EP0960607A1 - Endoluminal support assembly with capped ends - Google Patents

Endoluminal support assembly with capped ends Download PDF

Info

Publication number
EP0960607A1
EP0960607A1 EP99110197A EP99110197A EP0960607A1 EP 0960607 A1 EP0960607 A1 EP 0960607A1 EP 99110197 A EP99110197 A EP 99110197A EP 99110197 A EP99110197 A EP 99110197A EP 0960607 A1 EP0960607 A1 EP 0960607A1
Authority
EP
European Patent Office
Prior art keywords
stent
generally cylindrical
support assembly
endovascular
assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99110197A
Other languages
German (de)
French (fr)
Inventor
John E. Nolting
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Vascular Inc
Original Assignee
Medtronic AVE Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtronic AVE Inc filed Critical Medtronic AVE Inc
Publication of EP0960607A1 publication Critical patent/EP0960607A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/852Two or more distinct overlapping stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/89Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements comprising two or more adjacent rings flexibly connected by separate members
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • A61F2002/075Stent-grafts the stent being loosely attached to the graft material, e.g. by stitching
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91533Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
    • A61F2002/91541Adjacent bands are arranged out of phase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91558Adjacent bands being connected to each other connected peak to peak
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/005Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using adhesives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0058Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements soldered or brazed or welded
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/0013Horseshoe-shaped, e.g. crescent-shaped, C-shaped, U-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/006Additional features; Implant or prostheses properties not otherwise provided for modular
    • A61F2250/0063Nested prosthetic parts

Definitions

  • This present invention relates generally to implantable devices for maintaining the patency of stenotic or diseased lumens. And, more specifically, to an endoluminal or covered endoluminal support assembly having additional support devices at either or both ends for more uniform deployment of the assembly.
  • PTCA percutaneous transluminal coronary angioplasty
  • PTCA typically involves advancing a catheter, having an inflatable balloon on the distal end thereof, through a patient's arterial system until the balloon crosses an atherosclerotic lesion. The balloon is then inflated to dilate the artery. After dilation, the balloon is deflated and the catheter removed leaving an enlarged arterial passageway or lumen, thereby increasing blood flow.
  • a significant number of PTCA procedures result in a restenosis or renarrowing of the lumen.
  • the lumen to be treated is not limited to coronary arteries, but also includes any other similar body conduit that tends to improperly constrict as a result of disease or malfunction, such as: arteries located within the mesentery, peripheral, or cerebral vasculature; veins; gastrointestinal tract; biliary tract; urethra; trachea; hepatic shunts; and fallopian tubes.
  • Endovascular devices generally referred to as “stents”
  • stent-grafts covered endovascular support devices
  • the stent or stent-graft overcomes the natural tendency of some lumen walls to close due to restenosis, thereby maintaining a more normal flow of blood through that lumen than would be possible if the stent or stent-graft were not in place or if only a PTCA procedure were performed.
  • stents There are two general categories of stents, self-expanding stents and balloon-expandable stents.
  • Some self-expanding stents are made from stainless steel wire or wire braid. Such stents are typically compressed into a first shape and inserted into a sheath or cartridge. During insertion, the stent is positioned along a delivery device, such as a catheter, that is extended to make the stent diameter as small as possible. When the stent is positioned across the lesion, the sheath is withdrawn causing the stent to radially expand and abut the vessel wall. Depending on the materials used in construction of the stent, the wire or wire braid maintains the new shape either through mechanical force or otherwise.
  • Another type of self-expanding stent is made from a shape-memory alloy such as NITINOL. This stent has been pre-treated to assume an expanded state at body temperature. Prior to delivery to the affected area, the stent is typically crimped or compressed near or below room temperature.
  • Balloon-expandable stents are typically introduced into a lumen on a catheter having an inflatable balloon on the distal end thereof. When the stent is at the desired location in the lumen, the balloon is inflated to circumferentially expand the stent. The balloon is then deflated and the catheter is withdrawn, leaving the circumferentially expanded stent in the lumen, usually as a permanent prosthesis for helping to hold the lumen open.
  • tubular-slotted stent which involves what may be thought of as a tube having a number of slots cut in its wall, resulting in a mesh when expanded.
  • a tubular-slotted stent is typically cut out of a hypo-tube, or out of a sheet, which is then rolled, and welded to form a the tube.
  • Example of such stents include, but are not limited to, those disclosed in U.S. Patent Nos. 4,733,665, 4,776,337, 4,739,762 and 5,102,4-17 all issued to Palmaz, U.S. Patent No. 5,195,984 issued to Schatz, U.S. Patent No. 5,421,955 issued to Lau et al., or U.S. Patent No. 5,449,373 issued to Pinchasik et al.
  • a balloon-expandable stent referred to as a wire stent overcomes some of the problems associated with tubular-slotted stents.
  • a wire stent is generally formed by winding a circular shaped wire into supportive elements, which typically have a circular cross-section.
  • the problem with wire stents is that the supportive elements comprising the stent can axially displace with respect to each other, resulting in a stent that fails to provide adequate support.
  • This stent is made by taking a ring or toroid having a circular cross-section, and then forming the ring into a series of sinusoidally-shaped elements. While preferably employing a single piece of material, suitably welded wire is also acceptable. Such a stent has excellent radial strength while retaining the flexibility of wire stents.
  • This endovascular support device may include a plurality of stents mounted on the balloon.
  • All these stent can be used alone or in conjunction with a covering or graft.
  • Atheromatous plaques undergo fissuring, thereby creating a thrombogenic environment in the lumen. Excessive scarring may also occur following the procedure, potentially resulting in reocclusion of the treated lumen.
  • Attempts to address these problems include providing a suitable surface within the lumen for more controlled healing to occur in addition to the support provided by a stent. These attempts include providing a lining or covering in conjunction with a stent. The covering of a stent-graft may prevent excessive tissue prolapse or protrusion of tissue growth through the interstices of the stent while allowing limited tissue in-growth to occur to enhance the implantation. The surface of the graft material at the same time minimizes thrombosis, prevents scarring from occluding the lumen and minimizes the contact between the fissured plaque and the hematological elements in the bloodstream.
  • the stents, and stent-graft, assemblies are mounted on a balloon of a balloon catheter and forcibly expanded from pressure exerted during expansion of the balloon, as discussed above. These stents and stent-grafts are circumscribe most but not all of the length of the balloon.
  • the exposed ends of the balloon coupled with the fact that the ends of the stent or stent-graft will inherently deploy under less force than the medial portion thereof, results in the stent or stent-graft being deployed in a non-uniform fashion. More specifically, the ends of the stents begin to deploy prior to the reminder of the stent.
  • the present invention provides a stent or stent-graft for helping to hold open a lumen.
  • the stent or stent-graft comprises a first stent and at least one additional stent serving as an end cap at one or both ends of the first stent.
  • the present invention increases the amount of pressure needed to circumferentially expand the ends of the assembly, thereby providing a more uniform deployment of the assembly.
  • the graft material or lining is sandwiched between the first stent and the end caps.
  • the present invention relates to a stent or stent-graft assembly having end caps which: cause a more uniform deployment of the assembly; and, in the case of a stent-graft, capture or sandwich the lining between the stent and the end caps.
  • FIG. 1 is a side view of an illustrative embodiment of the stent assembly according to the present invention.
  • Stent assembly 10 includes a first stent 12 having a plurality of stent sections 14a-g, each of which is made of an endless metal loop that has been bent into a plurality of straight sections or struts that are integrally joined by discrete axial turns, or crowns.
  • Each section 14 may have more or less undulations or crowns than are shown in Fig. 1, but the simplified depictions shown herein will be sufficient to illustrate the present invention.
  • sections 14a-g may or may not be made of what would be regarded in some other arts as wire, the material of sections 14a-g is generally wire-like, and so the term "wire” is sometimes used herein to refer to such stent material.
  • Axially adjacent sections 14a-g may be joined to one another at one or more aligned crowns. These connections 16 (if and to the extent present) may be made by fusing, welding, soldering, adhesive bonding, mechanical fastening, or in any other suitable manner.
  • At least one end cap 18 or 19 is disposed at one end of stent 12.
  • end caps 18 and 19 are disposed at both ends of stent 12.
  • These end caps are essentially, and act as, second and third stents, and provide additional resistance to pressure at either end of stent assembly 10. This results in a more uniform expansion of the stent assembly under the influence of the expansion pressures exerted thereon from the balloon of the balloon catheter (not shown).
  • the length of each end cap is less than half of the length of first stent 12.
  • end caps 18 and 19 each comprise two sections 18a, 18b and 19a and 19b, respectively, similar to stent sections 14. And are joined to each other in a similar manner.
  • the end caps are joined to first stent 12 at both ends of stent 12 at one or more radially adjacent crowns.
  • a typical technique for delivering stents of the general type shown as reference numeral 12 in Fig. 1 into a lumen is to initially dispose of the stent assembly in a circumferentially compressed form around a deflated balloon a balloon catheter.
  • the catheter is then inserted into a tubular body structure to be stented until the balloon and stent are at the desired location along the body structure.
  • the balloon is then inflated to circumferentially expand the stent.
  • the balloon is deflated and the catheter is withdrawn, leaving the expanded stent behind in the body structure.
  • the balloon used is longer than the stent assembly, resulting in portions of the balloon extending proximally and distally of the stent assembly. Those exposed portions of the balloon tend to inflate prior to the remainder of the balloon which is circumferentially captured by the stent assembly. This causes uneven inflation of the balloon and deployment of the stent, with the ends of the stent assembly tending to deploy before the remaining or intermediate portion of the stent assembly.
  • the end caps 18, 19 compensate for this by increasing the amount of pressure needed to deploy the ends of the stent assembly. Thereby, a more uniform deployment of the stent assembly is achieved.
  • a stent-graft assembly 20 in accordance with the teachings of the invention is depicted.
  • a lining or graft material 22 is captured or sandwiched between the first stent 12 and end caps 18, 19.
  • Stent 12, comprising stent sections 14a-f, and end caps 18a, 18b and 19a, 19b are similar to that discussed with respect to Figure 1 above.
  • End cap sections 18a and 19b are connected to stent sections 14a and 14g, respectively. More specifically, the cap section is connected to the respective stent section at one or more radially adjacent crowns such as by fusing, welding, soldering, or in any other suitable manner.
  • Suitable material for the lining includes, but is not limited to, polyesters, polytetrafluoroethylene, polyurethane and silicone.
  • Lining 22 is preferably sized so as to terminate halfway between the ends or crowns of stent sections 14a and 14g. This provides uniform support of the graft material at either end thereof. More specifically, if the lining were to terminate at or near the crowns, there would be greater unsupported distances of the lining at the leading edge of the graft.
  • a stent assembly with end caps for more uniform deployment of the assembly has been disclosed.
  • a stent-graft assembly with end caps which also serves to capture the graft material has also been disclosed.
  • stent assembly such as an elastomeric or polymeric sleeve
  • stents of varying types can be used for the stent and the end caps or any combination thereof.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Transplantation (AREA)
  • Cardiology (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pulmonology (AREA)
  • Prostheses (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

