EP0966694B1 - Process and device for determining bi-directional reflectance distribution - Google Patents

Process and device for determining bi-directional reflectance distribution Download PDF

Info

Publication number
EP0966694B1
EP0966694B1 EP98910611A EP98910611A EP0966694B1 EP 0966694 B1 EP0966694 B1 EP 0966694B1 EP 98910611 A EP98910611 A EP 98910611A EP 98910611 A EP98910611 A EP 98910611A EP 0966694 B1 EP0966694 B1 EP 0966694B1
Authority
EP
European Patent Office
Prior art keywords
ccd line
scanning camera
optical
camera
vertical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98910611A
Other languages
German (de)
French (fr)
Other versions
EP0966694A1 (en
Inventor
Hans-Peter RÖSER
Marco Radke
Maria VON SCHÖNERMARK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsches Zentrum fuer Luft und Raumfahrt eV
Original Assignee
Deutsches Zentrum fuer Luft und Raumfahrt eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsches Zentrum fuer Luft und Raumfahrt eV filed Critical Deutsches Zentrum fuer Luft und Raumfahrt eV
Publication of EP0966694A1 publication Critical patent/EP0966694A1/en
Application granted granted Critical
Publication of EP0966694B1 publication Critical patent/EP0966694B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C7/00Parts, details, or accessories of chairs or stools
    • A47C7/36Support for the head or the back
    • A47C7/40Support for the head or the back for the back
    • A47C7/42Support for the head or the back for the back of detachable or loose type

Definitions

  • the invention relates to a device and a method for determining the bidirectional reflectance distribution.
  • BRDF bidirectional reflectance distribution function
  • the bidirectional reflectance distribution function depends on the wavelength of the examined light and the radiance of the incident unreflected Radiation. These in turn depend on the azimuth and zenith angles the position of the sun or the observation azimuth and the observation time angle.
  • the expression bidirectional therefore indicates that the function not only from the zenith and azimuth of the observation point, but also from Zenith and azimuth of the light source (sun) is dependent.
  • spectrophotometer is such. B. from the Brochure "SP1A” from Dr. Schulz & Partner, by means of which the Global radiation is measured.
  • the spectrophotometer is attached to one Rotary device attached to the pivoting of the spectrophotometer two axes allowed in all directions.
  • To from the measured radiance To determine the reflectance factor is usually the radiance above one Reference surface ("white disk") determined. This is preferably a spectral plate with a well-defined reflectivity that is independent on the direction of the incoming and outgoing radiation. Disadvantageous the known device is its lack of resolution.
  • MAGNER THOMAS J "Moderate-resolution imaging spectrometer-tilt baseline concept "1991, EARTH AND ATMOSPHERIC REMOTE SENSING; ORLANDO, FL, USA APR 2-4 1991, PROC SPIE INT SOC OPT ENG; PROCEEDINGS OF SPIE - THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 1991 PUBL BY INT SOC FOR OPTICAL ENGINEERING, BELLINGHAM, WA, USA, PAGE (S) 272-285; and KOVALICK W M ET AL: "Data processing and calibration of the Advanced Solid-State Array Spectroradiometer ", IGARSS'94.
  • KARNER KONRAD F ET AL 'Image based measurrment system for anisotropic reflection "August 26, 1996, PROCEEDINGS OF THE 1996 17TH ANNUAL CONFERENCE AND EXHIBITION OF THE EUROPEAN ASSOCIATION FOR COMPUTER GRAPHICS, EUROGRAPHICS'96; POI TIERS, FR AUG 26-30 1996, COMPUT GRAPHICS FORUM; COMPUTER GRAPHICS FORUM; GRAPHICS-VIRTUAL REALITY-GRAPHICS HIGHWAYS SEP 1996 BLACKWELL SCIENTIFIC PUBLISHERS, OXFORD, ENGL; PAGE (S) 119-128; a BRDF soil survey with a CCD camera known. A single picture is taken with the one under a fixed one Angle of the CCD camera aligned to the surface to be measured. The one with this The achievable accuracies of the BRDF measurement are low and for many use cases are not sufficient.
  • the invention is therefore based on the technical problem of a device and a method for determining the bidirectional reflectance distribution create, with an improved resolution of the bidirectional reflectance distribution function is achievable.
  • the optical detector device as a CCD line camera can each simultaneously, according to the Opening angle of the camera, a segment of the surface to be scanned measured and a horizontal adjustment of the detector device for It is not necessary to record individual measuring points. This allows the measurement surface faster by a factor of 2000, so that the errors are due to a change in the position of the sun is negligible.
  • the length of time for a series of measurements including polarization measurement is approx. 65 seconds with a resolution of up to 0.5 °.
  • Such wide-angle CCD line cameras have long been known from aerospace technology.
  • Measurement errors caused can include at least one further reference measurement be performed at certain points on the surface be measured in a different CCD line position. Because the polarization the CCD line camera is known can by means of the two Measurement data of the measurement errors can be deducted.
  • the device for determining the bidirectional reflectance distribution comprises a CCD line camera 1 and a rotating device 2 on which the CCD line camera 1 is mounted.
  • the CCD line camera 1 By means of the rotating device 2 is the CCD line camera 1 both about a vertical axis 3 and about a horizontal axis 4 swiveling.
  • Known CCD line cameras usually have three CCD lines with a line width of 5184 pixels. These lines are for the purpose the stereo image processing arranged so that the middle line is vertical look down and the two others look 25 ° forwards and backwards, where only to determine the bidirectional reflectance distribution middle CCD line is used.
  • a slit-shaped diffuse protection is arranged in the camera optics.
  • the CCD line camera 1 is aligned so that one end of the middle CCD line looks perpendicular to surface 5 and thereby an imaginary Circle center 6 of the surface 5 defined. The opposite The end of the CCD line is thus directed to a point 7 off-nadir.
  • the opening angle of 80 ° is the optical axis of the CCD line camera 1 to the surface 5 at an angle of 40 °.
  • the segment shown in dashed lines is included.
  • the CCD line camera 1 by a certain angle vertical axis 3 rotated and another segment added. This The process is repeated until the CCD line camera 1 is rotated through 360 ° was and thus measured a circle 8 of the surface 5.
  • the Gradual vertical rotation can be done either manually or automatically by means of a suitable programmable control.
  • the detected radiation density has to be determined with a reference quantity corresponding to the incident radiation be compared.
  • the CCD line camera 1 according to FIG horizontal axis 4 rotated by 180 ° and the incident radiation density again recorded in segments. This means that for each point on the surface 5 both the incident as well as the reflected radiation density are known, so that from it the resulting bidirectional reflectance distribution function of the surface 5 can be derived.
  • the CCD line camera 1 or the camera optics Due to the large opening angle and the optical components the CCD line camera 1 or the camera optics have a certain intrinsic polarization on.
  • the intrinsic polarization of the camera optics is in the area of optical Axis almost zero and increases towards both ends of the CCD line.
  • Both Previously known CCD line cameras 1 can use the self-polarization Margins up to 20%.
  • the polarization of the incident, from the earth's surface Depending on the background, reflected light can be up to 30% red Light and up to 60% in blue light.
  • the decreasing Wavelength increasing measurement errors due to the polarization up to be 6% or 12%.
  • To determine and suppress these measurement errors due to the intrinsic polarization of the CCD line cameras 1, according to FIG another reference measurement can be made. For this, e.g.
  • the CCD line camera 1 aligned such that the optical axis of the CCD line camera 1 is directed to the off-nadir point 7 of the first measurement, ie the points where the largest self-polarization of the CCD line camera 1 in the previous measurement occurred. Since in the area of the optical axis Eigenpolarisation is zero, the measurement error is due to polarization for the off-nadir point 7 in the reference measurement zero. By means of a comparison between The two measured values can thus be based on the degree of polarization of the Surface 5 reflected radiation can be inferred. Because the polarization and their distribution over the CCD line a fixed, determinable Device size, the measurement error can be due to the polarization for everyone Points of a segment and thus the entire surface 5 are eliminated become.

