EP0967583B1 - Opto-electronic sensor device - Google Patents

Opto-electronic sensor device Download PDF

Info

Publication number
EP0967583B1
EP0967583B1 EP99109753A EP99109753A EP0967583B1 EP 0967583 B1 EP0967583 B1 EP 0967583B1 EP 99109753 A EP99109753 A EP 99109753A EP 99109753 A EP99109753 A EP 99109753A EP 0967583 B1 EP0967583 B1 EP 0967583B1
Authority
EP
European Patent Office
Prior art keywords
expansion
reflection
sensor device
mirror
light bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99109753A
Other languages
German (de)
French (fr)
Other versions
EP0967583A2 (en
EP0967583A3 (en
Inventor
Martin Wüstefeld
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sick AG
Original Assignee
Sick AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sick AG filed Critical Sick AG
Publication of EP0967583A2 publication Critical patent/EP0967583A2/en
Publication of EP0967583A3 publication Critical patent/EP0967583A3/en
Application granted granted Critical
Publication of EP0967583B1 publication Critical patent/EP0967583B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/181Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using active radiation detection systems
    • G08B13/183Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using active radiation detection systems by interruption of a radiation beam or barrier
    • G08B13/184Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using active radiation detection systems by interruption of a radiation beam or barrier using radiation reflectors

Definitions

  • the invention relates to an optoelectronic sensor device for monitoring a protection area, at least with one transmission element, one Receiving element and a reflection unit with at least one first and a second reflection element, one of the transmission element emitted along the protected area to the first reflection element Send light bundle using the first reflection element as a deflecting light beam to the second reflection element and by means of of the second reflection element as a reception light bundle along the Protection area can be deflected to the receiving element.
  • Such sensor devices are, for example, at the edge of a security area arranged a machine tool, if necessary To enter this security area to be detected by factory personnel and trigger a warning signal or a shutdown signal.
  • the Reflection unit for deflecting the transmitted light beam first around an offset distance and finally towards the receiving element, so that from the transmit light beam and from the receive light beam simultaneously different sections of the protected area are monitored can.
  • the Reflection unit for deflecting the transmitted light beam by 180 ° and by a certain offset distance between the transmit and receive light beams are mechanical from individual optical elements composite triple reflection units known (see e.g.
  • DE-A-19 533 044 for example have a flat mirror as a first reflection element and as second reflection element one of the plane mirror by the offset distance spaced roof edge element, which consists of two in There are planar mirrors arranged at an angle of 90 ° to one another.
  • a disadvantage of the known optoelectronic sensor devices The type described is that in particular with a large offset distance the adjustment of their reflection units for exact redirection of the transmitted light beam on the receiving element difficult and often can only be accomplished by trained specialist personnel.
  • their production has been proven expensive because their reflection elements at certain angles to each other must be arranged precisely. A subsequent change in Location of these reflection elements, for example to change the offset distance, is not possible without complex adjustment measures.
  • This object is achieved in that at least one of the reflection elements of the reflection unit as an expansion reflector trained to deflect and expand the light beam in question is.
  • the reflection elements are used in the sensor device according to the invention So not only to redirect the light beam in question, but at least one of the reflection elements causes in addition to the deflection an expansion of the light beam.
  • This widening of a light beam advantageously enlarges it Angle availability.
  • the adjustment can thus be carried out comparatively quickly, and it can also be done by unskilled personnel, especially by the operator of the sensor device, for example after this to change the course of the transmit and receive light beams has been converted.
  • the invention Sensor device flexible in different environmental conditions can be used because the light beam is deflected by means of the reflection unit for example, effects of temperature expansion or vibrations large machine tools, on which or adjacent to which the reflection unit is attached, not or only slightly disturbed becomes.
  • the sensor device Compared to the use of a transmission light bundle that has been expanded from the outset the sensor device according to the invention has the advantage that the light beam only at the for the adjustment of the sensor device critical sections of the beam path takes place, which means that with a Widening of the light bundle accompanied by a reduction in its light intensity can be kept comparatively low.
  • the light beam of the invention works particularly well for comparative purposes short distances of each widened light beam.
  • the expansion reflector of the sensor device according to the invention is preferably designed as a curved expansion mirror, in particular as essentially convex expansion mirror. Also essentially one concave curvature of the expansion mirror is possible. On Such an expansion mirror can be produced in a simple manner, for example by injection molding or deep drawing and subsequent vapor deposition with a reflective layer.
  • a widening mirror suitable for the sensor device according to the invention causes the expansion of one reflected on its curved surface Light beam, depending on the radius of curvature the curvature of the mirror surface acted upon by the light beam.
  • the radius of curvature of the curvature can be spherical, i.e. in cross section be provided as a radius of a circle, toric or aspherical. It is possible to use different radii of curvature strong widening of a light beam at different, with respect provide reflection elements arranged one behind the other in the beam path.
  • Expansion reflector can either along essentially a single direction perpendicular to the longitudinal axis of the light beam deflected by the expansion reflector take place, or along essentially two each to said Longitudinal axis and directions perpendicular to each other.
  • the expansion reflector can be used to expand the light beam as a convex expansion mirror with the shape of a part the lateral surface of a cylinder.
  • the expansion reflector as Expansion mirror essentially in the form of part of the surface a ball is formed.
  • a widening mirror can be used in a corresponding manner the shape of part of the lateral surface of a torid or Own barrel body, that is, a body that results from the rotation of one curved line, for example a circular line or a parabola.
  • the expansion mirror can take the form of part of the Have surface of a body that is similar to a sphere or Barrel body is formed, but with consistently or at least partially aspherical radii of curvature.
  • the expansion mirror is not is formed purely spherical, the expansion of a reflected Light beam in different directions perpendicular to the longitudinal axis of the reflected light beam to different degrees, according to the each assigned radius of curvature of the surface of the expansion mirror.
  • the expansion reflector As an alternative to designing the expansion reflector as a curved one Expansion mirrors can be used to achieve any other optical elements the effect of a redirection and a simultaneous expansion of the Light beam can be used. In particular, it is possible to use the expansion reflector as a combination of a flat mirror and a diverging lens train.
  • the reflection unit has exactly two reflection elements, and the transmitting element and the receiving element on the one hand or the reflection unit on the other hand are essentially opposite to each other Sides of the protection area arranged so that the transmit light beam and the received light beam in opposite to each other Beam directions run between these two sides.
  • the two light beams can be parallel and spaced apart by an offset distance run towards each other, so the reflection unit ultimately causes a U-shaped deflection of the transmitted light beam by 180 °.
  • transmit and receive light bundles can also have any angle take each other and / or cut each other.
  • the reflection unit is designed as a curved expansion mirror it is also possible to use some of the reflection elements in a conventional manner to train, for example as a flat mirror or as a roof edge element.
  • the reflection unit can also do more than that have two preferred reflection elements.
  • the Deflection of the transmitted light beam by means of the two reflection elements mentioned to the receiving element at least indirectly, namely about the additional reflection element or elements.
  • Reflection element can be provided a semi-transparent mirror, the one Part of the light beam that impacts him for additional enforcement of the protection area with a light beam in the direction of an additional one Redirects reception elements.
  • the transmitting element and the receiving element on opposite sides of the Protection area are arranged while the reflection unit essentially is located in the center of the protected area and the redirection of the transmitted light beam by an offset distance, but essentially without changing direction, so that the light beam, for example follows a step-like course.
  • the invention also extends to at least two reflection elements having reflection unit, which in a similar manner as described above for the sensor unit according to the invention for deflection of a transmitted light bundle on the reflection elements to one Receiving element is provided, and in the at least one of the reflection elements is designed as an expansion reflector, in addition to Deflection causes an expansion of the light beam in question.
  • This Reflection unit can be constructed essentially as in the above Described in connection with the sensor device according to the invention. In particular, it is preferred if the expansion reflector as convex expansion mirror is formed.
  • FIG. 1a shows an optoelectronic sensor device according to the invention in perspective side view.
  • This sensor device has a Transmitting element 11 and a receiving element arranged adjacent to it 13, and one arranged opposite these elements 11, 13 Reflection unit 15 with a within a common housing arranged first expansion mirror 17 and second expansion mirror 19th
  • a transmission light bundle 21 extends from the transmission element 11 in one Transmit beam direction A to the first expansion mirror 17, from which it as a deflecting light bundle 23 in a deflecting beam direction B to the second Expansion mirror 19 is deflected.
  • This deflecting light bundle 23 is from the second expansion mirror 19 in a received beam direction C deflected that it as the receiving light bundle 25, the receiving element 13 acted upon.
  • axes X, Y, Z of an orthogonal coordinate system are also located.
  • the send beam direction A and the receive beam direction C run in opposite or parallel directions to the X-axis, namely spaced apart by an offset distance D.
  • the deflecting beam direction B of the deflected at the first expansion mirror 17 Beam 23 runs in opposite directions parallel to the Z axis, that this light beam 23 and the transmit and receive light beams 21 or 25 U-shaped essentially within a common one Level.
  • the two expansion mirrors 17, 19 are inside the housing Reflection unit 15 arranged spaced apart from one another along the Z axis.
  • the housing has suitable, not shown in the figures Openings so that the transmit light beam 21 the first expansion mirror 17 act unhindered and the reception light bundle 25 unhindered by the second expansion mirror 19 in the received beam direction C can run.
  • the two expansion mirrors 17, 19 each have the shape of a part the lateral surface of a cylinder, with the reflective side of the mirror 17, 19 corresponds to the convex outside of this lateral surface. Consequently are two opposite side edges of the two mirrors 17, 19 curved in a circular line, and the other two opposite each other Side edges are essentially parallel and straight to each other. Accordingly, a light beam is expanded 23, 25, which is deflected by one of the expansion mirrors 17, 19, respectively in a direction perpendicular to the beam direction of this light beam 23, 25, namely along the course of the curved side edges and perpendicular to the course of the straight side edges.
  • the two expansion mirrors 17, 19 are in this way relative to one another and aligned with the light beams 21, 23, 25 that the first expansion mirror 17 and the second expansion mirror 19 each an expansion of the cross section of the deflecting light bundle 23 or of the receiving light bundle 25 in the Y direction, i.e. an expansion of the Cross section along and against the Y axis.
  • the expansion of the Receiving light bundle 25 in the Y direction can be seen in Fig. 1a.
  • 1b shows the reflection unit 15 and the beam path of the light beams 21, 23, 25 in a schematic cross-sectional side view.
  • the straight forward Course of the cross section of the expansion mirror 17, 19 corresponds the course of the two straight side edges.
  • the sensor device shown in Fig. 1a is used to monitor a between transmitting element 11 and receiving element 13 on the one hand and reflection unit 15 protection area on the other hand. For that it will Transmit light bundle 21 continuously or in a fast manner in a known manner Pulses emitted by the transmitting element 11 while the receiving element 13 continuously or synchronously with the reception of the received light beam 25 monitors. If this reception is due to a Interruption of the transmitted light beam 21 or the received light beam 25 is interrupted, there is an assigned to the sensor device, a corresponding evaluation unit, not shown in FIG. 1a Output signal from, for example a warning, shutdown or control signal.
  • Fig. 1a shows the sensor device in an ideally adjusted position, i. H. the Beam 21 is transmitted after deflection at the two expansion mirrors 17, 19 as a reception light bundle 25 on the reception element 13 reflects that the longitudinal axis C of the received light beam 25 runs essentially centrally through the receiving element 13.
  • the receiving element 13 remains at a certain level Tilting of the entire reflection unit 15 is still sufficient Way acted upon by the received light beam 25.
  • Tilting of the entire reflection unit 15 is still sufficient Way acted upon by the received light beam 25.
  • this advantageous property of the sensor device according to the invention is a tilting of the reflection unit 15 in FIGS. 2a and 2b Y-axis and in FIGS. 3a and 3b a rotation of the reflection unit 15 around the Z axis.
  • FIGS. 1a and 1b show the sensor device in a perspective side view or the reflection element 15 in cross-sectional side view, wherein the reflection element 15 is tilted with respect to the Y axis.
  • the deflecting light beam 23 and the transmit light beam 21 or the receive light beam 25 are therefore no longer at the angle shown in FIGS. 1a and 1b of 90 ° to each other.
  • the receiving element 13 is still in a measure sufficient to monitor the protection area Receiving light bundle 25 is applied. This is due to the well-known 180 ° reflection a 90 ° roof reflection unit, which the two expansion mirrors 17, 19 due to their relative angle position shown in Fig. 2b of 90 ° to each other. This will make the transmit light beam 21 still ultimately reflected by 180 °.
  • the assembly of the two Mirrors 17, 19 compared to conventional reflection units plane mirrors much easier since the beam path B, C of deflecting light bundle 23 and received light bundle 25 due to this Widening is relatively uncritical, especially with large offset distances behaves towards deviations in the relative angle position of the two Expansion mirrors 17, 19 from their ideal position of 90 °. this makes possible Greater tolerances in the manufacture and adjustment of the invention Reflection unit 15.
  • the cross-sectional side view according to FIG. 2b also shows that the offset distance D between the transmitted light beam 21 and the received light beam 25 due to the tilting of the reflection unit 15 and thus the deflecting light beam 23 is shortened, so that the longitudinal axis C of the received light beam 25 with increasing such tilting away from the receiving element 13 in the direction of the transmitting element 11, i.e. migrates along the Z axis.
  • This effect of the migration of the received light bundle 25 can be caused by a reflection unit 15 according to the invention can be compensated as they is shown in a cross-sectional side view in Fig. 2c.
  • Reflection unit 15 is the first expansion mirror 17 compared to that twisted second expansion mirror 19 so that the two straight lines Side edges of the first expansion mirror 17 to the straight line Side edges of the second expansion mirror 19 in a view along make an angle of 90 ° with respect to the Z axis. Accordingly shows the side view of FIG. 2c a curved cross section of the first expansion mirror 17, corresponding to the curved ones Side edges of this mirror 17.
  • the first expansion mirror 17 causes an expansion of the cross section of the deflecting light bundle 23 in the X direction.
  • This widening appears on the second widening mirror after deflection 19 as widening of the reception light bundle 25 in the Z direction, in addition to that caused by the second expansion mirror 19 Expansion in the Y direction.
  • the expansion of the reception light bundle 25 in the Z direction can the explained effect of the migration of the received light beam Compensate 25 from the receiving element 13. Therefore allowed the reflection unit 15 according to the invention due to its design with arched expansion mirrors 17, 19 compared to a known one Reflection unit with flat mirrors a stronger tilt and thus more generous assembly tolerances for the alignment of the reflection unit 15.
  • FIGS. 1a and 1b show the sensor device according to FIGS. 1a and 1b in one perspective side view or in a schematic top view, wherein the reflection unit 15 is rotated with respect to the Z axis.
  • the receiving element 13 While due to the rotation of the reflection unit 15, the received beam direction C with respect to the receiving element 13 in the Y direction is pivoted laterally, the receiving element 13 due to the expansion of the received light bundle 25 in the Y direction is nevertheless subjected to light.
  • a compensation of such a rotation of the reflection unit 15 is also possible with a conventional triple reflection unit a reflection element as a correspondingly arranged roof edge element is trained.
  • this known triple reflection unit is disadvantageously difficult to adjust, especially with large offset distances and especially if it should be possible, different offset distances adjust.
  • an expansion mirror 17 requires 19 of the reflection unit 15 according to the invention is only a comparative one low accuracy in its arrangement within the reflection unit 15th

