EP0965726A1 - Turbine a gaz du type a recuperation du refrigerant - Google Patents

Turbine a gaz du type a recuperation du refrigerant Download PDF

Info

Publication number
EP0965726A1
EP0965726A1 EP96940152A EP96940152A EP0965726A1 EP 0965726 A1 EP0965726 A1 EP 0965726A1 EP 96940152 A EP96940152 A EP 96940152A EP 96940152 A EP96940152 A EP 96940152A EP 0965726 A1 EP0965726 A1 EP 0965726A1
Authority
EP
European Patent Office
Prior art keywords
flow path
discs
spacers
rotor
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96940152A
Other languages
German (de)
English (en)
Other versions
EP0965726A4 (fr
EP0965726B1 (fr
Inventor
Shinya-Ishikawa apartment Room 402 MARUSHIMA
Manabu-3781-24 Nagaoka Ibaraki-machi MATSUMOTO
Kazuhiko-2920-208 Mawatarimukono KAWAIKE
Takashi Ikeguchi
Takashi Machida
Masaru-Room A-231 Hitachi Niihari Ryo SEKIHARA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to EP03004315A priority Critical patent/EP1335111B1/fr
Publication of EP0965726A1 publication Critical patent/EP0965726A1/fr
Publication of EP0965726A4 publication Critical patent/EP0965726A4/fr
Application granted granted Critical
Publication of EP0965726B1 publication Critical patent/EP0965726B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/085Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • F01D5/084Cooling fluid being directed on the side of the rotor disc or at the roots of the blades the fluid circulating at the periphery of a multistage rotor, e.g. of drum type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/205Cooling fluid recirculation, i.e. after cooling one or more components is the cooling fluid recovered and used elsewhere for other purposes