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Bestimmung der bidirektionalen Reflektanzverteilung.The invention relates to a device and a method for determining the bidirectional reflectance distribution.

Mittels der bidirektionalen Reflektanzverteilungsfunktion (BRDF) können z.B. Rückschlüsse auf den Gesundheitszustand von Waldgebieten und anderen Bodenflächen gezogen oder andere klimarelevante Aerosolparameter abgeleitet werden.By means of the bidirectional reflectance distribution function (BRDF) e.g. Conclusions about the health status of forest areas and others Floor areas pulled or other climate-relevant aerosol parameters derived become.

Die bidirektionale Reflektanzverteilungsfunktion ist abhängig von der Wellenlänge des untersuchten Lichts und der Strahldichten der einfallenden unreflektierten Strahlung. Diese wiederum sind abhängig von Azimut-und Zenitwinkel des Sonnenstandes bzw. dem Beobachtungsazimut- und dem Beobachtungszenitwinkel. Der Ausdruck bidirektional weist also darauf hin, daß die Funktion nicht nur von Zenit und Azimut des Beobachtungspunktes, sondern auch von Zenit und Azimut der Lichtquelle (Sonne) abhängig ist.The bidirectional reflectance distribution function depends on the wavelength of the examined light and the radiance of the incident unreflected Radiation. These in turn depend on the azimuth and zenith angles the position of the sun or the observation azimuth and the observation time angle. The expression bidirectional therefore indicates that the function not only from the zenith and azimuth of the observation point, but also from Zenith and azimuth of the light source (sun) is dependent.

