1 being a comparison.
  • Example 1 was repeated with the exception that only solidifier 1 in an amount of 2%, based on dry pulp, metered to the pulp.
  • Starch content of the filtrate and the dewatering time are shown in Table 1.
  • Table 1 example Additive to paper stock, based on dry stock Starch content in the filtrate [mg / l] Drainage time [sec / 700 ml] 1 (comparison) 2% strength agent 1 + 0.08% polymer 1 38 92 2 2% strength agent 1 + 0.08% polymer 2 34 49 3 2% strength agent 1 + 0.08% polymer 3 30 55 4 2% strength agent 1 + 0.08% polymer 4 30 67 Comparative example 1 2% strength agent 1 50 136
  • Example 5 was repeated with the changes shown in Table 2. The results are shown in Table 2.
  • Table 2 example Additive to paper stock, based on dry stock COD value [mgO 2 / l] Strong retention (enzymatic method) Drainage time [sec / 500 ml] 5 2% strength agent 2 + 0.08% polymer 3 134 93 20 Comparative example 2 2% strength agent 1 313 43 72 3 2% commercial cationic starch DS 0.035 162 92 78 4 - 135 68
  • Example 6 was repeated with the changes shown in Table 3, working in the absence of Polymer 3 (Comparative Example 5).
  • commercial cationic starch (Comparative Example 6) was used and found to be zero (Comparative Example 7).
  • Table 3 example Additive to paper stock, based on dry stock Dry breaking length [m] Dry burst pressure [kPa] CMT [N] 6 2% strength agent 1 + 0.08% polymer 3 4433 296 209 Comparative example 5 2% strength agent 1 4353 278 190 6 2% commercial cationic starch DS 0.035 4488 296 194 7 - 3757 241 160

Abstract

Paper, board and cardboard having high dry strength are produced by the addition of cationic, anionic and/or amphoteric starch as dry strength agents to the paper stock and drainage of the paper stock with sheet formation in the presence of cationic polymers as retention aids for starch, and cationic polymeric retention aids are used for increasing the retention of dry strength agents comprising cationic, anionic and/or amphoteric starch in the production of paper, board and cardboard.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit durch Zugabe von kationischer, anionischer und/oder amphoterer Stärke als Trockenfestigkeitsmittel zum Papierstoff und Entwässern des Papierstoffs unter Blattbildung.The invention relates to a process for the production of paper, paperboard and cardboard with high dry strength by adding cationic, anionic and / or amphoteric starch as a dry strength agent to the paper stock and dewatering of the stock under sheet formation.

Zur Erhöhung der Trockenfestigkeit von Papier, ist z.B. aus Ullmanns Encyklopädie dertechnischen Chemie, 4. Auflage, Verlag Chemie, Weinheim-New York, 1979, Band 17, Seite 581 , bekannt, wäßrige Anschlämmungen von nativen Stärken, die durch Erhitzen in eine wasserlösliche Form überführt werden, als Massezusatz bei der Herstellung von Papier zu verwenden. Die Retention der in Wasser gelösten Stärken an die Papierfasern im Papierstoff ist jedoch gering. Eine Verbesserung der Retention von Naturprodukten an Cellulosefasern bei der Herstellung von Papier ist beispielsweise aus der US-A-3 734 820 bekannt. Darin werden Pfropfcopolymerisate beschrieben, die durch Pfropfen von Dextran, einem in der Natur vorkommenden Polymerisat mit einem Molekulargewicht von 20.000 bis 50 Millionen, mit kationischen Monomeren, z.B. Diallyldimethylammoniumchlorid, Mischungen aus Diallyldimethylammoniumchlorid und Acrylamid oder Mischungen aus Acrylamid und basischen Methacrylaten, wie Dimethylaminoethylmethacrylat, hergestellt werden. Die Pfropfpolymerisation wird vorzugsweise in Gegenwart eines Redoxkatalysators durchgeführt.To increase the dry strength of paper, for example Ullmann's Encyclopedia of Technical Chemistry, 4th Edition, Verlag Chemie, Weinheim-New York, 1979, Volume 17, page 581 It is known to use aqueous slurries of native starches, which are converted by heating into a water-soluble form, as a mass additive in the production of paper. However, the retention of the starches dissolved in water to the paper fibers in the pulp is low. An improvement in the retention of natural products of cellulose fibers in the production of paper, for example, from US-A-3,734,820 known. Therein graft copolymers prepared by grafting dextran, a naturally occurring polymer having a molecular weight of 20,000 to 50 million, with cationic monomers, eg diallyldimethylammonium chloride, mixtures of diallyldimethylammonium chloride and acrylamide or mixtures of acrylamide and basic methacrylates, such as dimethylaminoethyl methacrylate become. The graft polymerization is preferably carried out in the presence of a redox catalyst.

Aus der US-A-4 097 427 ist ein Verfahren zur Kationisierung von Stärke bekannt, bei dem man die Stärkekochung in einem alkalischen Medium in Gegenwart von wasserlöslichen quaternären Ammoniumpolymerisaten und eines Oxidationsmittels durchführt. Als quaternäre Ammoniumpolymerisate kommen u.a. auch quaternisierte Diallyldialkylaminopolymerisate oder quaternisierte Polyethylenimine in Betracht. Als Oxidationsmittel verwendet man beispielsweise Ammoniumpersulfat, Wasserstoffperoxid, Natriumhypochlorit, Ozon oder tert.-Butylhydroperoxid. Die auf diese Weise herstellbaren modifizierten kationischen Stärken werden als Trockenverfestigungsmittel bei der Herstellung von Papier dem Papierstoff zugegeben. Jedoch wird das Abwasser durch einen sehr hohen CSB-Wert (chemischer Sauerstoff-Bedarf) belastet.From the US-A-4 097 427 For example, there is known a process for cationizing starch which comprises starch cooking in an alkaline medium in the presence of water-soluble quaternary ammonium polymers and an oxidizing agent. Suitable quaternary ammonium polymers include, inter alia, quaternized diallyldialkylaminopolymers or quaternized polyethylenimines. As the oxidizing agent used, for example, ammonium persulfate, hydrogen peroxide, sodium hypochlorite, ozone or tert-butyl hydroperoxide. The modified cationic starches which can be prepared in this way are added as a dry strength agent in the production of paper to the paper stock. However, the wastewater is burdened by a very high COD (chemical oxygen demand).

Aus der US-A-4 146 515 ist ein Verfahren zur Herstellung von kationischer Stärke bekannt, die für Oberflächenleimung und Beschichtung von Papier- und Papierprodukten verwendet wird. Gemäß diesem Verfahren wird eine wäßrige Anschlämmung von oxidierter Stärke zusammen mit einem kationischen Polymeren in einem kontinuierlichen Kocher aufgeschlossen. Als kationische Polymere kommen Kondensate aus Epichlorhydrin und Dimethylamin, Polymerisate von Diallyldimethylammoniumchlorid, quaternisierte Reaktionsprodukte von Ethylenchlorid und Ammoniak sowie quaternisiertes Polyethylenimin in Betracht.From the US-A-4,146,515 For example, there is known a process for producing cationic starch which is used for surface sizing and coating of paper and paper products. According to this method, an aqueous slurry of oxidized starch is digested together with a cationic polymer in a continuous digester. Suitable cationic polymers are condensates of epichlorohydrin and dimethylamine, polymers of diallyldimethylammonium chloride, quaternized reaction products of ethylene chloride and ammonia and quaternized polyethyleneimine.

Aus der US-A-3 467 608 ist ein Verfahren zur Herstellung einer kationischen Stärke bekannt, bei dem man eine Aufschlämmung von Stärke in Wasser zusammen mit einem Polyalkylenimin oder Polyalkylenpolyamin mit einem Molekulargewicht von mindestens 50.000 etwa 0,5 bis 5 Stunden lang auf eine Temperatur von etwa 70 bis 110°C erhitzt. Die Mischung enthält 0,5 bis 40 Gew.-% Polyalkylenimin oder Polyalkylenpolyamin und 99,5 bis 60 Gew.-% Stärke. Gemäß Beispiel 1 wird ein Polyethylenimin mit einem durchschnittlichen Molekulargewicht von etwa 200.000 in verdünnter wäßriger Lösung mit Kartoffelstärke2 Stunden lang auf eine Temperatur von 90°C erhitzt. Die modifizierte Kartoffelstärke kann in einer Mischung aus Methanol und Diethylether ausgefällt werden. Die in der US-A-3 467 608 beschriebenen Reaktionsprodukte aus Stärke und Polyethylenimin bzw. Polyalkylenpolyaminen werden als Flockungsmittel verwendet.From the US-A-3,467,608 For example, there is known a process for producing a cationic starch which comprises heating a slurry of starch in water together with a polyalkyleneimine or polyalkylenepolyamine having a molecular weight of at least 50,000 at a temperature of about 70 to 110 ° C for about 0.5 to 5 hours , The mixture contains from 0.5 to 40% by weight of polyalkyleneimine or polyalkylenepolyamine and from 99.5 to 60% by weight of starch. According to Example 1, a polyethyleneimine having an average molecular weight of about 200,000 in dilute aqueous solution with potato starch is heated at a temperature of 90 ° C for 2 hours. The modified potato starch can be precipitated in a mixture of methanol and diethyl ether. The in the US-A-3,467,608 described reaction products of starch and polyethyleneimine or polyalkylenepolyamines are used as flocculants.

Aus der EP-A-0 282 761 und der DE-A-3 719 480 sind Herstellungsverfahren für Papier, Pappe und Karton mit hoher Trockenfestigkeit bekannt. Bei diesem Verfahren werden als Trockenverfestiger Umsetzungsprodukte eingesetzt, die durch Erhitzen von nativer Kartoffelstärke mit kationischen Polymeren wie Vinylamin-, N-Vinylimidazolin- oder Diallytdimethylammonium-Einheiten enthaltenden Polymeren bzw. Polyethylenimine in wäßrigem Medium auf Temperaturen oberhalb der Verkleisterungstemperatur der Stärke in Abwesenheit von Oxidationsmitteln, Polymerisationsinitiatoren und Alkali erhältlich sind.From the EP-A-0 282 761 and the DE-A-3 719 480 Manufacturing methods for paper, cardboard and cardboard with high dry strength are known. In this process, the dry strength agent used is reaction products obtained by heating native potato starch with cationic polymers such as polymers containing vinylamine, N-vinylimidazoline or diallyl dimethyl ammonium units or polyethyleneimines in aqueous medium to temperatures above the gelatinization temperature of the starch in the absence of oxidizing agents, Polymerization initiators and alkali are available.

Aus der EP-B-0 301 372 ist ein ebensolcher Prozeß bekannt, bei dem entsprechend modifizierte, enzymatisch abgebaute Stärken zum Einsatz kommen. Unter den dort angegebenen Aufschlußbedingungen für native Stärke wird neben einem unvollständigen Aufschluß (spektroskopische Untersuchungen zeigen ungelöste, teilweise nur angequollene Stärkekörner) auch eine größere Menge an Abbauprodukten (Abbauraten > 10 %) gefunden.From the EP-B-0 301 372 a similar process is known in which correspondingly modified, enzymatically degraded starches are used. Under the digestion conditions for native starch given there, in addition to an incomplete digestion (spectroscopic investigations show undissolved, sometimes only swollen starch granules), a larger amount of degradation products (degradation rates> 10%) are also found.

Aus der US-A-4 880 497 und der US-A-4 978 427 ist ein Verfahren zur Herstellung von Papier mit hoher Trocken- und Naßfestigkeit bekannt, bei dem man entweder auf die Oberfläche des Papiers oder zum Papierstoff vor der Blattbildung ein hydrolysiertes Copolymerisat als Verfestigungsmittel zusetzt, das durch Copolymerisieren von N-Vinylformamid und ethylenisch ungesättigten Monomeren, wie beispielsweise Vinylacetat, Vinylpropionat oder Alkylvinylether und Hydrolysieren von 30 bis 100 mol% der Formylgruppen des Copolymerisats unter Bildung von Aminogruppen erhältlich ist. Die hydrolysierten Copolymeren werden in Mengen von 0,1 bis 5 Gew.-%, bezogen auf trokkene Fasern, eingesetzt.
Aus der GB 1,110,004 ist ein Verfahren zur Herstellung von Papier mit verbesserter Verfestigung bekannt, wobei als Verfestiger wasserlösliche Polysaccharide wie natürliche oder chemisch-modifizierte Polysaccharide, insbesondere Stärken, eingesetzt werden. Als Flockungs- und Retentionsmittel erfolgt anschließend die Zugabe eines Polyalkylenimins.
From the US-A-4,880,497 and the US-A-4,978,427 discloses a process for producing high dry and wet strength paper comprising adding to the surface of the paper or to the stock prior to sheet formation a hydrolyzed copolymerization solidifying agent which is prepared by copolymerizing N-vinylformamide and ethylenically unsaturated monomers, such as For example, vinyl acetate, vinyl propionate or alkyl vinyl ethers and hydrolyzing from 30 to 100 mol% of the formyl groups of the copolymer to form amino groups is available. The hydrolyzed copolymers are used in amounts of 0.1 to 5 wt .-%, based on dry fibers.
From the GB 1,110,004 discloses a method for producing paper with improved solidification, wherein as a solidifier water-soluble polysaccharides such as natural or chemically-modified polysaccharides, in particular starches, are used. The flocculation and retention agent is then followed by the addition of a polyalkyleneimine.

Aus der DE-A-4127 733 sind hydrolysierte Pfropfpolymerisate von N-Vinylformamid und Saccharidstrukturen enthaltenden Naturstoffen bekannt, die als Trocken- und Naßverfestigungsmittel Anwendung finden. Die Hydrolyse der Pfropfpolymeren untersauren Bedingungen hat jedoch einen starken Molekulargewichtsabbau der Polysaccharide zur Folge.From the DE-A-4127 733 Hydrolyzed graft polymers of N-vinylformamide and saccharide structures containing natural substances are known, which are used as dry and wet strength agents. However, the hydrolysis of the graft polymers under acidic conditions has a strong molecular weight degradation of the polysaccharides result.