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Description

Die Erfindung betrifft eine optoelektronische Sensoreinrichtung zur Überwachung eines Schutzbereichs, zumindest mit einem Sendeelement, einem Empfangselement sowie einer Reflexionseinheit mit wenigstens einem ersten und einem zweiten Reflexionselement, wobei ein von dem Sendeelement entlang des Schutzbereichs zu dem ersten Reflexionselement ausgesendetes Sende-Lichtbündel mittels des ersten Reflexionselements als ein Umlenk-Lichtbündel zu dem zweiten Reflexionselement und mittels des zweiten Reflexionselements als ein Empfangs-Lichtbündel entlang des Schutzbereichs zu dem Empfangselement umlenkbar ist.The invention relates to an optoelectronic sensor device for monitoring a protection area, at least with one transmission element, one Receiving element and a reflection unit with at least one first and a second reflection element, one of the transmission element emitted along the protected area to the first reflection element Send light bundle using the first reflection element as a deflecting light beam to the second reflection element and by means of of the second reflection element as a reception light bundle along the Protection area can be deflected to the receiving element.

Derartige Sensoreinrichtungen sind beispielsweise am Rand eines Sicherheitsbereichs einer Werkmaschine angeordnet, um gegebenenfalls das Betreten dieses Sicherheitsbereichs durch Werkspersonal zu detektieren und ein Warnsignal oder ein Abschaltsignal auszulösen. Hierbei dient die Reflexionseinheit zur Umlenkung des Sende-Lichtbündels zunächst um einen Versatzabstand und schließlich in Richtung des Empfangselements, so daß vom Sende-Lichtbündel und vom Empfangs-Lichtbündel gleichzeitig unterschiedliche Abschnitte des Schutzbereichs überwacht werden können. Insbesondere zur Umlenkung des Sende-Lichtbündels um 180 ° und um einen bestimmten Versatzabstand zwischen Sende- und Empfangs-Lichtbündel sind aus einzelnen optischen Elementen mechanisch zusammengesetzte Tripel-Reflexionseinheiten bekannt (siehe z.B. DE-A- 19 533 044), die beispielsweise als ein erstes Reflexionselement einen ebenen Spiegel aufweisen und als zweites Reflexionselement ein von dem ebenen Spiegel um den Versatzabstand beabstandet angeordnetes Dachkant-Element, welches aus zwei im Winkel von 90 ° zueinander angeordneten ebenen Spiegeln besteht.Such sensor devices are, for example, at the edge of a security area arranged a machine tool, if necessary To enter this security area to be detected by factory personnel and trigger a warning signal or a shutdown signal. Here serves the Reflection unit for deflecting the transmitted light beam first around an offset distance and finally towards the receiving element, so that from the transmit light beam and from the receive light beam simultaneously different sections of the protected area are monitored can. In particular for deflecting the transmitted light beam by 180 ° and by a certain offset distance between the transmit and receive light beams are mechanical from individual optical elements composite triple reflection units known (see e.g. DE-A-19 533 044), for example have a flat mirror as a first reflection element and as second reflection element one of the plane mirror by the offset distance spaced roof edge element, which consists of two in There are planar mirrors arranged at an angle of 90 ° to one another.