Zur Bestimmung der bidirektionalen Reflektanzverteilungsfunktion werden Daten von Satelliten (Z.B. NOAA 6/7) genutzt oder Messungen mit Spektro- bzw. Radiometern vorgenommen. Ein solches Spektralphotometer ist z. B. aus dem Prospekt "SP1A" der Firma Dr. Schulz & Partner bekannt, mittels dessen die Globalstrahlung gemessen wird. Dabei wird das Spektralphotometer an einer Drehvorrichtung befestigt, die das Schwenken des Spektralphotometers um zwei Achsen in alle Richtungen erlaubt. Um aus der gemessenen Strahldichte den Reflektanzfaktor zu ermitteln, wird meistens die Strahldichte über einer Referenzfläche ("Weißscheibe") bestimmt. Dies ist vorzugsweise eine Spektralonplatte mit einem genau definierten Reflexionsvermögen, daß unabhängig von der Richtung der ein- und ausfallenden Strahlung sein soll. Nachteilig an der bekannten Vorrichtung ist deren mangelnde Auflösung. Bei Messung in einer Filterstellung und Schrittweiten von 1° in Azimut- und Zenitrichtung benötigt die Vorrichtung 18 Stunden Zeit für eine Messung, da alle zwei Sekunden gefahren und gemessen werden kann. Bei einer Schrittweite von 5° in Azimut-und Zenitrichtung kann alle drei Sekunden eine Messung durchgeführt werden. Damit dauert die Meßreihe eine Stunde und fünf Minuten. Da die bidirektionale Reflektanzverteilungsfunktion vom Azimut- und Zenitwinkel des Sonnenstandes abhängig ist, muß die Vermessung sehr zügig durchgeführt werden, um einen nahezu konstanten Sonnenstand sicherzustellen. Um dies bei der Vermessung des gesamten Halbraumes zu gewährleisten, muß bei dem bekannten Verfahren entweder der Öffnungswinkel (Field of View) und/oder die Schrittweite für die Azimut- und Zenitwinkel relativ groß gewählt werden. In der Regel benutzt man einen Öffnungswinkel und eine Schrittweite von 5° bis 15° und mißt dann in entsprechend vielen Einstellungen, die teilweise manuell vorgenommen werden, den gesamten unteren Halbraum. Im Ergebnis liegt eine bidirektionale Reflektanzverteilungsfunktion mit einer Auflösung von 5° bis zu 15° Winkelschrittweite vor. Ein weiterer Nachteil der bekannten Vorrichtung ist die mangelnde Genauigkeit der ermittelten Referenz, da die Konstanz des Reflexionsvermögens nicht vollständig gewährleistet ist, sowohl an den verschiedenen Punkten der Spektralonplatte als auch bezogen auf die Abhängigkeit von der Blickrichtung.Data is used to determine the bidirectional reflectance distribution function used by satellites (e.g. NOAA 6/7) or measurements with spectro or Radiometers made. Such a spectrophotometer is such. B. from the Brochure "SP1A" from Dr. Schulz & Partner, by means of which the Global radiation is measured. The spectrophotometer is attached to one Rotary device attached to the pivoting of the spectrophotometer two axes allowed in all directions. To from the measured radiance To determine the reflectance factor is usually the radiance above one Reference surface ("white disk") determined. This is preferably a spectral plate with a well-defined reflectivity that is independent on the direction of the incoming and outgoing radiation. Disadvantageous the known device is its lack of resolution. When measuring in a filter position and increments of 1 ° in the azimuth and zenith direction are required the device 18 hours for a measurement since every two seconds can be driven and measured. With a step size of 5 ° in azimuth and The zenith direction can be measured every three seconds. The series of measurements thus takes one hour and five minutes. Because the bidirectional Reflectance distribution function from the azimuth and zenith angle of the position of the sun is dependent, the measurement must be carried out very quickly in order to ensure an almost constant position of the sun. To do this when measuring To ensure the entire half-space must be in the known Process either the field of view and / or the The step size for the azimuth and zenith angles can be chosen to be relatively large. In the Usually you use an opening angle and a step size of 5 ° to 15 ° and then measures in correspondingly many settings, some of which are made manually the entire lower half space. The result is one bidirectional reflectance distribution function with a resolution of 5 ° up to 15 ° angle step forward. Another disadvantage of the known device is the lack of accuracy of the determined reference, since the constancy of the Reflectivity is not fully guaranteed, both at the different Points of the spectral plate as well as related to the dependency from the line of sight.

Aus den beiden Fachartikeln MAGNER THOMAS J: "Moderate-resolution imaging spectrometer-tilt baseline concept" 1991 , EARTH AND ATMOSPHERIC REMOTE SENSING; ORLANDO, FL , USA APR 2-4 1991, PROC SPIE INT SOC OPT ENG; PROCEEDINGS OF SPIE - THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 1991 PUBL BY INT SOC FOR OPTICAL ENGINEERING, BELLINGHAM, WA, USA, PAGE(S) 272 - 285; und KOVALICK W M ET AL: "Data processing and calibration of the Advanced Solid-State Array Spectroradiometer", IGARSS'94. INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, SURFACE AND ATMOSPHERIC REMOTE SENSING: TECHNOLOGIES, DATA ANALYSIS AND INTERPRETATION (CAT. NO.94CH3378-7), PROCEEDINGS OF IGARSS'94 - 1994 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE , ISBN 0-7803-1497-2,1994, NEW YORK, NY, USA, IEEE, USA, PAGE(S) 1652 -1654 VOL.3. sind jeweils BRDF-Messungen mittels CCD-Kameras von einem Satelliten bzw. Flugzeug aus bekannt.From the two specialist articles MAGNER THOMAS J: "Moderate-resolution imaging spectrometer-tilt baseline concept "1991, EARTH AND ATMOSPHERIC REMOTE SENSING; ORLANDO, FL, USA APR 2-4 1991, PROC SPIE INT SOC OPT ENG; PROCEEDINGS OF SPIE - THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 1991 PUBL BY INT SOC FOR OPTICAL ENGINEERING, BELLINGHAM, WA, USA, PAGE (S) 272-285; and KOVALICK W M ET AL: "Data processing and calibration of the Advanced Solid-State Array Spectroradiometer ", IGARSS'94. INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, SURFACE AND ATMOSPHERIC REMOTE SENSING: TECHNOLOGIES, DATA ANALYSIS AND INTERPRETATION (CAT.NO.94CH3378-7), PROCEEDINGS OF IGARSS'94 - 1994 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE, ISBN 0-7803-1497-2,1994, NEW YORK, NY, USA, IEEE, USA, PAGE (S) 1652 -1654 VOL.3. are each BRDF measurements using CCD cameras from a satellite or airplane known.