Aus der WO-A-96/13525 ist ein Verfahren zur kationischen Modifizierung von Stärke durch Umsetzung von Stärke mit Polymeren, die Amino- und/oder Ammoniumgruppen enthalten in wäßrigem Medium bei Temperaturen 115 bis 180°C unter erhöhtem Druck bekannt, wobei höchstens 10 Gew.-% der eingesetzten Stärke abgebaut werden.From the WO-A-96/13525 is a method for the cationic modification of starch by reacting starch with polymers containing amino and / or ammonium groups in aqueous medium at temperatures of 115 to 180 ° C under elevated pressure known, wherein at most 10 wt .-% of the starch used are degraded ,

H.R. Hernandez beschreibt in EUCEPA 24th Cont.Proc.Pap.Technol., May 1990, Seiten 186-195 die Verwendung von kationischer oder amphoterer Stärke zusammen mit kationischen oder anionischen Retentionsmitteln bei der Herstellung von Papier. In einem Papiermaschinenversuch erfolgt die Papierherstellung im alkalischen pH-Bereich mit Alkenylbernsteinsäureanhydrid, Alaun, amphoterer Wachsmaisstärke und einem anionischen Retentionsmittel. HR Hernandez describes in EUCEPA 24th Cont.Proc.Pap.Technol., May 1990, pages 186-195 the use of cationic or amphoteric starch together with cationic or anionic retention aids in the manufacture of paper. In a paper machine test, paper production takes place in the alkaline pH range with alkenyl succinic anhydride, alum, amphoteric waxy maize starch and an anionic retention agent.

Wenn man zum Papierstoff eine kationisch modifizierte Stärke als Trockenverfestigungsmittel zusetzt, tritt eine unerwünschte Erniedrigung der Entwässerungsgeschwindigkeit des Papierstoffs ein. Gleichzeitig beobachtet man einen Anstieg des CSB-Werts im Abwasser der Papiermaschine. Dieser Anstieg des CSB-Werts tritt vor allem bei stark salzhaltigen Papiermaschinenabwässern ein.By adding a cationically modified starch as a dry strength agent to the stock, an undesirable decrease in the dewatering rate of the stock occurs. At the same time, an increase in the COD value in the waste water of the paper machine is observed. This increase in the COD value occurs mainly in high-salty paper machine wastewater.

Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit zur Verfügung zu stellen, wobei man eine erhöhte Retention von Stärke im Papier und somit geringere CSB-Werte im Papiermaschinenabwasser erreicht und wobei außerdem gegenüber dem Stand der Technik eine Beschleunigung der Entwässerungsgeschwindigkeit erzielt wird.The invention is therefore based on the object to provide a process for the production of paper, paperboard and cardboard with high dry strength, wherein one achieves an increased retention of starch in the paper and thus lower COD values in paper machine wastewater and wherein also compared to the state The technique achieves an acceleration of the drainage rate.

Die Aufgabe wird erfindungsgemäß gelöst mit einem Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit durch Zugabe von Stärke, die durch Umsetzung von nativer, kationischer, anionischer und / oder amphoterer Stärke mit synthetischen kationischen Polymeren erhältlich ist, als Trockenfestgkeitsmittel zum Papierstoff und Entwässern des Papierstoffs in Gegenwart von Retentionsmitteln unter Blattbildung, wenn man für Stärke kationische Vinylamineinheiten enthaltende Polymere einsetzt.The object is achieved according to the invention by a process for the production of paper, paperboard and cardboard with high dry strength by adding starch obtainable by reaction of native, cationic, anionic and / or amphoteric starch with synthetic cationic polymers, as a dry strength agent to the paper stock and Dewatering the stock in the presence of sheet retention aids when employing polymers containing cationic vinylamine unit starch.

Gegenstand der Erfindung ist außerdem die Verwendung von Vinylamineinheiten enthaltenden Polymeren als kationische polymere Retentionsmittel zur Erhöhung der Retention von Trockenfestigkeitsmitteln aus Stärke, die durch Umsetzung von nativer, kationischer, anionischer und / oder amphoterer Stärke mit synthetischen kationischen Polymeren erhältlich ist, bei der Herstellung von Papier, Pappe und Karton. Besonders bevorzugt ist die Verwendung von hydrolysierten Homo- oder Copolymerisaten von N-Vinylformamid mit einem Hydrolysegrad von 1 bis 100 % und einem K-Wert von mindestens 30 (bestimmt nach H. Fikentscher in wäßriger Lösung bei einer Polymerkonzentration von 0,5 Gew.-%, einer Temperatur von 25°C und einem pH-Wert von 7) in Mengen von 0,01 bis 0,3 Gew.-%, bezogen auf trockenen Papierstoff, als Retentionsmittel für kationische, anionische und/oder amphotere Stärke.The invention further provides the use of polymers containing vinylamine units as cationic polymeric retention aids for increasing the retention of dry strength agents from starch obtainable by reacting native, cationic, anionic and / or amphoteric starch with synthetic cationic polymers in the manufacture of paper , Cardboard and cardboard. Particularly preferred is the use of hydrolyzed homo- or copolymers of N-vinylformamide having a degree of hydrolysis of 1 to 100% and a K value of at least 30 (determined according to H. Fikentscher in aqueous solution at a polymer concentration of 0.5% by weight). %, a temperature of 25 ° C and a pH of 7) in amounts of 0.01 to 0.3 wt .-%, based on dry pulp, as a retention aid for cationic, anionic and / or amphoteric starch.

Als Faserstoffe zur Herstellung der Pulpen kommen sämtliche dafür gebräuchlichen Qualitäten in Betracht, z.B. Holzstoff, gebleichter und ungebleichter Zellstoff sowie Papierstoffe aus allen Einjahrespflanzen. Zu Holzstoff gehören beispielsweise Holzschliff, thermomechanischer Stoff (TMP), chemothermomechanischer Stoff (CTMP), Druckschliff, Halbzellstoff, Hochausbeute-Zellstoft und Refiner Mechanical Pulp (RMP). Als Zellstoffe kommen beispielsweise Sulfat-, Sulfit und Natronzellstoffe in Betracht. Geeignete Einjahrespflanzen zur Herstellung von Papierstoffen sind beispielsweise Reis, Weizen, Zuckerrohr und Kenaf. Zur Herstellung der Pulpen wird auch Altpapier allein oder in Mischung mit anderen Fasern verwendet. Zu Altpapier gehört auch sogenannter gestrichener Ausschuß, der aufgrund des Gehalts an Bindemittel für Streich- und Druckfarben Anlaß für den White Pitch gibt. Anlaß zur Bildung von sogenannten Stickies geben die aus Haftetiketten und Briefumschlägen stammenden Kleber sowie Klebstoffe aus der Rückenleimung von Büchern sowie sogenannte Hotmelts.Suitable pulps for the production of the pulps are all qualities customary for this purpose, for example wood pulp, bleached and unbleached pulp and pulps from all annual plants. Wood pulp includes, for example, groundwood, thermomechanical pulp (TMP), chemothermomechanical pulp (CTMP), pressure groundwood, semi-pulp, high yield pulp and refiner mechanical pulp (RMP). Suitable pulps are, for example, sulphate, sulphite and soda pulps. Suitable annual plants for the production of paper stocks For example, rice, wheat, sugarcane and kenaf. Waste paper is also used alone or in admixture with other fibers to make the pulps. Waste paper also belongs to waste paper, which gives rise to the white pitch due to the content of binders for coating and printing inks. The reason for the formation of so-called stickies is given by adhesives derived from self-adhesive labels and envelopes, as well as glues from the backsliding of books and so-called hotmelts.

Die genannten Faserstoffe können allein oder in Mischung untereinander verwendet werden. Die Pulpen der obenbeschriebenen Art enthalten wechselnde Mengen an wasserlöslichen und wasserunlöslichen Störstoffen. Die Störstoffe können beispielsweise mit Hilfe des CSB-Wertes oder auch mit Hilfe des sogenannten kationischen Bedarfs quantitativ erfaßt werden. Unter kationischem Bedarf wird dabei diejenige Menge eines kationischen Polymeren verstanden, die notwendig ist, um eine definierte Menge des Siebwassers zum isoelektrischen Punkt zu bringen. Da der kationische Bedarf sehr stark von der Zusammensetzung des jeweils für die Bestimmung verwendeten kationischen Polymeren abhängt, verwendet man zur Standardisierung ein gemäß Beispiel 3 der DE-B-2 434 816 erhaltenes Kondensationsprodukt, das durch Pfropfen eines Polyamidoamins aus Adipinsäure und Diethylentriamin mit Ethylenimin und anschließender Vernetzung mit einem Polyethylenglykoldichlorhydrinether erhältlich ist. Die Störstoffe enthaltenden Pulpen haben beispielsweise CSB-Werte von 300 bis 40 000, vorzugsweise 1 000 bis 30 000 mg Sauerstoff pro kg der wässrigen Phase und einen kationischen Bedarf von mehr als 50 mg des genannten kationischen Polymeren pro Liter Siebwasser.The fibers mentioned can be used alone or mixed with one another. The pulps of the type described above contain varying amounts of water-soluble and water-insoluble impurities. The impurities can be detected quantitatively, for example, with the aid of the COD value or else with the aid of the so-called cationic requirement. Cationic requirement is understood to be that amount of a cationic polymer which is necessary in order to bring a defined amount of the white water to the isoelectric point. Since the cationic requirement depends very much on the composition of the cationic polymers used in each case for the determination, one uses according to Example 3 of the standardization DE-B-2 434 816 obtained condensation product obtainable by grafting a polyamidoamine of adipic acid and diethylenetriamine with ethyleneimine and subsequent crosslinking with a Polyethylenglykoldichlorhydrinether. The pulps containing impurities have, for example, COD values of 300 to 40,000, preferably 1,000 to 30,000 mg of oxygen per kg of the aqueous phase and a cationic requirement of more than 50 mg of said cationic polymer per liter of white water.

Als Trockenverfestigungsmittel werden Stärken eingesetzt, die durch Umsetzung von nativer kationischer, anionischer und/oder amphoterer Stärke mit synthetischen kationischen Polymeren erhältlich sind. Kationische, anionische und amphotere Stärken sind bekannt und im Handel erhältlich. Kationische Stärken werden beispielsweise durch Umsetzung von nativen Stärken mit Quatemisierungsmitteln wie 2,3-(Epoxypropyl)trimethylammoniumchlorid hergestellt. Stärke und Stärkederivate werden beispielsweise ausführlich beschrieben in dem Buch von Günther Tegge, Stärke und Stärkederivate, Behr's-Verlag, Hamburg 1984 . Als native Stärken kann man beispielsweise Maisstärke, Kartoffelstärke, Weizenstärke, Reisstärke, Tapiokastärke, Sagostärke, Sorghumstärke, Maniokstärke, Erbsenstärke, Roggenstärke oder Mischungen der genannten nativen Stärken einsetzen. Als Stärke kommt auch Roggenmehl sowie andere Mehle in Betracht. Außerdem eignen sich Proteine enthaltende Stärken aus Roggen, Weizen und Hülsenfrüchten. Für die kätionische Modifizierung mit Polymeren kommen auch solche nativen Stärken in Betracht, die einen Amylopektingehaft von mindestens 95 Gew.-% haben. Bevorzugt sind Stärken mit einem Gehalt an Amylopektin von mindestens 99 Gew.-%. Solche Stärken können beispielsweise durch Stärkefraktionierung üblicher nativer Stärken oder durch Züchtungsmaßnahmen aus Pflanzen gewonnen werden, die praktisch reine Amylopektinstärke produzieren. Stärken mit einem Amylopektingehalt von mindestens 95, vorzugsweise mindestens 99 Gew.-% sind auf dem Markt erhältlich. Sie werden beispielsweise als Wachsmaisstärke, Wachskartoffelstärke oder Wachsweizenstärke angeboten. Die nativen Stärken können entweder allein oder auch in Mischung mit kationischen Polymeren modifiziert werden.Thickeners used are starches which are obtainable by reaction of native cationic, anionic and / or amphoteric starch with synthetic cationic polymers. Cationic, anionic and amphoteric starches are known and commercially available. Cationic starches are prepared, for example, by reacting native starches with quaternizing agents such as 2,3- (epoxypropyl) trimethylammonium chloride. For example, starch and starch derivatives are described in detail in U.S. Pat Book by Günther Tegge, Starch and Starch Derivatives, Behr's-Verlag, Hamburg 1984 , For example, corn starch, potato starch, wheat starch, rice starch, tapioca starch, sago starch, sorghum starch, manioc starch, pea starch, rye starch or mixtures of the native starches mentioned can be used as native starches. As a starch also rye flour and other flours comes into consideration. In addition, protein-containing starches of rye, wheat and legumes are suitable. For the cationic modification with polymers, those native starches which have an amylopectin adhesion of at least 95% by weight are also suitable. Preferred are starches having an amylopectin content of at least 99% by weight. Such starches can be obtained, for example, by starch fractionation of conventional native starches or by plant growth techniques from plants which produce substantially pure amylopectin starch. Starches having an amylopectin content of at least 95, preferably at least 99% by weight are available on the market. They are offered, for example, as waxy maize starch, waxy potato starch or waxy wheat starch. The native starches can be modified either alone or in admixture with cationic polymers.

Die Modifizierung der nativen Stärken sowie von kationischer, anionischer und/amphoterer Stärke mit synthetischen kationischen Polymeren erfolgt nach bekannten Verfahren durch Erhitzen von Stärken in wäßrigem Medium in Gegenwart von kationischen Polymeren auf Temperaturen oberhalb der Verkleisterungstemperatur der Stärken. Verfahren dieser Art sind beispielsweise aus den zum Stand der Technik genannten Literaturstellen EP-B-0 282 761 und der WO-A-96/13525 bekannt. Zur kationischen Modifizierung der oben genannten Stärken kommen alle synthetischen Polymeren in Betracht, die Amino- und/oder Amomniumgruppen enthalten. Diese Verbindungen werden im folgenden als kationische Polymere bezeichnet.The modification of the native starches and of cationic, anionic and / amphoteric starch with synthetic cationic polymers is carried out by known methods by heating starches in an aqueous medium in the presence of cationic polymers at temperatures above the gelatinization temperature of the starches. Methods of this type are, for example, from the references cited in the prior art EP-B-0 282 761 and the WO-A-96/13525 known. For the cationic modification of the abovementioned starches, all synthetic polymers which contain amino and / or ammnium groups are suitable. These compounds are referred to below as cationic polymers.

