EP0965059B1 - Anti-reflection coating and method for producing same - Google Patents

Anti-reflection coating and method for producing same Download PDF

Info

Publication number
EP0965059B1
EP0965059B1 EP98906800A EP98906800A EP0965059B1 EP 0965059 B1 EP0965059 B1 EP 0965059B1 EP 98906800 A EP98906800 A EP 98906800A EP 98906800 A EP98906800 A EP 98906800A EP 0965059 B1 EP0965059 B1 EP 0965059B1
Authority
EP
European Patent Office
Prior art keywords
substrate
microstructures
structures
photoresist layer
embossing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98906800A
Other languages
German (de)
French (fr)
Other versions
EP0965059A1 (en
Inventor
Andreas Gombert
Hansjörg LERCHENMÜLLER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP0965059A1 publication Critical patent/EP0965059A1/en
Application granted granted Critical
Publication of EP0965059B1 publication Critical patent/EP0965059B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31Surface property or characteristic of web, sheet or block
    • Y10T428/315Surface modified glass [e.g., tempered, strengthened, etc.]

Definitions

  • the invention relates to an anti-reflection layer with one of a optically transparent material existing carrier layer, at least on one Surface side antireflective properties with respect to the surface having incident radiation wavelengths. Moreover, inventive Method for producing the anti-reflection layer specified.
  • reflecting surfaces can be antireflected, inter alia, by: the surface is provided with a suitable roughness. Although it is through the Roughening the interface surface, the same proportion of incident light in the space is reflected back, but become parallel to the surface incident Light rays through the surface roughness in different directions reflected back. In this way, clear mirror images are avoided, that is Light sources, usually with sharp edges imaged at the interface reflected, only lead to a fairly homogeneous brightening on roughened interface. In this way, strong luminance differences avoided and the reflexes are far less disturbing.
  • This type of antireflection coating is successful for example in displays with the Designation Antiglare layer used.
  • a significant advantage of this Antireflection technology is the formability of the structures by reasonably priced Embossing processes.
  • a disadvantage of this type of anti-reflection is that the hemispherical reflection, i. the sum of reflective and diffuse Reflection in the entire backward space area, not in the best case is increased, whereby the background brightness of such prepared glass surfaces of screens is relatively high. This leads not least to a considerable Reducing the contrast of one behind such an antiglare layer existing image or display.
  • interference layer structure is thereby formed such that in suitable wavelength ranges destructive Interference phenomena occur in the reflected radiation field, causing For example, reflections of light sources are greatly reduced in their brightness. However, their image remains in the reflected beam path, unlike the aforementioned Antiglare layer, sharp. Even with a visual Residual reflection ⁇ 0.4%, the sharp mirror images are sometimes more disturbing than the ones relatively high brightness of antiglare surfaces. The contrast ratio is good. For however, most screens and other applications are Interference layers in the production too expensive.
  • a third alternative to the reflection coating of optical surfaces consists in the introduction so-called subwavelength grating, which on the interface of an optical transparent medium leads to a refractive index gradient, whereby an optical Effect as it is generated by interference layers.
  • a Refractive index gradient is realized by surface structures, if the Structures are smaller than the wavelengths of the incident light. Suitable for this purpose Conveniently, the production of periodic structures by means of holographic Exposure in a photoresist layer on the surface of a transparent Medium is applied.
  • Such sub-wavelength surface gratings with periods of 200 to 300 nm are suitable for broadband reflection reduction.
  • Such surfaces the Also known by the term "moth-eye-antireflection-surfaces" are in an article by M.C. Hutley, S.J. Willson, "The Optical Properties of Moth Eye Antireflection Surfaces," OPTICA ACTA, 1982, Vol. 29, No. 7, pages 993-1009, described in detail.
  • the invention is based on the object, an antireflective coating with a an optically transparent material existing carrier layer, the at least on a surface side antireflective properties with respect to the Surface incident radiation wavelengths, further develop such that especially when used with screen surfaces, the contrast ratio in essentially not by the reflection behavior at the optical interface is impaired. Discrete reflection images, as with interference layers and Reflections on subwavelength gratings occur, should be avoided.
  • the inventive antireflection coating should in particular be hemispherical Reflective properties, the reflectivity far below those of normal Antiglare layers lie.
  • a method for producing the According to the invention are provided with the anti-reflection layer, with the large-scale antireflection coatings can be produced, despite low Production costs.
  • Claim 7 is directed to an inventive manufacturing method.
  • the dependent claims contain the respective inventive idea advantageous training features.
  • the invention is based on the idea of the advantages of the reflection properties of described above, known Antiglare layers with those of To combine subwavelength gratings.
  • By the superposition of macro and Microstructures on one and the same optical surface become one prevents discrete reflection images due to the macrostructures, and secondly the proportion by hemispherical reflection at the surface through the Drastically reduced microstructures.
  • Monitor display surfaces effects the inventive anti-reflection coating a significant increase in contrast ratios, a substantial destruction from mirror reflexes and a crucial reduction of hemispheric and reflective reflection.
  • the anti-reflective coating applied structures with an average structure size, typically on the order of 10-100 times the wavelength of the Surface incident radiation. Due to the purely statistical distribution of Macrostructures, the anti-reflection layer receives a surface roughness through which radiation incident on the surface is completely diffusely reflected. To the Disadvantages of the above-described, not reduced hemispherical To avoid reflection, the diffusely reflected radiation components arrive, conditionally by additionally provided on the surface microstructuring, the typical period length of less than 250 nm and a typical structure depth of greater than 100 nm, as it were the reflection of interference layers in destructive interference.
  • Antireflective coating significantly improved, resulting in particular in use of screen surfaces or instrument displays give improved contrast ratios. Also, the use of the inventive antireflection coating, in particular for solar applications, such as the glazing of solar cells or similar, photovoltaic working systems.
  • the Layer on the most diverse optical systems versatile is suitable for liquid crystal displays and screens in which the layer together with the polarizer in a single Foil can be combined. Reflection measurements have shown that it Help of the anti-reflection layer according to the invention is possible, both the direct visually reduce the hemispherical reflection to well below 1%.
  • the Inventive coating layer also applied directly to glass substrates example, as the display surface of a monitor or a serve other instrument display.
  • the substrate surface may also be coated with a coating be having a surface roughness in the desired manner, or forms.
  • the above pretreated substrate surface if still on it no photoresist layer has been applied, a photoresist layer plotted with an interference pattern by overlapping two coherent ones Wave fields is exposed so that surface structures with periodic sequence, arise the so-called microstructures.
  • the thus exposed photoresist layer will be developed below. Below is the macro and microstructures having substrate surface formed on a embossing matrix, by means of which the an optically transparent material existing carrier layer as part of a Embossing process is structured.
  • the preparation of the macrostructure on a substrate surface may occur mechanical way, preferably by means of sandblasting, glass bead blasting or by lapping, i. by grinding, the desired Surface roughening done.
  • the substrate surface with the desired To provide roughness offer wet-chemical Etching alternative ways, the substrate surface with the desired To provide roughness. Also, layer deposits on the Substrate surface having the desired surface roughness, the Lead macrostructures.
  • the thickness of the applied The photoresist layer must be greater than the achievable structural depth, obtained in overlays of macrostructures and microstructures. That's the way it is on the one hand possible by incoherent or coherent exposure of Photoresist layer using gray value masks a stochastic To obtain structure distribution on the photoresist layer.
  • bacon patterns in the photoresist layer are imprinted. Suitable for this purpose are diffuser glass panes, which are irradiated with coherent light. The way this way pre-exposed photoresist layer can be developed at this stage, thereby on the photoresist layer, which is said to be sufficiently thick, a stochastically distributed height profile, the so-called macrostructure results.
  • the above-exposed photoresist layer without Intermediate development exposed to a further exposure step through the microstructuring is imprinted into the surface.
  • the preexposed, and optionally pretreated photoresist with the itself exposed from the superposition interference pattern exposed so that on the Stochastically distributed surface structure a periodic sequence of so-called Form microstructures.
  • the surface structure obtained in this way is used in a subsequent, preferably galvanic molding on a typically nickel transferred to existing metal masters.
  • the metal master or copies of the Metal masters serve as embossing dies for subsequent embossing processes.
  • embossing processes are the inventive Surface structures, for example by thermoplastic molding or transferred by UV curing to carrier layers, typically as films are formed.
  • carrier layers typically as films are formed.
  • organic or inorganic Coatings or solid polymers are examples of films.
  • Fig. 1 is a mere schematic representation of a typical surface profile in Cross-sectional representation of the inventive anti-reflection layer shown.
  • the macrostructure is subject to a stochastic, that is nonuniform Distribution and corresponds in analogy to the transmission technology electromagnetic Shafts of the shape of a carrier wave, the one shown in Fig. 1 Surface structure can be highlighted.
  • On the carrier wave, respectively on the Macrostructure is the microstructuring quasi modulated.
  • FIG. 2 shows a diagram which corresponds to a measurement. in which the reflection properties of an optically transparent medium with a Refractive index of 1.6 have been measured. It can be clearly seen that the Hemispherical reflection over the entire visible wavelength range and in the adjacent infrared range is well below 2%. Comparative measurements with just Antiglare antireflection coatings have shown in that they are orders of magnitude larger than those measured in FIG Values are.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

What is described here is an antireflective coating comprising a carrier layer consisting of an optically transparent material, which, at least on one surface side, presents antireflective properties with respect the wavelengths of the radiation incident on the surface. Moreover, methods of producing the coating are described.The invention excels itself by the provision that the antireflective surface side presents a surface roughness with stochastically distributed structures-the so-called macro structures-and that the macro structures are additionally modulated with surface structures presenting a periodic sequence-the so-called micro structures-which present period or cycle lengths smaller than the wave lengths of the radiation incident on the antireflective surface.