Aus dem Fachartikel KARNER KONRAD F ET AL: 'Image based measurrment system for anisotropic reflection" 26. August 1996, PROCEEDINGS OF THE 1996 17TH ANNUAL CONFERENCE AND EXHIBITION OF THE EUROPEAN ASSOCIATION FOR COMPUTER GRAPHICS, EUROGRAPHICS'96; POI-TIERS, FR AUG 26-30 1996, COMPUT GRAPHICS FORUM; COMPUTER GRAPHICS FORUM; GRAPHICS-VIRTUAL REALITY-GRAPHICS HIGHWAYS SEP 1996 BLACKWELL SCIENTIFIC PUBLISHERS, OXFORD, ENGL; PAGE(S) 119-128; eine BRDF-Bodenvermessung mit einer CCD-Kamera bekannt. Dabei erfolgt eine einzige Aufnahme mit der unter einem festen Winkel zur zu messenden Fläche ausgerichtete CCD-Kamera. Die mit diesem Verfahren erreichbaren Genauigkeiten der BRDF-Messung sind gering und für viele Anwendungsfälle nicht ausreichend.From the technical article KARNER KONRAD F ET AL: 'Image based measurrment system for anisotropic reflection "August 26, 1996, PROCEEDINGS OF THE 1996 17TH ANNUAL CONFERENCE AND EXHIBITION OF THE EUROPEAN ASSOCIATION FOR COMPUTER GRAPHICS, EUROGRAPHICS'96; POI TIERS, FR AUG 26-30 1996, COMPUT GRAPHICS FORUM; COMPUTER GRAPHICS FORUM; GRAPHICS-VIRTUAL REALITY-GRAPHICS HIGHWAYS SEP 1996 BLACKWELL SCIENTIFIC PUBLISHERS, OXFORD, ENGL; PAGE (S) 119-128; a BRDF soil survey with a CCD camera known. A single picture is taken with the one under a fixed one Angle of the CCD camera aligned to the surface to be measured. The one with this The achievable accuracies of the BRDF measurement are low and for many use cases are not sufficient.

Aus dem Fachartikel KARNER K F: "Using images to estimnate reflectance function, WSCG 96. FOURTH INTERNATIONAL CONFERENCE IN CENTRAL EUROPE ON COMPUTER GRAPHICS AND VISUALIZATION 96, IN CO-OPERATION WITH IFIP WORKING GROUP 5.10 ON COMPUTER GRAPHICS AND VIRTUAL WORLDS. CONFERENCE PROCEEDINGS, PROCEEDINGS OF WSCG 96: FOURTH INTERNA, ISBN 80-7082-238-4,1996, PLZEN, CZECH REPUBLIC, UNIV. WEST BOHEMIA, CZECH REPUBLIC, PAGE(S) 133 - 140 VOL. 1 ist eine BRDF-Bodenmessung mit einer CCD-Kamera bekannt, wobei die Messung unter verschiedenen Winkeln der Bestrahlungsquelle durchgeführt wird. Dabei wird wieder mittels einer einzigen Aufnahme der CCD-Kamera der Halbraum aufgenommen, so daß es sich bei dem CCD-Sensor um eine CCD-Matrix handelt, was die erreichbare Auflösung für die BRDF beschränkt.From the article KARNER K F: "Using images to estimnate reflectance function, WSCG 96th FOURTH INTERNATIONAL CONFERENCE IN CENTRAL EUROPE ON COMPUTER GRAPHICS AND VISUALIZATION 96, IN CO-OPERATION WITH IFIP WORKING GROUP 5.10 ON COMPUTER GRAPHICS AND VIRTUAL WORLDS. CONFERENCE PROCEEDINGS, PROCEEDINGS OF WSCG 96: FOURTH INTERNA, ISBN 80-7082-238-4,1996, ZIP codes, CZECH REPUBLIC, UNIV. WEST BOHEMIA, CZECH REPUBLIC, PAGE (S) 133 - 140 VOL. 1 is a BRDF soil measurement with a CCD camera known, the measurement at different angles of the radiation source is carried out. This is done again using a single shot the CCD camera recorded the half space, so that it CCD sensor is a CCD matrix, which is the achievable resolution for the BRDF restricted.