An endovascular support assembly, or stent assembly, and a covered endovascular support assembly, or stent-graft assembly, with caps on either or both ends for improved and uniform deployment of the assembly. Additionally, the caps serve to capture the graft material between the caps and the endovascular support device or stent.

Description

    FIELD OF THE INVENTION
  • This present invention relates generally to implantable devices for maintaining the patency of stenotic or diseased lumens. And, more specifically, to an endoluminal or covered endoluminal support assembly having additional support devices at either or both ends for more uniform deployment of the assembly.
  • BACKGROUND OF THE INVENTION
  • Cardiovascular disease is the leading cause of death in the United States. A number of methods have been developed for treating coronary heart disease. One common procedure is percutaneous transluminal coronary angioplasty ("PTCA"). PTCA typically involves advancing a catheter, having an inflatable balloon on the distal end thereof, through a patient's arterial system until the balloon crosses an atherosclerotic lesion. The balloon is then inflated to dilate the artery. After dilation, the balloon is deflated and the catheter removed leaving an enlarged arterial passageway or lumen, thereby increasing blood flow. A significant number of PTCA procedures, however, result in a restenosis or renarrowing of the lumen.
  • To lessen the risk of stenosis or restenosis of lumens, various endovascular devices have been proposed for mechanically keeping an affected lumen open after completion of procedures, such as PTCA. For purposes of the instant invention, the lumen to be treated is not limited to coronary arteries, but also includes any other similar body conduit that tends to improperly constrict as a result of disease or malfunction, such as: arteries located within the mesentery, peripheral, or cerebral vasculature; veins; gastrointestinal tract; biliary tract; urethra; trachea; hepatic shunts; and fallopian tubes.
  • Endovascular devices generally referred to as "stents," and covered endovascular support devices generally referred to as "stent-grafts," are typically inserted into the lumen, positioned across a lesion, and then expanded to keep the passageway clear. Effectively, the stent or stent-graft overcomes the natural tendency of some lumen walls to close due to restenosis, thereby maintaining a more normal flow of blood through that lumen than would be possible if the stent or stent-graft were not in place or if only a PTCA procedure were performed.
  • There are two general categories of stents, self-expanding stents and balloon-expandable stents. Some self-expanding stents are made from stainless steel wire or wire braid. Such stents are typically compressed into a first shape and inserted into a sheath or cartridge. During insertion, the stent is positioned along a delivery device, such as a catheter, that is extended to make the stent diameter as small as possible. When the stent is positioned across the lesion, the sheath is withdrawn causing the stent to radially expand and abut the vessel wall. Depending on the materials used in construction of the stent, the wire or wire braid maintains the new shape either through mechanical force or otherwise.
  • Another type of self-expanding stent is made from a shape-memory alloy such as NITINOL. This stent has been pre-treated to assume an expanded state at body temperature. Prior to delivery to the affected area, the stent is typically crimped or compressed near or below room temperature.
  • Balloon-expandable stents are typically introduced into a lumen on a catheter having an inflatable balloon on the distal end thereof. When the stent is at the desired location in the lumen, the balloon is inflated to circumferentially expand the stent. The balloon is then deflated and the catheter is withdrawn, leaving the circumferentially expanded stent in the lumen, usually as a permanent prosthesis for helping to hold the lumen open.
  • One type of balloon-expandable stent is a tubular-slotted stent, which involves what may be thought of as a tube having a number of slots cut in its wall, resulting in a mesh when expanded. A tubular-slotted stent is typically cut out of a hypo-tube, or out of a sheet, which is then rolled, and welded to form a the tube. Example of such stents include, but are not limited to, those disclosed in U.S. Patent Nos. 4,733,665, 4,776,337, 4,739,762 and 5,102,4-17 all issued to Palmaz, U.S. Patent No. 5,195,984 issued to Schatz, U.S. Patent No. 5,421,955 issued to Lau et al., or U.S. Patent No. 5,449,373 issued to Pinchasik et al.
  • A balloon-expandable stent referred to as a wire stent overcomes some of the problems associated with tubular-slotted stents. A wire stent is generally formed by winding a circular shaped wire into supportive elements, which typically have a circular cross-section. The problem with wire stents is that the supportive elements comprising the stent can axially displace with respect to each other, resulting in a stent that fails to provide adequate support.
  • U.S. Patent Nos. 5,292,331 and 5,674,278 both issued to Boneau, which are hereby incorporated by reference, disclose another type of wire-like stent. This stent is made by taking a ring or toroid having a circular cross-section, and then forming the ring into a series of sinusoidally-shaped elements. While preferably employing a single piece of material, suitably welded wire is also acceptable. Such a stent has excellent radial strength while retaining the flexibility of wire stents. This endovascular support device may include a plurality of stents mounted on the balloon.
  • All these stent can be used alone or in conjunction with a covering or graft.
  • During a PTCA procedure as discussed above, atheromatous plaques undergo fissuring, thereby creating a thrombogenic environment in the lumen. Excessive scarring may also occur following the procedure, potentially resulting in reocclusion of the treated lumen. Attempts to address these problems include providing a suitable surface within the lumen for more controlled healing to occur in addition to the support provided by a stent. These attempts include providing a lining or covering in conjunction with a stent. The covering of a stent-graft may prevent excessive tissue prolapse or protrusion of tissue growth through the interstices of the stent while allowing limited tissue in-growth to occur to enhance the implantation. The surface of the graft material at the same time minimizes thrombosis, prevents scarring from occluding the lumen and minimizes the contact between the fissured plaque and the hematological elements in the bloodstream.
  • The stents, and stent-graft, assemblies are mounted on a balloon of a balloon catheter and forcibly expanded from pressure exerted during expansion of the balloon, as discussed above. These stents and stent-grafts are circumscribe most but not all of the length of the balloon. The exposed ends of the balloon, coupled with the fact that the ends of the stent or stent-graft will inherently deploy under less force than the medial portion thereof, results in the stent or stent-graft being deployed in a non-uniform fashion. More specifically, the ends of the stents begin to deploy prior to the reminder of the stent.