Definitions

  • the present invention relates to a gas turbine in which moving blades are cooled and, more particularly, to a gas turbine of closed cooling type in which coolant for cooling moving blades is recovered.
  • the present invention relates to a gas turbine in which thermal stress is relaxed by heating an axis portion of a rotor shaft at a starting time.
  • JP A 3-275946 concerning gas turbines having flow passages for supply/recovery of coolant to/from moving blades arranged inside discs and spacers forming a rotor, a gas turbine is disclosed which is provided with solid discs having no central hole at a center thereof (a shaft center).
  • Metal temperature distribution of a rotor and thermal stress and thermal deformation applied on the rotor are affected by the heat from and to spaces inside the rotor and a peripheral surface of the rotor, etc.
  • thermal stress in the rotor of gas turbine of closed cooling type becomes large because a temperature difference corresponding to a temperature increment due to cooling of the moving blades occurs between the supply path and the recovery path, so that there is a fear that a large stress is applied on the rotor central portion by overlapping of the thermal stress applied on the rotor discs, etc. and centrifugal force caused by rotation.
  • an object of the present invention is to provide a gas turbine in which operational reliability thereof is improved by suppressing thermal stress applied on a rotor central portion.
  • a first feature of the present invention resides in a gas turbine having a rotor shaft constructed by arranging, in an axial direction in turn, a plurality of discs each having a plurality of combustion gas-driven moving blades annularly arranged on the peripheral portion and spacers arranged between the discs, and is characterized in that the above-mentioned discs each are formed in solid disc, gap portions are formed between a region, on the rotor shaft center portion side, of the above-mentioned discs facing the spacers and spacers adjacent thereto, contact surfaces are formed both of which contact on both a region, on the rotor peripheral side, of the above-mentioned discs facing the spacers and adjacent spacers thereto, and a third flow path leading fluid to the above-mentioned gap portions is provided.
  • a second feature of the present invention resides in a gas turbine having a rotor shaft constructed by arranging, in an axial direction in turn, a plurality of discs each having a plurality of combustion gas-driven moving blades annularly arranged on the peripheral portion and spacers arranged between the discs, the above-mentioned moving blades having flow path introducing coolant for cooling the moving blades and discharging out the coolant heated by the combustion gas, and is characterized in that contact surfaces are formed both of which contact on both a region, on the rotor peripheral side, of the above-mentioned discs facing the spacers and adjacent spacers thereto, and a supply path, for supplying the above-mentioned coolant for cooling the moving blades, passing through the above-mentioned discs and spacers in the region forming the above-mentioned contact surfaces in an axial direction of the rotor and a recovery path for the coolant heated through the moving blades are provided.
  • a supply flow path and a recovery flow path for coolant are provided which pass through discs or spacers in the axial direction from inside the contact surfaces of the discs and discs or of the discs and spacers, the discs and spacers are separated from each other by the contact surfaces, whereby it is unnecessary to provide attachments such as separation pipes, connection pipes for separation of the flow paths, so that there is no fear that the attachments fall down and are broken and reliability is raised.
  • a gas turbine of recovery type coolant can be applied.
  • compressed air and compressed nitrogen can be applied as a coolant.
  • An embodiment described hereunder, which is a case of a gas turbine of coolant recovery type, will be explained, taking steam as an example of a recovery type coolant.
  • a compressor rotor 3a of a compressor 1 and a turbine rotor 1a of a turbine 120 are connected by a distant piece 2a.
  • Air 14a under atmospheric condition is raised in pressure by moving blades and stationary blades in a compressor air flow path 5a of the peripheral portion of the compressor rotor 3a.
  • It has a combustor 4a supplied with the air raised in pressure and discharged from the compressor 1.
  • fuel 13a and compressed air react to produce of combustion gas 15a of high temperature and high pressure.
  • the combustion gas 15a passes through moving blades 7a and nozzle 17a in an outer peripheral gas flow path 6a of the turbine rotor 1a to generate power.
  • the turbine rotor 1a has a plurality of discs 12a each of which has moving blades 7a at the peripheral portion and is arranged in an axial direction through spacers 11a.
  • the turbine rotor 1a and a spacer 11a at a side of a disc are in contact with each other at a peripheral side and a gap portion is formed between the disc and a spacer adjacent thereto in a region including a central portion at a central side more inner than the contact surface.
  • the above-mentioned disc is made solid, the gap portion is formed between a rotor axis sife region of the above-mentioned disc and the spacer adjacent to the disc, a rotor peripheral side region of the above-mentioned disc and the spacer adjacent thereto have respective contact surfaces contacting with them and the above-mentioned disc has a central side communication flow path leading a fluid to the above-mentioned gap portion.
  • a central portion of the above-mentioned disc 12a including the axis (or shaft center) has a solid construction, and the central side communication flow path 10a which is a third flow path is provided inside the turbine rotor 1a so as to communicate with the gap portion, in addition to a steam supply flow path 8a and a steam recovery flow path 9a.
  • the central side communication flow path 10a is provided so as to pass through the disc 12a and the spacer 11a.
  • a fluid is supplied to the central side communication flow path 10a, the fluid supplied in each gap formed between the disc 12a and the spacer 11a and members inside the turbine rotor 1a are heat-exchanged.
  • the fluid after heat exchanging is discharged into a peripheral side gas flow path 6a of the gas turbine 120, for example.
  • the closed cooling rotor Since a temperature difference between the supply flow path and recovery flow path occurs by a value corresponding to temperature elevation due to cooling of the moving blades, the closed cooling rotor has a tendency that thermal stress becomes large, and a large temperature difference occurs between the rotor peripheral side and a central portion thereof in operation at a time of starting.
  • the rotor peripheral portion is higher in temperature than in the rotor central portion, the rotor peripheral portion takes expansion displacement relative to the rotor central portion, and the rotor central portion shrinkage displacement relative to the rotor peripheral portion, whereby radial tensile thermal stress acts on the rotor central portion.