Der Erfindung liegt daher das technische Problem zugrunde, eine Vorrichtung und ein Verfahren zur Bestimmung der bidirektionalen Reflektanzverteilung zu schaffen, mit der eine verbesserte Auflösung der bidirektionalen Reflektanzverteilungsfunktion erreichbar ist.The invention is therefore based on the technical problem of a device and a method for determining the bidirectional reflectance distribution create, with an improved resolution of the bidirectional reflectance distribution function is achievable.

Die Lösung des technischen Problems ergibt sich durch die Merkmale der Patentansprüche 1 und 4. Durch die Ausgestaltung der optischen Detektoreinrichtung als CCD-Zeilen-Kamera kann jeweils simultan, entsprechend dem Öffnungswinkel der Kamera, ein Segment der abzutastenden Oberfläche ausgemessen werden und eine horizontale Verstellung der Detektoreinrichtung zur Erfassung einzelner Meßpunkte ist entbehrlich. Dadurch kann die Ausmessung der Oberfläche um den Faktor 2000 schneller erfolgen, so daß die Fehler aufgrund einer Sonnenstandsänderung vernachlässigbar sind. Die Zeitdauer für eine Meßreihe einschließlich Polarisationsmessung beträgt ca. 65 Sekunden bei einer Auflösung von bis zu 0,5°. Solche weitwinkligen CCD-Zeilen-Kameras sind seit langem aus der Luft- und Raumfahrttechnik bekannt. Eine beispielhafte Beschreibung einer derartigen Kamera ist dem Fachartikel "Weitwinkel-Stereokamera WAOSS-Konzept und Arbeitsweise, Sandau et al.; bild & ton, 9/10, 1992, S. 224 ff. entnehmbar, auf den hier bezüglich der Ausbildung der Kamera ausdrücklich Bezug genommen wird. Das Verfahren geht davon aus, daß nach Neigung der CCD-Kamera um 90° - 0,5 IFOV die Pixel der CCD-Zeilen als Zenitwinkel interpretiert werden können, die Messung bei unterschiedlichen Azimutwinkeln aber durch Rotation der geneigten Kamera um eine vertikale Achse realisiert werden kann, so daß eine parallaktische Montierung von Azimut- und Zenitdistanz wie beim Stand der Technik entbehrlich ist. Darüber hinaus entfällt das Erfordernis einer Weißscheibe, die im Stand der Technik aufgrund der nicht exakt lambertschen Eigenschaften eine weitere Fehlerquelle darstellt. Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.The solution to the technical problem results from the features of the claims 1 and 4. By the design of the optical detector device as a CCD line camera can each simultaneously, according to the Opening angle of the camera, a segment of the surface to be scanned measured and a horizontal adjustment of the detector device for It is not necessary to record individual measuring points. This allows the measurement surface faster by a factor of 2000, so that the errors are due to a change in the position of the sun is negligible. The length of time for a series of measurements including polarization measurement is approx. 65 seconds with a resolution of up to 0.5 °. Such wide-angle CCD line cameras have long been known from aerospace technology. An exemplary Description of such a camera is the technical article "wide-angle stereo camera WAOSS concept and mode of operation, Sandau et al .; picture & sound, 9/10, 1992, pp. 224 ff. Can be seen on the here regarding the training of the camera explicit reference is made. The procedure assumes that after Tilt of the CCD camera by 90 ° - 0.5 IFOV the pixels of the CCD lines as the zenith angle can be interpreted, the measurement at different azimuth angles but by rotating the tilted camera around a vertical axis can be realized so that a parallactic mounting of azimuth and Zenith distance as is unnecessary in the prior art. In addition, it does not apply the requirement of a white disk, which is due to the state of the art not exactly Lambertian properties is another source of error. Further advantageous embodiments of the invention result from the subclaims.

Zur Erfassung und Unterdrückung der durch die Eigenpolarisation der CCD-Zeilen-Kamera verursachten Meßfehler kann mindestens eine weitere Referenzmessung durchgeführt werden, bei der bestimmte Punkte der Oberfläche in einer unterschiedlichen CCD-Zeilen-Position vermessen werden. Da die Eigenpolarisation der CCD-Zeilen-Kamera bekannt ist, kann mittels der beiden Meßdaten der Meßfehler herausgerechnet werden.For the detection and suppression of the self-polarization of the CCD line camera Measurement errors caused can include at least one further reference measurement be performed at certain points on the surface be measured in a different CCD line position. Because the polarization the CCD line camera is known can by means of the two Measurement data of the measurement errors can be deducted.

Durch die schnelle Erfassung aller Meßpunkte kann zur Bestimmung der Referenz auf eine Spektralonplatte verzichtet werden und die Referenz direkt durch Schwenkung der Drehvorrichtung um 180° um die horizontale Achse und Wiederholung der Messung in Himmelsrichtung ermittelt werden.By quickly acquiring all measuring points, you can determine the reference without a spectral plate and the reference directly through Rotation of the rotating device by 180 ° around the horizontal axis and repetition the measurement in the cardinal direction.