Ein Nachteil der bekannten optoelektronischen Sensoreinrichtungen der erläuterten Art besteht darin, daß insbesondere bei großem Versatzabstand die Justierung ihrer Reflexionseinheiten zur exakten Umlenkung des Sende-Lichtbündels auf das Empfangselement schwierig und oftmals lediglich durch geschultes Fachpersonal zu bewerkstelligen ist. Vor allem bei den erwähnten Tripel-Reflexionseinheiten erweist sich deren Herstellung aufwendig, da ihre Reflexionselemente in bestimmten Winkeln zueinander präzise angeordnet sein müssen. Eine nachträgliche Änderung der Lage dieser Reflexionselemente, beispielsweise zur Änderung des Versatzabstandes, ist nicht ohne aufwendige Justierungsmaßnahmen möglich.A disadvantage of the known optoelectronic sensor devices The type described is that in particular with a large offset distance the adjustment of their reflection units for exact redirection of the transmitted light beam on the receiving element difficult and often can only be accomplished by trained specialist personnel. Especially in the case of the triple reflection units mentioned, their production has been proven expensive because their reflection elements at certain angles to each other must be arranged precisely. A subsequent change in Location of these reflection elements, for example to change the offset distance, is not possible without complex adjustment measures.

Es ist eine Aufgabe der Erfindung, eine optoelektronische Sensoreinrichtung der eingangs genannten Art zu schaffen, die mit geringem Aufwand herzustellen und bei verstellbarem Versatzabstand zur erforderlichen Umlenkung des Sende-Lichtbündels auf das Empfangselement auf einfache Weise zu justieren ist.It is an object of the invention to provide an optoelectronic sensor device of the type mentioned to create that with little effort to produce and with an adjustable offset distance to the required Redirection of the transmitted light beam to the receiving element on simple Way to adjust.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß wenigstens eines der Reflexionselemente der Reflexionseinheit als Aufweitungsreflektor zur Umlenkung und Aufweitung des betreffenden Lichtbündels ausgebildet ist.This object is achieved in that at least one of the reflection elements of the reflection unit as an expansion reflector trained to deflect and expand the light beam in question is.

Bei der erfindungsgemäßen Sensoreinrichtung dienen die Reflexionselemente also nicht nur zur Umlenkung des betreffenden Lichtbündels, sondern wenigstens eines der Reflexionselemente bewirkt zusätzlich zur Umlenkung eine Aufweitung des Lichtbündels.The reflection elements are used in the sensor device according to the invention So not only to redirect the light beam in question, but at least one of the reflection elements causes in addition to the deflection an expansion of the light beam.

Diese Aufweitung eines Lichtbündels vergrößert in vorteilhafter Weise dessen Winkelverfügbarkeit. Dadurch wird die Justierung des als Aufweitungsreflektor ausgebildeten Reflexionselements vereinfacht, da seine Winkelausrichtung zur Umlenkung des Lichtbündels auf das nachfolgende Reflexions- bzw. Empfangselement aufgrund der Aufweitung des umgelenkten Lichtbündels nicht mit derselben Genauigkeit eingestellt werden muß wie bei einem Lichtbündel von vergleichsweise geringem Bündeldurchmesser.This widening of a light beam advantageously enlarges it Angle availability. This makes the adjustment of the expansion reflector trained reflection element simplified because its Angular alignment to redirect the light beam to the next one Reflection or reception element due to the expansion of the deflected Beams can not be set with the same accuracy must be like a light beam with a comparatively small beam diameter.

Umgekehrt gestaltet sich die Anordnung und Justierung der nachfolgenden Elemente einfacher, da ein nachfolgendes Element nicht exakt auf der Längsachse des dieses Element beaufschlagenden Lichtbündels angeordnet sein muß, sondern aufgrund der Aufweitung dieses Lichtbündels auch hierzu geringfügig benachbart angeordnet sein kann, um dennoch eine für die Überwachungsfunktion der Sensoreinrichtung ausreichende Lichtmenge zu empfangen. Außerdem kann die Aufweitung des Lichtbündels - bei dessen weiterer Umlenkung an einem nachfolgenden nächsten Reflexionselement - auf entsprechende Weise auch die Justierung des in diesem Sinne übernächsten Elements vereinfachen.The reverse is the arrangement and adjustment of the following Elements easier because a subsequent element is not exactly on the Longitudinal axis of the light beam acting on this element is arranged must be, but also due to the expansion of this light beam this can be arranged slightly adjacent to one for the monitoring function of the sensor device sufficient amount of light to recieve. It can also expand the light beam - With its further deflection at a subsequent next reflection element - In a corresponding way, the adjustment of this Simplify the sense of the next element.

Somit kann die Justierung vergleichsweise schnell durchgeführt werden, und sie kann auch durch nicht eigens geschultes Personal erfolgen, insbesondere durch den Betreiber der Sensoreinrichtung, beispielsweise nachdem diese zur Änderung des Verlaufs von Sende- und Empfangs-Lichtbündel umgerüstet worden ist. Außerdem ist die erfindungsgemäße Sensoreinrichtung flexibel in verschiedenartigen Umgebungsbedingungen einsetzbar, da die Umlenkung der Lichtbündel mittels der Reflexionseinheit beispielsweise von Effekten der Temperaturausdehnung oder von Vibrationen großer Werkmaschinen, an welchen oder benachbart zu welchen die Reflexionseinheit angebracht ist, nicht oder nur geringfügig gestört wird.The adjustment can thus be carried out comparatively quickly, and it can also be done by unskilled personnel, especially by the operator of the sensor device, for example after this to change the course of the transmit and receive light beams has been converted. In addition, the invention Sensor device flexible in different environmental conditions can be used because the light beam is deflected by means of the reflection unit for example, effects of temperature expansion or vibrations large machine tools, on which or adjacent to which the reflection unit is attached, not or only slightly disturbed becomes.

In ähnlicher Weise wie vorstehend für die Justierung der erfindungsgemäßen Sensoreinrichtung erläutert, vereinfacht sich auch deren Herstellung in vorteilhafter Weise. Da aufgrund der erfindungsgemäßen Ausbildung die Anforderungen an die Genauigkeit der Lage und der Winkelausrichtung der Reflexionselemente vergleichsweise gering sind, können sehr einfache Justierungsmechanismen vorgesehen werden, oder es kann auf diese vollständig verzichtet werden. Beispielsweise ist es möglich, die Reflexionselemente in einem Gehäuse der Reflexionseinheit durch ein einfaches Einschnappen oder Einrasten zu befestigen. Neben der vereinfachten Herstellung ergibt sich hierdurch auch eine vorteilhaft geringe Baugröße der Reflexionseinheit, welche neuartige Anordnungsmöglichkeiten für die Reflexionseinheit ermöglicht.In a similar manner as above for the adjustment of the invention Sensor device explained, their manufacture is also simplified in an advantageous manner. Because of the training according to the invention the requirements for the accuracy of the position and the angular orientation the reflection elements are comparatively small, can be very simple adjustment mechanisms are provided, or it can be based on these are completely dispensed with. For example, it is possible to use the reflection elements in a housing of the reflection unit by a simple Snap or snap into place. In addition to the simplified Manufacturing also results in an advantageously small size the reflection unit, which new arrangement options for the Allows reflection unit.

Gegenüber der Verwendung eines von vornherein aufgeweiteten Sende-Lichtbündels besitzt die erfindungsgemäße Sensoreinrichtung den Vorteil, daß das Lichtbündel erst an den für die Justierung der Sensoreinrichtung kritischen Abschnitten des Strahlengangs erfolgt, wodurch die mit einer Aufweitung des Lichtbündels einhergehende Verringerung dessen Lichtintensität vergleichsweise gering gehalten werden kann. Compared to the use of a transmission light bundle that has been expanded from the outset the sensor device according to the invention has the advantage that the light beam only at the for the adjustment of the sensor device critical sections of the beam path takes place, which means that with a Widening of the light bundle accompanied by a reduction in its light intensity can be kept comparatively low.