  • the above-mentioned first embodiment can suppress the excessive force applied on the rotor central portion by overlapping of the radial tensile thermal stress and centrifugal tensile stress due to rotation, whereby the strength for the turbine rotor 1a can be secured.
  • Another feature resides in that contact surfaces, on which a rotor peripheral region of the disc and the spacer adjacent thereto are in contact, are formed therebetween, a supply flow path passing through the above-mentioned disc and spacer at the above-mentioned region forming the contact surfaces in a axial direction of the rotor and supplying the above-mentioned coolant to cool the moving blades and a recovery flow path for the coolant heated through the moving blades are provided.
  • the moving blade 7a is steam-cooled blade and a closed cooling blades in which steam after cooling is recovered without being discharged into the gas flow path 6a. It is possible to provide a supply port and recovery port for coolant on the contact surface with the disc.
  • the turbine rotor 1a is provided with both the steam supply flow path 8a for supplying steam to the moving blades 7a and the steam recovery flow path 9a for recovering the steam. Both of the steam supply flow path 8a and the steam recovery flow path 9a are formed so as to pass through the above-mentioned contact surface 16a in the rotor axis direction and pass through the above-mentioned disc 12a and the spacer 11a.
  • inner peripheral surfaces (inner wall surfaces) of through holes of the disc 12a and spacer 11a and the contact surface 16a are constitutional elements thereof.
  • the both flow paths are separated from each other by the contact surfaces 16a.
  • the coolant flows while contacting with the inner wall surfaces.
  • Fig, 2 shows a sectional view (a turbine side sectional view) of a rotor of coolant recovery type gas turbine of an embodiment, taking a 4-stage turbine as an example. This shows a case of closed steam cooling type gas turbine.
  • a gas turbine rotor is provided with a compressor rotor 3a of a compressor 1 and a turbine rotor 1a of a turbine 120 connected thereto.
  • the compressor rotor 3a is provided with compressor discs 2 provided with compressor moving blades 3 on a peripheral portion.
  • the turbine rotor 1a has a turbine section 100 and a stub shaft 17 connected thereto.
  • the turbine section 100 comprises a first stage solid disc 8, a second stage solid disc 9, a third stage solid disc 10 and a fourth stage solid disc 11, and first stage moving blades 4, second stage moving blades 5, third stage moving blades 6 and fourth stage moving blades 7, each blade being positioned on the peripheral portion of each disc, and has a hollow spacer 12 on the closest side to the compressor 1 and solid spacers 13, 14, 15 on side surfaces of the above-mentioned discs.
  • the stub shaft 17 is positioned on side of the fourth stage solid disc 11.
  • the distant piece 16, the turbine section 100 and the stub shaft 17 are strongly connected by stacking bolts 18 provided so as to pass through the contact surfaces of the discs and spacers.
  • the above-mentioned discs each have a solid construction in a region including an axis (shaft center) portion, gap portions are formed between the discs 8, 9, 10 and 11 and the spacers 13, 14 and 15 adjacent thereto at the rotor axis side, the discs 8 to 11 and the spacers 13, 14 and 15 are in contact with each other at the rotor peripheral side to form contact surfaces 31 to 36 contacting them other, and a plurality of central side communication paths(10a) 77, 81, 85 for introducing fluid into the gap portions are formed in the discs 8 to 11.
  • Prescribed through-holes are provided to supply warming medium (fluid) to a cavity portion between each disc 8-11 and the spacer 13, 14, 15 at a time of starting of the turbine.
  • a cavity is formed between each solid disc and spacer on the central side including the central portion of the contact surface of the solid disc and solid spacer.
  • the cavity 78 is formed at the central portion of the first solid disc 8 and the solid spacer 13.
  • cavities formed respective discs and spacers are referred to 80, 82, 84, 86 and 88.
  • holes 77, 79, 81, 83, 85 and 87 each passing through the discs 8, 9, 10 and 11 and the spacers 13, 14 and 15 are provided.
  • the holes are provided in a region including the above-mentioned contact surfaces of each disc, etc., and so as to path through a more central side in the axial direction than the supply flow path or recovery flow path.
  • the hole 77 which passes through the first stage solid disc 8 in the axial direction is provided so as to communicate an interior space 62 and the cavity 78.
  • the hole 79 which passes through the solid spacer 13 in the axial direction is provided so as to communicate the cavity 78 and the cavity 80.
  • the hole 81 which passes through the second stage solid disc 9 in the axial direction, the hole 83 passing through the solid spacer 14 in the axial direction, the hole 85 passing through the third stage solid disc 10 in the axial direction and the hole 87 passing through the solid spacer 15 in the axial direction are provided so as to communicate between the cavities at the central portion.
  • a slit 89 radially formed in the contact surface 31 of the solid spacer 15 and the fourth stage solid disc 11, a donuts-shaped cavity 90 formed by the solid spacer 15 and the fourth stage solid disc 11 and a hole 91 led from the cavity 90 to a gas flow path of the gas turbine are provided.
  • the slit 89 is provided at a position where it does not cross supply holes 52, 53 and recovery hole 24, 25 on the surface 31.
  • a part of compressed air of the compressor 1 is supplied to the cavities 78, 80, 82, 84, 86 and 88 in a case where the interior of the turbine rotor 1a is cold as nearly normal temperature, for example.
  • a part of air in the compressor air flow path 5a is flowed in the interior space 62 through the gaps between the compressor discs 2.
  • the air flowed in the interior space 62 passes through the slit extending radially outward, flows in the hole 77 and is supplied into the cavity 78.
  • the air supplied in the cavity 78 flows through the central portions of the first stage solid disc 8 and first stage solid spacer 13, the air warms the central portions (axis portions) of the disc 8 and spacer 13 at the starting time.
  • the supplied compressed air effects heat exchange in the central portions of the same disc 8 and spacer 13.
  • the compressed air having passed through the central portions enters the cavity 80 through the hole 79. Here, it warms the central portions of the first stage solid spacer 13 and the second stage solid disc 9 at the starting time.
  • the compressed air enters the cavity 82 through the hole 81, enters the cavity 84 through the hole 83, enters the cavity 86 through the hole 85 and enters the cavity 88 through the hole 87. Then, the compressed air pass through the slit 89 and discharged into the gas flow path 6a through the cavity 90.
  • the rotor peripheral portions of the solid discs 8, 9, 10, 11 and the solid spacers 13, 14, 15 are high in temperature by the heat inputted from the working gas of the gas turbine while the rotor central portions are not easily warmed at the starting time, so that a large temperature difference occurs between the rotor peripheral side and the rotor central portions. That is, the rotor peripheral portions are higher in temperature than the rotor central portions, the rotor peripheral portions take expansion displacement relative to the rotor central portions, and the rotor central portions take shrinkage displacement relative to the rotor peripheral portions, whereby radial tensile thermal stress is applied on the rotor central portions.