Description

Technisches GebietTechnical area

Die Erfindung bezieht sich auf eine Entspiegelungsschicht mit einer aus einem optisch transparenten Material bestehenden Trägerschicht, die wenigstens auf einer Oberflächenseite antireflektierende Eigenschaften hinsichtlich der auf die Oberfläche einfallenden Strahlungswellenlängen aufweist. Überdies werden erfindungsgemäße Verfahren zur Herstellung der Entspiegelungsschicht angegeben.The invention relates to an anti-reflection layer with one of a optically transparent material existing carrier layer, at least on one Surface side antireflective properties with respect to the surface having incident radiation wavelengths. Moreover, inventive Method for producing the anti-reflection layer specified.

Stand der TechnikState of the art

An den Grenzflächen transparenter Medien, wie beispielsweise Glas- oder Kunststoffscheiben, die vorzugsweise für Fenster-, Bildschirm- oder Instrumentanzeigeflächen verwendet werden, wird stets ein Teil des auf die Grenzflächen einfallenden Lichtes reflektiert, also in den Raum zurückgespiegelt. Durch die auf der Grenzfläche der transparenten Medjen auftretenden Reflexerscheinungen werden die Durchsichteigenschaften sowie das Ablesevermögen bei Bildschirmen oder Anzeigen erheblich beeinträchtigt. Zur Verbesserung der Durchsichteigenschaften beziehungsweise des Ablesevermögens von Bildschirmen ganz allgemeiner Art sind Entspiegelungsmaßnahmen bekannt, die verschiedenartigen Einfluß auf die Reflexionseigenschaften an den Grenzflächen nehmen.At the interfaces of transparent media, such as glass or Plastic discs, preferably for window, screen or Instrument panels are used, is always part of the on the Reflected surfaces of incident light, so reflected back into space. By the occurring on the interface of the transparent Medjen Reflections become the see-through characteristics as well as the Reading capabilities of screens or displays significantly affected. to Improvement of the transparency or readability of screens of a more general nature, anti-reflection measures are known various influence on the reflection properties at the interfaces to take.

So können spiegelnde Oberfläche unter anderem dadurch entspiegelt werden, daß die Oberfläche mit einer geeigneten Rauhigkeit versehen wird. Zwar wird durch das Aufrauhen der Grenzflächenoberfläche derselbe Anteil des einfallenden Lichtes in den Raum zurückreflektiert, jedoch werden parallel auf die Oberfläche einfallende Lichtstrahlen durch die Oberflächenrauhigkeit in verschiedene Richtungen zurückreflektiert. Auf diese Weise werden klare Spiegelbilder vermieden, das heißt Lichtquellen, die normalerweise mit scharfen Kanten abgebildet an der Grenzfläche reflektiert würden, führen lediglich zu einer recht homogenen Aufhellung der auf gerauhten Grenzfläche. Auf diese Weise werden starke Leuchtdichteunterschiede vermieden und die Reflexe werden weit weniger störend empfunden.For example, reflecting surfaces can be antireflected, inter alia, by: the surface is provided with a suitable roughness. Although it is through the Roughening the interface surface, the same proportion of incident light in the space is reflected back, but become parallel to the surface incident Light rays through the surface roughness in different directions reflected back. In this way, clear mirror images are avoided, that is Light sources, usually with sharp edges imaged at the interface reflected, only lead to a fairly homogeneous brightening on roughened interface. In this way, strong luminance differences avoided and the reflexes are far less disturbing.

Diese Art der Entspiegelung wird erfolgreich beispielsweise bei Displays mit der Bezeichnung Antiglare-Schicht eingesetzt. Ein wesentlicher Vorteil dieser Entspiegelungstechnik liegt in der Abformbarkeit der Strukturen durch preisgünstige Prägeprozesse. Nachteilhaft bei dieser Art der Entspiegelung ist jedoch, daß die hemisphärische Reflexion, d.h. die Summe aus spiegelnder und diffuser Reflexion in den gesamten rückwärtigen Raumbereich, im günstigsten Fall nicht erhöht wird, wodurch die Untergrundhelligkeit derartig präparierter Glasoberflächen von Bildschirmen relativ hoch ist. Dies führt nicht zuletzt zu einer erheblichen Reduzierung des Kontrastes eines hinter einer solchen Antiglare-Schicht vorhandenen Bildes bzw. Anzeige.This type of antireflection coating is successful for example in displays with the Designation Antiglare layer used. A significant advantage of this Antireflection technology is the formability of the structures by reasonably priced Embossing processes. A disadvantage of this type of anti-reflection, however, is that the hemispherical reflection, i. the sum of reflective and diffuse Reflection in the entire backward space area, not in the best case is increased, whereby the background brightness of such prepared glass surfaces of screens is relatively high. This leads not least to a considerable Reducing the contrast of one behind such an antiglare layer existing image or display.

Eine weitere Möglichkeit optische Flächen zu entspiegeln, besteht durch das Aufbringen geeigneter Interferenzschichten. Dabei wird die zu entspiegelnde Oberfläche mit einer oder mehreren dünnen Schichten mit geeignetem Brechungsindex und geeigneter Dicke beschichtet. Die Interferenzschichtstruktur ist dabei derart ausgebildet, daß in geeigneten Wellenlängenbereichen destruktive Interferenzerscheinungen im reflektierten Strahlungsfeld auftreten, wodurch beispielsweise Reflexe von Lichtquellen in ihrer Helligkeit stark reduziert werden. Jedoch verbleibt ihre Abbildung im reflektierten Strahlengang, im Unterschied zu der vorstehend genannten Antiglare-Schicht, scharf. Selbst bei einer visuellen Restreflexion < 0,4% wirken die scharfen Spiegelbilder bisweilen störender als die relativ hohe Helligkeit von Antiglare-Oberflächen. Das Kontrastverhältnis ist gut. Für die meisten Bildschirme und weiteren Anwendungen sind jedoch Interferenzschichten in der Herstellung zu teuer. Another way to refract optical surfaces is through the Applying suitable interference layers. This is the anti-reflective Surface with one or more thin layers with suitable Refractive index and appropriate thickness coated. The interference layer structure is thereby formed such that in suitable wavelength ranges destructive Interference phenomena occur in the reflected radiation field, causing For example, reflections of light sources are greatly reduced in their brightness. However, their image remains in the reflected beam path, unlike the aforementioned Antiglare layer, sharp. Even with a visual Residual reflection <0.4%, the sharp mirror images are sometimes more disturbing than the ones relatively high brightness of antiglare surfaces. The contrast ratio is good. For however, most screens and other applications are Interference layers in the production too expensive.

Eine dritte Alternative zur Entspiegelung optischer Flächen besteht im Einbringen sogenannter Subwellenlängengitter, die auf der Grenzfläche eines optisch transparenten Mediums zu einem Brechzahlgradienten führt, wodurch eine optische Wirkung gleichsam der von Interferenzschichten erzeugt wird. Ein solcher Brechungsindexgradient wird durch Oberflächenstrukturen realisiert, sofern die Strukturen kleiner als die Wellenlängen des einfallenden Lichtes sind. Hierfür eignen sich günstigerweise die Herstellung periodischer Strukturen mittels holographischer Belichtung in einer Photoresistschicht, die auf der Oberfläche eines transparenten Mediums aufgebracht ist.A third alternative to the reflection coating of optical surfaces consists in the introduction so-called subwavelength grating, which on the interface of an optical transparent medium leads to a refractive index gradient, whereby an optical Effect as it is generated by interference layers. Such a Refractive index gradient is realized by surface structures, if the Structures are smaller than the wavelengths of the incident light. Suitable for this purpose Conveniently, the production of periodic structures by means of holographic Exposure in a photoresist layer on the surface of a transparent Medium is applied.