Die Erfindung wird nachfolgend anhand eines bevorzugten Ausführungsbeispieles näher erläutert. Die Fig. zeigen:

Fig. 1
eine perspektivische Darstellung der Vorrichtung bei Erfassung der Meßdaten,
Fig. 2
eine perspektivische Darstellung der Vorrichtung bei Erfassung der Referenz und
Fig 3
eine perspektivische Darstellung der Vorrichtung bei Erfassung einer weiteren Referenz zur Kompensation der Meßfehler aufgrund der Eigenpolarisation der CCD-Zeilen-Kamera.
The invention is explained in more detail below on the basis of a preferred exemplary embodiment. The figures show:
Fig. 1
1 shows a perspective view of the device when the measurement data are recorded,
Fig. 2
a perspective view of the device upon detection of the reference and
Fig. 3
a perspective view of the device upon detection of a further reference to compensate for the measurement errors due to the self-polarization of the CCD line camera.

Die Vorrichtung zur Bestimmung der bidirektionalen Reflektanzverteilung umfaßt eine CCD-Zeilen-Kamera 1 und eine Drehvorrichtung 2, auf der die CCD-Zeilen-Kamera 1 montiert ist. Mittels der Drehvorrichtung 2 ist die CCD-Zeilen-Kamera 1 sowohl um eine vertikale Achse 3 als auch um eine horizontale Achse 4 schwenkbar. Bekannte CCD-Zeilen-Kameras weisen meist drei CCD-Zeilen auf, wobei die Zeilenbreite 5184 Pixel umfaßt. Diese Zeilen sind zum Zwekke der Stereo-Bildverarbeitung derart angeordnet, daß die mittlere Zeile senkrecht nach unten und diezwei anderen jeweils 25° nach vorn bzw. hinten schauen, wobei zur Bestimmung der bidirektionalen Reflektanzverteilung nur die mittlere CCD-Zeile verwendet wird. Zur Unterdrückung von Streulicht kann vor der Kameraoptik ein schlitzförmiger Streulichtschutz angeordnet werden. Zur Erfassung der jeweiligen Strahlungsdichte einer zu untersuchenden Oberfläche 5 wird die CCD-Zeilen-Kamera 1 derart ausgerichtet, daß ein Ende der mittleren CCD-Zeile senkrecht auf die Oberfläche 5 blickt und dadurch einen imaginären Kreismittelpunkt 6 der Oberfläche 5 definiert. Das entgegengesetzte Ende der CCD-Zeile ist somit auf einen Punkt 7 off-nadir gerichtet. Bei einem Öffnungswinkel von 80° steht somit die optische Achse der CCD-Zeilen-Kamera 1 zur Oberfläche 5 in einem Winkel von 40°. Mittels einer simultanen Aufnahme wird dabei das gestrichelt dargestellte Segment aufgenommen. Anschließend wird die CCD-Zeilen-Kamera 1 um einen bestimmten Winkel um die vertikale Achse 3 gedreht und ein weiteres Segment aufgenommen. Dieser Vorgang wiederholt sich solange, bis die CCD-Zeilen-Kamera 1 um 360° gedreht wurde und somit einen Kreis 8 der Oberfläche 5 vermessen hat. Die schrittweise vertikale Drehung kann dabei entweder manuell oder automatisch mittels einer geeigneten programmierbaren Steuerung erfolgen.The device for determining the bidirectional reflectance distribution comprises a CCD line camera 1 and a rotating device 2 on which the CCD line camera 1 is mounted. By means of the rotating device 2 is the CCD line camera 1 both about a vertical axis 3 and about a horizontal axis 4 swiveling. Known CCD line cameras usually have three CCD lines with a line width of 5184 pixels. These lines are for the purpose the stereo image processing arranged so that the middle line is vertical look down and the two others look 25 ° forwards and backwards, where only to determine the bidirectional reflectance distribution middle CCD line is used. To suppress stray light can be used a slit-shaped diffuse protection is arranged in the camera optics. to Detection of the respective radiation density of a surface to be examined 5, the CCD line camera 1 is aligned so that one end of the middle CCD line looks perpendicular to surface 5 and thereby an imaginary Circle center 6 of the surface 5 defined. The opposite The end of the CCD line is thus directed to a point 7 off-nadir. At a The opening angle of 80 ° is the optical axis of the CCD line camera 1 to the surface 5 at an angle of 40 °. By means of a simultaneous recording the segment shown in dashed lines is included. Subsequently is the CCD line camera 1 by a certain angle vertical axis 3 rotated and another segment added. This The process is repeated until the CCD line camera 1 is rotated through 360 ° was and thus measured a circle 8 of the surface 5. The Gradual vertical rotation can be done either manually or automatically by means of a suitable programmable control.

Zur Bestimmung der bidirektionalen Reflektanz muß die erfaßte Strahlungsdichte mit einer der einfallenden Strahlung entsprechenden Referenzgröße verglichen werden. Dazu wird gemäß Fig. 2 die CCD-Zeilen-Kamera 1 um die horizontale Achse 4 um 180° gedreht und die einfallende Strahlungsdichte wieder segmentweise erfaßt. Dadurch ist für jeden Punkt der Oberfläche 5 sowohl die einfallende als auch die reflektierte Strahlungsdichte bekannt, so daß daraus die resultierende bidirektionale Reflektanzverteilungsfunktion der Oberfläche 5 ableitbar ist.To determine the bidirectional reflectance, the detected radiation density has to be determined with a reference quantity corresponding to the incident radiation be compared. For this purpose, the CCD line camera 1 according to FIG horizontal axis 4 rotated by 180 ° and the incident radiation density again recorded in segments. This means that for each point on the surface 5 both the incident as well as the reflected radiation density are known, so that from it the resulting bidirectional reflectance distribution function of the surface 5 can be derived.