Aufgrund dieses Effekts der Verringerung der Lichtintensität des aufgeweiteten Lichtbündels funktioniert die Erfindung besonders gut für vergleichsweise geringe Laufstrecken der jeweils aufgeweiteten Lichtbündel.Because of this effect of reducing the light intensity of the expanded The light beam of the invention works particularly well for comparative purposes short distances of each widened light beam.

Der Aufweitungsreflektor der erfindungsgemäßen Sensoreinrichtung ist bevorzugt als gewölbter Aufweitungsspiegel ausgebildet, insbesondere als im wesentlichen konvex gewölbter Aufweitungsspiegel. Auch eine im wesentlichen konkave Wölbung des Aufweitungsspiegels ist möglich. Ein derartiger Aufweitungsspiegel läßt sich auf einfache Weise herstellen, beispielsweise durch Spritzgießen oder Tiefziehen und anschließende Bedampfung mit einer reflektierenden Schicht.The expansion reflector of the sensor device according to the invention is preferably designed as a curved expansion mirror, in particular as essentially convex expansion mirror. Also essentially one concave curvature of the expansion mirror is possible. On Such an expansion mirror can be produced in a simple manner, for example by injection molding or deep drawing and subsequent vapor deposition with a reflective layer.

Ein für die erfindungsgemäße Sensoreinrichtung geeigneter Aufweitungsspiegel bewirkt die Aufweitung eines an seiner gewölbten Oberfläche reflektierten Lichtbündels, und zwar in Abhängigkeit von dem Krümmungsradius der Wölbung der von dem Lichtbündel beaufschlagten Spiegelfläche. Der Krümmungsradius der Wölbung kann sphärisch, d.h. im Querschnitt als Radius eines Kreises, torisch oder asphärisch vorgesehen sein. Es ist möglich, durch entsprechende Krümmungsradien eine unterschiedlich starke Aufweitung eines Lichtbündels an verschiedenen, bezüglich des Strahlengangs hintereinander angeordneten Reflexionselementen vorzusehen.A widening mirror suitable for the sensor device according to the invention causes the expansion of one reflected on its curved surface Light beam, depending on the radius of curvature the curvature of the mirror surface acted upon by the light beam. The radius of curvature of the curvature can be spherical, i.e. in cross section be provided as a radius of a circle, toric or aspherical. It is possible to use different radii of curvature strong widening of a light beam at different, with respect provide reflection elements arranged one behind the other in the beam path.

Die Aufweitung des Lichtbündels durch der. Aufweitungsreflektor kann entweder entlang im wesentlichen einer einzigen Richtung senkrecht zu der Längsachse des vom Aufweitungsreflektor umgelenkten Lichtbündels erfolgen, oder entlang im wesentlichen zweier jeweils zu der genannten Längsachse und zueinander senkrechten Richtungen. Für die erstgenannte Möglichkeit der Lichtbündel-Aufweitung kann der Aufweitungsreflektor als konvex gewölbter Aufweitungsspiegel mit der Form eines Teils der Mantelfläche eines Zylinders ausgebildet sein.The expansion of the light beam through the. Expansion reflector can either along essentially a single direction perpendicular to the longitudinal axis of the light beam deflected by the expansion reflector take place, or along essentially two each to said Longitudinal axis and directions perpendicular to each other. For the former The expansion reflector can be used to expand the light beam as a convex expansion mirror with the shape of a part the lateral surface of a cylinder.

Eine Aufweitung des Lichtbündels entlang dessen gesamten Umfanges läßt sich auf einfache Weise erreichen, wenn der Aufweitungsreflektor als Aufweitungsspiegel im wesentlichen in der Form eines Teils der Oberfläche einer Kugel ausgebildet ist. In entsprechender Weise kann ein Aufweitungsspiegel die Form eines Teils der Mantelfläche eines Torids oder eines Tonnenkörpers besitzen, also eines Körpers, der aus der Rotation einer gekrümmten Linie, beispielsweise einer Kreislinie oder einer Parabel, hervorgeht. Weiterhin kann der Aufweitungsspiegel die Form eines Teils der Oberfläche eines Körpers aufweisen, der ähnlich einer Kugel oder einem Tonnenkörper ausgebildet ist, jedoch mit durchweg oder zumindest teilweise asphärischen Krümmungsradien. Falls der Aufweitungsspiegel nicht rein sphärisch ausgebildet ist, erfolgt die Aufweitung eines reflektierten Lichtbündels in verschiedenen Richtungen senkrecht zu der Längsachse des reflektierten Lichtbündels unterschiedlich stark, entsprechend dem jeweils zugeordneten Krümmungsradius der Oberfläche des Aufweitungsspiegels.An expansion of the light beam along its entire circumference can be easily achieved if the expansion reflector as Expansion mirror essentially in the form of part of the surface a ball is formed. A widening mirror can be used in a corresponding manner the shape of part of the lateral surface of a torid or Own barrel body, that is, a body that results from the rotation of one curved line, for example a circular line or a parabola. Furthermore, the expansion mirror can take the form of part of the Have surface of a body that is similar to a sphere or Barrel body is formed, but with consistently or at least partially aspherical radii of curvature. If the expansion mirror is not is formed purely spherical, the expansion of a reflected Light beam in different directions perpendicular to the longitudinal axis of the reflected light beam to different degrees, according to the each assigned radius of curvature of the surface of the expansion mirror.

Alternativ zu einer Ausbildung des Aufweitungsreflektors als gewölbter Aufweitungsspiegel können beliebige andere optische Elemente zur Erzielung des Effekts einer Umlenkung und einer gleichzeitigen Aufweitung des Lichtbündels verwendet werden. Insbesondere ist es möglich, den Aufweitungsreflektor als Kombination eines ebenen Spiegels und einer Zerstreuungslinse auszubilden. As an alternative to designing the expansion reflector as a curved one Expansion mirrors can be used to achieve any other optical elements the effect of a redirection and a simultaneous expansion of the Light beam can be used. In particular, it is possible to use the expansion reflector as a combination of a flat mirror and a diverging lens train.

In einer bevorzugten Ausführungsform der erfindungsgemäßen Sensoreinrichtung besitzt die Reflexionseinheit genau zwei Reflexionselemente, und das Sendeelement und das Empfangselement einerseits bzw. die Reflexionseinheit andererseits sind auf einander im wesentlichen gegenüberliegenden Seiten des Schutzbereichs angeordnet, so daß das Sende-Lichtbündel und das Empfangs-Lichtbündel in einander entgegengesetzten Strahlrichtungen zwischen diesen beiden Seiten verlaufen. Insbesondere können die beiden Lichtbündel parallel und um einen Versatzabstand beabstandet zueinander verlaufen, wobei die Reflexionseinheit also letztlich eine U-förmige Umlenkung des Sende-Lichtbündels um 180 ° bewirkt. Das Sende- und Empfangs-Lichtbündel können jedoch auch beliebige Winkel zueinander einnehmen und/oder sich schneiden.In a preferred embodiment of the sensor device according to the invention the reflection unit has exactly two reflection elements, and the transmitting element and the receiving element on the one hand or the reflection unit on the other hand are essentially opposite to each other Sides of the protection area arranged so that the transmit light beam and the received light beam in opposite to each other Beam directions run between these two sides. In particular the two light beams can be parallel and spaced apart by an offset distance run towards each other, so the reflection unit ultimately causes a U-shaped deflection of the transmitted light beam by 180 °. The However, transmit and receive light bundles can also have any angle take each other and / or cut each other.

Während es insbesondere bei der Ausführungsform der Erfindung mit genau zwei Reflexionselementen bevorzugt ist, wenn alle Reflexionselemente der Reflexionseinheit als gewölbte Aufweitungsspiegel ausgebildet sind, ist es auch möglich, einen Teil der Reflexionselemente in herkömmlicher Weise auszubilden, beispielsweise als ebener Spiegel oder als Dachkant-Element.While it is particularly accurate with the embodiment of the invention two reflection elements is preferred if all reflection elements the reflection unit is designed as a curved expansion mirror it is also possible to use some of the reflection elements in a conventional manner to train, for example as a flat mirror or as a roof edge element.

Im Rahmen der Erfindung kann die Reflexionseinheit auch mehr als die zwei bevorzugten Reflexionselemente aufweisen. In diesem Fall erfolgt die Umlenkung des Sende-Lichtbündels mittels der zwei genannten Reflexionselemente zu dem Empfangselement zumindest in indirekter Weise, nämlich über das oder die zusätzlichen Reflexionselemente. Insbesondere kann zwischen dem ersten und dem zweiten Reflexionselement als drittes Reflexionselement ein halbdurchlässiger Spiegel vorgesehen sein, der einen Teil des ihn beaufschlagenden Lichtbündels zur zusätzlichen DurchSetzung des Schutzbereichs mit einem Lichtbündel in Richtung eines zusätzliches Empfangselements umlenkt.In the context of the invention, the reflection unit can also do more than that have two preferred reflection elements. In this case the Deflection of the transmitted light beam by means of the two reflection elements mentioned to the receiving element at least indirectly, namely about the additional reflection element or elements. In particular can be the third between the first and the second reflection element Reflection element can be provided a semi-transparent mirror, the one Part of the light beam that impacts him for additional enforcement of the protection area with a light beam in the direction of an additional one Redirects reception elements.