  • Further, with regard to prior art stent-grafts, much focus has been directed towards adhering or attaching the graft material to the stent.
  • SUMMARY OF THE INVENTION
  • The present invention provides a stent or stent-graft for helping to hold open a lumen. The stent or stent-graft comprises a first stent and at least one additional stent serving as an end cap at one or both ends of the first stent.
  • According to the assemblies described herein, the present invention increases the amount of pressure needed to circumferentially expand the ends of the assembly, thereby providing a more uniform deployment of the assembly.
  • Therefore, it is an object of the instant invention to provide a stent or stent-graft assembly with more uniform deployment characteristics.
  • According to a preferred embodiment of the invention, the graft material or lining is sandwiched between the first stent and the end caps.
  • It is a further object of the invention to provide a stent-graft assembly with simply and positively attaches the graft material to the stent assembly.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Figure 1 is a side view of an illustrative embodiment of a stent assembly embodying the principles of the present invention.
  • Figure 2A is a side view of an illustrative embodiment of a stent-graft assembly embodying the principles of the present invention.
  • Figure 2B is a cross-section view along line A-A of Figure 2A.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • The present invention relates to a stent or stent-graft assembly having end caps which: cause a more uniform deployment of the assembly; and, in the case of a stent-graft, capture or sandwich the lining between the stent and the end caps. The following description is presented to enable one of ordinary skill in the art to make and use the invention and is provided in the context of a patent application and its requirements. Various modifications to the preferred embodiment will be readily apparent to those skilled in the art and the generic principles herein may be applied to other embodiments. Thus, the present invention is not intended to be limited to the embodiment shown but is to be accorded the widest scope consistent with the principles and features described herein.
  • Figure 1 is a side view of an illustrative embodiment of the stent assembly according to the present invention. Stent assembly 10 includes a first stent 12 having a plurality of stent sections 14a-g, each of which is made of an endless metal loop that has been bent into a plurality of straight sections or struts that are integrally joined by discrete axial turns, or crowns. Each section 14 may have more or less undulations or crowns than are shown in Fig. 1, but the simplified depictions shown herein will be sufficient to illustrate the present invention.
  • Although sections 14a-g may or may not be made of what would be regarded in some other arts as wire, the material of sections 14a-g is generally wire-like, and so the term "wire" is sometimes used herein to refer to such stent material. Axially adjacent sections 14a-g may be joined to one another at one or more aligned crowns. These connections 16 (if and to the extent present) may be made by fusing, welding, soldering, adhesive bonding, mechanical fastening, or in any other suitable manner.
  • At least one end cap 18 or 19 is disposed at one end of stent 12. According to the embodiment shown in Figure 1 end caps 18 and 19 are disposed at both ends of stent 12. These end caps are essentially, and act as, second and third stents, and provide additional resistance to pressure at either end of stent assembly 10. This results in a more uniform expansion of the stent assembly under the influence of the expansion pressures exerted thereon from the balloon of the balloon catheter (not shown). Preferably, the length of each end cap is less than half of the length of first stent 12.
  • In the embodiment shown, end caps 18 and 19 each comprise two sections 18a, 18b and 19a and 19b, respectively, similar to stent sections 14. And are joined to each other in a similar manner. The end caps are joined to first stent 12 at both ends of stent 12 at one or more radially adjacent crowns.
  • A typical technique for delivering stents of the general type shown as reference numeral 12 in Fig. 1 into a lumen is to initially dispose of the stent assembly in a circumferentially compressed form around a deflated balloon a balloon catheter. The catheter is then inserted into a tubular body structure to be stented until the balloon and stent are at the desired location along the body structure. The balloon is then inflated to circumferentially expand the stent. Lastly, the balloon is deflated and the catheter is withdrawn, leaving the expanded stent behind in the body structure.
  • Typically, the balloon used is longer than the stent assembly, resulting in portions of the balloon extending proximally and distally of the stent assembly. Those exposed portions of the balloon tend to inflate prior to the remainder of the balloon which is circumferentially captured by the stent assembly. This causes uneven inflation of the balloon and deployment of the stent, with the ends of the stent assembly tending to deploy before the remaining or intermediate portion of the stent assembly. The end caps 18, 19 compensate for this by increasing the amount of pressure needed to deploy the ends of the stent assembly. Thereby, a more uniform deployment of the stent assembly is achieved.
  • Turning to Figures 2A and 22, a stent-graft assembly 20 in accordance with the teachings of the invention is depicted. In this embodiment, a lining or graft material 22 is captured or sandwiched between the first stent 12 and end caps 18, 19. Stent 12, comprising stent sections 14a-f, and end caps 18a, 18b and 19a, 19b are similar to that discussed with respect to Figure 1 above.
  • End cap sections 18a and 19b are connected to stent sections 14a and 14g, respectively. More specifically, the cap section is connected to the respective stent section at one or more radially adjacent crowns such as by fusing, welding, soldering, or in any other suitable manner.
  • Suitable material for the lining includes, but is not limited to, polyesters, polytetrafluoroethylene, polyurethane and silicone. Lining 22 is preferably sized so as to terminate halfway between the ends or crowns of stent sections 14a and 14g. This provides uniform support of the graft material at either end thereof. More specifically, if the lining were to terminate at or near the crowns, there would be greater unsupported distances of the lining at the leading edge of the graft.
  • A stent assembly with end caps for more uniform deployment of the assembly has been disclosed. A stent-graft assembly with end caps which also serves to capture the graft material has also been disclosed. Although the present invention has been described in accordance with the embodiments shown, one of ordinary skill in the art will readily recognize that there could be variations to the embodiments and those variations would be within the spirit and scope of the present invention.
  • For example, other means for increasing the resistance to pressure at either end of the stent assembly such as an elastomeric or polymeric sleeve may be employed. Additionally, stents of varying types can be used for the stent and the end caps or any combination thereof.