Beispiele derartiger Subwellenlängengitter sind den Druckschriften DE 38 31 503 C2 und DE 2 422 298 A1 entnehmbar.Examples of such subwavelength gratings are the publications DE 38 31 503 C2 and DE 2 422 298 A1 can be removed.

Derartige Subwellenlängen-Oberflächengitter mit Perioden von 200 bis 300 nm eignen sich für die breitbandige Reflexionsminderung. Derartige Oberflächen, die auch unter dem Begriff "moth-eye-antireflection-surfaces" bekannt sind, sind in einem Artikel von M. C. Hutley, S. J. Willson, "The Optical Properties of Moth-Eye-Antireflection-Surfaces", OPTICA ACTA, 1982, Vol. 29, Nr. 7, Seite 993-1009, ausführlich beschrieben. Zwar besteht der große Vorteil derartige "Mottenaugen-Schichten" in der mittels Prägeprozessen preisgünstig zu vervielfältigenden Herstellungsweise, gleichsam der von Antiglare-Strukturen, doch ist die großflächige Herstellung derartiger Strukturen sehr schwierig, aufgrund der nur sehr engen optischen Toleranzbereiche hinsichtlich der Varianz von Strukturtiefen und einem sehr hohen Aspektverhältnis, d.h. sehr hohem Verhältnis aus Strukturtiefe und Periode der Strukturen, durch die sich verfälschende Farbeffekte einstellen können. Überdies bilden sich an derartigen Oberflächenvergütungen die Bilder von Lichtquellen ebenso scharf im reflektierten Bild ab, wie es bei Interferenzschichten der Fall ist.Such sub-wavelength surface gratings with periods of 200 to 300 nm are suitable for broadband reflection reduction. Such surfaces, the Also known by the term "moth-eye-antireflection-surfaces" are in an article by M.C. Hutley, S.J. Willson, "The Optical Properties of Moth Eye Antireflection Surfaces," OPTICA ACTA, 1982, Vol. 29, No. 7, pages 993-1009, described in detail. Although there is the great advantage of such "moth-eye layers" in the inexpensively reproduced by embossing processes Production method, so to speak of Antiglare structures, but is the large-scale Making such structures very difficult, due to the very tight optical tolerance ranges with respect to the variance of structure depths and a very high aspect ratio, i. very high ratio of structure depth and Period of structures through which falsifying color effects can occur. Moreover, on such surface finishes, the images of Light sources as sharp in the reflected image, as with interference layers the case is.

Darstellung der ErfindungPresentation of the invention

Der Erfindung liegt die Aufgabe zugrunde, eine Entspiegelungschicht mit einer aus einem optisch transparenten Material bestehenden Trägerschicht, die wenigstens auf einer Oberflächenseite antireflektierende Eigenschaften hinsichtlich der auf die Oberfläche einfallenden Strahlungswellenlängen aufweist, derart weiterzubilden, daß insbesondere beim Einsatz bei Bildschirmoberflächen das Kontrastverhältnis im wesentlichen nicht durch das Reflexionsverhalten an der optischen Grenzfläche beeinträchtigt wird. Diskrete Reflexionsbilder, wie sie bei Interferenzschichten und Reflexionen an Subwellenlängengittern auftreten, sollen vermieden werden. Die erfindungsgemäße Entspiegelungsschicht soll insbesondere hemisphärische Reflexionseigenschaften aufweisen, die im Reflexionsgrad weit unter denen von normalen Antiglare-Schichten liegen. Überdies soll ein Verfahren zur Herstellung der erfindungsgemäßen Entspiegelungsschicht angegeben werden, mit dem auch großflächige Entspiegelungsschichten herstellbar sind, bei trotz geringen Herstellkosten.The invention is based on the object, an antireflective coating with a an optically transparent material existing carrier layer, the at least on a surface side antireflective properties with respect to the Surface incident radiation wavelengths, further develop such that especially when used with screen surfaces, the contrast ratio in essentially not by the reflection behavior at the optical interface is impaired. Discrete reflection images, as with interference layers and Reflections on subwavelength gratings occur, should be avoided. The The inventive antireflection coating should in particular be hemispherical Reflective properties, the reflectivity far below those of normal Antiglare layers lie. Moreover, a method for producing the According to the invention are provided with the anti-reflection layer, with the large-scale antireflection coatings can be produced, despite low Production costs.

Die Lösung der der Erfindung zugrundeliegenden Aufgabe ist im Anspruch 1 angegeben. Anspruch 7 richtet sich auf ein erfindungsgemäßes Herstellverfahren. Die abhängigen Ansprüche enthalten die jeweiligen Erfindungsgedanken vorteilhaft ausbildende Merkmale.The solution of the problem underlying the invention is in claim 1 specified. Claim 7 is directed to an inventive manufacturing method. The dependent claims contain the respective inventive idea advantageous training features.

Erfindungsgemäß ist eine Entspiegelungsschicht mit einer aus einem optisch transparenten Material bestehenden Trägerschicht, die wenigstens auf einer Oberflächenseite antireflektierende Eigenschaften hinsichtlich der auf die Oberfläche einfallenden Strahlungswellenlängen aufweist, derart ausgebildet, daß die antireflektierende Oberflächenseite eine Oberflächenrauhigkeit mit stochastisch verteilten Strukturen - den sogenannten Makrostrukturen - aufweist, und, daß die Makrostrukturen mit Oberflächenstrukturen periodischer Abfolge zusätzlich moduliert sind - den sogenannten Mikrostrukturen -, die Periodenlängen aufweisen, die kleiner als die Wellenlängen der auf die antireflektierende Oberfläche einfallende Strahlung sind. According to the invention, an antireflection coating with one of an optical transparent material existing carrier layer, at least on one Surface side antireflective properties with respect to the surface having incident radiation wavelengths, formed such that the antireflective surface side a surface roughness with stochastic distributed structures - the so-called macrostructures - has, and that the Macrostructures with surface structures of periodic sequence in addition are modulated - the so-called microstructures - which have period lengths, which is smaller than the wavelengths of the incident on the anti-reflective surface Radiation is.

Der Erfindung liegt die Idee zugrunde, die Vorteile der Reflexionseigenschaften der vorstehend beschriebenen, bekannten Antiglare-Schichten mit denen von Subwellenlängengittern zu vereinen. Durch die Überlagerung von Makro- und Mikrostrukturen auf ein und derselben optischen Oberfläche werden zum einen diskrete Reflexionsbilder aufgrund der Makrostrukturen verhindert, und zum anderen der Anteil durch hemisphärische Reflexion an der Oberfläche durch die Mikrostrukturen drastisch verringert. Insbesondere im Einsatz auf Monitordisplayoberflächen bewirkt die erfindungsgemäße Entspiegelungsschicht eine erhebliche Erhöhung der Kontrastverhältnisse, eine weitgehende Zerstörung von Spiegelbildreflexen und eine entscheidende Reduzierung von hemisphärischer und spiegelnder Reflexion.The invention is based on the idea of the advantages of the reflection properties of described above, known Antiglare layers with those of To combine subwavelength gratings. By the superposition of macro and Microstructures on one and the same optical surface become one prevents discrete reflection images due to the macrostructures, and secondly the proportion by hemispherical reflection at the surface through the Drastically reduced microstructures. Especially in use Monitor display surfaces effects the inventive anti-reflection coating a significant increase in contrast ratios, a substantial destruction from mirror reflexes and a crucial reduction of hemispheric and reflective reflection.

Durch die erfindungsgemäße Überlagerung von Makro- und Mikrostrukturen ist auch eine großflächige Herstellung der erfindungsgemäßen Spiegelschicht im Unterschied zu den an sich bekannten "Mottenaugen-Strukturen" möglich, zumal die bei größeren Flächen, die nur mit Mottenaugen-Strukturen versehen sind, auftretende Fleckigkeit durch die Makrostruktur und die damit einhergehende diffuse Oberflächenbeschaffenheit regelrecht wegkaschiert, d.h. optisch in den Hintergrund gedrängt wird.By the superimposition of macro and microstructures according to the invention is also a large-scale production of the mirror layer according to the invention in difference to the known "moth-eye structures" possible, especially at the larger areas that are provided with moth-eye structures occurring only Mottling through the macrostructure and the associated diffuse Surface texture literally laminated away, i. visually in the background is urged.