Ferner ist es im Rahmen der Erfindung möglich, daß das Sendeelement und das Empfangselement auf einander gegenüberliegenden Seiten des Schutzbereichs angeordnet sind, während die Reflexionseinheit im wesentlichen im Zentrum des Schutzbereichs angeordnet ist und die Umlenkung des Sende-Lichtbündels um einen Versatzabstand, jedoch im wesentlichen ohne Richtungsänderung bewirkt, so daß das Lichtbündel beispielsweise einem stufenförmigen Verlauf folgt.Furthermore, it is possible within the scope of the invention that the transmitting element and the receiving element on opposite sides of the Protection area are arranged while the reflection unit essentially is located in the center of the protected area and the redirection of the transmitted light beam by an offset distance, but essentially without changing direction, so that the light beam, for example follows a step-like course.

Die Erfindung erstreckt sich auch auf eine wenigstens zwei Reflexionselemente aufweisende Reflexionseinheit, die in entsprechender Weise wie vorstehend für die erfindungsgemäße Sensoreinheit beschrieben zur Umlenkung eines Sendes-Lichtbündels an den Reflexionselementen zu einem Empfangselement vorgesehen ist, und bei der wenigstens eines der Reflexionselemente als Aufweitungsreflektor ausgebildet ist, der zusätzlich zur Umlenkung eine Aufweitung des betreffenden Lichtbündels bewirkt. Diese Reflexionseinheit kann im wesentlichen aufgebaut sein, wie vorstehend im Zusammenhang mit der erfindungsgemäßen Sensoreinrichtung beschrieben. Insbesondere ist es bevorzugt, wenn der Aufweitungsreflektor als konvex gewölbter Aufweitungsspiegel ausgebildet ist.The invention also extends to at least two reflection elements having reflection unit, which in a similar manner as described above for the sensor unit according to the invention for deflection of a transmitted light bundle on the reflection elements to one Receiving element is provided, and in the at least one of the reflection elements is designed as an expansion reflector, in addition to Deflection causes an expansion of the light beam in question. This Reflection unit can be constructed essentially as in the above Described in connection with the sensor device according to the invention. In particular, it is preferred if the expansion reflector as convex expansion mirror is formed.

Weitere Ausführungsformen der Erfindung sind in den Unteransprüchen beschrieben. Die Erfindung wird nachfolgend anhand eines Ausführungsbeispiels im Zusammenhang mit den Figuren beschrieben; in diesen zeigen:

Fig. 1a und 1b
eine perspektivische Seitenansicht einer erfindungsgemäßen Sensoreinrichtung mit einer Reflexionseinheit bzw. eine Querschnitts-Seitenansicht dieser Reflexionseinheit,
Fig. 2a und 2b
eine perspektivische Seitenansicht der Sensoreinrichtung gemäß Fig. 1 mit bezüglich einer ersten Achse verkippter Reflexionseinheit bzw. eine Querschnitts-Seitenansicht dieser Reflexionseinheit,
Fig. 2c
eine Querschnitts-Seitenansicht einer Reflexionseinheit mit im Vergleich zur Reflexionseinheit gemäß Fig. 2b unterschiedlich angeordneten Reflexionselementen, und
Fig. 3a und 3b
eine perspektivische Seitenansicht der Sensoreinrichtung gemäß Fig. 1 mit bezüglich einer weiteren Achse verkippter Reflexionseinheit bzw. eine schematische Draufsicht auf diese Reflexionseinheit.
Further embodiments of the invention are described in the subclaims. The invention is described below using an exemplary embodiment in connection with the figures; in these show:
1a and 1b
2 shows a perspective side view of a sensor device according to the invention with a reflection unit or a cross-sectional side view of this reflection unit,
2a and 2b
2 shows a perspective side view of the sensor device according to FIG. 1 with a reflection unit tilted with respect to a first axis, and a cross-sectional side view of this reflection unit,
Fig. 2c
a cross-sectional side view of a reflection unit with differently arranged reflection elements compared to the reflection unit according to FIG. 2b, and
3a and 3b
2 shows a perspective side view of the sensor device according to FIG. 1 with a reflection unit tilted with respect to a further axis, and a schematic top view of this reflection unit.

Fig. 1a zeigt eine erfindungsgemäße opto-elektronische Sensoreinrichtung in perspektivischer Seitenansicht. Diese Sensoreinrichtung besitzt ein Sendeelement 11 und ein hierzu benachbart angeordnetes Empfangselement 13, sowie eine diesen Elementen 11, 13 gegenüberliegend angeordnete Reflexionseinheit 15 mit einem innerhalb eines gemeinsamen Gehäuses angeordneten ersten Aufweitungsspiegel 17 und zweiten Aufweitungsspiegel 19. 1a shows an optoelectronic sensor device according to the invention in perspective side view. This sensor device has a Transmitting element 11 and a receiving element arranged adjacent to it 13, and one arranged opposite these elements 11, 13 Reflection unit 15 with a within a common housing arranged first expansion mirror 17 and second expansion mirror 19th

Ein Sende-Lichtbündel 21 verläuft von dem Sendeelement 11 in einer Sende-Strahlrichtung A zu dem ersten Aufweitungsspiegel 17, von dem es als Umlenk-Lichtbündel 23 in einer Umlenk-Strahlrichtung B zum zweiten Aufweitungsspiegel 19 umgelenkt wird. Dieses Umlenk-Lichtbündel 23 wird vom zweiten Aufweitungsspiegel 19 derart in eine Empfangs-Strahlrichtung C umgelenkt, daß es als Empfangs-Lichtbündel 25 das Empfangselement 13 beaufschlagt.A transmission light bundle 21 extends from the transmission element 11 in one Transmit beam direction A to the first expansion mirror 17, from which it as a deflecting light bundle 23 in a deflecting beam direction B to the second Expansion mirror 19 is deflected. This deflecting light bundle 23 is from the second expansion mirror 19 in a received beam direction C deflected that it as the receiving light bundle 25, the receiving element 13 acted upon.

In Fig. 1a sind weiterhin Achsen X, Y, Z eines orthogonalen Koordinatensystems eingezeichnet. Die Sende-Strahlrichtung A und die Empfangs-Strahlrichtung C verlaufen gegensinnig bzw. gleichsinnig parallel zu der X-Achse, und zwar um einen Versatzabstand D voneinander beabstandet. Die Umlenk-Strahlrichtung B des am ersten Aufweitungsspiegel 17 umgelenkten Lichtbündels 23 verläuft gegensinnig parallel zur Z-Achse dergestalt, daß dieses Lichtbündel 23 sowie das Sende- und das Empfangs-Lichtbündel 21 bzw 25 U-förmig im wesentlichen innerhalb einer gemeinsamen Ebene verlaufen.In Fig. 1a axes X, Y, Z of an orthogonal coordinate system are also located. The send beam direction A and the receive beam direction C run in opposite or parallel directions to the X-axis, namely spaced apart by an offset distance D. The deflecting beam direction B of the deflected at the first expansion mirror 17 Beam 23 runs in opposite directions parallel to the Z axis, that this light beam 23 and the transmit and receive light beams 21 or 25 U-shaped essentially within a common one Level.

Die beiden Aufweitungsspiegel 17, 19 sind innerhalb des Gehäuses der Reflexionseinheit 15 entlang der Z-Achse beabstandet voneinander angeordnet. Das Gehäuse weist geeignete, in den Figuren nicht dargestellte Öffnungen auf, so daß das Sende-Lichtbündel 21 den ersten Aufweitungsspiegel 17 ungehindert beaufschlagen und das Empfangs-Lichtbündel 25 von dem zweiten Aufweitungsspiegel 19 ungehindert in Empfangs-Strahlrichtung C verlaufen kann.The two expansion mirrors 17, 19 are inside the housing Reflection unit 15 arranged spaced apart from one another along the Z axis. The housing has suitable, not shown in the figures Openings so that the transmit light beam 21 the first expansion mirror 17 act unhindered and the reception light bundle 25 unhindered by the second expansion mirror 19 in the received beam direction C can run.