Claims (9)

  1. An endoluminal support assembly comprising:
    a first generally cylindrical stent (12) having a length, first and second ends, an exterior and an interior, and a medial region, said first generally cylindrical stent defining a passageway therethrough;
    a second generally cylindrical stent (18, 18a) having a length and disposed radially outwardly and adjacent to one end of the first stent (12).
  2. The endoluminal support assembly according to claim 1 wherein the second generally cylindrical stent (18, 18a) is disposed radially outwardly and adjacent to the first end of the first stent (12), and further comprising a third generally cylindrical stent (19, 19a) having a length and disposed radially outwardly and adjacent to the second end of the first stent (12).
  3. The endoluminal support assembly according to claim 2 wherein the second generally cylindrical stent (18, 18a) is connected to the first stent (12) at the first end of the first stent (12), and the third generally cylindrical stent (19, I9a) is connected to the first stent (12) at the second end of the first stent (12).
  4. The endoluminal support assembly according to claim 2 wherein the length of the second generally cylindrical stent (18, 18a) and the length of the third generally cylindrical stent (19, 19a) are each less than half of the length of the first stent (12).
  5. The endoluminal support assembly according to anyone of claims 1 to 4, further comprising a lining (22) having a first and second end and covering at least a portion of the exterior of the first stent (12), and having one end thereof disposed between the first (12) and second (18a) stents.
  6. The endoluminal support assembly according to claim 5 wherein the first end of lining (22) is disposed between the first (12) and second (18a) stents and the second end of the lining (22) is disposed between the first (12) and third stents (19a).
  7. The endoluminal support assembly according to claim 5 or 6 wherein the lining is a polymer selected from the group consisting of polyurethane, ePTFE, dimethyl terephthalate, polyester, polyethylene terephthalate and silicone.
  8. An endoluminal support assembly for implantation into a lumen, comprising:
    a generally cylindrical endovascular support device having a length, first and second ends, an exterior and an interior, and a medial region, said generally cylindrical endovascular support device defining a passageway therethrough and having a compressed configuration for delivery to a site in the lumen and an expanded configuration;
    means for applying a force to the endovascular support device to form said expanded configuration; and
    means disposed circumferentially about and along the exterior of one end of the endovascular support device for increasing the amount of force needed to expand said one end of the endovascular support device.
  9. The endovascular support assembly according to claim 8, further comprising means disposed circumferentially about and along the exterior of both ends of the endovascular support device for increasing the amount of force needed to expand both ends of the endovascular support device.
EP99110197A 1998-05-28 1999-05-26 Endoluminal support assembly with capped ends Withdrawn EP0960607A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US86781 1998-05-28
US09/086,781 US6099559A (en) 1998-05-28 1998-05-28 Endoluminal support assembly with capped ends

Publications (1)

Publication Number Publication Date
EP0960607A1 true EP0960607A1 (en) 1999-12-01

Family

ID=22200869

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99110197A Withdrawn EP0960607A1 (en) 1998-05-28 1999-05-26 Endoluminal support assembly with capped ends

Country Status (5)

Country Link
US (1) US6099559A (en)
EP (1) EP0960607A1 (en)
JP (1) JPH11347133A (en)
AU (1) AU3126099A (en)
CA (1) CA2272970A1 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001066037A2 (en) * 2000-03-09 2001-09-13 Diseño Y Desarrollo Médico, S.A. De C.V. Intraluminal prosthesis
WO2001066035A3 (en) * 2000-03-09 2002-03-21 Diseno Y Desarrollo Medico S A Stent with cover connectors
WO2001074272A3 (en) * 2000-03-30 2002-08-15 Advanced Cardiovascular System Composite intraluminal prostheses
GR1004173B (en) * 2001-10-31 2003-02-26 Μεντισπες Ιατροφαρμακευτικων Ειδων Ανωνυμη Εμπορικη Και Βιομηχανικη Εταιρεια Α.Ε.Β.Ε. Metallic stent with arms for the fixation and implantation of biological grafts
WO2003030784A1 (en) * 2001-10-10 2003-04-17 Boston Scientific Limited Stent design with sheath attachment members
EP1121911A3 (en) * 2000-02-01 2003-07-30 Cordis Corporation A self-expanding stent-graft
EP1177780A3 (en) * 2000-08-02 2003-10-08 Hector Daniel Barone Multi-component endoluminal graft assembly, use thereof and method of implanting
US6699277B1 (en) 2000-03-09 2004-03-02 Diseno Y Desarrollo Medica, S.A. De C.V. Stent with cover connectors
WO2005087138A1 (en) * 2004-03-08 2005-09-22 Cook Incorporated Great retainer for a stent-graft
EP1648345A1 (en) * 2003-07-29 2006-04-26 Taewoong Medical Co., Ltd. Self-expandable stent
WO2006065665A1 (en) * 2004-12-13 2006-06-22 Robert Hunt Carpenter, Dvm, Pc Multi-wall expandable device capable of drug delivery
EP1673033A2 (en) * 2003-09-03 2006-06-28 Bolton Medical Inc. Stent graft, stent graft delivery system and kit and method for implanting the stent graft
EP1785109A3 (en) * 2001-01-12 2007-05-30 Boston Scientific Limited Stent for in-stent restenosis
EP1931281A2 (en) * 2005-08-31 2008-06-18 Advanced Bio Prosthetic Surfaces, Ltd. Covered stent with proximal and distal attachment, delivery catheter, and method of making same
US7763063B2 (en) 2003-09-03 2010-07-27 Bolton Medical, Inc. Self-aligning stent graft delivery system, kit, and method
US8062345B2 (en) 2003-09-03 2011-11-22 Bolton Medical, Inc. Delivery systems for delivering and deploying stent grafts
EP2606854A1 (en) * 2011-12-22 2013-06-26 Cook Medical Technologies LLC Low profile non-symmetrical stents and stent grafts
US8500792B2 (en) 2003-09-03 2013-08-06 Bolton Medical, Inc. Dual capture device for stent graft delivery system and method for capturing a stent graft
US8728145B2 (en) 2008-12-11 2014-05-20 Cook Medical Technologies Llc Low profile non-symmetrical stents and stent-grafts
US8740966B2 (en) 2007-12-26 2014-06-03 Cook Medical Technologies Llc Low profile non-symmetrical stent
US8992593B2 (en) 2007-12-26 2015-03-31 Cook Medical Technologies Llc Apparatus and methods for deployment of a modular stent-graft system
US8998970B2 (en) 2012-04-12 2015-04-07 Bolton Medical, Inc. Vascular prosthetic delivery device and method of use
US9101506B2 (en) 2009-03-13 2015-08-11 Bolton Medical, Inc. System and method for deploying an endoluminal prosthesis at a surgical site
US9180030B2 (en) 2007-12-26 2015-11-10 Cook Medical Technologies Llc Low profile non-symmetrical stent
US9226813B2 (en) 2007-12-26 2016-01-05 Cook Medical Technologies Llc Low profile non-symmetrical stent
US9364314B2 (en) 2008-06-30 2016-06-14 Bolton Medical, Inc. Abdominal aortic aneurysms: systems and methods of use
US9439751B2 (en) 2013-03-15 2016-09-13 Bolton Medical, Inc. Hemostasis valve and delivery systems
US9717611B2 (en) 2009-11-19 2017-08-01 Cook Medical Technologies Llc Stent graft and introducer assembly
US9757263B2 (en) 2009-11-18 2017-09-12 Cook Medical Technologies Llc Stent graft and introducer assembly
US9877857B2 (en) 2003-09-03 2018-01-30 Bolton Medical, Inc. Sheath capture device for stent graft delivery system and method for operating same
AU2017201234B2 (en) * 2007-12-26 2018-05-10 Cook Medical Technologies Llc Prosthesis
US10646365B2 (en) 2003-09-03 2020-05-12 Bolton Medical, Inc. Delivery system and method for self-centering a proximal end of a stent graft
US11259945B2 (en) 2003-09-03 2022-03-01 Bolton Medical, Inc. Dual capture device for stent graft delivery system and method for capturing a stent graft
US11596537B2 (en) 2003-09-03 2023-03-07 Bolton Medical, Inc. Delivery system and method for self-centering a proximal end of a stent graft