Als kationische Polymerisate eignen sich beispielsweise Vinylamineinheiten enthaltende Homo- und Copolymerisate. Polymerisate dieser Art werden nach bekannten Verfahren durch Polymerisieren von N-Vinylcarbonsäureamiden der Formel

Figure imgb0001
in der R und R1 gleich oder verschieden sind und H oder C1- bis C6-Alkyl bedeuten, allein oder in Gegenwart von anderen damit copolymerisierbaren Monomeren und Hydrolyse der entstehenden Polymerisate mit Säuren oder Basen unter Abspaltung der Gruppierung
Figure imgb0002
und unter Bildung von Einheiten der Formel
Figure imgb0003
in der R die in Formel (I) angegebene Bedeutung hat, hergestellt.Suitable cationic polymers are, for example, homopolymers and copolymers containing vinylamine units. Polymers of this type are prepared by known processes by polymerizing N-vinylcarboxamides of the formula
Figure imgb0001
in which R and R 1 are identical or different and are H or C 1 - to C 6 -alkyl, alone or in the presence of other monomers copolymerizable therewith and hydrolysis of the resulting polymers with acids or bases with elimination of the grouping
Figure imgb0002
and forming units of the formula
Figure imgb0003
in which R has the meaning given in formula (I).

Geeignete Monomere der Formel (I) sind beispielsweise N-Vinylformamid, N-Vinyl-N-methylformamid, N-Vinyl-N-ethylformamid, N-Vinyl-N-propylformamid, N-Vinyl-N-isopropylformamid, N-Vinyl-N-butylformamid, N-Vinyl-N-sek.butylformamid, N-Vinyl-N-tert.butylformamid, N-Vinyl-N-pentylformamid, N-Vinylacetamid, N-Vinyl-N-ethylacetamid und N-Vinyl-N-methylpropionamid. Vorzugsweise setzt man bei der Herstellung von Polymeren, die Einheiten der Formel (III) einpolymerisiert enthalten, N-Vinylformamid ein. Die hydrolysierten Polymerisate, die Einheiten der Formel (III) enthalten, haben K-Werte von 15 bis 300, vorzugsweise 30 bis 200, bestimmt nach H. Fikentscher in wäßriger Lösung bei pH 7, einer Temperatur von 25°C und einer Polymerkonzentration von 0,5 Gew.-%. Copolymerisate der Monomeren (I) enthalten beispielsweise

  1. 1) 99 bis 1 Mol-% N-Vinylcarbonsäureamide der Formel (I) und
  2. 2) 1 bis 99 Mol-% andere, damit copolymerisierbare monoethylenisch ungesättigte Monomere,
wie beispielsweise Vinylester von gesättigten Carbonsäuren mit 1 bis 6 Kohlenstoffatomen, z.B. Vinylformiat, Vinylacetat, Vinylpropionat und Vinylbutyrat. Geeignet sind auch ungesättigte C3- bis C6-Carbonsäuren, wie z.B. Acrylsäure, Methacrylsäure, Maleinsäure, Crotonsäure, Itaconsäure und Vinylessigsäure sowie deren Alkalimetall- und Erdalkalimetallsalze, Ester, Amide und Nitrile, beispielsweise Methylacrylat, Methylmethacrylat, Ethylacrylat und Ethylmethacrylat oder mit Glykol- bzw. Polyglykolestem ethylenisch ungesättigter Carbonsäuren, wobei jeweils nur eine OH-Gruppe der Glykole und Polyglykole verestert ist, z.B. Hydroxyethylacrylat, Hydroxyethylmethacrylat, Hydroxypropylacrylat, Hydroxybutylacrylat, Hydroxypropylmethacrylat, Hydroxybutylmethacrylat sowie die Acrylsäuremonoester von Polyalkylenglykolen eines Molgewichts von 1.500 bis 10.000. Weiterhin sind geeignet die Ester von ethylenisch ungesättigten Carbonsäuren mit Aminoalkoholen, wie z.B. Dimethylaminoethylacrylat, Dimethylaminoethylmethacrylat, Diethylaminoethylacrylat, Diethylaminoethylmethacrylat, Dimethylaminopropylacrylat, Dimethylaminopropylmethacrylat, Diethylaminopropylacrylat, Diethylaminopropylmethacrylat, Dimethylaminobutylacrylat und Diethylaminobutylacrylat. Die basischen Acrylate werden in Form der freien Basen, der Salze mit Mineralsäuren wie z.B. Salzsäure, Schwefelsäure und Salpetersäure, der Salze mit organischen Säuren wie Ameisensäure oder Benzolsulfonsäure, oder in quaternisierter Form eingesetzt. Geeignete Quaternisierungsmittel sind beispielsweise Dimethylsulfat, Diethylsulfat, Methylchlorid, Ethylchlorid oder Benzylchlorid.Suitable monomers of the formula (I) are, for example, N-vinylformamide, N-vinyl-N-methylformamide, N-vinyl-N-ethylformamide, N-vinyl-N-propylformamide, N-vinyl-N-isopropylformamide, N-vinyl-N -butylformamide, N-vinyl-N-sec-butylformamide, N-vinyl-N-tert-butylformamide, N-vinyl-N-pentylformamide, N-vinylacetamide, N-vinyl-N-ethylacetamide and N-vinyl-N-methylpropionamide , Preference is given to using N-vinylformamide in the preparation of polymers which contain units of the formula (III) in copolymerized form. The hydrolyzed polymers containing units of the formula (III) have K values of 15 to 300, preferably 30 to 200, determined according to H. Fikentscher in aqueous solution at pH 7, a temperature of 25 ° C. and a polymer concentration of 0 , 5 wt .-%. Copolymers of the monomers (I) contain, for example
  1. 1) 99 to 1 mol% of N-vinylcarboxamides of the formula (I) and
  2. 2) 1 to 99 mol% of other monoethylenically unsaturated monomers copolymerizable therewith,
such as vinyl esters of saturated carboxylic acids having 1 to 6 carbon atoms, for example vinyl formate, vinyl acetate, vinyl propionate and vinyl butyrate. Also suitable are unsaturated C 3 - to C 6 -carboxylic acids, such as acrylic acid, methacrylic acid, maleic acid, crotonic acid, itaconic acid and vinylacetic acid and their alkali metal and alkaline earth metal salts, esters, amides and nitriles, for example methyl acrylate, methyl methacrylate, ethyl acrylate and ethyl methacrylate or with glycol - or polyglycol esters of ethylenically unsaturated carboxylic acids, wherein in each case only one OH group of the glycols and polyglycols is esterified, for example hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxybutyl acrylate, hydroxypropyl methacrylate, hydroxybutyl methacrylate and the acrylic acid monoesters of polyalkylene glycols of a molecular weight from 1,500 to 10,000. Also suitable are the esters of ethylenically unsaturated carboxylic acids with aminoalcohols such as dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl acrylate, diethylaminoethyl methacrylate, dimethylaminopropyl acrylate, dimethylaminopropyl methacrylate, diethylaminopropyl acrylate, diethylaminopropyl methacrylate, dimethylaminobutyl acrylate and diethylaminobutyl acrylate. The basic acrylates are used in the form of the free bases, the salts with mineral acids such as hydrochloric acid, sulfuric acid and nitric acid, the salts with organic acids such as formic acid or benzenesulfonic acid, or in quaternized form. Suitable quaternizing agents are, for example, dimethyl sulfate, diethyl sulfate, methyl chloride, ethyl chloride or benzyl chloride.

Außerdem eignen sich als Comonomere 2) ungesättigte Amide wie beispielsweise Acrylamid, Methacrylamid sowie N-Alkylmono- und-diamide mit Alkylresten von 1 bis 6 C-Atomen wie z.B. N-Methylacrylamid, N,N-Dimethylacrylamid, N-Methylmethacrylamid, N-Ethylacrylamid, N-Propylacrylamid und tert.Butylacrylamid sowie basische (Meth) acrylamide, wie z.B. Dimethylaminoethylacrylamid, Dimethylaminoethylmethacrylamid, Diethylaminoethylacrylamid, Diethylaminoethylmethacrylamid, Dimethylaminopropylacrylamid, Diethylaminopropylacrylamid, Dimethylaminopropylmethacrylamid und Diethylaminopropylmethacrylamid.Also suitable as comonomers are 2) unsaturated amides such as, for example, acrylamide, methacrylamide and N-alkyl mono- and diamides with alkyl radicals of 1 to 6 carbon atoms, such as, for example, N-methylacrylamide, N, N-dimethylacrylamide, N-methylmethacrylamide, N-ethylacrylamide, N-propylacrylamide and tert-butylacrylamide and basic (meth) acrylamides, e.g. Dimethylaminoethylacrylamide, dimethylaminoethylmethacrylamide, diethylaminoethylacrylamide, diethylaminoethylmethacrylamide, dimethylaminopropylacrylamide, diethylaminopropylacrylamide, dimethylaminopropylmethacrylamide and diethylaminopropylmethacrylamide.

Weiterhin sind als Comonomere geeignet N-Vinylpyrrolidon, N-Vinylcaprolactam, Acrylnitril, Methacrylnitril, N-Vinylimidazol sowie substituierte N-Vinylimidazole wie z.B. N-Vinyl-2-methylimidazol, N-Vinyl-4-methylimidazol, N-Vinyl-5-methylimidazol, N-Vinyl-2-ethylimidazol, und N-Vinylimidazoline wie z.B. Vinylimidazolin, N-Vinyl-2-methylimidazolin, und N-Vinyl-2-ethylimidazolin. N-Vinylimidazole und N-Vinylimidazoline werden außer in Form der freien Basen auch in mit Mineralsäuren oder organischen Säuren neutralisierter oder in quaternisierter Form eingesetzt, wobei die Quaternisierung vorzugsweise mit Dimethylsulfat, Diethylsulfat, Methylchlorid oder Benzylchlorid vorgenommen wird.Further suitable comonomers are N-vinylpyrrolidone, N-vinylcaprolactam, acrylonitrile, methacrylonitrile, N-vinylimidazole and substituted N-vinylimidazoles, e.g. N-vinyl-2-methylimidazole, N-vinyl-4-methylimidazole, N-vinyl-5-methylimidazole, N-vinyl-2-ethylimidazole, and N-vinylimidazolines, e.g. Vinylimidazoline, N-vinyl-2-methylimidazoline, and N-vinyl-2-ethylimidazoline. N-vinylimidazoles and N-vinylimidazolines are also used, except in the form of the free bases, in neutralized or quaternized form with mineral acids or organic acids, the quaternization preferably being carried out with dimethyl sulfate, diethyl sulfate, methyl chloride or benzyl chloride.

Außerdem kommen als Comonomere 2) Sulfogruppen enthaltende Monomere wie beispielsweise Vinylsulfonsäure, Allylsulfonsäure, Methallylsulfonsäure, Styrolsulfonsäure oder Acrylsäure-3-sulfopropylester in Frage.In addition come as comonomers 2) sulfo-containing monomers such as vinyl sulfonic acid, Allylsulfonic acid, methallylsulfonic acid, styrenesulfonic acid or 3-sulfopropyl acrylate in question.

Bei der Verwendung von basischen Comonomeren 2) wie z.B. basischen Acrylestern und -amiden kann oftmals auf eine Hydrolyse der N-Vinylcarbonsäureamide verzichtet werden. Die Copolymerisate umfassen Terpolymerisate und solche Polymerisate, die zusätzlich mindestens ein weiteres Monomer einpolymerisiert enthalten.When using basic comonomers 2), e.g. Basic acrylic esters and amides can often be dispensed with hydrolysis of the N-vinylcarboxamides. The copolymers include terpolymers and those polymers which additionally contain at least one further monomer in copolymerized form.

Bevorzugte kationische Polymere sind hydrolysierte Copolymerisate aus

  1. 1) N-Vinylformamid und
  2. 2) Vinylformiat, Vinylacetat, Vinylpropionat, Acrylnitril und N-Vinylpyrrolidon sowie hydrolysierte Homopolymerisate von N-Vinylformamid mit einem Hydrolysegrad von 2 bis 100, vorzugsweise 30 bis 95 Mol-%.
Preferred cationic polymers are hydrolyzed copolymers
  1. 1) N-vinylformamide and
  2. 2) Vinyl formate, vinyl acetate, vinyl propionate, acrylonitrile and N-vinylpyrrolidone and hydrolyzed homopolymers of N-vinylformamide having a degree of hydrolysis of 2 to 100, preferably 30 to 95 mol%.

Bei Copolymerisaten, die Vinylester einpolymerisiert enthalten, tritt neben der Hydrolyse der N-Vinylformamideinheiten eine Hydrolyse der Estergruppen unter Bildung von Vinylalkoholeinheiten ein. Einpolymerisiertes Acrylnitril wird ebenfalls bei der Hydrolyse chemisch verändert, wobei z.B. Amid-, cyclische Amidin- und/oder Carboxylgruppen entstehen. Die hydrolysierten Poly-N-vinylformamide können gegebenenfalls bis zu 20 Mol-% an Amidinstrukturen enthalten, die durch Reaktion von Ameisensäure mit zwei benachbarten Aminogruppen im Polyvinylamin oder durch Reaktion einer Formamidgruppe mit einer benachbarten Aminogruppe entstehen.In the case of copolymers which contain copolymerized vinyl esters, in addition to the hydrolysis of the N-vinylformamide units, hydrolysis of the ester groups occurs to form vinyl alcohol units. Polymerized acrylonitrile is also chemically altered on hydrolysis, e.g. Amide, cyclic amidine and / or carboxyl groups are formed. The hydrolyzed poly-N-vinylformamides may optionally contain up to 20 mole% of amidine structures formed by reaction of formic acid with two adjacent amino groups in the polyvinylamine or by reaction of a formamide group with an adjacent amino group.