Die beiden Aufweitungsspiegel 17, 19 besitzen jeweils die Form eines Teils der Mantelfläche eines Zylinders, wobei die reflektierende Seite der Spiegel 17, 19 der konvexen Außenseite dieser Mantelfläche entspricht. Somit sind jeweils zwei gegenüberliegende Seitenkanten der beiden Spiegel 17, 19 kreislinienförmig gekrümmt, und die beiden anderen einander gegenüberliegenden Seitenkanten verlaufen im wesentlichen geradlinig parallel zueinander. Dementsprechend erfolgt eine Aufweitung eines Lichtbündels 23, 25, das von einem der Aufweitungsspiegel 17, 19 umgelenkt wird, jeweils in einer Richtung senkrecht zu der Strahlrichtung dieses Lichtbündels 23, 25, nämlich entlang des Verlaufs der gekrümmten Seitenkanten und senkrecht zum Verlauf der geradlinigen Seitenkanten.The two expansion mirrors 17, 19 each have the shape of a part the lateral surface of a cylinder, with the reflective side of the mirror 17, 19 corresponds to the convex outside of this lateral surface. Consequently are two opposite side edges of the two mirrors 17, 19 curved in a circular line, and the other two opposite each other Side edges are essentially parallel and straight to each other. Accordingly, a light beam is expanded 23, 25, which is deflected by one of the expansion mirrors 17, 19, respectively in a direction perpendicular to the beam direction of this light beam 23, 25, namely along the course of the curved side edges and perpendicular to the course of the straight side edges.

Die beiden Aufweitungsspiegel 17, 19 sind dergestalt relativ zueinander und zu den Lichtbündeln 21, 23, 25 ausgerichtet, daß der erste Aufweitungsspiegel 17 und der zweite Aufweitungsspiegel 19 jeweils eine Aufweitung des Querschnitts des Umlenk-Lichtbündels 23 bzw. des Empfangs-Lichtbündels 25 in Y-Richtung bewirken, d.h. eine Aufweitung des Querschnitts entlang und entgegen der Y-Achse. Die Aufweitung des Empfangs-Lichtbündels 25 in Y-Richtung ist in Fig. 1a zu erkennen.The two expansion mirrors 17, 19 are in this way relative to one another and aligned with the light beams 21, 23, 25 that the first expansion mirror 17 and the second expansion mirror 19 each an expansion of the cross section of the deflecting light bundle 23 or of the receiving light bundle 25 in the Y direction, i.e. an expansion of the Cross section along and against the Y axis. The expansion of the Receiving light bundle 25 in the Y direction can be seen in Fig. 1a.

Fig. 1b zeigt die Reflexionseinheit 15 und den Strahlengang der Lichtbündel 21, 23, 25 in einer schematischen Querschnitts-Seitenansicht. Der geradlinige Verlauf des Querschnitts der Aufweitungsspiegel 17, 19 entspricht dem Verlauf der jeweiligen zwei geradlinigen Seitenkanten.1b shows the reflection unit 15 and the beam path of the light beams 21, 23, 25 in a schematic cross-sectional side view. The straight forward Course of the cross section of the expansion mirror 17, 19 corresponds the course of the two straight side edges.

Die in Fig. 1a dargestellte Sensoreinrichtung dient zur Überwachung eines zwischen Sendeelement 11 und Empfangselement 13 einerseits sowie Reflexionseinheit 15 andererseits gelegenen Schutzbereichs. Hierfür wird das Sende-Lichtbündel 21 auf bekannte Weise kontinuierlich oder in schnellen Pulsen vom Sendeelement 11 ausgesendet, während das Empfangselement 13 kontinuierlich oder sendersynchron den Empfang des Empfangs-Lichtbündels 25 überwacht. Falls dieser Empfang aufgrund einer Unterbrechung des Sende-Lichtbündels 21 oder des Empfangs-Lichtbündels 25 unterbrochen wird, gibt eine der Sensoreinrichtung zugeordnete, in Fig. 1a nicht dargestellte Auswerteeinheit ein entsprechendes Ausgangssignal ab, beispielsweise ein Warn-, Abschalt- oder Steuersignal.The sensor device shown in Fig. 1a is used to monitor a between transmitting element 11 and receiving element 13 on the one hand and reflection unit 15 protection area on the other hand. For that it will Transmit light bundle 21 continuously or in a fast manner in a known manner Pulses emitted by the transmitting element 11 while the receiving element 13 continuously or synchronously with the reception of the received light beam 25 monitors. If this reception is due to a Interruption of the transmitted light beam 21 or the received light beam 25 is interrupted, there is an assigned to the sensor device, a corresponding evaluation unit, not shown in FIG. 1a Output signal from, for example a warning, shutdown or control signal.

Fig. 1a zeigt die Sensoreinrichtung in ideal justierter Stellung, d. h. das Sendelichtbündel 21 wird nach Umlenkung an den beiden Aufweitungsspiegeln 17, 19 als Empfangs-Lichtbündel 25 derart auf das Empfangselement 13 reflektiert, daß die Längsachse C des Empfangs-Lichtbündels 25 im wesentlichen zentral durch das Empfangselement 13 verläuft.Fig. 1a shows the sensor device in an ideally adjusted position, i. H. the Beam 21 is transmitted after deflection at the two expansion mirrors 17, 19 as a reception light bundle 25 on the reception element 13 reflects that the longitudinal axis C of the received light beam 25 runs essentially centrally through the receiving element 13.

Die für eine derartige Justierung erforderliche, vorstehend beschriebene Anordnung der beiden Aufweitungsspiegel 17, 19 innerhalb der Reflexionseinheit 15 läßt sich bei der Herstellung der Sensoreinrichtung auf einfache Weise bewerkstelligen, da der Strahlverlauf B, C aufgrund der konvex gewölbten Ausbildung der Spiegel 17, 19 vergleichsweise unkritisch auf geringfügige Abweichungen von der dargestellten bzw. beschriebenen Stellung der Spiegel 17, 19 reagiert. Aufgrund der Aufweitung des Sende-Lichtbündels 21 mittels des ersten Aufweitungsspiegels 17 bzw. der Aufweitung des Umlenk-Lichtbündels 23 mittels des zweiten Aufweitungsspiegels 19 beaufschlagt auch bei Abweichung der jeweiligen Lage und Ausrichtung der Spiegel 17, 19 von ihrer Idealstellung noch ein ausreichender Teil des reflektierten Lichtbündels 23 bzw. 25 das jeweils nachfolgende Element 19 bzw. 13. The one described above for such an adjustment Arrangement of the two expansion mirrors 17, 19 within the reflection unit 15 can be in the manufacture of the sensor device accomplish in a simple manner, since the beam path B, C due to the convex curved design of the mirrors 17, 19 comparatively uncritical for slight deviations from that shown or described Position of the mirrors 17, 19 reacts. Due to the expansion of the Transmit light bundle 21 by means of the first expansion mirror 17 or the Widening the deflecting light bundle 23 by means of the second widening mirror 19 applies even in the event of a deviation in the respective location and Alignment of the mirrors 17, 19 from their ideal position is still sufficient Part of the reflected light beam 23 or 25 is the following one Element 19 or 13.

In ähnlicher Weise bleibt das Empfangselement 13 auch bei einer gewissen Verkippung der gesamtem Reflexionseinheit 15 noch in ausreichender Weise vom Empfangs-Lichtbündel 25 beaufschlagt. Zur Erläuterung dieser vorteilhaften Eigenschaft der erfindungsgemäßen Sensoreinrichtung ist in den Fig. 2a und 2b eine Verkippung der Reflexionseinheit 15 um die Y-Achse und in den Fig. 3a und 3b eine Verdrehung der Reflexionseinheit 15 um die Z-Achse dargestellt. Diese Figuren zeigen im wesentlichen dieselben Teile der erfindungsgemäßen Sensoreinrichtung wie in den Fig. 1a bzw. 1b dargestellt. Dementsprechend sind diese Teile mit denselben Bezugszeichen gekennzeichnet.Similarly, the receiving element 13 remains at a certain level Tilting of the entire reflection unit 15 is still sufficient Way acted upon by the received light beam 25. To explain this advantageous property of the sensor device according to the invention is a tilting of the reflection unit 15 in FIGS. 2a and 2b Y-axis and in FIGS. 3a and 3b a rotation of the reflection unit 15 around the Z axis. These figures show essentially the same Parts of the sensor device according to the invention as in Fig. 1a or 1b shown. Accordingly, these parts have the same reference numerals characterized.