  • the cavities 78, 80, 82, 84, 86 and 88 in the rotor central portions formed by the solid discs and solid spacers are taken as constitutional elements of the third flow path, and the rotor central portions can be raised in temperature by flowing the air extracted from the high temperature compressor there. That is, the temperature difference between the rotor peripheral portions and the rotor central portions becomes small and the radial tensile thermal stress in the rotor central portions are suppressed.
  • both side surfaces of cavities in the central portions of the first, second and third solid discs and solid spacers 13, 14, 15 becomes the same air temperature atmosphere, so that it is possible to prevent thermal deformation and thermal stress asymmetric with respect to right and left sides from occurring in the disc central portions.
  • the holes provided in the above-mentioned discs 8, 9, 10 to communication between the cavities are provided in the contact regions 31 to 37, whereby affection of the centrifugal force can be reduced.
  • central side cooling flow paths 10a are independent from the supply flow paths and the recovery flow paths, and it is possible to control heat quantities flowing in and flowing out from the rotor members by introducing air of suitable temperature and pressure into the flow paths 10a.
  • central side cooling flow paths 10a are independent from the supply flow path and recovery flow path, it is considered to provide a flow adjusting mechanism on the central side cooling flow paths 10a, and to flow air of suitable temperature and pressure only at a time of starting at which thermal stress is large. Thereby, air flowing in the central side cooling flow path 10a can be saved in quantity during steady operation, so that the efficiency is improved.
  • the central side communication flow path 10a communicates with the gas flow path of the gas turbine through the sides of the fourth stage solid disc 11, and it is possible to prevent gas from entering the side of the discs by the air having passed through the flow path so that a part of sealing air for preventing gas from the disc side surface can be compensated with the air having passed through the central side communication flow path 10a, and a quantity of air for sealing can be reduced.
  • the holes provided in the discs 8, 9, 10 are provided at the positions where the holes formed in the discs 8, 9, 10 directly communicate between the above-mentioned adjacent cavities.
  • the positions are on the peripheral side more outer than the shaft center of the discs in the region forming the gaps 78, 80, 82, 84, 86 and 88 between the discs and the adjacent spacers at the central side more inner than the above-mentioned contact surfaces 31-37.
  • the present embodiment can be practiced for a gas turbine provided with supply flow path and recovery flow path of steam for cooling moving blades.
  • gap portions 78 to 88 are formed between the discs 8 to 11 and the adjacent spacers thereto on the rotor axis side, contact surfaces 31 to 37 that the discs and the spacers are contacted are formed on the rotor peripheral side, and supply flow paths 24 to 30 for supplying the above-mentioned coolant and recovery flow paths 48 to 53 for recovery of the heated coolant are formed so as to axially pass through the discs 8 to 11 and spacers 13, 14 and 15.
  • the fourth stage solid disc 11 and the stub shaft 17 are in contact with each other at the peripheral side, and in the region of a central side including the center, a cavity 21 of air gap formed by the disc 11 and the stub shaft 17 is provided.
  • the steam supply flow path 8a (first flow path) and the steam recovery flow path 9a (second flow path) are formed so as to axially pass through each disc and spacer at each contact surface.
  • an inner peripheral surface (inner wall) of the through hole and its contact surface are constitutional elements.
  • constitutional elements of the steam supply flow path 8a are supply holes 24, 25, 26, 27, 28 29, 30 which are the above-mentioned through holes of each disc and spacer.
  • constitutional elements of the steam recovery flow path 9a are recovery holes 48, 49, 50 which are the above-mentioned through holes of each disc and spacer.
  • the above-mentioned supply holes and recovery holes of the constitutional elements are connected by the fourth stage solid disc 11 and the contact surface 31 of the solid spacer 15, the third stage solid disc 10 and the contact surface of 32 of the solid spacer 15, the third stage solid disc 10 and the contact surface 33 of the solid spacer 14, the second stage solid disc 9 and the contact surface 34 of the solid spacer 14, the second stage solid disc 9 and the contact surface 35 of the solid spacer 13, and the first stage solid disc 8 and the contact surface 36 of the solid spacer 13. Further, the first stage solid disc 8 and the solid spacer 12 are connected by the contact surface 37.
  • the above-mentioned steam supply flow path 8a and the steam recovery flow path 9a are separated from each other by the above-mentioned contact surface.
  • Slits 23 are formed on the contact surface 22 between the stub shaft 17 and the fourth stage solid disc 11 so as to extend radially from the cavity 21 to communicate with a plurality of supply holes 24 formed in the fourth stage solid disc 11
  • slits 38 are provided so as to communicate with the supply holes 30 and so that steam flowing in the supply holes 30 radially communicate with the doughnut-shaped cavity 39 provided on the peripheral side.
  • the flow paths (23, 24, 25, 26, 27, 28, 29, 30 and 38) from the slit 23 to the cavity 39, each are formed in plurality flow paths in the circumferential direction, and it is desirable to arrange them approximately equi-distant from one another.
  • slits 41 are provided so as to communicate with the supply holes 27 or 28 and so that steam flowing in the supply holes 27 or 28 radially communicate with the doughnut-shaped cavity 42 provided on the peripheral side.
  • slits 143 are provided so as to communicate with the supply holes 26 or 27 and so that steam flowing in the supply holes 26 or 27 radially flows to communicate with the doughnut-shaped cavity 44 provided on the peripherel side.
  • the flow paths 40 of the number corresponding to the number of the first stage moving blades 4 are provided inside the first stage solid disc 8 for supplying steam to each of the first stage solid moving blades 4.
  • the flow paths 43 of the number corresponding to the number of the second stage moving blades 5 are provided inside the second stage solid disc 9 for supplying steam to each of the first stage solid moving blades 5.
  • the flow paths 45 of the number corresponding to the number of the third stage moving blades 6 are provided inside the third stage solid disc 10 for supplying steam to each of the third stage solid moving blades 6.
  • the flow paths 46 of the number corresponding to the number of the first stage moving blades 4 are formed for recovering the steam from the first stage moving blades 4 into the interior of the first stage solid disc 8, and the flow paths 46 communicate with the cavity 47 formed in doughnut-shape on the contact surface 36 of the solid spacer 13 and the first stage solid disc 8.