Um den gewünschten Effekt der diffusen Reflexion durch die Makrostrukturen zu erreichen, sind statistisch auf die Oberfläche der Entspiegelungsschicht aufzubringende Strukturen mit einer durchschnittlichen Strukturgröße, typischerweise in der Größenordnung des 10-100fachen der Wellenlänge der auf die Oberfläche einfallenden Strahlung. Durch die rein statistische Verteilung der Makrostrukturen erhält die Entspiegelungsschicht eine Oberflächenrauheit, durch die an der Oberfläche auftreffende Strahlung vollständig diffus reflektiert wird. Um die Nachteile der vorstehend beschriebenen, nicht verringerten hemisphärischen Reflexion zu vermeiden, gelangen die diffus reflektierten Strahlungsanteile, bedingt durch die zusätzlich an der Oberfläche vorgesehenen Mikrostrukturierung, die eine typische Periodenlänge von kleiner als 250 nm und eine typische Strukturtiefe von größer als 100 nm aufweist, gleichsam der Reflexion an Interferenzschichten in destruktive Interferenz. Aufgrund der destruktiven Interferenzerscheinungen werden die hemisphärischen Reflexionseigenschaften der erfindungsgemäßen Entspiegelungsschicht erheblich verbessert, wodurch sich insbesondere im Einsatz von Bildschirmoberflächen bzw. Instrumentendisplays verbesserteontrastverhältnisse ergeben. Auch eignet sich der Einsatz der erfindungsgemäßen Entspiegelungsschicht insbesondere für solare Anwendungen, wie beispielsweise die Verglasung von Solarzellen oder ähnlichen, photovoltaisch arbeitenden Systeme.To achieve the desired effect of diffuse reflection through the macrostructures are statistically on the surface of the anti-reflective coating applied structures with an average structure size, typically on the order of 10-100 times the wavelength of the Surface incident radiation. Due to the purely statistical distribution of Macrostructures, the anti-reflection layer receives a surface roughness through which radiation incident on the surface is completely diffusely reflected. To the Disadvantages of the above-described, not reduced hemispherical To avoid reflection, the diffusely reflected radiation components arrive, conditionally by additionally provided on the surface microstructuring, the typical period length of less than 250 nm and a typical structure depth of greater than 100 nm, as it were the reflection of interference layers in destructive interference. Due to the destructive interference phenomena will be the hemispherical reflection properties of the invention Antireflective coating significantly improved, resulting in particular in use of screen surfaces or instrument displays give improved contrast ratios. Also, the use of the inventive antireflection coating, in particular for solar applications, such as the glazing of solar cells or similar, photovoltaic working systems.

Durch die bevorzugte Ausführungsform der Entspiegelungsschicht auf einer Trägerfolie, die beispielsweise einseitig klebend ausgebildet sein kann, kann die Schicht auf die unterschiedlichsten optischen Systeme vielseitig angebracht werden. Insbesondere eignet sich die Entspiegelungsschicht für Flüssigkristallanzeigen und - bildschirme, bei denen die Schicht zusammen mit dem Polarisator in einer einzigen Folie kombiniert werden kann. Reflexionsmessungen haben ergeben, daß es mit Hilfe der erfindungsgemäßen Entspiegelungsschicht möglich ist, sowohl die direkte als auch die hemisphärische Reflexion visuell auf deutlich unter 1 % zu verringern.By the preferred embodiment of the anti-reflection layer on a Carrier film, which may be formed, for example, one-sided adhesive, the Layer on the most diverse optical systems versatile. In particular, the anti-reflection coating is suitable for liquid crystal displays and screens in which the layer together with the polarizer in a single Foil can be combined. Reflection measurements have shown that it Help of the anti-reflection layer according to the invention is possible, both the direct visually reduce the hemispherical reflection to well below 1%.

Neben der Verwendung von Folien als transparente Trägerschicht, kann die erfindungsgemäße Entspiegelungsschicht auch direkt auf Glassubstrate aufgebracht werden, die beispielsweise als Displayoberfläche eines Monitors oder einer sonstigen Instrumentenanzeige dienen.In addition to the use of films as a transparent carrier layer, the Inventive coating layer also applied directly to glass substrates example, as the display surface of a monitor or a serve other instrument display.

Ferner ist erfindungsgemäß ein Verfahren zur Herstellung einer Entspiegelungsschicht mit einer, aus einem optisch transparenten Material bestehenden Trägerschicht, die wenigstens auf einer Oberflächenseite antireflektierende Eigenschaften hinsichtlich der auf die Oberfläche einfallenden Strahlungswellenlängen aufweist, derart ausgebildet, daß sich das Verfahren aus der Kombination folgender Verfahrensschritte zusammensetzt:

  • In einem ersten Schritt wird wenigstens eine Oberfläche eines flächigen Substrats mit einer stochastisch verteilten Oberflächenstruktur, den sogenannten Makrostrukturen versehen.
  • Furthermore, according to the invention, a method for producing an antireflection coating comprising a carrier layer consisting of an optically transparent material, which has antireflective properties with respect to the radiation wavelengths incident on the surface at least on one surface side, is designed such that the method comprises the combination of the following method steps:
  • In a first step, at least one surface of a planar substrate is provided with a stochastically distributed surface structure, the so-called macrostructures.
  • Das Aufbringen von Makrostrukturen erfolgt entweder auf mechanischem, chemischem Weg oder mit Hilfe einer Photoresistschicht, die entsprechend belichtet wird, Alternativ kann auch die Substratoberfläche mit einer Beschichtung überzogen werden, die eine Oberflächenrauhigkeit in der gewünschten Weise aufweist oder bildet.The application of macrostructures takes place either on mechanical, chemical way or by means of a photoresist layer, which exposes accordingly Alternatively, the substrate surface may also be coated with a coating be having a surface roughness in the desired manner, or forms.

    Ferner wird auf die vorstehend vorbehandelte Substratoberfläche, falls auf ihr noch keine Photoresistschicht aufgebracht worden ist, eine Photoresistschicht aufgetragen, die mit einem Interferenzmuster durch Überlagerung zweier kohärenter Wellenfelder belichtet wird, so daß Oberflächenstrukturen mit periodischer Abfolge, den sogenannten Mikrostrukturen entstehen. Die derart belichtete Photoresistschicht wird nachfolgend entwickelt. Im weiteren wird die Makro- und Mikrostrukturen aufweisende Substratoberfläche auf eine Prägematrix abgeformt, mittels der die aus einem optisch transparenten Material bestehende Trägerschicht im Rahmen eines Prägeprozesses strukturiert wird.Further, the above pretreated substrate surface, if still on it no photoresist layer has been applied, a photoresist layer plotted with an interference pattern by overlapping two coherent ones Wave fields is exposed so that surface structures with periodic sequence, arise the so-called microstructures. The thus exposed photoresist layer will be developed below. Below is the macro and microstructures having substrate surface formed on a embossing matrix, by means of which the an optically transparent material existing carrier layer as part of a Embossing process is structured.

    Die Herstellung der Makrostruktur auf einer Substratoberfläche kann auf mechanischem Wege vorzugsweise mittels Sandstrahlen, Glasperlstrahlen oder durch Läppen, d.h. mittels Schleifverfahren, die zur gewünschten Oberflächenaufrauhung führen, erfolgen.The preparation of the macrostructure on a substrate surface may occur mechanical way, preferably by means of sandblasting, glass bead blasting or by lapping, i. by grinding, the desired Surface roughening done.

    Neben der mechanischen Aufrauhung bieten beispielsweise naßchemische Ätzverfahren alternative Wege, die Substratoberfläche mit der gewünschten Rauhigkeit zu versehen. Auch können Schichtablagerungen auf die Substratoberfläche, die die gewünschten Oberflächenrauhigkeiten aufweisen, zu den Makrostrukturen führen. In addition to mechanical roughening, for example, offer wet-chemical Etching alternative ways, the substrate surface with the desired To provide roughness. Also, layer deposits on the Substrate surface having the desired surface roughness, the Lead macrostructures.