Fig. 2a und 2b zeigen die Sensoreinrichtung in perspektivischer Seitenansicht bzw. das Reflexionselement 15 in Querschnitts-Seitenansicht, wobei das Reflexionselement 15 bezüglich der Y-Achse gekippt ist. Das Umlenk-Lichtbündel 23 und das Sende-Lichtbündel 21 bzw. das Empfangs-Lichtbündel 25 stehen also nicht mehr in dem in Fig. 1a und 1b gezeigten Winkel von jeweils 90° zueinander. Das Empfangselement 13 wird dennoch in einem für die Überwachung des Schutzbereichs ausreichenden Maße vom Empfangs-Lichtbündel 25 beaufschlagt. Dies liegt an der bekannten 180°-Reflexion einer 90°-Dachkant-Reflexionseinheit, welche die beiden Aufweitungsspiegel 17, 19 aufgrund ihrer in Fig. 2b gezeigten Relativwinkel-Stellung von 90° zueinander bilden. Dadurch wird das Sende-Lichtbündel 21 nach wie vor letztlich um 180° reflektiert.2a and 2b show the sensor device in a perspective side view or the reflection element 15 in cross-sectional side view, wherein the reflection element 15 is tilted with respect to the Y axis. The deflecting light beam 23 and the transmit light beam 21 or the receive light beam 25 are therefore no longer at the angle shown in FIGS. 1a and 1b of 90 ° to each other. The receiving element 13 is still in a measure sufficient to monitor the protection area Receiving light bundle 25 is applied. This is due to the well-known 180 ° reflection a 90 ° roof reflection unit, which the two expansion mirrors 17, 19 due to their relative angle position shown in Fig. 2b of 90 ° to each other. This will make the transmit light beam 21 still ultimately reflected by 180 °.

Bei der erfindungsgemäßen Reflexionseinheit 15 ist die Montage der beiden Spiegel 17, 19 im Vergleich zu herkömmlichen Reflexionseinheiten mit ebenen Spiegeln jedoch deutlich einfacher, da sich der Strahlengang B, C von Umlenk-Lichtbündel 23 und Empfangs-Lichtbündel 25 aufgrund deren Aufweitung insbesondere bei großen Versatzabständen relativ unkritisch verhält gegenüber Abweichungen der Relativwinkel-Stellung der beiden Aufweitungsspiegel 17, 19 von ihrer Ideal-Stellung von 90°. Dies ermöglicht größere Toleranzen in der Herstellung und Justierung der erfindungsgemäßen Reflexionseinheit 15.In the reflection unit 15 according to the invention, the assembly of the two Mirrors 17, 19 compared to conventional reflection units plane mirrors, however, much easier since the beam path B, C of deflecting light bundle 23 and received light bundle 25 due to this Widening is relatively uncritical, especially with large offset distances behaves towards deviations in the relative angle position of the two Expansion mirrors 17, 19 from their ideal position of 90 °. this makes possible Greater tolerances in the manufacture and adjustment of the invention Reflection unit 15.

Aus der Querschnitts-Seitenansicht gemäß Fig. 2b geht jedoch auch hervor, daß der Versatzabstand D zwischen Sende-Lichtbündel 21 und Empfangs-Lichtbündel 25 sich aufgrund der Verkippung der Reflexionseinheit 15 und somit des Umlenk-Lichtbündels 23 verkürzt, so daß die Längsachse C des Empfangs-Lichtbündels 25 mit zunehmender derartiger Verkippung vom Empfangselement 13 weg in Richtung des Sendeelements 11, d.h. entlang der Z-Achse wandert.However, the cross-sectional side view according to FIG. 2b also shows that the offset distance D between the transmitted light beam 21 and the received light beam 25 due to the tilting of the reflection unit 15 and thus the deflecting light beam 23 is shortened, so that the longitudinal axis C of the received light beam 25 with increasing such tilting away from the receiving element 13 in the direction of the transmitting element 11, i.e. migrates along the Z axis.

Dieser Effekt des Abwanderns des Empfangs-Lichtbündels 25 kann durch eine erfindungsgemäße Reflexionseinheit 15 ausgeglichen werden, wie sie in einer Querschnitts-Seitenansicht in Fig. 2c dargestellt ist. Bei dieser Reflexionseinheit 15 ist der erste Aufweitungsspiegel 17 gegenüber dem zweiten Aufweitungsspiegel 19 dergestalt verdreht, daß die beiden geradlinigen Seitenkanten des ersten Aufweitungsspiegels 17 zu den geradlinigen Seitenkanten des zweiten Aufweitungsspiegels 19 in einer Ansicht entlang der Z-Achse einen Winkel von 90° relativ zueinander einnehmen. Dementsprechend zeigt die Seitenansicht gemäß Fig. 2c einen gekrümmten Querschnitt des ersten Aufweitungsspiegels 17, entsprechend den gekrümmten Seitenkanten dieses Spiegels 17.This effect of the migration of the received light bundle 25 can be caused by a reflection unit 15 according to the invention can be compensated as they is shown in a cross-sectional side view in Fig. 2c. At this Reflection unit 15 is the first expansion mirror 17 compared to that twisted second expansion mirror 19 so that the two straight lines Side edges of the first expansion mirror 17 to the straight line Side edges of the second expansion mirror 19 in a view along make an angle of 90 ° with respect to the Z axis. Accordingly shows the side view of FIG. 2c a curved cross section of the first expansion mirror 17, corresponding to the curved ones Side edges of this mirror 17.

In dieser Anordnung bewirkt der erste Aufweitungsspiegel 17 eine Aufweitung des Querschnitts des Umlenk-Lichtbündels 23 in X-Richtung. In this arrangement, the first expansion mirror 17 causes an expansion of the cross section of the deflecting light bundle 23 in the X direction.

Diese Aufweitung erscheint nach Umlenkung am zweiten Aulweitungsspiegel 19 als Aufweitung des Empfangs-Lichtbündels 25 in Z-Richtung, zusätzlich zu dessen von dem zweiten Aufweitungsspiegel 19 verursachten Aufweitung in Y-Richtung. Die Aufweitung des Empfangs-Lichtbündels 25 in Z-Richtung kann den erläuterten Effekt des Abwanderns des Empfangs-Lichtbündels 25 vom Empfangselement 13 ausgleichen. Daher erlaubt die erfindungsgemäße Reflexionseinheit 15 aufgrund ihrer Ausbildung mit gewölbten Aufweitungsspiegeln 17, 19 gegenüber einer bekannten Reflexionseinheit mit ebenen Spiegeln eine stärkere Verkippung und somit für die Ausrichtung der Reflexionseinheit 15 großzügigere MontageToleranzen.This widening appears on the second widening mirror after deflection 19 as widening of the reception light bundle 25 in the Z direction, in addition to that caused by the second expansion mirror 19 Expansion in the Y direction. The expansion of the reception light bundle 25 in the Z direction can the explained effect of the migration of the received light beam Compensate 25 from the receiving element 13. Therefore allowed the reflection unit 15 according to the invention due to its design with arched expansion mirrors 17, 19 compared to a known one Reflection unit with flat mirrors a stronger tilt and thus more generous assembly tolerances for the alignment of the reflection unit 15.

Fig. 3a und 3b zeigen die Sensoreinrichtung gemäß Fig. 1a und 1b in einer perspektivischen Seitenansicht bzw. in einer schematischen Draufsicht, wobei die Reflexionseinheit 15 bezüglich der Z-Achse verdreht ist.3a and 3b show the sensor device according to FIGS. 1a and 1b in one perspective side view or in a schematic top view, wherein the reflection unit 15 is rotated with respect to the Z axis.

Während aufgrund der Verdrehung der Reflexionseinheit 15 die Empfangs-Strahlrichtung C bezüglich des Empfangselements 13 in Y-Richtung seitlich verschwenkt ist, wird das Empfangselement 13 aufgrund der Aufweitung des Empfangs-Lichtbündels 25 in Y-Richtung dennoch lichtbeaufschlagt.While due to the rotation of the reflection unit 15, the received beam direction C with respect to the receiving element 13 in the Y direction is pivoted laterally, the receiving element 13 due to the expansion of the received light bundle 25 in the Y direction is nevertheless subjected to light.

Ein Ausgleich einer derartigen Verdrehung der Reflexionseinheit 15 ist zwar auch durch eine herkömmliche Tripel-Reflexionseinheit möglich, bei der ein Reflexionselement als entsprechend angeordnetes Dachkant-Element ausgebildet ist. Diese bekannte Tripel-Reflexionseinheit ist jedoch in nachteiliger Weise schwierig zu justieren, gerade bei großen Versatzabständen und insbesondere falls es möglich sein soll, unterschiedliche Versatzabstände einzustellen. Dagegen erfordert ein Aufweitungsspiegel 17, 19 der erfindungsgemäßen Reflexionseinheit 15 lediglich eine vergleichsweise geringe Genauigkeit in seiner Anordnung innerhalb der Reflexionseinheit 15. A compensation of such a rotation of the reflection unit 15 is also possible with a conventional triple reflection unit a reflection element as a correspondingly arranged roof edge element is trained. However, this known triple reflection unit is disadvantageously difficult to adjust, especially with large offset distances and especially if it should be possible, different offset distances adjust. In contrast, an expansion mirror 17 requires 19 of the reflection unit 15 according to the invention is only a comparative one low accuracy in its arrangement within the reflection unit 15th