  • the flow paths 54 are formed for recovering the steam from the second stage moving blades 5 into the interior of the second stage solid disc 9, and the flow paths 54 communicate with the cavity 55 formed in doughnut-shape on the contact surface 35 of the solid spacer 13 and the second stage solid disc 9.
  • the flow paths 56 of the number corresponding to the number of the third stage moving blades 6 are formed for recovering the steam from the third moving blades 6 into the interior of the third stage solid disc 10, and the flow paths 56 communicate with the cavity 57 formed in doughnut-shape on the contact surface 32 of the solid spacer 15 and the third stage solid disc 10.
  • the cavity 47 communicates with recovery hole 48 axially passing through the solid spacer 13 from the contact surface 36.
  • the cavity 55 communicates with recovery hole 48 axially passing through the solid spacer 13 from the contact surface 35.
  • the cavity 57 communicates with recovery hole 52 axially passing through the solid spacer 15 from the contact surface 32.
  • recovery hole 52 communicates with the recovery flow path 59 through the flow path 58.
  • the flow paths provided on the disc peripheral portion for supply/recovery of coolant to/from the moving blades are separated to be for the supply side and for the recovery side in this manner.
  • the steam introduced into the cavity 21 through the inner flow path 20 reaches, through the slit 23, the supply hole 24 passing axially through the fourth stage solid disc 11 from the contact surface 22.
  • the steam having passed through the supply holes 25, 26, 27, 28, 29 and 30 is introduced into the cavity 39 through the slit 38.
  • the steam supplied to the cavity 21 is distributed to respective supply holes and then supplied in parallel until it reaches the cavity 39.
  • the steam from the cavity 39 is supplied to supply ports of each first stage moving blade 4 through the flow path 40 and then introduced into the moving blades.
  • the steam having passed through the supply hole 27 is directed to the supply hole 28 while being introduced into the cavity 42 through the slit 41.
  • the steam from the cavity 42 is supplied to the second stage moving blades 5 through the flow path 43.
  • the steam having passed through the supply hole 26 is directed to the supply hole 27 while being introduced into the cavity 44 through the slit 143.
  • the steam from the cavity 44 is supplied to the third stage moving blades 6 through the flow path 45.
  • the steam which has cooled the first stage moving blades 4 and been raised in temperature is introduced into the cavity 47 through the flow path 46, and reaches the recovery hole 48. Further, the steam having cooled the second stage moving blades 5 and been raised in temperature is introduced into the cavity 55 through the flow path 54, and jointly flows in the recovery hole 48. Further, the steam having cooled the third stage moving blades 6 and been raised in temperature is introduced into the cavity 57 through the flow path 56 and jointly flows in the recovery hole 52.
  • the steam having reached the recovery hole 53 passes through the center-oriented flow path 58 provided inside the stub shaft 17 and is recovered out of the rotor through flow path 59 formed by the stub shaft 17 and the separation pipe 19.
  • the flow paths 48, 49, 50, 51, 52, 53 and 58 from the cavities 47, 55, 57 to the flow path 59 formed by the stub shaft 17 and the separation pipe 19, each has plural paths in the circumferential direction, the plural paths are arranged so as to be equi-distant in the circumferential direction and not to cross the supply flow paths 41 and 143, whereby the steam is recovered in parallel.
  • the steam supply port to the rotor is the inner flow path 20 of the separation pipe 19 and the recovery port is the outer flow path 59 of the separation pipe 19, however, it is possible to reverse the supply port and the recovery port, that is, it is possible to flow the steam in reverse.
  • the steam recovery flow path is arranged between the adjacent steam supply flow paths and on the peripheral side more outer than the supply flow paths within the region in which the above-mentioned contact surfaces exist.
  • both first flow paths for supply of supply holes 24, 25, 26, 27, 28, 29, 30 passing axially through the discs and spacers from inside the contact surfaces of the sides of the solid discs and the spacers and second flow path for recovery of the recovery holes 48, 49, 50, 51, 52, 53 are provided, the first flow paths and the second flow paths are separated by the contact surfaces 31, 32, 33, 34, 35, 36 of the discs and the spacers. That is, attachments such as separation pipes, connecting pipes are not necessary for separation of the first flow paths and the second flow paths, so that there is no concern that the attachments fall off and are broken by the centrifugal force and the thermal stress and the reliability inside the rotor is improved drastically.
  • discs of the present embodiment should be provided with wider contact surfaces than in the case where any ones of coolant supply flow path and coolant recovery flow path is formed so as to pass through the contact surfaces 31 to 37.
  • contact surfaces on which the above-mentioned discs 8 to 11 and the spacers 13, 14 and 15 contact each other are formed between the discs 8 to 11 and the spacers 13, 14 and 15, and outside flow paths(110a) 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, etc. are provided which pass through an outer peripheral side of the region forming the contact surfaces, pass through the above-mentioned discs and spacers in the rotor axis direction and lead a fluid of lower temperature than the combustion gas flowing in the gas turbine.
  • Constitutional elements of the outside flow paths 110a are holes passing through the peripheral side of each disc in the contact region with the adjacent spacer and cavities formed between the adjacent spacers.
  • a doughnut-shaped cavity 65 which is formed by the distant piece 16, the first stage solid disc 8 and the hollow spacer 12.
  • a doughnut-shaped cavity 67 is provided which is formed by the first stage solid disc 8 and the solid spacer 13.
  • cavities 71, 73 and 75 are provided between respective discs and spacers.
  • a hole 66 is provided which passes axially through the first stage solid disc 8 and communicates the cavity 65 and the cavity 67.
  • a hole 68 passing axially through the solid spacer 13 so as to communicate the adjacent spacers, a hole 70 passing axially through the second stage solid disc 9, a hole 72 passing axially through the solid spacer 14 and a hole 74 passing axially through the third stage solid disc 10 are provided.
  • the cavity 75 communicates with the gas flow path of the gas turbine through a hole axially perforated in the solid spacer 15.
  • the flow paths 66, 68, 70, 74 each have a plurality of paths which are arranged equi-distant in the circumferential direction at such positions that they do not cross the supply holes 40, 43, 45 and recovery holes 46, 54, 56 to and from the moving blades.
  • a part of air in the compressor air flow path 5a flows in the interior space 62 through a slit 61 between the compressor discs 2.