Families Citing this family (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0884029B1 (en) * 1997-06-13 2004-12-22 Gary J. Becker Expandable intraluminal endoprosthesis
US6461380B1 (en) 1998-07-28 2002-10-08 Advanced Cardiovascular Systems, Inc. Stent configuration
CA2329213C (en) * 1999-01-22 2005-08-09 Gore Enterprise Holdings, Inc. Low profile stent and graft combination
US5976155A (en) 1999-03-05 1999-11-02 Advanced Cardiovascular Systems, Inc. System for removably securing a stent on a catheter assembly and method of use
US6428569B1 (en) 1999-11-09 2002-08-06 Scimed Life Systems Inc. Micro structure stent configurations
US7226475B2 (en) 1999-11-09 2007-06-05 Boston Scientific Scimed, Inc. Stent with variable properties
US6475235B1 (en) 1999-11-16 2002-11-05 Iowa-India Investments Company, Limited Encapsulated stent preform
US6585747B1 (en) 2000-04-14 2003-07-01 Advanced Cardiovascular Systems, Inc. Interdigitating polymeric endcap for enhanced stent retention
US6680126B1 (en) * 2000-04-27 2004-01-20 Applied Thin Films, Inc. Highly anisotropic ceramic thermal barrier coating materials and related composites
US20030114918A1 (en) * 2000-04-28 2003-06-19 Garrison Michi E. Stent graft assembly and method
US6616689B1 (en) 2000-05-03 2003-09-09 Advanced Cardiovascular Systems, Inc. Intravascular stent
US7118592B1 (en) 2000-09-12 2006-10-10 Advanced Cardiovascular Systems, Inc. Covered stent assembly for reduced-shortening during stent expansion
US6929660B1 (en) 2000-12-22 2005-08-16 Advanced Cardiovascular Systems, Inc. Intravascular stent
US6641607B1 (en) 2000-12-29 2003-11-04 Advanced Cardiovascular Systems, Inc. Double tube stent
US6620191B1 (en) 2001-03-27 2003-09-16 Advanced Cardiovascular Systems, Inc. System for releasably securing a stent on a catheter assembly and method of use
US6764505B1 (en) * 2001-04-12 2004-07-20 Advanced Cardiovascular Systems, Inc. Variable surface area stent
US7862495B2 (en) 2001-05-31 2011-01-04 Advanced Cardiovascular Systems, Inc. Radiation or drug delivery source with activity gradient to minimize edge effects
US6629994B2 (en) * 2001-06-11 2003-10-07 Advanced Cardiovascular Systems, Inc. Intravascular stent
US6939373B2 (en) * 2003-08-20 2005-09-06 Advanced Cardiovascular Systems, Inc. Intravascular stent
US6666880B1 (en) 2001-06-19 2003-12-23 Advised Cardiovascular Systems, Inc. Method and system for securing a coated stent to a balloon catheter
US6635083B1 (en) 2001-06-25 2003-10-21 Advanced Cardiovascular Systems, Inc. Stent with non-linear links and method of use
US6749629B1 (en) 2001-06-27 2004-06-15 Advanced Cardiovascular Systems, Inc. Stent pattern with figure-eights
US6656216B1 (en) 2001-06-29 2003-12-02 Advanced Cardiovascular Systems, Inc. Composite stent with regioselective material
US6979346B1 (en) 2001-08-08 2005-12-27 Advanced Cardiovascular Systems, Inc. System and method for improved stent retention
US7060089B2 (en) * 2002-01-23 2006-06-13 Boston Scientific Scimed, Inc. Multi-layer stent
US6656220B1 (en) 2002-06-17 2003-12-02 Advanced Cardiovascular Systems, Inc. Intravascular stent
US7169178B1 (en) 2002-11-12 2007-01-30 Advanced Cardiovascular Systems, Inc. Stent with drug coating
US8282678B2 (en) * 2002-11-13 2012-10-09 Allium Medical Solutions Ltd. Endoluminal lining
US20040148001A1 (en) * 2003-01-24 2004-07-29 Nolting John E. Solvent-bonded stent-graft assembly
US20050009074A1 (en) * 2003-07-07 2005-01-13 Medtronic Vascular, Inc. Implantable monitor of vulnerable plaque and other disease states
US7198675B2 (en) 2003-09-30 2007-04-03 Advanced Cardiovascular Systems Stent mandrel fixture and method for selectively coating surfaces of a stent
US7189255B2 (en) * 2003-10-28 2007-03-13 Cordis Corporation Prosthesis support ring assembly
IL158960A0 (en) 2003-11-19 2004-05-12 Neovasc Medical Ltd Vascular implant
US20050278017A1 (en) * 2004-06-09 2005-12-15 Scimed Life Systems, Inc. Overlapped stents for scaffolding, flexibility and MRI compatibility
US7648727B2 (en) 2004-08-26 2010-01-19 Advanced Cardiovascular Systems, Inc. Methods for manufacturing a coated stent-balloon assembly
GB0419954D0 (en) 2004-09-08 2004-10-13 Advotek Medical Devices Ltd System for directing therapy
US20070043418A1 (en) * 2005-08-19 2007-02-22 Medlogics Device Corporation Hybrid lumen-supporting stents having self-expanding end segments
US20070050011A1 (en) * 2005-08-26 2007-03-01 Medlogics Device Corporation Lumen-supporting stents and methods for creating lumen-supporting stents with various open/closed designs
US8043366B2 (en) 2005-09-08 2011-10-25 Boston Scientific Scimed, Inc. Overlapping stent
US7867547B2 (en) 2005-12-19 2011-01-11 Advanced Cardiovascular Systems, Inc. Selectively coating luminal surfaces of stents
US20070191926A1 (en) * 2006-02-14 2007-08-16 Advanced Cardiovascular Systems, Inc. Stent pattern for high stent retention
US8784477B2 (en) * 2011-01-05 2014-07-22 Abbott Cardiovascular Systems Inc. Stent graft with two layer ePTFE layer system with high plasticity and high rigidity
US20130190676A1 (en) 2006-04-20 2013-07-25 Limflow Gmbh Devices and methods for fluid flow through body passages
US8069814B2 (en) 2006-05-04 2011-12-06 Advanced Cardiovascular Systems, Inc. Stent support devices
US8603530B2 (en) 2006-06-14 2013-12-10 Abbott Cardiovascular Systems Inc. Nanoshell therapy
US8048448B2 (en) 2006-06-15 2011-11-01 Abbott Cardiovascular Systems Inc. Nanoshells for drug delivery
US8017237B2 (en) 2006-06-23 2011-09-13 Abbott Cardiovascular Systems, Inc. Nanoshells on polymers
GB0617219D0 (en) 2006-08-31 2006-10-11 Barts & London Nhs Trust Blood vessel prosthesis and delivery apparatus
US8778009B2 (en) * 2006-10-06 2014-07-15 Abbott Cardiovascular Systems Inc. Intravascular stent
US20080177376A1 (en) * 2007-01-18 2008-07-24 Medtronic Vascular, Inc. Stent With Improved Flexibility and Method for Making Same
US20080255606A1 (en) * 2007-04-16 2008-10-16 Medtronic Vascular, Inc. Filtering device for use within a body lumen
US10154917B2 (en) * 2007-06-22 2018-12-18 C. R. Bard, Inc. Helical and segmented stent-graft
US8048441B2 (en) 2007-06-25 2011-11-01 Abbott Cardiovascular Systems, Inc. Nanobead releasing medical devices
GB0803302D0 (en) * 2008-02-22 2008-04-02 Barts & London Nhs Trust Blood vessel prosthesis and delivery apparatus