Aufgrund des großen Öffnungswinkels und der optischen Bauelemente weist die CCD-Zeilen-Kamera 1 bzw. die Kameraoptik eine gewisse Eigenpolarisation auf. Die Eigenpolarisation der Kameraoptik ist im Bereich der optischen Achse nahezu null und nimmt zu beiden Enden der CCD-Zeile hin zu. Bei den bisher bekannten CCD-Zeilen-Kameras 1 kann die Eigenpolarisation an den Rändern bis zu 20 % betragen. Die Polarisation des einfallenden, von der Erdoberfläche reflektierten Lichtes kann je nach Untergrund bis zu 30% bei rotem Licht und bis zu 60% bei blauem Licht betragen. Somit kann der mit abnehmender Wellenlänge größer werdende Meßfehler allein durch die Polarisation bis zu 6% bzw. 12%betragen. Zur Ermittlung und Unterdrückung dieser Meßfehler aufgrund der Eigenpolarisation der CCD-Zeilen-Kameras 1 kann gemäß Fig.3 eine weitere Referenzmessung vorgenommen werden. Dazu wird z.B. die CCD-Zeilen-Kamera 1 derart ausgerichtet, daß die optische Achse der CCD-Zeilen-Kamera 1 auf den off-nadir Punkt 7 der ersten Messung gerichtet ist, also den Punkte, wo die größte Eigenpolarisation der CCD-Zeilen-Kamera 1 in der vorangegangenen Messung auftrat. Da im Bereich der optischen Achse die Eigenpolarisation null ist, ist der Meßfehler aufgrund von Polarisation für den off-nadir Punkt 7 bei der Referenzmessung null. Mittels eines Vergleichs zwischen den beiden Meßwerten kann somit auf den Polarisationsgrad der von der Oberfläche 5 reflektierten Strahlung zurückgeschlossen werden. Da die Eigenpolarisation und deren Verteilung über die CCD-Zeile eine feste, bestimmbare Gerätegröße ist, kann somit der Meßfehler aufgrund der Polarisation für alle Punkte eines Segmentes und somit der gesamten Oberfläche 5 herausgerechnet werden.Due to the large opening angle and the optical components the CCD line camera 1 or the camera optics have a certain intrinsic polarization on. The intrinsic polarization of the camera optics is in the area of optical Axis almost zero and increases towards both ends of the CCD line. Both Previously known CCD line cameras 1 can use the self-polarization Margins up to 20%. The polarization of the incident, from the earth's surface Depending on the background, reflected light can be up to 30% red Light and up to 60% in blue light. Thus, the decreasing Wavelength increasing measurement errors due to the polarization up to to be 6% or 12%. To determine and suppress these measurement errors due to the intrinsic polarization of the CCD line cameras 1, according to FIG another reference measurement can be made. For this, e.g. the CCD line camera 1 aligned such that the optical axis of the CCD line camera 1 is directed to the off-nadir point 7 of the first measurement, ie the points where the largest self-polarization of the CCD line camera 1 in the previous measurement occurred. Since in the area of the optical axis Eigenpolarisation is zero, the measurement error is due to polarization for the off-nadir point 7 in the reference measurement zero. By means of a comparison between The two measured values can thus be based on the degree of polarization of the Surface 5 reflected radiation can be inferred. Because the polarization and their distribution over the CCD line a fixed, determinable Device size, the measurement error can be due to the polarization for everyone Points of a segment and thus the entire surface 5 are eliminated become.

Claims (4)

  1. Method of determining the bidirectional reflectance distribution by means of a CCD line-scanning camera (1), which is disposed on a rotating apparatus (2), the rotating apparatus (2) being configured to be pivotable about a vertical axis (3) and a horizontal axis (4), said method including the following method steps:
    a) aligning the central CCD line with the surface (5) in such a manner that one end of the CCD line looks perpendicularly relative to the surface (5) and thereby defines an imaginary centre of a circle (6) of the surface (5),
    b) simultaneously detecting the optical radiance of a segment of the surface (5),
    c) storing the detected radiance according to method step b),
    d) rotating the CCD line-scanning camera (1) about the vertical axis (3) through a specific angle and repeating the method steps b), c) and d) until the CCD line-scanning camera (1) has rotated about the vertical axis (3) through 360°,
    e) displacing the optical axis of the CCD line-scanning camera (1) by means of the horizontal axis (4) of the rotating apparatus (2) through 180°,
    f) segmentwisely detecting and storing the incident radiation,
    g) rotating the CCD line-scanning camera (1) about the vertical axis (3) through a specific angle and repeating the method steps f) and g) until the CCD line-scanning camera (1) has pivoted through 360°.
  2. Method according to claim 1, wherein the determination of the reference according to the method steps e) to g) is effected prior to and/or subsequent to the detection of the optical radiance of the surface (5).
  3. Method according to claim 1 or 2, wherein, in order to determine the inherent polarisation of the CCD line-scanning camera (1), the optical axis is directed towards the off-nadir point (7), and the optical radiance is detected and stored.
  4. Apparatus for accomplishing the method according to one of the preceding claims, said apparatus including an optical detector, which is in the form of a CCD line-scanning camera (1), and a rotating apparatus (2), which pivots the CCD line-scanning camera (1) and is configured to be pivotable about a vertical axis (3) and a horizontal axis (4).
EP98910611A 1997-03-10 1998-02-02 Process and device for determining bi-directional reflectance distribution Expired - Lifetime EP0966694B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19711127 1997-03-10
DE19711127A DE19711127C2 (en) 1997-03-10 1997-03-10 Device and method for determining the bidirectional reflectance distribution
PCT/DE1998/000384 WO1998040765A1 (en) 1997-03-10 1998-02-02 Process and device for determining bi-directional reflectance distribution