Als kationische Polymere kommen weiterhin Ethylenimin-Einheiten einpolymerisiert enthaltende Verbindungen in Betracht. Vorzugsweise handelt es sich hierbei um Polyethylenimine, die durch polymerisieren von Ethylenimin in Gegenwart von sauren Katalysatoren wie Ammoniumhydrogensulfat, Salzsäure oder chlorierten Kohlenwasserstoffen wie Methylchlorid, Ethylenchlorid, Tetrachlorkohlenstoff oder Chloroform, erhältlich sind. Solche Polyethylenimine haben beispielsweise in 50 gew.-%iger wäßriger Lösung eine Viskosität von 500 bis 33.000, vorzugsweise 1.000 bis 31.000 mPa·s (gemessen nach Brookfield bei 20°C und 20 UPM). Zu den Polymeren dieser Gruppe gehören auch mit Ethylenimin gepfropfte Polyamidoamine, die gegebenenfalls noch durch Umsetzung mit einem mindestens bifunktionellen Vernetzer vernetzt sein können. Produkte dieser Art werden beispielsweise durch Kondensieren einer Dicarbonsäure wie Adipinsäure mit einem Polyalkylenpolyamin wie Diethylentriamin oder Triethylentetramin, gegebenenfalls Pfropfen mit Ethylenimin und Reaktion mit einem mindestens bifunktionellen Vernetzer, z.B. Bischlorhydrinether von Polyalkylenglykolen hergestellt, vgl. US-A-4 144 123 und US-A-3 642 572 .Suitable cationic polymers furthermore include ethyleneimine units in copolymerized form. Preferably these are polyethyleneimines obtainable by polymerizing ethyleneimine in the presence of acidic catalysts such as ammonium bisulfate, hydrochloric acid or chlorinated hydrocarbons such as methyl chloride, ethylene chloride, carbon tetrachloride or chloroform. Such polyethyleneimines have, for example, in 50 wt .-% aqueous solution has a viscosity of 500 to 33,000, preferably 1,000 to 31,000 mPa · s (measured according to Brookfield at 20 ° C and 20 rpm). The polymers of this group also include polyamidoamines grafted with ethyleneimine, which may optionally be crosslinked by reaction with an at least bifunctional crosslinker. Products of this type are prepared, for example, by condensing a dicarboxylic acid such as adipic acid with a polyalkylenepolyamine such as diethylenetriamine or triethylenetetramine, optionally grafting with ethyleneimine and reaction with an at least bifunctional crosslinker, eg bischlorohydrin ether of polyalkylene glycols, cf. US-A-4,144,123 and U.S.-A-3,642,572 ,

Weiterhin kommen zur Stärkemodifizierung Poly-Diallyldimethylammoniumchloride in Betracht. Polymerisate dieser Art sind bekannt. Unter Polymerisaten des Diallyldimethylammoniumchlorids sollen in erster Linie Homopolymerisate sowie Copolymerisate mit Acrylamid und/oder Methacrylamid verstanden werden. Die Copolymerisation kann dabei in jedem beliebigen Monomerverhältnis vorgenommen werden. Der K-Wert der Homo- und Copolymerisate des Diallyldimethylammoniumchlorids beträgt mindestens 30, vorzugsweise 95 bis 180.Further suitable for the modification of the starch poly-Diallyldimethylammoniumchloride into consideration. Polymers of this type are known. By polymers of diallyldimethylammonium chloride are meant primarily homopolymers and copolymers with acrylamide and / or methacrylamide. The copolymerization can be carried out in any monomer ratio. The K value of the homo- and copolymers of diallyldimethylammonium chloride is at least 30, preferably 95 to 180.

Als kationische Polymerisate eignen sich auch Homo- und Copolymerisate von gegebenenfalls substituierten N-Vinylimidazolinen. Es handelt sich hierbei ebenfalls um bekannte Stoffe. Sie können beispielsweise nach dem Verfahren der DE-B-1 182 826 dadurch hergestellt werden, daß man Verbindungen der Formel

Figure imgb0004
in der R1, R2=H, C1- bis C18-Alkyl, Benzyl, Aryl, R3, R4=H, C1- bis C4-Alkyl und X- ein Säurerest bedeutet, gegebenenfalls zusammen mit Acrylamid und/oder Methacrylamid in wäßrigem Medium bei pH-werten von 0 bis 8, vorzugsweise von 1,0 bis 6, 8 in Gegenwart von Polymerisationsinitiatoren, die in Radikale zerfallen, polymerisiert.Also suitable as cationic polymers are homopolymers and copolymers of optionally substituted N-vinylimidazolines. These are also known substances. You can, for example, according to the procedure of DE-B-1 182 826 be prepared by reacting compounds of the formula
Figure imgb0004
in which R 1 , R 2 = H, C 1 - to C 18 -alkyl, benzyl, aryl, R 3 , R 4 = H, C 1 - to C 4 -alkyl and X- represents an acid radical, optionally together with acrylamide and / or methacrylamide in an aqueous medium at pH values of 0 to 8, preferably from 1.0 to 6.8 in the presence of polymerization initiators which decompose into free radicals, polymerized.

Vorzugsweise setzt man bei der Polymerisation 1-Vinyl-2-imidazolin-Salze der Formel (V) ein,

Figure imgb0005
in der R1, R2=H, CH3, C2H5, n- und i-C3H7, C6H5 und X- ein Säurerest ist. X- steht vorzugsweise für Cl-, Br, SO4 2-, CH3-O-SO3 -, R-COO- und R2=H, C1- bis C4-Alkyl und Aryl.1-vinyl-2-imidazoline salts of the formula (V) are preferably used in the polymerization,
Figure imgb0005
in which R 1 , R 2 = H, CH 3 , C 2 H 5 , n- and iC 3 H 7 , C 6 H 5 and X- is an acid radical. X- is preferably Cl, Br, SO 4 2- , CH 3 -O-SO 3 - , R-COO- and R 2 = H, C 1 - to C 4 -alkyl and aryl.

Der Substituent X- in den Formeln (IV) und (V) kann prinzipiell jeder beliebige Säurerest einer anorganischen sowie einer organischen Säure sein. Die Monomeren der Formel (IV) werden erhalten, indem man die freien Basen, d.h. 1-vinyl-2-imidazoline, mit der äquivalenten Menge einer Säure neutralisiert. Die Vinylimidazoline können auch beispielsweise mit Trichloressigsäure, Benzolsulfonsäure oder Toluolsulfonsäure neutralisiert werden. Außer Salzen von 1-Vinyl-2-imidazolinen kommen auch quaternisierte 1-Vinyl-2-imidazoline in Betracht. Sie werden hergestellt, indem man 1-Vinyl-2-imidazoline, die gegebenenfalls in 2-, 4- und 5-Stellung substituiert sein können, mit bekannten Quaternisierungsmittein umsetzt. Als Quaternisierungsmittel kommen beispielsweise C1- bis C18-Alkylchloride oder -bromide, Benzylchlorid oder-bromid, Epichlorhydrin, Dimethylsulfat und Diethylsulfat in Frage. Vorzugsweise verwendet man Epichlorhydrin, Benzylchlorid, Dimethylsulfat und Methylchlorid.The substituent X - in the formulas (IV) and (V) can in principle be any desired acid radical of an inorganic and an organic acid. The monomers of formula (IV) are obtained by neutralizing the free bases, ie 1-vinyl-2-imidazolines, with the equivalent amount of an acid. The vinylimidazolines can also be neutralized with trichloroacetic acid, benzenesulfonic acid or toluenesulfonic acid, for example. Apart from salts of 1-vinyl-2-imidazolines, quaternized 1-vinyl-2-imidazolines are also suitable. They are prepared by reacting 1-vinyl-2-imidazolines, which may optionally be substituted in the 2-, 4- and 5-position, with known Quaternisierungsmittein. Suitable quaternizing agents are, for example, C 1 -C 18 -alkyl chlorides or bromides, benzyl chloride or bromide, epichlorohydrin, dimethyl sulfate and diethyl sulfate. Preferably used epichlorohydrin, benzyl chloride, dimethyl sulfate and methyl chloride.

Zur Herstellung der wasserlöslichen Homopolymerisate werden die Verbindungen der Formeln (IV) oder (V) vorzugsweise in wäßrigem Medium polymerisiert.To prepare the water-soluble homopolymers, the compounds of the formulas (IV) or (V) are preferably polymerized in an aqueous medium.

Da die Verbindungen der Formel (IV) relativ teuer sind, verwendet man aus ökonomischen Gründen vorzugsweise als kationische Polymerisate Copolymerisate von Verbindungen der Formel (IV) mit Acrylamid und/oder Methacrylamid. Diese Copolymerisate enthalten die Verbindungen der Formel (IV) dann lediglich in wirksamen Mengen, d.h. in einer Menge von 1 bis 50 Gew.-%, vorzugsweise 10 bis 40 Gew.-%. Für die Modifizierung nativer Stärken besonders geeignet sind Copolymerisate aus 60 bis 85 Gew.-% Acrylamid und/oder Methacrylamid und 15 bis 40 Gew.-% N-Vinylimidazolin oder N-Vinyl-2-methyllmidazolin. Die Copolymerisate können weiterhin durch Einpolymerisieren von anderen Monomeren wie Styrol, N-Vinylformamid, Vinylformiat, Vinylacetät, Vinylpropionat, C1- bis C4-Alkylvinylether, N-Vinylpyridin, N-Vinylpyrrolidon, N-Vinylimidazol, ethylenisch ungesättigten C3- bis C5-Carbonsäuren sowie deren Ester, Amide und Nitrile, Natriumvinylsulfonat, Vinylchlorid und Vinylidenchlorid in Mengen bis zu 25 Gew.-% modifiziert werden. Beispielsweise kann man für die Modifizierung nativer Stärken Copolymerisate einsetzen, die

  1. 1) 70 bis 97 Gew.-% Acrylamid und/oder Methacrylamid,
  2. 2) 2 bis 20 Gew.-% N-Vinylimidazolin oder N-Vinyl-2-methylimidazolin und
  3. 3) 1 bis 10 Gew.-% N-Vinylimidazol
einpolymerisiert enthalten. Diese Copolymerisate werden durch radikalische Copolymerisation der Monomeren 1), 2) und 3) nach bekannten Polymerisationsverfahren hergestellt. Sie haben K-Werte im Bereich von 80 bis 150 (bestimmt nach H. Fikentscher in 5 %iger wäßriger Kochsalzlösung bei 25°C und einer Polymerkonzentration von 0,5 Gew.-%).Since the compounds of the formula (IV) are relatively expensive, copolymers of compounds of the formula (IV) with acrylamide and / or methacrylamide are preferably used as cationic polymers for economic reasons. These copolymers then contain the compounds of the formula (IV) only in effective amounts, ie in an amount of 1 to 50% by weight, preferably 10 to 40% by weight. Particularly suitable for the modification of native starches are copolymers of 60 to 85% by weight of acrylamide and / or methacrylamide and 15 to 40% by weight of N-vinylimidazoline or N-vinyl-2-methylimidazoline. The copolymers can be further prepared by copolymerizing other monomers such as styrene, N-vinylformamide, vinyl formate, vinyl acetate, vinyl propionate, C 1 - to C 4 -alkyl vinyl ether, N-vinylpyridine, N-vinylpyrrolidone, N-vinylimidazole, ethylenically unsaturated C 3 - to C 5 -Carbonsäuren and their esters, amides and nitriles, sodium vinyl sulfonate, vinyl chloride and vinylidene chloride in amounts up to 25 wt .-% be modified. For example, one can use for the modification of native starches copolymers, the
  1. 1) from 70 to 97% by weight of acrylamide and / or methacrylamide,
  2. 2) 2 to 20% by weight of N-vinylimidazoline or N-vinyl-2-methylimidazoline and
  3. 3) 1 to 10 wt .-% N-vinylimidazole
incorporated in copolymerized form. These copolymers are prepared by free-radical copolymerization of the monomers 1), 2) and 3) by known polymerization. They have K values in the range of 80 to 150 (determined according to H. Fikentscher in 5% strength aqueous sodium chloride solution at 25 ° C. and a polymer concentration of 0.5% by weight).

Als kationische Polymerisate kommen des weiteren Copolymerisate aus 1 bis 99 Mol-%, vorzugsweise 30 bis 70 Mol-% Acrylamid und/oder Methacrylamid und 99 bis 1 Mol-%, vorzugsweise 70 bis 30 Mol-% Dialkylaminoalkylacrylaten und/oder -methacrylaten in Frage, z.B. Copolymerisate aus Acrylamid und N,N-Dimethylaminoethylacrylat oder N,N-Diethylaminoethylacrylat. Basische Acrylate liegen vorzugsweise in mit Säuren neutralisierter oder in quaternisierter Form vor. Die Quaternisierung kann beispielsweise mit Methylchlorid oder mit Dimethylsulfat erfolgen. Die kationischen Polymerisate haben K-Werte von 30 bis 300, vorzugsweise 100 bis 180 (bestimmt nach H. Fikentscher in 5 %iger wäßriger Kochsalzlösung bei 25°C und einer Polymerkonzentration von 0,5 Gew.-%). Bei einem pH-Wert von 4,5 haben sie eine Ladungsdichte von mindestens 4 mVal/g Polyelektrolyt.Other suitable cationic polymers are copolymers of 1 to 99 mol%, preferably 30 to 70 mol% of acrylamide and / or methacrylamide and 99 to 1 mol%, preferably 70 to 30 mol% of dialkylaminoalkyl acrylates and / or methacrylates , eg Copolymers of acrylamide and N, N-dimethylaminoethyl acrylate or N, N-diethylaminoethyl acrylate. Basic acrylates are preferably present in acids neutralized or quaternized form. The quaternization can be carried out, for example, with methyl chloride or with dimethyl sulfate. The cationic polymers have K values of 30 to 300, preferably 100 to 180 (determined according to H. Fikentscher in 5% strength aqueous sodium chloride solution at 25 ° C. and a polymer concentration of 0.5% by weight). At a pH of 4.5, they have a charge density of at least 4 meq / g polyelectrolyte.

Geeignet sind auch Copolymerisate aus 1 bis 99 Mol-%, vorzugsweise 30 bis 70 Mol-% Acrylamid und/oder Methacrylamid und 99 bis 1 Mol-%, vorzugsweise 70 bis 30 Mol-% Dialkylaminoalkylacrylamid und/oder -methacrylamid. Die basischen Acrylamide und Methacrylamide liegen ebenfalls vorzugsweise in mit Säuren neutralisierter oder in quaternisierter Form vor. Als Beispiele seien genannt N-Trimethylammoniumethylacrylamidchlorid, N-Trimethylammoniumethylmethacrylamidchlorid, Trimethylammoniumethylacrylamidmethosulfat, Trimethylammoniumethylmethacrylamidmethosulfat, N-Ethyldimethylammoniumethylacrylamidethosulfat, N-Ethyldimethylammoniumethylmethacrylamidethosulfat, Trimethylammoniumpropylacrylamidchlorid, Trimethylammoniumpropylmethacrylamidchlorid, Trimethylammoniumpropylacrylamidmethosulfat, Trimethylammoniumpropylmethacrylamidmethosulfat und N-Ethyldimethylammoniumpropylacrylamidethosulfat. Bevorzugt ist Trimethylammoniumpropylmethacrylamidchlorid.Also suitable are copolymers of 1 to 99 mol%, preferably 30 to 70 mol% acrylamide and / or methacrylamide and 99 to 1 mol%, preferably 70 to 30 mol% Dialkylaminoalkylacrylamid and / or -methacrylamid. The basic acrylamides and methacrylamides are also preferably present in acids neutralized or quaternized form. Examples which may be mentioned are N-trimethylammoniumethylacrylamide chloride, N-trimethylammoniumethylmethacrylamidechloride, trimethylammoniumethylacrylamidemethosulphate, trimethylammoniumethylmethacrylamidemethosulphate, N-ethyldimethylammoniumethylacrylamideethosulphate, N-ethyldimethylammoniumethylmethacrylamidethosulphate, trimethylammoniumpropylacrylamidechloride, trimethylammoniopropylmethacrylamidechloride, trimethylammoniopropylacrylamidemethosulphate, trimethylammoniumpropylmethacrylamidemethosulphate and N-ethyldimethylammoniumpropylacrylamidethosulphate. Preferred is trimethylammonium propylmethacrylamide chloride.