  • the compressed air in the interior space 62 is supplied into the cavity 65 through a slit 64 extending radially outward between the distant piece 16 and the hollow spacer 12, and then supplied into the cavity 67 through the hole 66.
  • the air is supplied into the cavity 75 through the hole 68, cavity 69, hole 70, cavity 71, hole 72, cavity 73 and hole 74 in turn. Then, the air is discharged from the hole 76 into the gas flow path 6a.
  • an outside flow path is provided as a fourth flow path passing the cavities 65, 67, 69, 71, 73, 75 formed by the discs and spacers on the peripheral side of the rotor and compressed air flow there, it is possible to interrupt heat entrance from the gas turbine gas flow path to the central portion of the turbine rotor 1a.
  • the air temperature atmosphere in the cavities 65, 67, 69, 71, 73, 75 on the sides of the first, second and third solid discs become same as each other, it is possible to suppress thermal deformation asymmetric with respect to right and left due to temperature difference of the sides of the discs. That is, inclining deformation of the moving blades positioned on the periphery of the discs also becomes small, and it is possible to make tip clarence of the moving blades small by a reduced deformation amount.
  • the air of same temperature level is supplied from the compressor to the cavities 78, 80, 82, 84, 86 and 88 and the cavities 65, 67, 69, 71, 73, 75 and 90, so that a temperature difference between the rotor peripheral side and the rotor central portion can be made further small and radial tensile stress acting on the rotor central portion can be relaxed.
  • an outside flow path 110a is made in such construction that communicates with the gas flow path of the gas turbine through the side faces of the third stage solid disc 10, whereby it is possible to prevent gas from entering the side faces of the discs by the air having passed in the outside flow path 110a. That is, a part of sealing air preventing gas from entering the disc sides can be compensated with the air having passed in the outside flow path 110a, and the quantity of the sealing air can be reduced.
  • the present embodiment is more effective when it is applied together with a third embodiment and fourth embodiment.
  • the third embodiment can be basically the same as the basic construction of Fig. 2.
  • a main difference from the construction of Fig. 2 is in that the third moving blades 6, which are the second stage from the final stage, are air-cooled moving blades, and the above-mentioned central side communication flow path 10a and outside flow path 110a are connected to the third moving blades 6.
  • a flow path 201 is provided inside the third stage solid disc 10 so as to communicate air supply ports of the above-mentioned cavity and the third stage moving blades 6. Holes 203 passing axially through the solid spacer 15 are provided so as to communicate the cavity 75 formed between the third stage moving blades 10 and the solid spacer 15 and the above-mentioned cavity 90. Further, flow paths 202 are provided inside the third stage solid disc 10 so as to the cavity 75 and the air supply ports.
  • a firs part of the air branched from the compressor air supply flow path 5a reaches the cavity 73 through the slit 64, cavity 65, hole 66, cavity 67, hole 68, cavity 69, hole 70, cavity 71 and hole 72 form the interior space 62. Further, a second part of the branched air reaches the cavity 75 through hole 77, cavity 78, hole 79, cavity 80, hole 81, cavity 82, hole 83, cavity 88, slit 89 and cavity 90 form the interior space 62, and through the holes radially passing through the solid spacer 15 from the cavity 90.
  • the air reached the cavity 73 and cavity 75 flows through the flow paths 201, 202 of the number corresponding to the number of the third stage moving blades, which are formed in the third stage solid moving blades 6, and is used for cooling the third stage moving blades 6.
  • the air after cooling is discharged into the gas flow path from the third stage moving blades 6.
  • all quantities of the air passed through the third and fourth flow paths are used for cooling the third stage moving blades 6, however, in the case where a necessary quantity of the air passing through the third and fourth flow paths is more than a cooling quantity of the third stage moving blades 6, the excessive air can be used for air sealing of side surfaces of the third stage solid disc 10 and the fourth stage solid disc 11.
  • the fourth embodiment is constructed so that flow paths are arranged which communicate between the above-mentioned cavities 78, 80, 82, 84, 86 and 88 and the steam supply flow paths 24 to 30 for cooling moving blades or the recovery flow paths 48 to 53, and the steam flowing the above-mentioned supply flow paths is introduced into the cavities or the steam introduced into the cavities is introduced into the steam recovery flow path.
  • the above-mentioned central side communication flow path 10a is provided so as to between the cavities 78, 80, 82, 84, 86, 88 and the steam supply flow path 8a or the steam recovery flow path 9a.
  • a part of coolant for moving blades from the steam supply flow path 8a is supplied to the above-mentioned cavities, and then the coolant in the cavities flows so as to join the flow in the above-mentioned steam recovery flow path 9a.
  • Slits 103 formed to be radially oriented to the center on the contact surface 33 are provided for flowing steam to the cavity 78 from the supply hole 29 which is a constitutional element of the steam supply flow path (first flow path) 8a having an object of steam supply.
  • Slits 104 formed to be radially oriented to the center on the contact surface 33 are provided for recovering steam from the cavity 78 into the supply hole 122 which is a constitutional element of the steam recovery flow path 9a having an object of steam recovery.
  • slits 105 and slits 106 are provided so that the steam flowed in the cavity 80 from the slit 105s is recovered through the slits 106.
  • slits 107, 108, 109, 110, 111, 112, 113 and 114 are provided.
  • supply holes 115, 116, 117, 118, 119, 120 and 121 passing through each disc or spacer are adapted as the steam supply flow path 8a.
  • recovery holes 122, 123, 124, 125, 126 and 127 passing through each disc or spacer are applied as the steam recovery flow path 9a.
  • a part of the steam flowing in the supply hole 29 is supplied to the cavity 78 through the slits 103.
  • the supplied steam is heat-exchanged with the first solid disc 8 and first slit 13 around a central portion.
  • the discs and spacers can be warmed by the steam at gas turbine starting time. Then, it is recovered into the recovery hole 122through the slits 104.
  • a gas turbine in which operational reliability of the gas turbine is improved by suppressing thermal stress acting on the rotor central portion can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
EP96940152A 1996-11-29 1996-11-29 Turbine a gaz du type a recuperation du refrigerant Expired - Lifetime EP0965726B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP03004315A EP1335111B1 (fr) 1996-11-29 1996-11-29 Turbine à gaz avec système de récupération du réfrigérant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1996/003503 WO1998023851A1 (fr) 1996-11-29 1996-11-29 Turbine a gaz du type a recuperation du refrigerant