US10028747B2 (en) 2008-05-01 2018-07-24 Aneuclose Llc Coils with a series of proximally-and-distally-connected loops for occluding a cerebral aneurysm
US10716573B2 (en) 2008-05-01 2020-07-21 Aneuclose Janjua aneurysm net with a resilient neck-bridging portion for occluding a cerebral aneurysm
US9402707B2 (en) 2008-07-22 2016-08-02 Neuravi Limited Clot capture systems and associated methods
US9358140B1 (en) 2009-11-18 2016-06-07 Aneuclose Llc Stent with outer member to embolize an aneurysm
DE102010035543A1 (en) 2010-08-26 2012-03-01 Acandis Gmbh & Co. Kg Medical device and system with such a device
US9220899B2 (en) 2010-08-26 2015-12-29 Acandis Gmbh & Co. Kg Electrode for medical applications, system having an electrode, and method for producing an electrode
ES2683943T3 (en) 2010-10-22 2018-09-28 Neuravi Limited Clot capture and removal system
DE102011115902B4 (en) * 2010-12-22 2021-07-01 Bentley Innomed Gmbh Stent-graft and its use
US11259824B2 (en) 2011-03-09 2022-03-01 Neuravi Limited Clot retrieval device for removing occlusive clot from a blood vessel
WO2014139845A1 (en) 2013-03-14 2014-09-18 Neuravi Limited A clot retrieval device for removing occlusive clot from a blood vessel
US9301769B2 (en) 2011-03-09 2016-04-05 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US12076037B2 (en) 2011-03-09 2024-09-03 Neuravi Limited Systems and methods to restore perfusion to a vessel
JP5767494B2 (en) * 2011-03-28 2015-08-19 株式会社カネカ Covered stent, stent delivery catheter, and method for manufacturing covered stent
JP6609479B2 (en) 2013-03-08 2019-11-20 リムフロウ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method and system for providing or maintaining fluid flow through a body passage
US10561509B2 (en) 2013-03-13 2020-02-18 DePuy Synthes Products, Inc. Braided stent with expansion ring and method of delivery
PL2967611T3 (en) 2013-03-14 2019-08-30 Neuravi Limited Devices for removal of acute blockages from blood vessels
US9433429B2 (en) 2013-03-14 2016-09-06 Neuravi Limited Clot retrieval devices
EP2967829B1 (en) 2013-03-15 2017-04-26 Boston Scientific Scimed, Inc. Anti-migration micropatterned stent coating
US9907684B2 (en) 2013-05-08 2018-03-06 Aneuclose Llc Method of radially-asymmetric stent expansion
KR101602389B1 (en) * 2014-05-13 2016-03-10 주식회사 엠아이텍 Stent and making method thereof
US10206796B2 (en) 2014-08-27 2019-02-19 DePuy Synthes Products, Inc. Multi-strand implant with enhanced radiopacity
WO2016083472A1 (en) 2014-11-26 2016-06-02 Neuravi Limited A clot retrieval device for removing occlusive clot from a blood vessel
US11253278B2 (en) 2014-11-26 2022-02-22 Neuravi Limited Clot retrieval system for removing occlusive clot from a blood vessel
US10617435B2 (en) 2014-11-26 2020-04-14 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US10076428B2 (en) 2016-08-25 2018-09-18 DePuy Synthes Products, Inc. Expansion ring for a braided stent
KR102494176B1 (en) 2016-09-06 2023-02-02 뉴라비 리미티드 Thrombus recovery device for removing occluded thrombi from blood vessels
US10292851B2 (en) 2016-09-30 2019-05-21 DePuy Synthes Products, Inc. Self-expanding device delivery apparatus with dual function bump
EP4299086A3 (en) 2017-04-10 2024-05-08 LimFlow GmbH Devices for treating lower extremity vasculature
US10238513B2 (en) 2017-07-19 2019-03-26 Abbott Cardiovascular Systems Inc. Intravascular stent
KR102112820B1 (en) * 2017-12-01 2020-05-19 주식회사 비씨엠 A Stent
US11517371B2 (en) 2018-06-11 2022-12-06 Boston Scientific Scimed, Inc. Sphincterotomes and methods for using sphincterotomes
AU2019204522A1 (en) 2018-07-30 2020-02-13 DePuy Synthes Products, Inc. Systems and methods of manufacturing and using an expansion ring
US10456280B1 (en) 2018-08-06 2019-10-29 DePuy Synthes Products, Inc. Systems and methods of using a braided implant
US10278848B1 (en) 2018-08-06 2019-05-07 DePuy Synthes Products, Inc. Stent delivery with expansion assisting delivery wire
US10842498B2 (en) 2018-09-13 2020-11-24 Neuravi Limited Systems and methods of restoring perfusion to a vessel
US11406416B2 (en) 2018-10-02 2022-08-09 Neuravi Limited Joint assembly for vasculature obstruction capture device
JP7466531B2 (en) 2018-10-09 2024-04-12 リムフロウ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Catheter positioning device and method
US11039944B2 (en) 2018-12-27 2021-06-22 DePuy Synthes Products, Inc. Braided stent system with one or more expansion rings
US11712231B2 (en) 2019-10-29 2023-08-01 Neuravi Limited Proximal locking assembly design for dual stent mechanical thrombectomy device
AU2020373046A1 (en) 2019-11-01 2022-05-12 Limflow Gmbh Devices and methods for increasing blood perfusion to a distal extremity
US11517340B2 (en) 2019-12-03 2022-12-06 Neuravi Limited Stentriever devices for removing an occlusive clot from a vessel and methods thereof
US11730501B2 (en) 2020-04-17 2023-08-22 Neuravi Limited Floating clot retrieval device for removing clots from a blood vessel
US11871946B2 (en) 2020-04-17 2024-01-16 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US11717308B2 (en) 2020-04-17 2023-08-08 Neuravi Limited Clot retrieval device for removing heterogeneous clots from a blood vessel
US11737771B2 (en) 2020-06-18 2023-08-29 Neuravi Limited Dual channel thrombectomy device
US11937836B2 (en) 2020-06-22 2024-03-26 Neuravi Limited Clot retrieval system with expandable clot engaging framework
US11439418B2 (en) 2020-06-23 2022-09-13 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US11395669B2 (en) 2020-06-23 2022-07-26 Neuravi Limited Clot retrieval device with flexible collapsible frame
CN116367796A (en) 2020-08-31 2023-06-30 波士顿科学国际有限公司 Self-expanding stent with cover
US11864781B2 (en) 2020-09-23 2024-01-09 Neuravi Limited Rotating frame thrombectomy device
US11937837B2 (en) 2020-12-29 2024-03-26 Neuravi Limited Fibrin rich / soft clot mechanical thrombectomy device
US12029442B2 (en) 2021-01-14 2024-07-09 Neuravi Limited Systems and methods for a dual elongated member clot retrieval apparatus
US12064130B2 (en) 2021-03-18 2024-08-20 Neuravi Limited Vascular obstruction retrieval device having sliding cages pinch mechanism
US11974764B2 (en) 2021-06-04 2024-05-07 Neuravi Limited Self-orienting rotating stentriever pinching cells