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1111
Sendeelementtransmitting element
1313
Empfangselementreceiving element
1515
Reflexionseinheitreflection unit
1717
erster Aufweitungsspiegelfirst expansion mirror
1919
zweiter Aufweitungsspiegelsecond expansion mirror
2121
Sende-LichtbündelTransmit beam
2323
Umlenk-LichtbündelDeflecting light beams
2525
Empfangs-LichtbündelReceiving light beams
AA
Sende-StrahlrichtungTransmit beam direction
BB
Umlenk-StrahlrichtungDeflecting the beam direction
CC
Empfangs-StrahlrichtungReception beam direction
DD
Versatzabstandoffset distance
XX
Achseaxis
YY
Achseaxis
ZZ
Achseaxis

Claims (11)

  1. An optoelectronic sensor device for the monitoring of a protected zone,
    at least comprising one transmission element (11), one reception element (13) as well as a reflection unit (15) having at least one first reflection element (17) and one second reflection element (19), wherein a transmitted light bundle (21) transmitted along the protected zone from the transmission element (11) to the first reflection element (17) can be deflected along the protected zone by means of the first reflection element (17) as a deflected light bundle (23) to the second reflection element (19) and can be deflected by means of the second reflection element (19) as a received light bundle (25) to the reception element (13),
    characterised in that at least one of the reflection elements (17, 19) is made as an expansion reflector for the deflection and expansion of the relevant light bundle (23, 25).
  2. An optoelectronic sensor device in accordance with claim 1, characterised in that the expansion reflector (17, 19) is made as an arched expansion mirror, in particular as a substantially convexly arched expansion mirror.
  3. An optoelectronic sensor device in accordance with any one of the preceding claims, characterised in that the expansion reflector (17, 19) is formed for the expansion of the light bundle (23, 25) deflected by it along substantially one single direction perpendicular to the longitudinal axis (B,C) of this light bundle, with the expansion reflector in particular being formed as an arched expansion mirror (17, 19) having substantially the shape of a part of the jacket surface of a cylinder.
  4. An optoelectronic sensor device in accordance-with any of claims 1 or 2, characterised in that the expansion reflector is formed for the expansion of the light bundle deflected by it along the total periphery of the cross-section of this light bundle, with the expansion reflector in particular being formed as an arched expansion mirror having two curvatures which are different or the same; and/or substantially having the shape of a part of the surface of a sphere, of a part of the jacket surface of a barrel body, preferably of a circular barrel body, of a part of the jacket surface of a toroid or of a part of the jacket surface of an at least partly aspheric body.
  5. An optoelectronic sensor device in accordance with any one of the preceding claims, characterised in that the expansion reflector is formed as a combination of a substantially planar mirror and of a dispersing lens.
  6. An optoelectronic sensor device in accordance with any one of the preceding claims, characterised in the that reflection unit (15) has precisely two reflection elements (17, 19); and
    in that the reflection unit (15), on the one hand, and the transmission element (11) and the reception element (13), on the other hand, are arranged substantially opposite one another with respect to the protected zone, with the transmission light bundle (21) and the reception light bundle (25) extending in particular substantially parallel in opposite directions and spaced apart from one another by an offset spacing (D) inside the protected zone.
  7. An optoelectronic sensor device in accordance with claim 6, characterised in that both reflection elements (17, 19) are formed as arched expansion mirrors.
  8. An optoelectronic sensor device in accordance with claim 6, characterised in that one of the reflection elements is formed as a substantially planar mirror and the other reflection element is formed as an arched expansion mirror.
  9. An optoelectronic sensor device in accordance with claim 6, characterised in that one of the reflection elements is formed as a roof edge element and the other of the reflection elements is formed as an arched expansion mirror.
  10. A reflection unit (15) having at least one first reflection element (17) and one second reflection element (19) for the deflection by means of the first reflection element (17) to the second reflection element (19) of a transmitted light bundle (21) transmitted from a transmission element (11) to the first reflection element (17) and by means of the second reflection element (19) to a reception element (13), in particular for an optoelectronic sensor device in accordance with any one of the preceding claims,
    characterised in that at least one of the reflection elements (17, 19) is formed as an expansion reflector for the deflection and expansion of the relevant light bundle (23, 25).
  11. A reflection unit in accordance with claim 10, characterised in that the expansion reflector (17, 19) is formed as an arched expansion mirror, in particular as a substantially convexly arched expansion mirror.
EP99109753A 1998-06-25 1999-05-18 Opto-electronic sensor device Expired - Lifetime EP0967583B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19828434A DE19828434A1 (en) 1998-06-25 1998-06-25 Optoelectronic sensor device
DE19828434 1998-06-25

Publications (3)

Publication Number Publication Date
EP0967583A2 EP0967583A2 (en) 1999-12-29
EP0967583A3 EP0967583A3 (en) 2001-01-10
EP0967583B1 true EP0967583B1 (en) 2003-08-13

Family

ID=7872057

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99109753A Expired - Lifetime EP0967583B1 (en) 1998-06-25 1999-05-18 Opto-electronic sensor device

Country Status (2)

Country Link
EP (1) EP0967583B1 (en)
DE (2) DE19828434A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202010007107U1 (en) 2010-05-21 2011-11-09 Sick Ag widening reflector

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10239940A1 (en) * 2002-08-30 2004-03-25 Sick Ag Light barrier or light grid
DE10314852A1 (en) * 2003-04-02 2004-10-14 Sick Ag Optoelectronic access protection
JP7070221B2 (en) * 2018-08-07 2022-05-18 オムロン株式会社 Multi-optical axis photoelectric sensor unit
EP4016139A1 (en) * 2020-12-21 2022-06-22 Leuze electronic GmbH + Co. KG Sensor arrangement

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4205902A (en) * 1978-10-12 1980-06-03 The Perkin-Elmer Corporation Laser beam expander
US4518232A (en) * 1983-08-24 1985-05-21 Avco Everett Research Laboratory, Inc. Method and apparatus for optical beam shaping
DE9104172U1 (en) * 1991-04-06 1991-07-18 Leuze electronic GmbH + Co, 7311 Owen Retroreflector
CH689336A5 (en) * 1994-10-03 1999-02-26 Baumer Electric Ag Photocell.
DE29607076U1 (en) * 1996-04-18 1996-08-29 Erwin Sick Gmbh Optik-Elektronik, 79183 Waldkirch Opto-electronic sensor for the detection of transparent objects
DE29701903U1 (en) * 1997-02-04 1997-03-27 IMOS Gubela GmbH, 77871 Renchen Metrology retro reflector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202010007107U1 (en) 2010-05-21 2011-11-09 Sick Ag widening reflector

Also Published As

Publication number Publication date
DE59906565D1 (en) 2003-09-18
EP0967583A2 (en) 1999-12-29
EP0967583A3 (en) 2001-01-10
DE19828434A1 (en) 1999-12-30

Similar Documents

Publication Publication Date Title
EP3673291B1 (en) Transmitter device with a scanning mirror covered by a collimating covering element
EP2120025B1 (en) Optical sensor device for detecting ambient light
EP1723782B1 (en) Camera assembly and method of adjusting the lens with respect to the image sensor
DE69509567T2 (en) Non-wired optical communication system
EP0894247B1 (en) Device for measuring temperature without contact
DE69521675T2 (en) Optical arrangement for passive scanning angle doubling
DE102017200692A1 (en) Omnidirectional lighting device and method for scanning a solid angle range
DE3709351C2 (en)
DE19735037C2 (en) Device for locating objects entering a room area to be monitored
WO2017137502A1 (en) Long path cell
EP1933172B1 (en) Light barrier assembly
EP0967583B1 (en) Opto-electronic sensor device
EP1408273A2 (en) Protection device for monitoring a protected zone related to a moving element
DE3707023C2 (en)
EP1026534A1 (en) Aimable telescope system
EP2944985B1 (en) Reflection light grid
EP0408920A2 (en) Light curtain generating device
EP0275532B1 (en) Optical-mechanical deflector
EP1467228B1 (en) Optoelectronic access control device
DE2900895A1 (en) FIBER OPTIC LINE COUPLING
EP1384105B1 (en) Beam shaping device for shaping the cross-section of a light beam
EP4031901B1 (en) System with a device for optically measuring distance to both scattering and reflecting targets
EP1686398B1 (en) Optoelectronic sensor
EP1510750B1 (en) Optical position detection apparatus
EP1217686A2 (en) Device for adjusting the main beam direction of a radar sensor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE ES FI FR GB IT LI

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7G 08B 13/184 A, 7G 01V 8/14 B

AKX Designation fees paid
17P Request for examination filed

Effective date: 20010322

RBV Designated contracting states (corrected)

Designated state(s): CH DE ES FI FR GB IT LI

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE ES FI FR GB IT LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030813

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59906565

Country of ref document: DE

Date of ref document: 20030918

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031124

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040514

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20120522

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120608

Year of fee payment: 14

Ref country code: GB

Payment date: 20120522

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120522

Year of fee payment: 14

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130518

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150521

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59906565

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161201