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP03004315A Division EP1335111B1 (fr) 1996-11-29 1996-11-29 Turbine à gaz avec système de récupération du réfrigérant

Publications (3)

Publication Number Publication Date
EP0965726A1 true EP0965726A1 (fr) 1999-12-22
EP0965726A4 EP0965726A4 (fr) 2001-10-17
EP0965726B1 EP0965726B1 (fr) 2004-06-30

Family

ID=14154172

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96940152A Expired - Lifetime EP0965726B1 (fr) 1996-11-29 1996-11-29 Turbine a gaz du type a recuperation du refrigerant

Country Status (4)

Country Link
EP (1) EP0965726B1 (fr)
JP (1) JP3634871B2 (fr)
DE (1) DE69632837T2 (fr)
WO (1) WO1998023851A1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0894943A1 (fr) * 1997-01-23 1999-02-03 Mitsubishi Heavy Industries, Ltd. Rotor turbine a gaz pour refroidissement par vapeur
EP0909878A3 (fr) * 1997-10-17 2000-07-19 Hitachi, Ltd. Turbine à gaz
DE10208085A1 (de) * 2002-02-25 2003-09-04 Alstom Switzerland Ltd Rotor für eine thermische Turbomaschine
EP1577493A1 (fr) * 2004-03-17 2005-09-21 Siemens Aktiengesellschaft Turbomachine et rotor pour une turbomachine
EP2184444A2 (fr) * 2008-11-05 2010-05-12 General Electric Company Dispositif d'accrochage d'une pale dans une turbine
US8932007B2 (en) 2010-11-29 2015-01-13 Alstom Technology Ltd. Axial flow gas turbine
EP2581564A3 (fr) * 2011-10-12 2016-01-13 General Electric Company Système de commande et procédés permettant de commander le fonctionnement de systèmes de génération de puissance
EP2581565A3 (fr) * 2011-10-12 2016-01-20 General Electric Company Système destiné à être utilisé pour commander le fonctionnement de systèmes de génération de puissance
EP3156593A1 (fr) * 2015-10-15 2017-04-19 Doosan Heavy Industries & Construction Co., Ltd. Appareil de refroidissement de turbine à gaz
EP3205817A1 (fr) * 2016-02-09 2017-08-16 Ansaldo Energia Switzerland AG Rotor refroidi par fluide pour une turbine à gaz

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6190127B1 (en) * 1998-12-22 2001-02-20 General Electric Co. Tuning thermal mismatch between turbine rotor parts with a thermal medium
US6555637B1 (en) 1999-08-24 2003-04-29 Kuraray Co., Ltd. Anionic polymerization process, and process for producing a polymer by the anionic polymerization process
JP3518447B2 (ja) 1999-11-05 2004-04-12 株式会社日立製作所 ガスタービン,ガスタービン装置およびガスタービン動翼の冷媒回収方法
DE102013005431B4 (de) * 2013-03-28 2022-12-08 Man Energy Solutions Se Axialströmungsmaschine
JP7414580B2 (ja) * 2020-02-26 2024-01-16 東芝エネルギーシステムズ株式会社 タービン

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0814064A (ja) * 1994-06-24 1996-01-16 Hitachi Ltd ガスタービン及びその段落装置
JPH08277725A (ja) * 1995-04-06 1996-10-22 Hitachi Ltd ガスタービン
EP0894943A1 (fr) * 1997-01-23 1999-02-03 Mitsubishi Heavy Industries, Ltd. Rotor turbine a gaz pour refroidissement par vapeur

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS648504U (fr) * 1987-07-03 1989-01-18
JPH03275946A (ja) 1990-03-26 1991-12-06 Toshiba Corp ガスタービン

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0814064A (ja) * 1994-06-24 1996-01-16 Hitachi Ltd ガスタービン及びその段落装置
JPH08277725A (ja) * 1995-04-06 1996-10-22 Hitachi Ltd ガスタービン
EP0894943A1 (fr) * 1997-01-23 1999-02-03 Mitsubishi Heavy Industries, Ltd. Rotor turbine a gaz pour refroidissement par vapeur