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4733665A (en) 1985-11-07 1988-03-29 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US5064435A (en) * 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
US5102417A (en) 1985-11-07 1992-04-07 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US5195984A (en) 1988-10-04 1993-03-23 Expandable Grafts Partnership Expandable intraluminal graft
US5383892A (en) * 1991-11-08 1995-01-24 Meadox France Stent for transluminal implantation
US5421955A (en) 1991-10-28 1995-06-06 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
US5609627A (en) * 1994-02-09 1997-03-11 Boston Scientific Technology, Inc. Method for delivering a bifurcated endoluminal prosthesis
US5667523A (en) * 1995-04-28 1997-09-16 Impra, Inc. Dual supported intraluminal graft
EP0800801A1 (en) * 1996-04-10 1997-10-15 Advanced Cardiovascular Systems, Inc. Stent having varied amounts of structural strength along its length

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4604762A (en) * 1981-02-13 1986-08-12 Thoratec Laboratories Corporation Arterial graft prosthesis
SE446372B (en) * 1983-02-03 1986-09-08 Medinvent Sa BLOODKERL PROTES FOR USE AS SHUNT BETWEEN BLOODKERL
US5669936A (en) * 1983-12-09 1997-09-23 Endovascular Technologies, Inc. Endovascular grafting system and method for use therewith
US5275622A (en) * 1983-12-09 1994-01-04 Harrison Medical Technologies, Inc. Endovascular grafting apparatus, system and method and devices for use therewith
US4994071A (en) * 1989-05-22 1991-02-19 Cordis Corporation Bifurcating stent apparatus and method
US5123917A (en) * 1990-04-27 1992-06-23 Lee Peter Y Expandable intraluminal vascular graft
FR2662632B1 (en) * 1990-05-30 1992-10-30 Plastic Omnium Cie PROCESS FOR PRODUCING THIN TUBES IN FLUORINATED RESIN, IN PARTICULAR IN POLYTETRAFLUORETHYLENE.
US5578071A (en) * 1990-06-11 1996-11-26 Parodi; Juan C. Aortic graft
US5360443A (en) * 1990-06-11 1994-11-01 Barone Hector D Aortic graft for repairing an abdominal aortic aneurysm
JPH0717314Y2 (en) * 1990-10-18 1995-04-26 ソン ホーヨン Self-expanding intravascular stent
CA2065634C (en) * 1991-04-11 1997-06-03 Alec A. Piplani Endovascular graft having bifurcation and apparatus and method for deploying the same
US5282860A (en) * 1991-10-16 1994-02-01 Olympus Optical Co., Ltd. Stent tube for medical use
US5720776A (en) * 1991-10-25 1998-02-24 Cook Incorporated Barb and expandable transluminal graft prosthesis for repair of aneurysm
US5316023A (en) * 1992-01-08 1994-05-31 Expandable Grafts Partnership Method for bilateral intra-aortic bypass
US5683448A (en) * 1992-02-21 1997-11-04 Boston Scientific Technology, Inc. Intraluminal stent and graft
US5405377A (en) * 1992-02-21 1995-04-11 Endotech Ltd. Intraluminal stent
US5591224A (en) * 1992-03-19 1997-01-07 Medtronic, Inc. Bioelastomeric stent
US5282823A (en) * 1992-03-19 1994-02-01 Medtronic, Inc. Intravascular radially expandable stent
DE69333161T2 (en) * 1992-05-08 2004-06-03 Schneider (Usa) Inc., Plymouth Stent for the esophagus
US5507771A (en) * 1992-06-15 1996-04-16 Cook Incorporated Stent assembly
US5449382A (en) * 1992-11-04 1995-09-12 Dayton; Michael P. Minimally invasive bioactivated endoprosthesis for vessel repair
BE1006440A3 (en) * 1992-12-21 1994-08-30 Dereume Jean Pierre Georges Em Luminal endoprosthesis AND METHOD OF PREPARATION.
AU689094B2 (en) * 1993-04-22 1998-03-26 C.R. Bard Inc. Non-migrating vascular prosthesis and minimally invasive placement system therefor
EP0621015B1 (en) * 1993-04-23 1998-03-18 Schneider (Europe) Ag Stent with a covering layer of elastic material and method for applying the layer on the stent
US5735892A (en) * 1993-08-18 1998-04-07 W. L. Gore & Associates, Inc. Intraluminal stent graft
US5632772A (en) * 1993-10-21 1997-05-27 Corvita Corporation Expandable supportive branched endoluminal grafts
US5639278A (en) * 1993-10-21 1997-06-17 Corvita Corporation Expandable supportive bifurcated endoluminal grafts
US5723004A (en) * 1993-10-21 1998-03-03 Corvita Corporation Expandable supportive endoluminal grafts
US5389106A (en) * 1993-10-29 1995-02-14 Numed, Inc. Impermeable expandable intravascular stent
DE69419877T2 (en) * 1993-11-04 1999-12-16 C.R. Bard, Inc. Fixed vascular prosthesis
EP1010406B1 (en) * 1994-06-08 2005-02-02 Cardiovascular Concepts, Inc. Endoluminal graft
DE69530891T2 (en) * 1994-06-27 2004-05-13 Corvita Corp., Miami Bistable luminal graft endoprostheses
US5522881A (en) * 1994-06-28 1996-06-04 Meadox Medicals, Inc. Implantable tubular prosthesis having integral cuffs
US5653743A (en) * 1994-09-09 1997-08-05 Martin; Eric C. Hypogastric artery bifurcation graft and method of implantation
AU708360B2 (en) * 1994-09-15 1999-08-05 C.R. Bard Inc. Hooked endoprosthesis
US5522882A (en) * 1994-10-21 1996-06-04 Impra, Inc. Method and apparatus for balloon expandable stent-graft delivery
CA2204411C (en) * 1994-11-09 2008-05-13 Peter S. Brown Delivery catheter and graft for aneurysm repair
AU3783195A (en) * 1994-11-15 1996-05-23 Advanced Cardiovascular Systems Inc. Intraluminal stent for attaching a graft
US5637113A (en) * 1994-12-13 1997-06-10 Advanced Cardiovascular Systems, Inc. Polymer film for wrapping a stent structure
WO1996021404A1 (en) * 1995-01-14 1996-07-18 Prograft, Medical, Inc. Kink-resistant stent-graft
AU719980B2 (en) * 1995-02-22 2000-05-18 Menlo Care, Inc. Covered expanding mesh stent
US5556414A (en) * 1995-03-08 1996-09-17 Wayne State University Composite intraluminal graft
US6124523A (en) * 1995-03-10 2000-09-26 Impra, Inc. Encapsulated stent
US5641373A (en) * 1995-04-17 1997-06-24 Baxter International Inc. Method of manufacturing a radially-enlargeable PTFE tape-reinforced vascular graft
US5628786A (en) * 1995-05-12 1997-05-13 Impra, Inc. Radially expandable vascular graft with resistance to longitudinal compression and method of making same
WO1996039104A1 (en) * 1995-06-06 1996-12-12 Endotex Interventional Systems, Inc. Prosthetic graft and method for aneurysm repair
US5591195A (en) * 1995-10-30 1997-01-07 Taheri; Syde Apparatus and method for engrafting a blood vessel
US5628788A (en) * 1995-11-07 1997-05-13 Corvita Corporation Self-expanding endoluminal stent-graft
US5788626A (en) * 1995-11-21 1998-08-04 Schneider (Usa) Inc Method of making a stent-graft covered with expanded polytetrafluoroethylene
CA2199890C (en) * 1996-03-26 2002-02-05 Leonard Pinchuk Stents and stent-grafts having enhanced hoop strength and methods of making the same
US5741326A (en) * 1996-07-15 1998-04-21 Cordis Corporation Low profile thermally set wrapped cover for a percutaneously deployed stent
DE19720115C2 (en) * 1997-05-14 1999-05-20 Jomed Implantate Gmbh Stent graft