    Neben der direkten Behandlung der Substratoberfläche sieht das Aufbringen einer Photoresistschicht auf die Substratoberfläche eine weitere, alternative Herstellungsweise für die Makrostruktur vor. Die Dicke der aufzutragenden Photoresistschicht muß dabei größer gewählt werden als die erzielbare Strukturtiefe, die man in Überlagerunge der Makrostrukturen und Mikrostrukturen erhält. So ist es zum einen möglich, durch inkohärente oder kohärente Belichtung der Photoresistschicht unter Verwendung von Grauwertmasken eine stochastische Strukturverteilung auf der Photoresistschicht zu erhalten. Alternativ oder in Ergänzung zu der vorstehenden Belichtungsvariante können auch Specklemuster in die Photoresistschicht einbelichtet werden. Hierzu eignen sich Diffusor-Glasscheiben, die mit kohärentem Licht bestrahlt werden. Die auf diese Weise vorbelichtete Photoresistschicht kann in diesem Stadium entwickelt werden, wodurch sich auf der Photoresistschicht, die wie gesagt genügend dick ausgebildet ist, ein stochastisch verteiltes Höhenprofil, die sogenannte Makrostruktur, ergibt.In addition to the direct treatment of the substrate surface sees the application of a Photoresist layer on the substrate surface another, alternative Preparation method for the macrostructure before. The thickness of the applied The photoresist layer must be greater than the achievable structural depth, obtained in overlays of macrostructures and microstructures. That's the way it is on the one hand possible by incoherent or coherent exposure of Photoresist layer using gray value masks a stochastic To obtain structure distribution on the photoresist layer. Alternatively or in In addition to the above exposure variant, also bacon patterns in the photoresist layer are imprinted. Suitable for this purpose are diffuser glass panes, which are irradiated with coherent light. The way this way pre-exposed photoresist layer can be developed at this stage, thereby on the photoresist layer, which is said to be sufficiently thick, a stochastically distributed height profile, the so-called macrostructure results.

    Ebenso kann auch die vorstehend belichtete Photoresistschicht ohne Zwischenentwicklung einem weiteren Belichtungsschritt ausgesetzt werden, durch den die Mikrostrukturierung in die Oberfläche einbelichtet wird. Unter Zuhilfenahme zweier in Überlagerung gebrachter, kohärenter Wellenfelder wird die vorbelichtete, und gegebenenfalls entsprechend vorbehandelte Photoresistschicht mit dem sich aus der Überlagerung ergebenden Interferenzmuster belichtet, so daß sich auf der stochastisch verteilten Oberflächenstruktur eine periodische Abfolge sogenannter Mikrostrukturen bilden.Likewise, the above-exposed photoresist layer without Intermediate development exposed to a further exposure step, through the microstructuring is imprinted into the surface. With the aid of of two coherent wave fields superimposed, the preexposed, and optionally pretreated photoresist with the itself exposed from the superposition interference pattern exposed so that on the Stochastically distributed surface structure a periodic sequence of so-called Form microstructures.

    Gleichsam dem aus der Übertragungstechnik elektromagnetischer Wellen bekannten Prinzip der modulierten Trägerfrequenz, wird mit der vorstehend beschriebenen Verfahrensweise auf die Makrostruktur eine Mikrostruktur aufmoduliert. Ein nachgeschalteter Entwicklungsprozeß legt, sofern der Entwicklungsschritt zur räumlichen Erzeugung der Makrostruktur noch nicht durchgeführt worden ist, die gesamte Makro- und Mikrostruktur auf der Photoresistschicht räumlich frei. As it is known from the transmission technology of electromagnetic waves Principle of the modulated carrier frequency, with the above-described Procedure on the macrostructure modulated a microstructure. One Downstream development process, if the development step to spatial generation of the macrostructure has not yet been carried out, the entire macro- and microstructure on the photoresist layer spatially free.

    Die auf diese Weise erhaltene Oberflächenstruktur wird in einem nachfolgenden, vorzugsweise galvanischem Abformvorgang auf einen typischerweise aus Nickel bestehenden Metallmasters übertragen. Der Metallmaster oder Kopien des Metallmasters dienen als Prägestempel für anschließende Prägeprozesse. Bei diesen anschließenden Prägeprozessen werden die erfindungsgemäßen Oberflächenstrukturen beispielsweise durch thermoplastische Formgebung oder durch UV-Aushärtung auf Trägerschichten übertragen, die typischerweise als Folien ausgebildet sind. Neben Folien bieten sich auch organische oder anorganische Beschichtungen oder auch feste Polymere an.The surface structure obtained in this way is used in a subsequent, preferably galvanic molding on a typically nickel transferred to existing metal masters. The metal master or copies of the Metal masters serve as embossing dies for subsequent embossing processes. at These subsequent embossing processes are the inventive Surface structures, for example by thermoplastic molding or transferred by UV curing to carrier layers, typically as films are formed. In addition to films also organic or inorganic Coatings or solid polymers.

    Kurze Beschreibung der ZeichnungenBrief description of the drawings

    Die Erfindung wird nachstehend ohne Beschränkung des allgemeinen Erfindungsgedankens anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnung exemplarisch beschrieben, auf die im übrigen bezüglich der Offenbarung aller im Text nicht näher erläuterten erfindungsgemäßen Einzelheiten ausdrücklich verwiesen wird. Es zeigen:

    Fig. 1
    die schematisierte Darstellung der erfindungsgemäßen Oberflächenstruktur sowie
    Fig. 2
    Diagrammdarstellung zur hemisphärischen Reflexion einer nach dem erfindungsgemäßen Verfahren entspiegelten Grenzflächesubstrat-Luft.
    The invention will now be described by way of example without limitation of the general inventive idea using exemplary embodiments with reference to the drawings, which are expressly referred to in the rest with respect to the disclosure of all unspecified in the text details of the invention. Show it:
    Fig. 1
    the schematic representation of the surface structure according to the invention and
    Fig. 2
    Diagrammatic representation of the hemispherical reflection of an interfacial substrate-air coated according to the method according to the invention.

    Kurze Beschreibung eine AusführungsbeispielsBrief description of an embodiment

    Aus Fig. 1 ist in bloßer schematischer Darstellung ein typisches Oberflächenprofil in Querschnittsdarstellung der erfindungsgemäßen Entspiegelungsschicht dargestellt. Die Makrostruktur unterliegt einer stochastischen, das heißt ungleichförmigen Verteilung und entspricht in Analogie zur Übertragungstechnik elektromagnetischer Wellen der Form einer Trägerwelle, die der in Fig. 1 dargestellten Oberflächenstruktur unterlegt werden kann. Auf die Trägerwelle, respektive auf die Makrostruktur ist die Mikrostrukturierung quasi aufmoduliert.From Fig. 1 is a mere schematic representation of a typical surface profile in Cross-sectional representation of the inventive anti-reflection layer shown. The macrostructure is subject to a stochastic, that is nonuniform Distribution and corresponds in analogy to the transmission technology electromagnetic Shafts of the shape of a carrier wave, the one shown in Fig. 1 Surface structure can be highlighted. On the carrier wave, respectively on the Macrostructure is the microstructuring quasi modulated.

    In Fig. 2 ist eine Diagrammdarstellung zu entnehmen, die einer Messung entspricht, bei der die Reflexionseigenschaften eines optisch transparenten Mediums mit einem Brechungsindex von 1,6 vermessen worden sind. Deutlich ist zu erkennen, daß die hemisphärische Reflexion über den gesamten sichtbaren Wellenlängenbereich sowie in den angrenzenden Infrarotbereich deutlich unter 2% liegt. Vergleichsmessungen mit blosen Antiglare-Entspiegelungsschichten haben gezeigt, daß diese um Größenordnungen über den gemessenen, in der Fig. 2 dargestellten Werten liegen.FIG. 2 shows a diagram which corresponds to a measurement. in which the reflection properties of an optically transparent medium with a Refractive index of 1.6 have been measured. It can be clearly seen that the Hemispherical reflection over the entire visible wavelength range and in the adjacent infrared range is well below 2%. Comparative measurements with just Antiglare antireflection coatings have shown in that they are orders of magnitude larger than those measured in FIG Values are.