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 05, 31 May 1996 (1996-05-31) & JP 08 014064 A (HITACHI LTD), 16 January 1996 (1996-01-16) *
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 02, 28 February 1997 (1997-02-28) & JP 08 277725 A (HITACHI LTD), 22 October 1996 (1996-10-22) *
See also references of WO9823851A1 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0894943A1 (fr) * 1997-01-23 1999-02-03 Mitsubishi Heavy Industries, Ltd. Rotor turbine a gaz pour refroidissement par vapeur
EP0894943A4 (fr) * 1997-01-23 2000-10-25 Mitsubishi Heavy Ind Ltd Rotor turbine a gaz pour refroidissement par vapeur
EP0909878A3 (fr) * 1997-10-17 2000-07-19 Hitachi, Ltd. Turbine à gaz
US6185924B1 (en) 1997-10-17 2001-02-13 Hitachi, Ltd. Gas turbine with turbine blade cooling
EP1428984A3 (fr) * 1997-10-17 2004-06-23 Hitachi, Ltd. Turbine à gaz refroidie par air
DE10208085A1 (de) * 2002-02-25 2003-09-04 Alstom Switzerland Ltd Rotor für eine thermische Turbomaschine
US7585148B2 (en) 2004-03-17 2009-09-08 Siemens Aktiengesellschaft Non-positive-displacement machine and rotor for a non-positive-displacement machine
WO2005093219A1 (fr) * 2004-03-17 2005-10-06 Siemens Aktiengesellschaft Turbomachine et rotor de turbomachine
EP1577493A1 (fr) * 2004-03-17 2005-09-21 Siemens Aktiengesellschaft Turbomachine et rotor pour une turbomachine
EP2184444A2 (fr) * 2008-11-05 2010-05-12 General Electric Company Dispositif d'accrochage d'une pale dans une turbine
EP2184444A3 (fr) * 2008-11-05 2012-08-22 General Electric Company Dispositif d'accrochage d'une pale dans une turbine
US8932007B2 (en) 2010-11-29 2015-01-13 Alstom Technology Ltd. Axial flow gas turbine
EP2581564A3 (fr) * 2011-10-12 2016-01-13 General Electric Company Système de commande et procédés permettant de commander le fonctionnement de systèmes de génération de puissance
EP2581565A3 (fr) * 2011-10-12 2016-01-20 General Electric Company Système destiné à être utilisé pour commander le fonctionnement de systèmes de génération de puissance
US9334753B2 (en) 2011-10-12 2016-05-10 General Electric Company Control system and methods for controlling the operation of power generation systems
EP3156593A1 (fr) * 2015-10-15 2017-04-19 Doosan Heavy Industries & Construction Co., Ltd. Appareil de refroidissement de turbine à gaz
US10450864B2 (en) 2015-10-15 2019-10-22 DOOSAN Heavy Industries Construction Co., LTD Gas turbine cooling apparatus
EP3205817A1 (fr) * 2016-02-09 2017-08-16 Ansaldo Energia Switzerland AG Rotor refroidi par fluide pour une turbine à gaz

Also Published As

Publication number Publication date
DE69632837D1 (de) 2004-08-05
DE69632837T2 (de) 2005-07-07
EP0965726A4 (fr) 2001-10-17
WO1998023851A1 (fr) 1998-06-04
JP3634871B2 (ja) 2005-03-30
EP0965726B1 (fr) 2004-06-30

Similar Documents

Publication Publication Date Title
US6393829B2 (en) Coolant recovery type gas turbine
EP0965726B1 (fr) Turbine a gaz du type a recuperation du refrigerant
US5695319A (en) Gas turbine
US6227799B1 (en) Turbine shaft of a steam turbine having internal cooling, and also a method of cooling a turbine shaft
US11156114B2 (en) Turbomachine provided with a vane sector and a cooling circuit
US7621719B2 (en) Multiple cooling schemes for turbine blade outer air seal
KR100416014B1 (ko) 가스터빈및가스터빈작동방법
US5144794A (en) Gas turbine engine with cooling of turbine blades
EP1033476B1 (fr) Circuit d'échange thermique pour un rotor de turbine
EP1512843B1 (fr) Procédé de montage d'une turbine à gaz et ensemble de rotor
US7029236B2 (en) Closed circuit blade-cooled turbine
EP0909878B1 (fr) Turbine à gaz
JPH10103004A (ja) ガスタービンの動翼冷却装置
US6007299A (en) Recovery type steam-cooled gas turbine
JP2011069365A (ja) キャビティを備えたロータを有する蒸気タービン
EP1335111B1 (fr) Turbine à gaz avec système de récupération du réfrigérant
EP2196623A1 (fr) Turbine à gaz
JPH11153001A (ja) 冷媒回収型ガスタービン
Van Buijtenen et al. Mechanical Design of a High-Efficiency 7.5-MW (10,000-hp) Gas Turbine
JP2000179354A (ja) 冷媒回収型ガスタービン

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990528

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

A4 Supplementary search report drawn up and despatched

Effective date: 20010830

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20021018

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69632837

Country of ref document: DE

Date of ref document: 20040805

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20051024

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20051109

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20051202

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20061129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061129

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130