Publications (2)

Publication Number Publication Date
EP0966694A1 EP0966694A1 (en) 1999-12-29
EP0966694B1 true EP0966694B1 (en) 2003-10-22

Family

ID=7823700

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98910611A Expired - Lifetime EP0966694B1 (en) 1997-03-10 1998-02-02 Process and device for determining bi-directional reflectance distribution

Country Status (4)

Country Link
EP (1) EP0966694B1 (en)
JP (1) JP2002500754A (en)
DE (2) DE19711127C2 (en)
WO (1) WO1998040765A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102608074B (en) * 2012-03-21 2014-09-24 中国科学院安徽光学精密机械研究所 Novel bidirectional reflectance distribution function measuring device
JP6410451B2 (en) 2014-03-31 2018-10-24 キヤノン株式会社 Information processing apparatus, measurement system, information processing method, and program.
CN109073538B (en) * 2016-08-22 2021-12-10 国立大学法人北海道大学 Object state detection and transmission system
CN110083176B (en) * 2019-05-05 2020-07-24 宁夏大学 BRDF data acquisition system and method based on unmanned aerial vehicle-mounted hyperspectral imaging
CN110794382A (en) * 2019-10-30 2020-02-14 上海禾赛光电科技有限公司 Laser radar and detection method thereof
JP7228860B1 (en) 2022-02-07 2023-02-27 国立大学法人北海道大学 Spectrometer

Also Published As

Publication number Publication date
EP0966694A1 (en) 1999-12-29
WO1998040765A1 (en) 1998-09-17
DE59809972D1 (en) 2003-11-27
DE19711127C2 (en) 2000-09-14
DE19711127A1 (en) 1998-09-24
JP2002500754A (en) 2002-01-08

Similar Documents

Publication Publication Date Title
DE3335336C2 (en) Device for aligning an input shaft with an output shaft which is to be connected to the input shaft via a coupling
EP1836455B1 (en) Method and geodetic device for surveying at least one target
DE102010053422B3 (en) Measurement of the positions of centers of curvature of optical surfaces of a multi-lens optical system
EP1759172A1 (en) Scanner system and method for registering surfaces
EP0877951B1 (en) Range and/or position measurement equipment
DE112013004369T5 (en) Laser scanner with additional detection device
DE19852149C2 (en) Device for determining the spatial coordinates of objects
DE102015201093A1 (en) Method and gonioradiometer for direction-dependent measurement of at least one photometric or radiometric characteristic of an optical radiation source
DE3102880C2 (en) Method and device for calibrating scanners
EP0966694B1 (en) Process and device for determining bi-directional reflectance distribution
DE60014944T2 (en) DEVICE FOR DETERMINING THE SPATIAL DISTRIBUTION OF THE SPECTRAL EMISSION OF AN OBJECT
DE102005023302A1 (en) Semiconductor wafer sample reflecting surface curvature measurement unit has birefringent element splitting lamp beam into two
DE102012214019B3 (en) Measuring system for determination of reflectance characteristics of materials of e.g. solar mirror in solar power plant, has hood comprising recess or area over which beam is introduced, and tape pivotably arranged at surface of hood
DE3517671A1 (en) DEVICE FOR IMAGING POINTS DETECTING THE SURFACE FORM OF A REMOTE OBJECT
DE102013208565A1 (en) Method for measuring reflectivity of sample surface, involves receiving reflected radiation by two-dimensional segmented detector, adjusting angle position of sample surface, and scanning sample surface by incident beam
WO2019178623A1 (en) Device for detecting a forest stand
WO2018072985A1 (en) Method and device for detecting a direct light reflection beam from an object onto a light sensor
DD146347A1 (en) depolarizer
DE19547552C1 (en) Device for determining polarisation state of electromagnetic radiation
DE69934472T2 (en) Determining the position of the optical axis of a camera
DE3330861C2 (en)
DD158189A3 (en) CALIBRATION METHOD AND APPARATUS FOR IRRADIATOR STAINLESS STEEL AND RADIUM DENSITY MEASUREMENTS
DE4422886A1 (en) Method and device for the optical determination of spatial positions of individual reflecting objects
DE19721044C2 (en) Arrangement for measuring polarization-dependent optical parameters of rotating samples by means of optical reflection
DE102005040881B4 (en) Apparatus and method for visual object classification

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990902

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59809972

Country of ref document: DE

Date of ref document: 20031127

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040128

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040723

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070208

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070221

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070216

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080202

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080202