    Claims (18)

    1. Optically transparent substrate, having an anti-reflective coating with anti-reflective properties with respect to the radiation wavelengths which are incident on the surface, configured in such a manner that the anti-reflective surface side has a surface roughness with stochastically distributed structures - the so-called macrostructures, and in that the macrostructures are in addition modulated with surface structures - the so-called microstructures, characterised in that these microstructures have a periodic sequence and the period lengths are smaller than the wavelengths of the radiation which is incident on the anti-reflective surface.
    2. Substrate having an anti-reflective coating according to claim 1, characterised in that the macrostructures have an average structure size of the order of magnitude of 10 to 100 times the wavelength of the radiation.
    3. Substrate having an anti-reflective coating according to claim 1 or 2, characterised in that said substrate is configured as a foil.
    4. Substrate having an anti-reflective coating according to claim 3, characterised in that the foil has a one-sided adhesive configuration.
    5. Substrate having an anti-reflective coating according to one of the claims 1 to 4, characterised in that the period length of the microstructures is smaller than 250 nm.
    6. Substrate having an anti-reflective coating according to one of the claims 1 to 5, characterised in that the structure depth of the microstructures is greater than 100 nm.
    7. Method for producing an optically transparent substrate, having an anti-reflective coating with anti-reflective properties with respect to the radiation wavelengths which are incident on the surface, characterised by the combination of the following method steps:
      a surface of a planar substrate is roughened by a mechanical or chemical method in such a manner, or
      coated with a photoresist layer, which is exposed in such a manner, or
      provided with a coating, which forms or has a surface roughness,
      such that stochastically distributed structures - so-called macrostructures - are produced,
      a photoresist layer is applied, if not already present, on the surface of the planar substrate, which photoresist layer is exposed with an interference pattern by means of superimposition of two coherent wave fields, so that surface structures with a periodic sequence - so-called microstructures - are produced,
      the exposed photoresist layer is developed, and
      the substrate surface which has macro- and microstructures is moulded on an embossing matrix, by means of which optically transparent material is structured within the scope of an embossing process.
    8. Method according to claim 7,
      characterised in that the mechanical method of surface roughening is effected by means of sand blasting or glass bead blasting.
    9. Method according to claim 7 or 8,
      characterised in that the surface roughening is effected by lapping or grinding of the surface.
    10. Method according to claim 7,
      characterised in that the chemical method of surface roughening is effected by means of wet-chemical etching.
    11. Method according to claim 7,
      characterised in that a sol-gel layer is applied on the surface.
    12. Method according to one of the claims 7 to 11,
      characterised in that the method steps according to claims 7 to 10 are combined in any manner.
    13. Method according to one of the claims 7 to 12,
      characterised in that, in order to produce the macrostructure, the surface of the planar substrate, which is coated with a photoresist layer, is exposed by means of a mask which has a gray scale value distribution.
    14. Method according to one of the claims 7 to 13,
      characterised in that, in order to produce the macrostructure, the surface of the planar substrate, which is coated with a photoresist layer, is exposed with a speckle pattern which contains a stochastic intensity distribution.
    15. Method according to claim 14,
      characterised in that the speckle pattern is produced by means of irradiation of a diffuser glass disc with coherent light.
    16. Method according t.o one of the claims 7 to 15,
      characterised in that the moulding of the substrate surface which has the macro- and microstructures is effected on the embossing matrix by means of electroforming.
    17. Method according to one of the claims 7 to 16,
      characterised in that the embossing process is effected by means of thermoplastic embossing or embossing with radiation curing, in particular UV curing.
    18. Method according to one of the claims 7 to 16,
      characterised in that the embossing process of the substrate surface which has the macro- and microstructures is effected on the embossing matrix by means of injection moulding methods.
    EP98906800A 1997-03-04 1998-01-14 Anti-reflection coating and method for producing same Expired - Lifetime EP0965059B1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19708776 1997-03-04
    DE19708776A DE19708776C1 (en) 1997-03-04 1997-03-04 Anti-reflection coating for glass or plastics panels used in windows, display screens etc.
    PCT/DE1998/000117 WO1998039673A1 (en) 1997-03-04 1998-01-14 Anti-reflection coating and method for producing same

    Publications (2)

    Publication Number Publication Date
    EP0965059A1 EP0965059A1 (en) 1999-12-22
    EP0965059B1 true EP0965059B1 (en) 2005-05-25

    Family

    ID=7822196

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98906800A Expired - Lifetime EP0965059B1 (en) 1997-03-04 1998-01-14 Anti-reflection coating and method for producing same

    Country Status (6)

    Country Link
    US (1) US6359735B1 (en)
    EP (1) EP0965059B1 (en)
    JP (1) JP2001517319A (en)
    AT (1) ATE296455T1 (en)
    DE (2) DE19708776C1 (en)
    WO (1) WO1998039673A1 (en)