Als kationische Polymere kommen auch Polyallylamine in Betracht. Polymerisate dieser Art werden erhalten durch Homopolymerisation von Allylamin, vorzugsweise in mit Säuren neutralisierter oder in quaternisierter Form oder durch Copolymerisieren von Allylamin mit anderen monoethylenisch ungesättigten Monomeren, entsprechend der zuvor beschriebenen Copolymeren mit N-Vinylcarbonsäureamiden.As cationic polymers are also polyallylamines into consideration. Polymers of this type are obtained by homopolymerization of allylamine, preferably in acids neutralized or in quaternized form or by copolymerizing allylamine with other monoethylenically unsaturated monomers, corresponding to the previously described copolymers with N-vinylcarboxamides.

Zur erfindungsgemäßen kationischen Modifizierung von Stärke wird beispielsweise eine wäßrige Suspension mindestens einer Stärkesorte mit einem oder mit mehreren der kationischen Polymeren auf Temperaturen oberhalb der Verkleisterungstemperatur der nativen bzw. der modifizierten Stärken erhitzt, z.B. auf Temperaturen von 90 bis 180°C, vorzugsweise 115 bis 145°C. Bei Temperaturen oberhalb des Siedepunkts von Wasser wird die Umsetzung unter erhöhtem Druck durchgeführt, wobei die Reaktion in der Weise vorgenommen wird, daß bei höchstens 10 Gew.-% der Stärke ein Molgewichtsabbau eintritt. Wäßrige Aufschlämmungen von Stärke enthalten beispielsweise auf 100 Gew.-Teile Wasser 0,1 bis 10, vorzugsweise 2 bis 6 Gew.-Teile Stärke. Auf 100 Gew.-Teile Stärke setzt man z.B. 0,5 bis 10 Gew.-Teile mindestens eines kationischen Polymerisats ein. Als kationische Polymere kommen dabei vorzugsweise partiell oder vollständig hydrolysierte Homo- oder Copolymerisate von N-Vinylformamid, Polyethylenimine, mit Ethylenimin gepfropfte und vernetzte Polyamidoamine und/oder Polydiallyldimethylammoniumchloride in Betracht.For cationic modification of starch according to the present invention, for example, an aqueous suspension of at least one kind of starch with one or more of the cationic polymers is heated to temperatures above the gelatinization temperature of the native or modified starches, e.g. to temperatures of 90 to 180 ° C, preferably 115 to 145 ° C. At temperatures above the boiling point of water, the reaction is carried out under elevated pressure, the reaction being carried out in such a way that at most 10% by weight of the starch undergoes a molecular weight reduction. Aqueous slurries of starch contain, for example, per 100 parts by weight of water 0.1 to 10, preferably 2 to 6 parts by weight of starch. To 100 parts by weight of starch is used, for example 0.5 to 10 parts by weight of at least one cationic polymer. Suitable cationic polymers are preferably partially or completely hydrolyzed homo- or copolymers of N-vinylformamide, polyethyleneimines, ethyleneimine-grafted and crosslinked polyamidoamines and / or polydiallyldimethylammonium chlorides.

Beim Erhitzen der wäßrigen Stärkesuspensionen in Gegenwart von kationischen Polymeren wird zunächst die Stärke aufgeschlossen. Unter Stärkeaufschluß versteht man die Überführung der festen Stärkekörner in eine wasserlösliche Form, wobei Überstrukturen (Helixbildung, intramolekulare Wasserstoffbrücken usw.) aufgehoben werden, ohne daß es zum Abbau von den, die Stärke aufbauenden Amylose- und/oder Amylopektineinheiten zu Oligosacchariden oder Glukose kommt. Die wäßrigen Stärkesuspensionen, die ein kation isches Polymer gelöst enthalten, werden bei der Umsetzung auf Temperaturen oberhalb der Verkleisterungstemperatur der Stärken erhitzt. Bei dem erfindungsgemäßen Verfahren wird die eingesetzte Stärke zu mindestens 90, vorzugsweise zu >95 Gew.-% aufgeschlossen und mit dem kationischen Polymerisat modifiziert. Die Stärke ist dabei klar gelöst. Vorzugsweise kann man nach der Umsetzung der Stärke aus der Reaktionslösung bei Verwendung einer Celluloseacetatmembran mit einem Porendurchmesser von 1,2 µm keine unumgesetzte Stärke mehr abfiltrieren.When heating the aqueous starch suspensions in the presence of cationic polymers, the starch is first digested. By starch digestion is meant the conversion of the solid starch granules into a water-soluble form whereby superstructures (helix formation, intramolecular hydrogen bonds, etc.) are abolished without degradation of the starch-building amylose and / or amylopectin moieties to oligosaccharides or glucose. The aqueous starch suspensions containing a cationic polymer dissolved are heated in the reaction to temperatures above the gelatinization temperature of the starches. In the method according to the invention, the starch used is digested to at least 90, preferably to> 95 wt .-% and modified with the cationic polymer. The strength is clearly solved. Preferably, after the conversion of the starch from the reaction solution using a cellulose acetate membrane having a pore diameter of 1.2 μm, it is no longer possible to filter off any unreacted starch.

Die Umsetzung erfolgt vorzugsweise bei erhöhtem Druck. Hierbei handelt es sich üblicherweise um den Druck, den das Reaktionsmedium in dem Temperaturbereich oberhalb der Siedepunkte von Wasser, z.B. bei 115 bis 180°C entwickelt. Er liegt beispielsweise bei 1 bis 10, vorzugsweise 1,2 bis 7,9 bar. Während der Umsetzung wird das Reaktionsgemisch einer Scherung unterworfen. Falls man die Umsetzung in einem Rührautoklaven durchführt, rührt man das Reaktionsgemisch beispielsweise mit 100 bis 2.000, vorzugsweise 200 bis 1.000 Umdrehungen/Minute. Die Reaktion kann praktisch in allen Apparaturen durchgeführt werden, in denen Stärke in der Technik aufgeschlossen wird, z.B. in einem Jetkocher. Die Verweilzeiten des Reaktionsgemisches bei den obengenannten Temperaturen von 115 bis 180°C betragen beispielsweise 0,1 Sekunden bis 1 Stunde und liegen vorzugsweise in dem Bereich von 0,5 Sekunden bis 30 Minuten.The reaction is preferably carried out at elevated pressure. This is usually the pressure which the reaction medium has in the temperature range above the boiling points of water, e.g. developed at 115 to 180 ° C. It is for example at 1 to 10, preferably 1.2 to 7.9 bar. During the reaction, the reaction mixture is subjected to shear. If the reaction is carried out in a stirred autoclave, stirring the reaction mixture, for example, with 100 to 2,000, preferably 200 to 1,000 revolutions / minute. The reaction can be carried out in virtually all apparatuses in which starch is digested in the art, e.g. in a jet cooker. The residence times of the reaction mixture at the above-mentioned temperatures of 115 to 180 ° C, for example, 0.1 seconds to 1 hour and are preferably in the range of 0.5 seconds to 30 minutes.

Unter diesen Bedingungen werden mindestens 90 % der eingesetzten Stärke aufgeschlossen und modifiziert. Vorzugsweise werden dabei weniger als 5 Gew.-% der Stärke abgebaut.Under these conditions, at least 90% of the starch used is digested and modified. Preferably, less than 5 wt .-% of the starch are degraded.

Die nativen Stärketypen können auch einer Vorbehandlung unterworfen werden, z.B. oxidativ, hydrolytisch oder enzymatisch abgebaut oder auch chemisch modifiziert werden. Auch hier sind die Wachsstärken, wie Wachskartoffelstärke und Wachsmaisstärke von besonderem Interesse.The native starch types may also be subjected to a pretreatment, e.g. oxidatively, hydrolytically or enzymatically degraded or chemically modified. Again, the wax strengths, such as waxy potato starch and waxy maize starch are of particular interest.

Die so erhältlichen Umsetzungsprodukte haben beispielsweise bei einer Feststoffkonzentration von 3,5 Gew.-% eine Viskosität von 50 bis 10.000, vorzugsweise 80 bis 4.000 mPa·s, gemessen in einem Brookfield-Viskosimeter bei 20 Umdrehungen/Minute und einer Temperatur von 20°C. Der pH-Wert der Reaktionsmischungen liegt beispielsweise in dem Bereich von 2,0 bis 9,0, vorzugsweise 2,5 bis 8.The reaction products thus obtainable have, for example, at a solids concentration of 3.5% by weight, a viscosity of 50 to 10,000, preferably 80 to 4,000 mPa.s, measured in a Brookfield viscometer at 20 revolutions / minute and a temperature of 20 ° C. , The pH of the reaction mixtures is, for example, in the range of 2.0 to 9.0, preferably 2.5 to 8.

Die so erhältlichen mit kationischen Polymeren modifizierten Stärken werden als Trockenverfestigungsmittel dem Papierstoff in Mengen von beispielsweise 0,5 bis 10, vorzugsweise 0,5 bis 3,5 und besonders bevorzugt 1,2 bis 2,5 Gew.-%, bezogen auf trockenen Papierstoff, zugesetzt. Gemäß der Erfindung dosiert man zum Papierstoff zusätzlich ein kationisches Vinylamineinheiten enthaltendes Polymer als Retentionsmittel für die oben beschriebenen Stärken, die mit einem Polymer modifiziert wurden. Vorzugsweise dosiert man zunächst die Trockenverfestiger und danach die Retentionsmittel. Es ist jedoch auch möglich, Trockenverfestiger und Retentionsmittel gleichzeitig dem Papierstoff zuzusetzen, wobei Trockenverfestiger und Retentionsmittel voneinander getrennt dosiert werden. Ebenso ist es möglich, eine Mischung aus Trockenverfestiger und Retentionsmittel zum Papier zu dosieren. Solche Mischungen können beispielsweise dadurch hergestellt werden, daß man das Retentionsmittel der aufgeschlossenen Stärke nach Abkühlen auf 50°C oder darunter zusetzt. Das Retentionsmittel kann jedoch auch vor Zugabe der modifizierten Stärke zum Papierstoff zugesetzt werden. Von dieser Reihenfolge der Zugabe macht man beispielsweise bei der Verarbeitung von Papierstoffen Gebrauch, die einen hohen Störstoffgehalt aufweisen.The starches modified with cationic polymers are used as dry strength agents in the amount of, for example, from 0.5 to 10, preferably from 0.5 to 3.5, and particularly preferably from 1.2 to 2.5,% by weight, based on dry paper stock , added. According to the invention, the paper stock is additionally metered with a cationic vinylamine units-containing polymer as retention aid for the above-described starches which have been modified with a polymer. Preferably, first the dry strength and then the retention agent. However, it is also possible to add dry strength agent and retention agent to the stock at the same time, wherein dry strength agent and retention agent are metered separately from one another. It is also possible to dose a mixture of dry strength agent and retention agent to the paper. Such mixtures can be prepared, for example, by adding to the disrupted starch retention aid, after cooling to 50 ° C or below. However, the retention aid may also be added to the stock before the addition of the modified starch. This order of addition makes use of, for example, the processing of paper stocks which have a high level of impurities.

Als Retentionsmittel für Stärke kommen erfindungsgemäß kationische Vinylamineinheiten enthaltende Polymere in Betracht.As a retention aid for starch according to the invention cationic vinylamine units containing polymers into consideration.

Als Trockenverfestigungsmittel setzt man bevorzugt eine kationische Stärke ein, die erhältlich ist durch Umsetzung von 100 Gew.-Teilen einer nativen, kationischen, anionischen und/oder amphoteren Stärke mit 0,5 bis 10 Gew. -Teilen eines Vinylamineinheiten enthaltenden Polymeren mit einem K-Wert von 60 bis 150 bei Temperaturen oberhalb der Verkleisterungstemperatur der Stärke. Als Vinylamineinheiten enthaltende Polymere werden z.B. hydrolysierte Homo- und Copolymerisate von N-Vinylformamid mit einem Hydrolysegrad von mindestens 60 % bevorzugt eingesetzt. Diese Homo- und Copolymerisate werden nicht nur zur Kationisierung von Stärke sondern ebenso dem Papierstoff als Retentionsmittel für die kationisch modifizierten Stärken zugesetzt.The dry strength agent used is preferably a cationic starch which is obtainable by reacting 100 parts by weight of a native, cationic, anionic and / or amphoteric starch with 0.5 to 10 parts by weight of a polymer comprising vinylamine units with a Value of 60 to 150 at temperatures above the gelatinization temperature of the starch. As polymers containing vinylamine units, e.g. hydrolyzed homopolymers and copolymers of N-vinylformamide having a degree of hydrolysis of at least 60% are preferably used. These homopolymers and copolymers are added not only to the cationization of starch but also to the paper stock as a retention aid for the cationically modified starches.

Die als Retentionsmittel für Stärke in Betracht kommenden hydrolysierten Homo- und Copolymerisate von N-Vinylformamid können allgemein einen Hydrolysegrad von 1 bis 100 % aufweisen.The hydrolyzed homo- and copolymers of N-vinylformamide considered as retention aids for starch may generally have a degree of hydrolysis of from 1 to 100%.