    Families Citing this family (118)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19813690A1 (en) * 1998-03-27 2000-05-04 Fresnel Optics Gmbh Optically active element and process for its manufacture
    DE19845423A1 (en) * 1998-10-02 2000-04-13 Fraunhofer Ges Forschung Hot spotlight
    DE60040011D1 (en) * 1999-10-19 2008-10-02 Rolic Ag TOPOLOGICALLY STRUCTURED POLYMER COATING
    US6641767B2 (en) 2000-03-10 2003-11-04 3M Innovative Properties Company Methods for replication, replicated articles, and replication tools
    US6627356B2 (en) * 2000-03-24 2003-09-30 Kabushiki Kaisha Toshiba Photomask used in manufacturing of semiconductor device, photomask blank, and method of applying light exposure to semiconductor wafer by using said photomask
    DE10020877C1 (en) * 2000-04-28 2001-10-25 Alcove Surfaces Gmbh Stamping tool has a structured stamping surface with an anodically oxidized surface layer or a covering layer having open hollow chambers produced by anodic oxidation
    US7066234B2 (en) 2001-04-25 2006-06-27 Alcove Surfaces Gmbh Stamping tool, casting mold and methods for structuring a surface of a work piece
    DE10038749A1 (en) 2000-08-09 2002-02-28 Fraunhofer Ges Forschung Method and device for producing an optically anti-reflective surface
    DE10039208A1 (en) * 2000-08-10 2002-04-18 Fraunhofer Ges Forschung Process for producing a tool that can be used to create optically effective surface structures in the sub-mum range, and a related tool
    US20040190102A1 (en) * 2000-08-18 2004-09-30 Mullen Patrick W. Differentially-cured materials and process for forming same
    US7230764B2 (en) * 2000-08-18 2007-06-12 Reflexite Corporation Differentially-cured materials and process for forming same
    CN100389017C (en) * 2000-08-18 2008-05-21 瑞弗莱克塞特公司 Differentaially cured materials and process for forming same
    JP2002122702A (en) * 2000-10-17 2002-04-26 Matsushita Electric Ind Co Ltd Optical film and display device
    US7145721B2 (en) 2000-11-03 2006-12-05 Mems Optical, Inc. Anti-reflective structures
    US6627892B2 (en) * 2000-12-29 2003-09-30 Honeywell International Inc. Infrared detector packaged with improved antireflection element
    NZ528644A (en) * 2001-03-08 2005-05-27 Boehringer Ingelheim Ca Ltd A method for identifying a potential inhibitor of the binding between a HCV NS5B RNA-dependent RNA polymerase and an appropriate primer-template
    GB0123744D0 (en) * 2001-10-03 2001-11-21 Qinetiq Ltd Coated optical components
    US6958207B1 (en) 2002-12-07 2005-10-25 Niyaz Khusnatdinov Method for producing large area antireflective microtextured surfaces
    US6888676B2 (en) * 2003-03-20 2005-05-03 Nokia Corporation Method of making polarizer and antireflection microstructure for mobile phone display and window
    DE502004004729D1 (en) * 2003-03-21 2007-10-04 Ovd Kinegram Ag Process for the preparation of two overlapping microstructures
    DE10318105B4 (en) * 2003-03-21 2007-09-20 Ovd Kinegram Ag Process for the production of microstructures
    JP2004303545A (en) * 2003-03-31 2004-10-28 Toyota Industries Corp Surface light emitting device and manufacturing method of the same, and optical device equipped with the same
    DE10318566B4 (en) * 2003-04-15 2005-11-17 Fresnel Optics Gmbh Method and tool for producing transparent optical elements made of polymeric materials
    JP4495722B2 (en) * 2003-04-22 2010-07-07 オーファオデー キネグラム アーゲー Microstructure creation method
    CA2523493A1 (en) * 2003-05-02 2004-11-18 Reflexite Corporation Light-redirecting optical structures
    JP2005135899A (en) * 2003-10-06 2005-05-26 Omron Corp Surface light source apparatus and display apparatus
    US7030506B2 (en) * 2003-10-15 2006-04-18 Infineon Technologies, Ag Mask and method for using the mask in lithographic processing
    US7252869B2 (en) * 2003-10-30 2007-08-07 Niyaz Khusnatdinov Microtextured antireflective surfaces with reduced diffraction intensity
    KR20070008521A (en) * 2003-11-14 2007-01-17 디시이 아프릴리스, 인코포레이티드 Holographic data storage media with structured surfaces
    CN100381904C (en) * 2004-05-10 2008-04-16 辅祥实业股份有限公司 Full run-down type backlight source module of using control of plane function
    CN1950724A (en) * 2004-05-12 2007-04-18 松下电器产业株式会社 Optical element and manufacturing method thereof
    DE102004042983A1 (en) * 2004-09-01 2006-03-09 X3D Technologies Gmbh Three dimensional display device, has transparent panel for reducing unwanted light reflections, arranged in front of filter array in front of image reproducing device
    KR100898470B1 (en) 2004-12-03 2009-05-21 샤프 가부시키가이샤 Reflection preventing material, optical element, display device, stamper manufacturing method, and reflection preventing material manufacturing method using the stamper
    US7690814B2 (en) * 2005-03-10 2010-04-06 Honeywell International Inc. Luminaire with a one-sided diffuser
    DE102005013974A1 (en) * 2005-03-26 2006-09-28 Krauss-Maffei Kunststofftechnik Gmbh Method and device for producing microstructured or nanostructured components
    US20060228892A1 (en) * 2005-04-06 2006-10-12 Lazaroff Dennis M Anti-reflective surface
    US20070116934A1 (en) * 2005-11-22 2007-05-24 Miller Scott M Antireflective surfaces, methods of manufacture thereof and articles comprising the same
    TW200746123A (en) * 2006-01-11 2007-12-16 Pentax Corp Optical element having anti-reflection coating
    JP4794351B2 (en) * 2006-05-15 2011-10-19 パナソニック株式会社 Anti-reflection structure and optical device having the same
    JP2007304466A (en) * 2006-05-15 2007-11-22 Matsushita Electric Ind Co Ltd Light-absorbing antireflection structure, optical unit and lens barrel unit equipped with the same, and optical device equipped with them
    JP5105771B2 (en) 2006-05-15 2012-12-26 パナソニック株式会社 Anti-reflection structure and optical device having the same
    JPWO2008001662A1 (en) * 2006-06-30 2009-11-26 パナソニック株式会社 Optical member and optical apparatus provided with the same
    US20080080056A1 (en) * 2006-08-29 2008-04-03 Micron Technology, Inc. Method and apparatus for reducing microlens surface reflection
    WO2008156009A1 (en) * 2007-06-19 2008-12-24 Alps Electric Co., Ltd. Optical element and method for manufacturing the same
    JP4971061B2 (en) * 2007-07-23 2012-07-11 東洋鋼鈑株式会社 Light reflecting plate, method for manufacturing the same, and light reflecting device
    EP2180368A4 (en) * 2007-08-09 2011-06-08 Sharp Kk Liquid crystal display unit
    JP5512269B2 (en) * 2007-09-03 2014-06-04 パナソニック株式会社 Antireflection structure, optical unit and optical device
    JP5201913B2 (en) * 2007-09-03 2013-06-05 パナソニック株式会社 Anti-reflection structure and optical device having the same
    US20090071537A1 (en) * 2007-09-17 2009-03-19 Ozgur Yavuzcetin Index tuned antireflective coating using a nanostructured metamaterial
    DE102007059721A1 (en) * 2007-12-12 2009-06-18 Böck, Klaus Cover foil for silo
    JP5157435B2 (en) * 2007-12-28 2013-03-06 王子ホールディングス株式会社 Method for producing uneven pattern sheet and method for producing optical sheet
    EP2091043A1 (en) * 2008-02-07 2009-08-19 DPHI, Inc. A method for examining an optical stamper
    CN101946271B (en) 2008-02-22 2013-11-20 夏普株式会社 Display device
    FI20080248L (en) * 2008-03-28 2009-09-29 Savcor Face Group Oy Chemical gas coating and method for forming gas coating
    DE102008024678A1 (en) 2008-05-21 2009-11-26 Daimler Ag Light well for guiding light from organic LED to display element of display device of motor vehicle operating device, has inner wall whose surface consists of microstructures, where microstructures are formed based on crystal structure
    BRPI0912278A2 (en) * 2008-05-27 2015-10-20 Sharp Kk prevent reflection film and display device
    JP4583506B2 (en) * 2008-06-06 2010-11-17 シャープ株式会社 Antireflection film, optical element including antireflection film, stamper, stamper manufacturing method, and antireflection film manufacturing method
    DE202008017478U1 (en) 2008-07-17 2009-09-17 Schott Ag Photovoltaic module with partially tempered glass cover plate with interior engraving
    JP5616009B2 (en) 2008-09-22 2014-10-29 アズビル株式会社 Reflective photoelectric sensor and object detection method
    JP2010078803A (en) * 2008-09-25 2010-04-08 Canon Inc Optical element and optical system having it
    TW201023379A (en) * 2008-12-03 2010-06-16 Ind Tech Res Inst Light concentrating module
    EP2377970B1 (en) 2008-12-26 2013-02-13 Sharp Kabushiki Kaisha Method for producing mold and method for producing anti-reflection film using mold
    EP2380045B1 (en) * 2008-12-30 2017-06-28 3M Innovative Properties Company Antireflective articles and methods of making the same
    WO2010123528A2 (en) 2008-12-30 2010-10-28 3M Innovative Properties Company Nanostructured articles and methods of making nanostructured articles
    WO2010087139A1 (en) 2009-01-30 2010-08-05 シャープ株式会社 Mold, mold manufacturing method and method for manufacturing anti-reflection film using the mold
    EP2405036B1 (en) * 2009-03-05 2017-11-08 Sharp Kabushiki Kaisha Mold manufacturing method and electrode structure for use therein
    JP4648995B2 (en) 2009-04-09 2011-03-09 シャープ株式会社 Mold and manufacturing method thereof
    JP5063812B2 (en) 2009-04-24 2012-10-31 シャープ株式会社 Display device and method of manufacturing antireflection film
    JP4677515B2 (en) 2009-04-30 2011-04-27 シャープ株式会社 Mold and manufacturing method thereof
    WO2010143503A1 (en) 2009-06-12 2010-12-16 シャープ株式会社 Antireflection film, display device and light transmissive member
    JP5506804B2 (en) 2009-09-04 2014-05-28 シャープ株式会社 Method for forming anodized layer, method for producing mold, method for producing antireflection film, mold, and antireflection film
    CN102575372B (en) 2009-10-09 2014-05-28 夏普株式会社 Mold and production method for same, and anti-reflection film
    EP2489764B1 (en) * 2009-10-14 2022-11-30 Sharp Kabushiki Kaisha Die and method for manufacturing die, and anti-reflection coating
    EP2495355B1 (en) * 2009-10-28 2022-04-27 Sharp Kabushiki Kaisha Mold, method for manufacturing a mold, and antireflective film
    US8764261B2 (en) 2009-12-10 2014-07-01 Alcon Research, Ltd. Multi-spot laser surgical probe using faceted optical elements
    JP5053465B2 (en) 2010-02-24 2012-10-17 シャープ株式会社 Mold, mold manufacturing method, and antireflection film manufacturing method
    BR112012021936A2 (en) 2010-03-08 2016-05-31 Sharp Kk mold release treatment method, mold, anti-reflective film production method, mold release treatment device, and mold washer / dryer
    US9108351B2 (en) 2010-03-09 2015-08-18 Sharp Kabushiki Kaisha Method for forming anodized layer, method for producing mold and method for producing antireflective film
    US9556532B2 (en) 2010-03-31 2017-01-31 Sharp Kabushiki Kaisha Die, process for producing die, and process for producing antireflection film
    WO2011125367A1 (en) 2010-04-06 2011-10-13 シャープ株式会社 Optical element, and antireflective structure and process for production thereof
    CN102859048B (en) 2010-04-28 2015-07-29 夏普株式会社 The manufacture method of mould and mould
    US8790503B2 (en) 2010-04-28 2014-07-29 Sharp Kabushiki Kaisha Method for forming anodized layer
    EP2573545B1 (en) 2010-05-19 2019-07-03 Sharp Kabushiki Kaisha Die inspection method
    CN103038676B (en) * 2010-06-25 2017-02-08 安德鲁·理查德·帕克 Optical effect structures
    US8524134B2 (en) 2010-07-12 2013-09-03 Graham J. Hubbard Method of molding polymeric materials to impart a desired texture thereto
    KR101250450B1 (en) * 2010-07-30 2013-04-08 광주과학기술원 Fabricating method of micro nano combination structure and fabricating method of photo device integrated with micro nano combination structure
    JP5616969B2 (en) 2010-08-30 2014-10-29 シャープ株式会社 Mold manufacturing method and antireflection material manufacturing method
    CN103154329B (en) 2010-10-08 2015-09-16 夏普株式会社 The manufacture method of anode oxide film
    CN103228978B (en) 2010-11-29 2015-11-25 夏普株式会社 Light conductor and lighting device and the display device with light conductor
    CN102097535A (en) * 2010-11-30 2011-06-15 中国科学院半导体研究所 Method for preparing moth-eye structure for antireflection on surface of solar battery
    CN103228820B (en) 2010-11-30 2016-04-13 夏普株式会社 The formation method of electrode structure, base material holding device and anodic oxide coating
    JP5615971B2 (en) 2011-04-01 2014-10-29 シャープ株式会社 Mold manufacturing method
    JP2012226353A (en) * 2011-04-19 2012-11-15 Agency For Science Technology & Research Antireflective hierarchical structures
    WO2013099935A1 (en) * 2011-12-27 2013-07-04 三菱レイヨン株式会社 Stamper, method for producing same, and method for producing molded body
    CN104245267B (en) 2012-03-26 2017-06-23 夏普株式会社 The manufacture method of mold release treatment method and antireflection film
    WO2013183576A1 (en) 2012-06-06 2013-12-12 シャープ株式会社 Mold base material, production method for mold base material, mold production method, and mold
    JP5376029B1 (en) 2012-09-28 2013-12-25 大日本印刷株式会社 Anti-reflective article
    JP5488667B2 (en) 2012-09-28 2014-05-14 大日本印刷株式会社 Anti-reflective article
    JP2016001201A (en) * 2012-10-17 2016-01-07 旭硝子株式会社 Method of producing glass having antireflection property
    JP2013083997A (en) * 2012-12-13 2013-05-09 Oji Holdings Corp Rugged pattern sheet and optical device
    US20140200566A1 (en) * 2013-01-15 2014-07-17 Alcon Research, Ltd. Multi-spot laser probe with micro-structured distal surface
    JP6201684B2 (en) * 2013-11-26 2017-09-27 凸版印刷株式会社 EL element, illumination device, display device, and liquid crystal display device
    DE102014201885A1 (en) 2014-02-03 2015-08-06 Johnson Controls Automotive Electronics Gmbh Cover for at least one display instrument in a vehicle
    WO2015159797A1 (en) 2014-04-14 2015-10-22 シャープ株式会社 Mold, method for producing mold, anti-reflection film and method for producing anti-reflection film
    JP6059695B2 (en) 2014-09-01 2017-01-11 デクセリアルズ株式会社 Manufacturing method of optical body
    US10695955B2 (en) 2014-11-06 2020-06-30 Sharp Kabushiki Kaisha Mold manufacturing method and anti-reflective film manufacturing method
    JP6322721B2 (en) 2014-11-12 2018-05-09 シャープ株式会社 Mold manufacturing method
    JP6482120B2 (en) * 2015-03-31 2019-03-13 デクセリアルズ株式会社 Master production method, optical body production method, optical member production method, and display device production method
    JP6689576B2 (en) 2015-03-31 2020-04-28 デクセリアルズ株式会社 Master manufacturing method, master, and optical body
    AT517019B1 (en) * 2015-04-02 2017-02-15 Zkw Group Gmbh Lighting device and motor vehicle headlights
    US10967663B2 (en) 2015-12-28 2021-04-06 Sharp Kabushiki Kaisha Printing intaglio, printing intaglio manufacturing method, print-making method, and print
    JP6737613B2 (en) 2016-03-25 2020-08-12 デクセリアルズ株式会社 Optical body and light emitting device
    US11493669B2 (en) 2016-11-21 2022-11-08 Otsuka Techno Corporation Anti-reflective body, camera unit, mobile device, and method for manufacturing anti-reflective body
    US11686881B2 (en) * 2017-10-20 2023-06-27 Ii-Vi Delaware, Inc. Partially etched reflection-modification layer
    US11491672B2 (en) * 2018-09-21 2022-11-08 Dexerials Corporation Microfabrication device, microfabrication method, transfer mold, and transfer object
    DE102018221189A1 (en) 2018-12-07 2020-06-10 Carl Zeiss Smt Gmbh Process for forming nanostructures on a surface and optical element
    CN110204981A (en) * 2019-06-13 2019-09-06 天津市朗威柏丽科技有限公司 The transparent water-repellent paint of delustring
    JP6843400B1 (en) 2019-10-18 2021-03-17 大塚テクノ株式会社 Anti-reflective structure

    Family Cites Families (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB1462618A (en) * 1973-05-10 1977-01-26 Secretary Industry Brit Reducing the reflectance of surfaces to radiation
    US4114983A (en) * 1977-02-18 1978-09-19 Minnesota Mining And Manufacturing Company Polymeric optical element having antireflecting surface
    DE3121785A1 (en) * 1981-06-02 1982-12-16 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Process for the antireflection treatment of a glass surface
    US4511614A (en) * 1983-10-31 1985-04-16 Ball Corporation Substrate having high absorptance and emittance black electroless nickel coating and a process for producing the same
    GB8621468D0 (en) * 1986-09-05 1986-10-15 Philips Nv Display device
    DE3831503A1 (en) * 1988-09-16 1990-03-22 Ver Glaswerke Gmbh Transparent reflection-reducing covering layer for transparent glass or plastic substrates
    US4944986A (en) * 1988-09-23 1990-07-31 Zuel Company Anti-reflective glass surface
    US5120605A (en) * 1988-09-23 1992-06-09 Zuel Company, Inc. Anti-reflective glass surface
    WO1995031737A1 (en) * 1994-05-18 1995-11-23 Dai Nippon Printing Co., Ltd. Glare-proof film

    Also Published As

    Publication number Publication date
    EP0965059A1 (en) 1999-12-22
    DE59812817D1 (en) 2005-06-30
    US6359735B1 (en) 2002-03-19
    ATE296455T1 (en) 2005-06-15
    JP2001517319A (en) 2001-10-02
    WO1998039673A1 (en) 1998-09-11
    DE19708776C1 (en) 1998-06-18

    Similar Documents

    Publication Publication Date Title
    EP0965059B1 (en) Anti-reflection coating and method for producing same
    DE102012104900B4 (en) Method and device for the layer-by-layer production of thin volume grating stacks, beam combiner for a holographic display as well as solar module and hologram component
    DE69933455T2 (en) REFLECTIVE FILM AND REFLECTIVE / SEMI-PERMANENT FILM
    EP2633345B1 (en) Security element with optically variable surface pattern
    DE1924695A1 (en) Holographic imaging process
    DE2154038B2 (en) Retroreflective assembly
    DE2611097A1 (en) PROCESS FOR THE PRODUCTION OF TRANSPARENTS WITH SEVERAL AREAS NOT OVERLAPPING
    ITTO950763A1 (en) ANTI-REFLECTIVE SURFACE WITH PREDETERMINED ROUGHNESS, ESPECIALLY FOR VEHICLE DASHBOARDS
    WO2007115785A1 (en) Multi-layer body with volume hologram
    DE102011121588A1 (en) Security element for security papers, documents of value or the like
    WO2007079851A1 (en) Visually variable security element, and method for production thereof
    CH704944B1 (en) &lt;TITLE&gt; Security document with integrated safety device and manufacturing process.
    DE102006030865A1 (en) Transparent card with hologram and device for recognizing the transparent card with hologram
    DE102006030839B4 (en) Optical element with computer-generated hologram
    EP1613987B1 (en) Method and mould for producing transparent optical elements consisting of polymer materials
    EP3606765B1 (en) Security element with relief structure and method for the production thereof
    DE60019105T2 (en) DISPLAY DEVICE
    EP3034315B1 (en) Security element, method for its production and data carrier equipped wth the security element
    WO2002012927A2 (en) Method and device for producing an optically antireflective surface
    EP2593310B1 (en) Security element with hologram structures
    EP2239150B1 (en) Security device
    DE102008001680A1 (en) vehicle window
    DE102012216219A1 (en) Master for the production of a volume reflection hologram with improved marker design
    WO1999050691A1 (en) Optically active element and method for the production thereof
    EP0485780A1 (en) Material generating optical effects and process for making said material

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19990906

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DERANGEWAND

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050525

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

    Effective date: 20050525

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050525

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050525

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20050525

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

    REF Corresponds to:

    Ref document number: 59812817

    Country of ref document: DE

    Date of ref document: 20050630

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050825

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050825

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050825

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050905

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051027

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060114

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060131

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060131

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060131

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060131

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060131

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20060228

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    BERE Be: lapsed

    Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWAND

    Effective date: 20060131

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20130122

    Year of fee payment: 16

    Ref country code: FR

    Payment date: 20130207

    Year of fee payment: 16

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20140114

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20140930

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140131

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140114

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20160119

    Year of fee payment: 19

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59812817

    Country of ref document: DE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170801