Andere bevorzugt in Betracht kommende kationische Stärken sind beispielsweise erhältlich durch Umsetzung von 100 Gew.-Teilen einer nativen, kationischen, anionischen und/oder amphoteren Stärke mit 0,5 bis 10 Gew.-Teilen

  • Polydiallyl-dimethylammoniumchlorid
  • wasserlöslichen, mit Epichlorhydrin vernetzten Polyamidoaminen
  • wasserlöslichen, mit Ethylenimin gepfropften und mit Bis-chlorhydrinethem von Polyalkylenglykolen vernetzten Polyamidoaminen und/oder
  • wasserlöslichen Polyethyleniminen und wasserlöslichen, vernetzten Polyethyleniminen
bei Temperaturen oberhalb der Verkleisterungstemperatur der Stärken bis 180°C.Other preferred cationic starches are obtainable, for example, by reacting 100 parts by weight of a native, cationic, anionic and / or amphoteric starch with 0.5 to 10 parts by weight
  • Polydiallyl dimethyl
  • water-soluble, with epichlorohydrin cross-linked polyamidoamines
  • water-soluble, with ethyleneimine grafted and crosslinked with bis-chlorohydrinethem of polyalkylene glycols polyamidoamines and / or
  • water-soluble polyethyleneimines and water-soluble, crosslinked polyethyleneimines
at temperatures above the gelatinization temperature of the starches up to 180 ° C.

Die als Trockenverfestigungsmittel einzusetzenden Stärken werden in Mengen von 0,5 bis 10, vorzugsweise 1 bis 5 Gew.-%, bezogen auf trockenen Papierstoff eingesetzt. Die Entwässerung des Papierstoffs erfolgt erfindungsgemäß immer in Gegenwart mindestens eines Vinylamineinheiten enthaltenden Polymeren als Retentionsmittel für Stärke, wobei die Retentionsmittel in Mengen von 0,01 bis 0,3 Gew.-%, bezogen auf trockenen Papierstoff eingesetzt werden. Man erhält dadurch gegenüber den bekannten Verfahren eine beträchtlich verbesserte Retention der Stärke und eine Erhöhung der Entwässerungsgeschwindigkeit des Papierstoffs auf der Papiermaschine.The starches to be used as dry strength agents are used in amounts of from 0.5 to 10, preferably from 1 to 5,% by weight, based on dry paper stock. The dewatering of the paper stock is carried out according to the invention always in the presence of at least one polymers containing vinylamine units as a retention aid for starch, wherein the retention agents are used in amounts of 0.01 to 0.3 wt .-%, based on dry paper pulp. This results in a considerably improved retention of the starch and an increase in the dewatering rate of the paper stock on the paper machine compared to the known methods.

Als Retentionsmittel für Stärke kann man auch sogenannte Mikropartikel-Systeme verwenden, wobei man zum Papierstoff ein hochmolekulares kationisches synthetisches Polymer zufügt, die gebildeten Makroflocken durch Scheren des Papierstoffs zerteilt und anschließend Bentonit zugibt. Dieses Verfahren ist beispielsweise aus der EP-A-0 335 575 bekannt. Für ein solches Mikropartikelsystem werden als kationische Polymere eine Mischung aus einem Vinylamineinheiten enthaltendem Polymeren, z.B. Polyvinylamin und einem kationischen Polyacrylamid, z.B. einem Copolymerisat aus Acrylamid und Dimethylaminoethylacrylatmethochlorid eingesetzt und nach der Scherstufe Bentonit zusetzen. Weitere bevorzugte Kombinationen von kationischen Polymeren als Retentionsmittel für Stärken sind Mischungen aus Vinylamineinheiten enthaltenden Polymeren und mit Ethylenimin gepfropften vernetzten Polyamidoaminen sowie Mischungen aus Vinylamineinheiten enthaltenden Polymeren mit Polydiallyldimethylammoniumchloriden.As a retention aid for starch, it is also possible to use so-called microparticle systems in which a high molecular weight cationic synthetic polymer is added to the paper stock, the macroflakes formed are cut by shearing the stock and then bentonite is added. This method is for example from the EP-A-0 335 575 known. For such a microparticle system, cationic polymers used are a mixture of a polymer comprising vinylamine units, for example polyvinylamine and a cationic polyacrylamide, for example a copolymer of acrylamide and dimethylaminoethyl acrylate methochloride, and bentonite after the shear stage. Further preferred combinations of cationic polymers as retention aids for starches are mixtures of polymers containing vinylamine units and crosslinked polyamidoamines grafted with ethyleneimine and mixtures of polymers containing vinylamine units with polydiallyldimethylammonium chlorides.

Falls nicht anders angegeben, bedeuten die Prozentangaben in den Beispielen Gewichtsprozent. Die K-Werte wurden nach H. Fikentscher, Cellulose-Chemie, Band 13, 58 bis 64 und 71 bis 74 (1932 ) bei einer Temperatur von 25°C in wäßriger Lösung bei einer Polymerkonzentration von 0,5 Gew.-% bestimmt.Unless otherwise indicated, percentages in the examples are percent by weight. The K values were after H. Fikentscher, Cellulose Chemistry, Vol. 13, 58-64 and 71-74 (1932 ) at a temperature of 25 ° C in aqueous solution at a polymer concentration of 0.5 wt .-% determined.

BeispieleExamples

Folgende kationische Polymere wurden verwendet:The following cationic polymers were used:

Polymer 1:Polymer 1:

Polyamidoamin aus Adipinsäure und Diethylentriamin, das mit.. Ethylenimin gepfropft und anschließend mit Polyethylenglykoldichlorhydrinether gemäß den Angaben in Beispiel 3 der DE-B-2 434 816 vernetzt wurde.Polyamidoamine of adipic acid and diethylenetriamine grafted with .. Ethylenimin and then with polyethylene glycol dichlorohydrin as described in Example 3 of DE-B-2 434 816 was networked.

Polymer 2:Polymer 2:

Hydrolysiertes Polyvinylformamid mit einem K-Wert von 90 und einem Hydrolysegrad von 95 mol-%.Hydrolyzed polyvinylformamide having a K value of 90 and a degree of hydrolysis of 95 mol%.

Polymer 3:Polymer 3:

Hydrolysiertes Polyvinylformamid mit einem K-Wert von 90 und einem Hydrolysegrad von 75 mol-%.Hydrolyzed polyvinylformamide having a K value of 90 and a degree of hydrolysis of 75 mol%.

Polymer 4:Polymer 4:

Hydrolysiertes Polyvinylformamid mit einem K-Wert von 90 und einem Hydrolysegrad von 50 mol-%.Hydrolyzed polyvinylformamide having a K value of 90 and a degree of hydrolysis of 50 mol%.

Verfestiger 1Consolidator 1

Eine wäßrige Suspension von nativer Kartoffelstärke wurde in einem Laborjetkocher der Fa. Werkstättenbau GmbH bei einer Temperatur von 130°C und einem Druck von 2,3 bar kontinuierlich in Gegenwart von 1,5 % Polymer 2 gekocht.An aqueous suspension of native potato starch was cooked continuously in the presence of 1.5% polymer 2 in a laboratory jet cooker from Werkstättenbau GmbH at a temperature of 130 ° C. and a pressure of 2.3 bar.

Beispiele 1 bis 4Examples 1 to 4

Man stellte einen Papierstoff mit einer Stoffdichte von 7,6 g/l aus einem aufgeschlagenen fertigen handelsüblichen Wellenrohstoff auf Altpapierbasis her. Der pH-Wert des Papierstoffs betrug 8,0. Um die Stärkeretention zu ermitteln wurden zu Proben dieses Papierstoffs jeweils die in Tabelle 1 angegebenen Mengen an Verfestiger 1 und den Polymeren 1-4 nacheinander zugesetzt. Nach dem Durchmischen des Papierstoffs mit den Additiven wurde abgenutscht und der Stärkegehalt aus der Extinktionsmessung des Stärke-Jod-Komplexes bestimmt. Die dabei erhaltenen Ergebnisse sind in Tabelle 1 angegeben. Ein weiterer Teil des Papierstoffes wurde nach dem Dosieren von Verfestiger 1 und den jeweils in Tabelle 1 angegebenen Polymeren mit Hilfe eines Schopper-Riegler-Geräts entwässert. Man bestimmte die Entwässerungszeit nach DIN ISO 5267 für 700 ml Filtrat. Die Ergebnisse sind in Tabelle 1 angegeben, wobei Beispiel 1 einen Vergleich darstellt.A paper stock having a stock consistency of 7.6 g / l was prepared from an open finished commercial wave raw material based on recovered paper. The pH of the stock was 8.0. In order to determine the starch retention, in each case the amounts of solidifier 1 and the polymers 1-4 indicated in Table 1 were added in succession to samples of this paper stock. After mixing the paper stock with the additives, it was filtered off with suction and the starch content was determined from the absorbance measurement of the starch-iodine complex. The results obtained are shown in Table 1. Another part of the paper stock was dewatered after metering solidifier 1 and the polymers indicated in Table 1 in each case with the aid of a Schopper-Riegler apparatus. The dewatering time was determined according to DIN ISO 5267 for 700 ml filtrate. The results are given in Table 1, Example 1 being a comparison.

Vergleichsbeispiel 1Comparative Example 1

Das Beispiel 1 wurde mit der Ausnahme wiederholt, daß man zum Papierstoff lediglich Verfestiger 1 in einer Menge von 2 %, bezogen auf trockenen Papierstoff, dosierte. Stärkegehalt des Filtrats und die Entwässerungszeit sind in Tabelle 1 angegeben. Tabelle 1 Beispiel Zusatz zum Papierstoff, bezogen auf trockenen Papierstoff Stärkegehalt im Filtrat [mg/l] Entwässerungszeit [sec/700 ml] 1 (Vergleich) 2 % Verfestiger 1 + 0,08 % Polymer 1 38 92 2 2 % Verfestiger 1+0,08% Polymer 2 34 49 3 2 % Verfestiger 1 + 0,08 % Polymer 3 30 55 4 2 % Verfestiger 1 + 0,08 % Polymer 4 30 67 Vergleichsbeispiel 1 2 % Verfestiger 1 50 136 Example 1 was repeated with the exception that only solidifier 1 in an amount of 2%, based on dry pulp, metered to the pulp. Starch content of the filtrate and the dewatering time are shown in Table 1. Table 1 example Additive to paper stock, based on dry stock Starch content in the filtrate [mg / l] Drainage time [sec / 700 ml] 1 (comparison) 2% strength agent 1 + 0.08% polymer 1 38 92 2 2% strength agent 1 + 0.08% polymer 2 34 49 3 2% strength agent 1 + 0.08% polymer 3 30 55 4 2% strength agent 1 + 0.08% polymer 4 30 67 Comparative example 1 2% strength agent 1 50 136

Beispiel 5Example 5

Ein aufgeschlagener fertiger handelsüblicher Wellenrohstoff auf Altpapierbasis mit einer Stoffdichte von 0,76 % wurde zunächst mit 2 % Verfestiger 1 und anschließend mit 0,08 % Polymer 3 als Retentionsmittel für kationische Stärke versetzt. Nach Zugabe von Verfestiger und Polymer wurde der Papierstoff jeweils durchmischt. Ein Teil dieses Papierstoffs wurde abgenutscht. Aus dem Filtrat wurde der CSB-Wert und die Stärkeretention durch enzymatischen Abbau zu Glucose mittels HPLC bestimmt. Aus dem anderen Teil des Papierstoffs ermittelte man mit Hilfe eines Schopper-Riegler-Geräts die Entwässerungszeit für 500 ml Filtrat. Die Ergebnisse sind in Tabelle 2 angegeben.An open finished commercial wave raw material based on waste paper with a consistency of 0.76% was first mixed with 2% strength agent 1 and then with 0.08% polymer 3 as a cationic starch retention aid. After addition of solidifier and polymer, the stock was mixed in each case. Part of this pulp was sucked off. From the filtrate, the COD value and the starch retention by enzymatic degradation to glucose were determined by HPLC. From the other part of the pulp, the dewatering time for 500 ml of filtrate was determined using a Schopper-Riegler apparatus. The results are shown in Table 2.

Vergleichsbeispiele 2 bis 4Comparative Examples 2 to 4

Das Beispiel 5 wurde mit den aus Tabelle 2 ersichtlichen Änderungen wiederholt. Die Ergebnisse sind in Tabelle 2 angegeben. Tabelle 2 Beispiel Zusatz zum Papierstoff, bezogen auf trockenen Papierstoff CSB-Wert [mgO2/l] Stärkeretention (enzymatische Methode) Entwässerungszeit [sec/500 ml] 5 2 % Verfestiger 2 + 0,08 % Polymer 3 134 93 20 Vergleichsbeispiel 2 2 % Verfestiger 1 313 43 72 3 2 % handelsübliche kationische Stärke D.S. 0,035 162 92 78 4 - 135 68 Example 5 was repeated with the changes shown in Table 2. The results are shown in Table 2. Table 2 example Additive to paper stock, based on dry stock COD value [mgO 2 / l] Strong retention (enzymatic method) Drainage time [sec / 500 ml] 5 2% strength agent 2 + 0.08% polymer 3 134 93 20 Comparative example 2 2% strength agent 1 313 43 72 3 2% commercial cationic starch DS 0.035 162 92 78 4 - 135 68

Beispiel 6Example 6

Ein aufgeschlagener fertiger handelsüblicher Wellenrohstoff auf Altpapierbasis mit einer Stoffkonzentration von 0,76 % wurde nacheinander mit 2 % Verfestiger 2 und 0,08 % Polymer 3 versetzt. Nach dem Durchmischen stellt man auf einem Rapid-Köthen-Blattbildner Papierblätter mit einem Flächengewicht von 120 g pro m2 her. Die Blätter wurden auf ihre Trockenfestigkeit geprüft, und zwar die Trockenreißlänge nach DIN ISO 1924, Trockenberstdruck nach DIN ISO 2758 und Flachstauchwiderstand CMT nach DIN EN 23035 gleich ISO 3035. Die Ergebnisse sind in Tabelle 3 angegeben.An open finished commercial wave raw material based on waste paper with a substance concentration of 0.76% was successively mixed with 2% strength promoter 2 and 0.08% polymer 3. After mixing, paper sheets having a basis weight of 120 g per m 2 are produced on a Rapid-Köthen sheet former. The sheets were tested for dry strength, namely the dry tear length according to DIN ISO 1924, dry burst pressure according to DIN ISO 2758 and flat crush resistance CMT according to DIN EN 23035 equal to ISO 3035. The results are given in Table 3.

Vergleichsbeispiele 5 bis 7Comparative Examples 5 to 7

Zunächst wurde Beispiel 6 mit den aus Tabelle 3 ersichtlichen Änderungen wiederholt, wobei man in Abwesenheit von Polymer 3 arbeitete (Vergleichsbeispiel 5). In weiteren Tests verwendete man handelsübliche kationische Stärke (Vergleichsbeispiel 6) und ermittelte den Nullwert (Vergleichsbeispiel 7), Die Ergebnisse sind in Tabelle 3 angegeben. Tabelle 3 Beispiel Zusatz zum Papierstoff, bezogen auf trockenen Papierstoff Trockenreißlänge [m] Trockenberstdruck [kPa] CMT [N] 6 2 % Verfestiger 1 + 0,08 % Polymer 3 4433 296 209 Vergleichsbeispiel 5 2 % Verfestiger 1 4353 278 190 6 2 % handelsübliche kationische Stärke D.S. 0,035 4488 296 194 7 - 3757 241 160 First, Example 6 was repeated with the changes shown in Table 3, working in the absence of Polymer 3 (Comparative Example 5). In further tests, commercial cationic starch (Comparative Example 6) was used and found to be zero (Comparative Example 7). The results are shown in Table 3. Table 3 example Additive to paper stock, based on dry stock Dry breaking length [m] Dry burst pressure [kPa] CMT [N] 6 2% strength agent 1 + 0.08% polymer 3 4433 296 209 Comparative example 5 2% strength agent 1 4353 278 190 6 2% commercial cationic starch DS 0.035 4488 296 194 7 - 3757 241 160

Polymer 5:Polymer 5:

Hydrolysiertes Poly-N-Vinylformamid mit einem K-Wert von 90 und einem Hydrolysegrad von 30 %.Hydrolyzed poly-N-vinylformamide having a K value of 90 and a degree of hydrolysis of 30%.

Polymer 6:Polymer 6:

Hochmolekulares, kationisches Polyacrylamid mit einer Ladungsdichte von 1,7 bei pH 4,5 und einem mittleren Molekulargewicht von 8,5 Mio D.High molecular weight, cationic polyacrylamide with a charge density of 1.7 at pH 4.5 and an average molecular weight of 8.5 million D.

Beispiel 7Example 7

Ein Papierstoff auf Altpapierbasis mit einem CSB-Wert von 8000 mg Sauerstoff/l und einer Stoffkonzentration von 1 % wurde nacheinander mit 2 % Verfestiger 1, mit 0,12 % Polymer 2 und 0,02 % Polymer 6 versetzt. Nach dem Durchmischen stellt man auf dem Rapid-Köthen-Blattbildner Papierblätter mit einem Flächengewicht von ca. 110 g/m2 her. Die Blätter wurden auf ihre Trockenfestigkeit geprüft, und zwar der Streifenstauchwiderstand (SCT) Wert nach DIN 54518 (ISO 9895), Trockenberstdruck nach DIN ISO 2758 und Flachstauchwiderstand CMT nach DIN EN 23035 (ISO 3035). Die Ergebnisse sind in Tabelle 4 angegebenA waste paper stock having a COD of 8000 mg oxygen / l and a 1% stock concentration was sequentially added with 2% Solidifier 1, 0.12% Polymer 2, and 0.02% Polymer 6. After mixing, paper sheets with a basis weight of about 110 g / m 2 are produced on the Rapid-Köthen sheet former. The sheets were tested for dry strength, namely the strip crush resistance (SCT) value according to DIN 54518 (ISO 9895), dry burst pressure according to DIN ISO 2758 and flat crush resistance CMT according to DIN EN 23035 (ISO 3035). The results are shown in Table 4

Beispiel 8Example 8

Ein Papierstoff auf Altpapierbasis mit einem CSB-Wert von 8000 mg Sauerstoff/l und einer Stoffkonzentration von 1 % wurde nacheinander mit 2 % Verfestiger 1, mit 0,12 % Polymer 3 und 0,02 % Polymer 6 versetzt. Nach dem Durchmischen stellt man auf dem Rapid-Köthen-Blattbildner Papierblätter mit einem Flächengewicht von ca. 110 g/m2 her. Die Blätter wurden nach den in Beispiel 7 angegebenen Methoden auf ihre Trockenfestigkeit geprüft. Die Ergebnisse sind in Tabelle 4 angegeben.A paper stock based on waste paper with a COD of 8000 mg oxygen / l and a substance concentration of 1% was added successively with 2% strength agent 1, with 0.12% polymer 3 and 0.02% polymer 6. After mixing, paper sheets with a basis weight of about 110 g / m 2 are produced on the Rapid-Köthen sheet former. The leaves were tested for dry strength by the methods given in Example 7. The results are shown in Table 4.

Beispiel 9Example 9

Ein Papierstoff auf Altpapierbasis mit einem CSB-Wert von 8000 mg Sauerstoff/l und eine Stoffkonzentration von 1 % wurde nacheinander mit 2 % Verfestiger 1, mit 0,13 % Polymer 4 und 0,02 % Polymer 6 versetzt. Nach dem Durchmischen stellt man auf dem Rapid-Köthen-Blattbildner Papierblätter mit einem Flächengewicht von ca. 110 g/m2 her. Die Blätter wurden nach den in Beispiel 7 angegebenen Methoden auf ihre Trockenfestigkeit geprüft. Die Ergebnisse sind in Tabelle 4 angegeben.A paper stock based on waste paper with a COD of 8000 mg oxygen / l and a substance concentration of 1% was added successively with 2% strength agent 1, with 0.13% polymer 4 and 0.02% polymer 6. After mixing, paper sheets with a basis weight of about 110 g / m 2 are placed on the Rapid-Köthen sheet former ago. The leaves were tested for dry strength by the methods given in Example 7. The results are shown in Table 4.

Beispiel 10Example 10

Ein Papierstoff auf Altpapierbasis mit einem CSB-Wert von 8000 mg Sauerstoff/l und einer Stoffkonzentration von 1 % wurde nacheinander mit 2 % Verfestiger 1, mit 0,13 % Polymer 5 und 0,02 % Polymer 6 versetzt. Nach dem Durchmischen stellt man auf dem Rapid-Köthen-Blattbildner Papierblätter mit einem Flächengewicht von ca. 110 g/m2 her. Die Blätter wurden nach den in Beispiel 7 angegebenen Methoden auf ihre Trockenfestigkeit geprüft. Die Ergebnisse sind in Tabelle 4 angegeben.A paper stock based on waste paper with a COD of 8000 mg oxygen / l and a substance concentration of 1% was added successively with 2% strength agent 1, with 0.13% polymer 5 and 0.02% polymer 6. After mixing, paper sheets with a basis weight of about 110 g / m 2 are produced on the Rapid-Köthen sheet former. The leaves were tested for dry strength by the methods given in Example 7. The results are shown in Table 4.

Vergleichsbeispiel 8Comparative Example 8

Ein Papierstoff auf Altpapierbasis mit einem CSB-Wert von 8000 mg Sauerstoff/l und einer Stoffkonzentration von 1 % wurde nacheinander mit 2 % Verfestiger 1 und 0,02 % Polymer 6 versetzt. Nach dem Durchmischen stellt man auf dem Rapid-Köthen-Blattbildner Papierblätter mit einem Flächengewicht von ca. 110 g/m2 her. Die Blätter wurden nach den in Beispiel 7 angegebenen Methoden auf ihre Trockenfestigkeit geprüft. Die Ergebnisse sind in Tabelle 4 angegeben. Tabelle 4 Beispiel Zusatz zum Papierstoff; bezogen auf trockenen Papierstoff CSB-Wert des Filtrats (mg O2/l) Stärkeretention (enzymatische Methode) in % der angebotenen Stärke Streifenstauchwiderstand auf 110 g/m2 Trockenberstdruck (kPa) auf 110 g/m2 CMT (N) auf 110 g/m2 7 2 % Verfestiger 1, 0,12 % Polymer 2 und 0,02 % Polymer 6 7680 87 2, 87 295 172 8 2 % Verfestiger 1, 0,12 % Polymer 3 und 0,02 % Polymer 6 6860 91 2,86 280 174 9 2 % Verfestiger 1, 0,13 % Polymer 4 und 0,02 % Polymer 6 7020 86 2,81 289 177 10 2 % Verfestiger 1, 0.13 % Polymer 5 und 0,02 % Polymer 6 7010 94 2,83 296 166 Vergleichsbeispiel 8 2 % Verfestiger 1, und 0,02 % Polymer 6 7180 66 2,77 282 172 A paper stock based on recovered paper with a COD of 8000 mg oxygen / l and a substance concentration of 1% was added successively with 2% strength agent 1 and 0.02% polymer 6. After mixing, paper sheets with a basis weight of about 110 g / m 2 are produced on the Rapid-Köthen sheet former. The leaves were tested for dry strength by the methods given in Example 7. The results are shown in Table 4. Table 4 example Additive to the pulp; based on dry pulp COD value of the filtrate (mg O 2 / l) Intensive retention (enzymatic method) in% of the starch offered Stripping resistance to 110 g / m 2 Dry burst pressure (kPa) to 110 g / m 2 CMT (N) to 110 g / m 2 7 2% solidifier 1, 0.12% polymer 2 and 0.02% polymer 6 7680 87 2, 87 295 172 8th 2% solidifier 1, 0.12% polymer 3 and 0.02% polymer 6 6860 91 2.86 280 174 9 2% solidifier 1, 0.13% polymer 4 and 0.02% polymer 6 7020 86 2.81 289 177 10 2% strength modifier 1, 0.13% polymer 5 and 0.02% polymer 6 7010 94 2.83 296 166 Comparative Example 8 2% solidifier 1, and 0.02% polymer 6 7180 66 2.77 282 172

Claims (11)

  1. A process for the production of paper, board and cardboard having high dry strength by the addition of starch which is obtainable by reacting natural, cationic, anionic and/or amphoteric starch with synthetic cationic polymers as a dry strength agent to the paper stock and drainage of the paper stock in the presence of retention aids with sheet formation, wherein polymers containing cationic vinylamine units are used as a retention aid for starch.
  2. A process as claimed in claim 1, wherein a cationic starch is used in combination with cationic polymers which contain vinylamine units and have K values of at least 30 (determined according to H. Fikentscher in aqueous solution at a polymer concentration of 0.5 % by weight, at 25°C and at a pH of 7).
  3. A process as claimed in claim 1 or 2, wherein a cationic starch which is obtainable by reacting 100 parts by weight of a natural, cationic, anionic or amphoteric starch with from 0.5 to 10 parts by weight of a polymer containing vinylamine units and having a K value of from 60 to 150 at above the glutinization temperature of the starch is used.
  4. A process as claimed in claim 3, wherein hydrolyzed homo- or copolymers of N-vinylformamide having a degree of hydrolysis of at least 60 % are used as the polymers containing vinylamine units.
  5. A process as claimed in any of claims 1 to 4, wherein hydrolyzed homo- or copolymers of N-vinylformamide having a degree of hydrolysis of from 1 to 100 % are used as retention aids for starch.
  6. A process as claimed in any of claims 1 to 5, wherein the dry strength agents are used in amounts of from 0.5 to 10 % by weight, based on dry paper stock.
  7. A process as claimed in any of claims 1 to 6, wherein the dry strength agents are used in amounts of from 1 to 5 % by weight, based on dry paper stock.
  8. A process as claimed in any of claims 1 to 7, wherein the retention aids for starch are used in amounts of from 0.01 to 0.3 % by weight, based on dry paper stock.
  9. A process as claimed in claim 1 or 2, wherein a cationic starch which is obtainable by reacting 100 parts by weight of a natural, cationic, anionic or amphoteric starch with from 0.5 to 10 parts by weight of
    - polydiallyl-dimethylammonium chloride,
    - water-soluble polyamidoamines crosslinked with epichlorohydrin
    - water-soluble ethyleneimine-grafted polyamidoamines crosslinked with bischlorohydrin ethers of polyalkylene glycols or
    - water-soluble polyethyleneimines and water-soluble crosslinked polyethyleneimines
    at from above the glutinization temperature of the starch to 180°C is used.
  10. The use of polymers containing vinylamine units as cationic polymeric retention aid for increasing the retention of dry strength agents comprising starch which is obtainable by reacting natural, cationic, anionic and/or amphoteric starch with synthetic cationic polymers in the production of paper, board and cardboard.
  11. The use as claimed in claim 10, wherein hydrolyzed homo- or copolymers of N'-vinylformamide having a degree of hydrolysis of from 1 to 100 % and a K value of at least 30 (determined according to H. Fikentscher in aqueous solution at a polymer concentration of 0.5 % by weight, at 25°C and at a pH of 7) are used as retention aids in amounts of from 0.01 to 0.3 % by weight.
EP98921399A 1997-04-04 1998-03-26 Method for producing high dry-strength paper, pulpboard and cardboard Expired - Lifetime EP0972110B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19713755A DE19713755A1 (en) 1997-04-04 1997-04-04 Process for the production of paper, cardboard and cardboard with high dry strength
DE19713755 1997-04-04
PCT/EP1998/001786 WO1998045536A1 (en) 1997-04-04 1998-03-26 Method for producing high dry-strength paper, pulpboard and cardboard

Publications (3)

Publication Number Publication Date
EP0972110A1 EP0972110A1 (en) 2000-01-19
EP0972110B1 EP0972110B1 (en) 2004-06-02
EP0972110B2 true EP0972110B2 (en) 2009-03-11

Family

ID=7825332

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98921399A Expired - Lifetime EP0972110B2 (en) 1997-04-04 1998-03-26 Method for producing high dry-strength paper, pulpboard and cardboard

Country Status (13)

Country Link
US (1) US6616807B1 (en)
EP (1) EP0972110B2 (en)
JP (1) JP2001518988A (en)
KR (1) KR20010006002A (en)
AT (1) ATE268410T1 (en)
AU (1) AU730063B2 (en)
CA (1) CA2284931C (en)
DE (2) DE19713755A1 (en)
ES (1) ES2222591T3 (en)
NZ (1) NZ338029A (en)
PT (1) PT972110E (en)
WO (1) WO1998045536A1 (en)
ZA (1) ZA982842B (en)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002541346A (en) * 1999-04-01 2002-12-03 ビーエーエスエフ アクチェンゲゼルシャフト Modification of starch with cationic polymer and use of modified starch as dry strength improver
AU1739301A (en) * 1999-11-01 2001-05-14 Leopack B.V. Moulded fibre products comprising modified starch and process for producing the same
US6824650B2 (en) * 2001-12-18 2004-11-30 Kimberly-Clark Worldwide, Inc. Fibrous materials treated with a polyvinylamine polymer
US6723204B2 (en) * 2002-04-08 2004-04-20 Hercules Incorporated Process for increasing the dry strength of paper
DE10233524B4 (en) * 2002-07-23 2006-02-09 Mühle Rüningen GmbH & Co. KG Composition for increasing the capacity of paper pulp for starch, process for the production, use and method for producing paper
US7090745B2 (en) * 2002-09-13 2006-08-15 University Of Pittsburgh Method for increasing the strength of a cellulosic product
US7494566B2 (en) 2002-09-13 2009-02-24 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Composition for increasing cellulosic product strength and method of increasing cellulosic product strength
US20050109476A1 (en) * 2003-07-21 2005-05-26 Muhle Runingen Gmbh & Co. Kg Medium for increasing the absorption capacity of paper pulp for starch
BRPI0508227A (en) * 2004-02-27 2007-07-17 Univ Pittsburgh interconnected polymer gels and use of such polymer gels in hydrocarbon recovery
WO2007071566A1 (en) * 2005-12-22 2007-06-28 Clariant International Ltd Dry strength system for the production of paper and board
JP5431922B2 (en) * 2006-05-18 2014-03-05 ハーキュリーズ・インコーポレーテッド Adducts by Michael addition as additives in the paper and paper industry
DK1865105T3 (en) * 2006-06-09 2010-01-18 Cooperatie Avebe U A Process for making paper using cationic amylopectin starch
EP1889972A1 (en) * 2006-06-26 2008-02-20 Biltube India Limited Core board
US7875676B2 (en) * 2006-09-07 2011-01-25 Ciba Specialty Chemicals Corporation Glyoxalation of vinylamide polymer
CN101815728B (en) 2007-08-02 2013-08-28 赫尔克里士公司 Modified vinylamine-containing polymers as additives in papermaking
US8088250B2 (en) 2008-11-26 2012-01-03 Nalco Company Method of increasing filler content in papermaking
AR071441A1 (en) 2007-11-05 2010-06-23 Ciba Holding Inc N- GLIOXILATED VINYLAMIDE
EP2148003A1 (en) * 2008-07-22 2010-01-27 Mühle Rüningen GmbH & Co. KG Process for the production of a modified starch containing product, modified starch containing product obtainable by that process and use thereof in paper manufacture
CA2733503C (en) * 2008-08-18 2018-07-03 Basf Se Process for increasing the dry strength of paper, board and cardboard
PL2391660T3 (en) 2009-01-30 2015-04-30 Solenis Tech Cayman Lp Quaternary vinylamine-containing polymers as additives in papermaking
CN104532674A (en) 2009-06-16 2015-04-22 巴斯夫欧洲公司 Method for increasing the dry strength of paper, paperboard, and cardboard
MX340374B (en) 2009-11-06 2016-07-07 Solenis Technologies Cayman Lp Surface application of polymers and polymer mixtures to improve paper strength.
AU2011237628B2 (en) * 2010-04-07 2013-09-19 Solenis Technologies Cayman, L.P. Stable and aqueous compositions of polyvinylamines with cationic starch, and utility for papermaking
US8758562B2 (en) * 2010-08-25 2014-06-24 Hercules Incorporated Method for increasing the advantages of starch in pulped cellulosic material in the production of paper and paperboard
PL2635645T3 (en) 2010-11-05 2017-11-30 Solenis Technologies Cayman, L.P. Surface application of polymers to improve paper strength
US8980056B2 (en) 2010-11-15 2015-03-17 Kemira Oyj Composition and process for increasing the dry strength of a paper product
JP5714947B2 (en) * 2011-03-16 2015-05-07 ニチハ株式会社 Inorganic board and method for producing the same
CN103492425B (en) 2011-04-14 2016-08-31 索理思科技开曼公司 The preparation method of the polymer containing acylated vinylamine and the application as additive for paper making thereof
FI20115690A0 (en) * 2011-06-30 2011-06-30 Kemira Oyj Fixative composition, thick mass composition and method for fixing hydrophobic and / or anionic substances on fibers
CN103930619B (en) 2011-08-25 2016-12-07 索理思科技开曼公司 The method increasing strength aid advantage in manufacturing paper and cardboard
EP2776481B1 (en) 2011-11-10 2016-04-06 Solenis Technologies Cayman, L.P. Vinylamine containing copolymer microparticles as additives in papermaking
EP2788392B1 (en) 2011-12-06 2018-02-21 Basf Se Preparation of polyvinylamide cellulose reactive adducts
CA2862095C (en) * 2012-02-01 2017-04-11 Basf Se Process for the manufacture of paper and paperboard
FI124202B (en) 2012-02-22 2014-04-30 Kemira Oyj Process for improvement of recycled fiber material utilizing the manufacturing process of paper or paperboard
AU2014317940C1 (en) 2013-09-09 2019-10-03 Basf Se High molecular weight and high cationic chargeglyoxalatedpolyacrylamide copolymers, and their methods of manufacture and use
CN104452463B (en) 2013-09-12 2017-01-04 艺康美国股份有限公司 Papermaking process and compositions
CN104452455B (en) 2013-09-12 2019-04-05 艺康美国股份有限公司 The method that paper making auxiliary agent composition and increase are stayed at paper ash code insurance
US9567708B2 (en) 2014-01-16 2017-02-14 Ecolab Usa Inc. Wet end chemicals for dry end strength in paper
CN106459318B (en) 2014-04-16 2019-11-08 索理思科技公司 The polymer of modified vinylamine-containing and its purposes in papermaking
SE539914C2 (en) * 2014-04-29 2018-01-09 Stora Enso Oyj Process for making at least one layer of a paper or paperboard and a paper or paperboard made according to the process
US9920482B2 (en) 2014-10-06 2018-03-20 Ecolab Usa Inc. Method of increasing paper strength
US9702086B2 (en) * 2014-10-06 2017-07-11 Ecolab Usa Inc. Method of increasing paper strength using an amine containing polymer composition
US9783933B2 (en) 2015-04-10 2017-10-10 Solenis Technologies, L.P. Modified vinylamine-containing polymers and their use in papermaking
SE540115C2 (en) * 2016-09-21 2018-04-03 A paper or paperboard product comprising at least one ply containing high yield pulp and its production method
FI20185272A1 (en) 2018-03-22 2019-09-23 Kemira Oyj Dry strength composition, its use and method for making of paper, board or the like
JP6696532B2 (en) * 2018-06-18 2020-05-20 栗田工業株式会社 Paper manufacturing method
US11332889B2 (en) 2019-05-03 2022-05-17 First Quality Tissue, Llc Absorbent structures with high absorbency and low basis weight

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1110004A (en) 1964-07-28 1968-04-18 Basf Ag Improved papers having high mechanical strength and their production

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3734820A (en) * 1971-09-22 1973-05-22 Calgon Corp Cationic dextran graft copolymers as dry strength additives for paper
US3854970A (en) * 1973-08-13 1974-12-17 Nalco Chemical Co Cationic starch and condensates for making the same
US4097427A (en) * 1977-02-14 1978-06-27 Nalco Chemical Company Cationization of starch utilizing alkali metal hydroxide, cationic water-soluble polymer and oxidant for improved wet end strength
US4146515A (en) * 1977-09-12 1979-03-27 Nalco Chemical Company Making a lightly oxidized starch additive by adding a cationic polymer to starch slurry prior to heating the slurry
DE3128478A1 (en) * 1981-07-18 1983-02-03 Basf Ag, 6700 Ludwigshafen METHOD FOR PRODUCING LINEAR, BASIC POLYMERISATS
US5201998A (en) * 1982-05-28 1993-04-13 Ciba-Geigy Corporation Process for sizing paper with anionic hydrophobic sizing agents and cationic retention aids
DE3534273A1 (en) * 1985-09-26 1987-04-02 Basf Ag METHOD FOR PRODUCING VINYLAMINE UNITS CONTAINING WATER-SOLUBLE COPOLYMERISATS AND THE USE THEREOF AS WET AND DRY-FASTENING AGENTS FOR PAPER
DE3627594A1 (en) * 1986-08-14 1988-02-18 Basf Ag SIZING AGENT FOR PAPER BASED ON FINE-PARTED AQUEOUS DISPERSIONS
DE3702712A1 (en) * 1987-01-30 1988-08-11 Basf Ag SIZING AGENT FOR PAPER BASED ON FINE-PARTED AQUEOUS DISPERSIONS
DE3706525A1 (en) * 1987-02-28 1988-09-08 Basf Ag METHOD FOR PRODUCING PAPER, CARDBOARD AND CARDBOARD WITH HIGH DRY RESISTANCE
DE3724646A1 (en) * 1987-07-25 1989-02-02 Basf Ag METHOD FOR PRODUCING PAPER, CARDBOARD AND CARDBOARD WITH HIGH DRY RESISTANCE
US5338406A (en) * 1988-10-03 1994-08-16 Hercules Incorporated Dry strength additive for paper
DE3909004A1 (en) * 1989-03-18 1990-09-27 Basf Ag USE OF NON-HYDROLYSED N-VINYLFORMAMIDE UNITS CONTAINING COPOLYMERS IN PAPER PRODUCTION
BR9205973A (en) * 1991-07-02 1994-08-02 Eka Nobel Ab Papermaking process
US5382324A (en) * 1993-05-27 1995-01-17 Henkel Corporation Method for enhancing paper strength
US5700893A (en) * 1993-11-12 1997-12-23 Betzdearborn Inc. Water-soluble cationic copolymers and their use as flocculants and drainage aids
US5516852A (en) * 1993-11-12 1996-05-14 W. R. Grace & Co.-Conn. Method of producing water-soluble cationic copolymers
US5720888A (en) * 1993-11-12 1998-02-24 Betzdearborn Inc. Water-soluble cationic copolymers and their use as flocculants
DE4438708A1 (en) * 1994-10-29 1996-05-02 Basf Ag Process for the cationic modification of starch and use of the cationically modified starch
DE19537088A1 (en) * 1995-10-05 1997-04-10 Basf Ag Process for the production of dry and wet strength paper
DE19627553A1 (en) * 1996-07-09 1998-01-15 Basf Ag Process for the production of paper and cardboard
DE19716821A1 (en) * 1997-04-22 1998-10-29 Basf Ag Process for the production of paper, cardboard and cardboard
US5942087A (en) * 1998-02-17 1999-08-24 Nalco Chemical Company Starch retention in paper and board production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1110004A (en) 1964-07-28 1968-04-18 Basf Ag Improved papers having high mechanical strength and their production

Also Published As

Publication number Publication date
AU730063B2 (en) 2001-02-22
ZA982842B (en) 1999-01-20
AU7427598A (en) 1998-10-30
WO1998045536A1 (en) 1998-10-15
CA2284931A1 (en) 1998-10-15
NZ338029A (en) 2000-04-28
PT972110E (en) 2004-10-29
EP0972110B1 (en) 2004-06-02
ATE268410T1 (en) 2004-06-15
ES2222591T3 (en) 2005-02-01
DE59811513D1 (en) 2004-07-08
JP2001518988A (en) 2001-10-16
DE19713755A1 (en) 1998-10-08
US6616807B1 (en) 2003-09-09
CA2284931C (en) 2010-02-16
KR20010006002A (en) 2001-01-15
EP0972110A1 (en) 2000-01-19

Similar Documents

Publication Publication Date Title
EP0972110B2 (en) Method for producing high dry-strength paper, pulpboard and cardboard
EP1183422B1 (en) Modifying starch with cationic polymers and use of the modified starches as dry-strength agent for paper
EP0788516B1 (en) Cationic modification process for starch and use of cationically modified starch
EP0952988B1 (en) Polymer-modified anionic starch, method for its production, and its use
EP0301372B1 (en) Process for producing paper and board having a great dry strength
EP0282761B1 (en) Process for producing paper and board having a high dry strength
EP2443284B1 (en) Method for increasing dry strength of paper, paperboard and cardboard
DE60016186T2 (en) POLYMER DISPERSION AND METHOD FOR THE PRODUCTION THEREOF
EP0980450B1 (en) Method for producing paper, paperboard and cardboard
EP0975837B1 (en) Method for producing paper, pulpboard and cardboard
EP1399623B1 (en) Wet-strength finishing agents for paper
EP0951505B1 (en) Polymer-modified starch, method for its production, and its use
EP0819193A1 (en) Paper sizing agent mixtures
WO2000026468A1 (en) Modified cationic polymers, a method for the production thereof and their use during paper production
DE3024257A1 (en) STABLE, AQUEOUS POLYVINYL ALCOHOL / MELAMINE FORMALDEHYDE RESIN REACTION PRODUCT, METHOD FOR THE PRODUCTION THEREOF AND ITS USE
DE19719062A1 (en) Preparation of aggregates of starches and cationic polymers
CA2203931C (en) Cationic modification process for starch and use of cationically modified starch
WO2006136556A2 (en) Method for producing paper, paperboard, and cardboard

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990917

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FI FR GB IT LI NL PT SE

17Q First examination report despatched

Effective date: 20010806

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FI FR GB IT LI NL PT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REF Corresponds to:

Ref document number: 59811513

Country of ref document: DE

Date of ref document: 20040708

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040701

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20040812

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2222591

Country of ref document: ES

Kind code of ref document: T3

PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE2

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE2

PLAR Examination of admissibility of opposition: information related to receipt of reply deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE4

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

ET Fr: translation filed
PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: EKA CHEMICALS ABPATENT DEPARTMENT

Effective date: 20050302

NLR1 Nl: opposition has been filed with the epo

Opponent name: EKA CHEMICALS AB PATENT DEPARTMENT

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20060425

Year of fee payment: 9

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: EKA CHEMICALS AB PATENT DEPARTMENT

Effective date: 20050302

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BASF SE

NLR1 Nl: opposition has been filed with the epo

Opponent name: EKA CHEMICALS AB PATENT DEPARTMENT

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: BASF SE

Effective date: 20080305

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20070327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070327

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20090311

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH DE ES FI FR GB IT LI NL PT SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20070327

NLR2 Nl: decision of opposition

Effective date: 20090311

NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
REG Reference to a national code

Ref country code: SE

Ref legal event code: RPEO

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150327

Year of fee payment: 18

Ref country code: PT

Payment date: 20150320

Year of fee payment: 18

Ref country code: CH

Payment date: 20150325

Year of fee payment: 18

Ref country code: NL

Payment date: 20150323

Year of fee payment: 18

Ref country code: FI

Payment date: 20150326

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150331

Year of fee payment: 18

Ref country code: AT

Payment date: 20150326

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20150330

Year of fee payment: 18

Ref country code: DE

Payment date: 20150601

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150331

Year of fee payment: 18

Ref country code: BE

Payment date: 20150330

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59811513

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160326

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 268410

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160326

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20160401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160327

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160926

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160326

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160401

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161001

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160326

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160326