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4739762B1 (en) 1985-11-07 1998-10-27 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US4739762A (en) 1985-11-07 1988-04-26 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4776337A (en) 1985-11-07 1988-10-11 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US5102417A (en) 1985-11-07 1992-04-07 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4733665B1 (en) 1985-11-07 1994-01-11 Expandable Grafts Partnership Expandable intraluminal graft,and method and apparatus for implanting an expandable intraluminal graft
US4733665C2 (en) 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US4733665A (en) 1985-11-07 1988-03-29 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4776337B1 (en) 1985-11-07 2000-12-05 Cordis Corp Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US5195984A (en) 1988-10-04 1993-03-23 Expandable Grafts Partnership Expandable intraluminal graft
US5064435A (en) * 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
US5421955A (en) 1991-10-28 1995-06-06 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
US5421955B1 (en) 1991-10-28 1998-01-20 Advanced Cardiovascular System Expandable stents and method for making same
US5383892A (en) * 1991-11-08 1995-01-24 Meadox France Stent for transluminal implantation
US5609627A (en) * 1994-02-09 1997-03-11 Boston Scientific Technology, Inc. Method for delivering a bifurcated endoluminal prosthesis
US5667523A (en) * 1995-04-28 1997-09-16 Impra, Inc. Dual supported intraluminal graft
EP0800801A1 (en) * 1996-04-10 1997-10-15 Advanced Cardiovascular Systems, Inc. Stent having varied amounts of structural strength along its length

Cited By (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1121911A3 (en) * 2000-02-01 2003-07-30 Cordis Corporation A self-expanding stent-graft
US6699277B1 (en) 2000-03-09 2004-03-02 Diseno Y Desarrollo Medica, S.A. De C.V. Stent with cover connectors
WO2001066035A3 (en) * 2000-03-09 2002-03-21 Diseno Y Desarrollo Medico S A Stent with cover connectors
WO2001066037A3 (en) * 2000-03-09 2002-03-28 Diseno Y Desarrollo Medico S A Intraluminal prosthesis
WO2001066037A2 (en) * 2000-03-09 2001-09-13 Diseño Y Desarrollo Médico, S.A. De C.V. Intraluminal prosthesis
US6929658B1 (en) 2000-03-09 2005-08-16 Design & Performance-Cyprus Limited Stent with cover connectors
WO2001074272A3 (en) * 2000-03-30 2002-08-15 Advanced Cardiovascular System Composite intraluminal prostheses
US6436132B1 (en) 2000-03-30 2002-08-20 Advanced Cardiovascular Systems, Inc. Composite intraluminal prostheses
EP1177780A3 (en) * 2000-08-02 2003-10-08 Hector Daniel Barone Multi-component endoluminal graft assembly, use thereof and method of implanting
EP1785109A3 (en) * 2001-01-12 2007-05-30 Boston Scientific Limited Stent for in-stent restenosis
WO2003030784A1 (en) * 2001-10-10 2003-04-17 Boston Scientific Limited Stent design with sheath attachment members
US8641750B2 (en) 2001-10-10 2014-02-04 Lifeshield Sciences Llc Stent design with sheath attachment members
US7399312B2 (en) 2001-10-10 2008-07-15 Scimed Life Systems, Inc. Stent design with sheath attachment members
GR1004173B (en) * 2001-10-31 2003-02-26 Μεντισπες Ιατροφαρμακευτικων Ειδων Ανωνυμη Εμπορικη Και Βιομηχανικη Εταιρεια Α.Ε.Β.Ε. Metallic stent with arms for the fixation and implantation of biological grafts
EP1648345A1 (en) * 2003-07-29 2006-04-26 Taewoong Medical Co., Ltd. Self-expandable stent
EP1648345A4 (en) * 2003-07-29 2006-11-02 Taewoong Medical Co Ltd Self-expandable stent
US9220617B2 (en) 2003-09-03 2015-12-29 Bolton Medical, Inc. Dual capture device for stent graft delivery system and method for capturing a stent graft
US9925080B2 (en) 2003-09-03 2018-03-27 Bolton Medical, Inc. Methods of implanting a prosthesis
EP1673033A4 (en) * 2003-09-03 2007-12-26 Bolton Medical Inc Stent graft, stent graft delivery system and kit and method for implanting the stent graft
EP1673033A2 (en) * 2003-09-03 2006-06-28 Bolton Medical Inc. Stent graft, stent graft delivery system and kit and method for implanting the stent graft
US10213291B2 (en) 2003-09-03 2019-02-26 Bolto Medical, Inc. Vascular repair devices
US10182930B2 (en) 2003-09-03 2019-01-22 Bolton Medical, Inc. Aligning device for stent graft delivery system
US10105250B2 (en) 2003-09-03 2018-10-23 Bolton Medical, Inc. Dual capture device for stent graft delivery system and method for capturing a stent graft
US7763063B2 (en) 2003-09-03 2010-07-27 Bolton Medical, Inc. Self-aligning stent graft delivery system, kit, and method
US8007605B2 (en) 2003-09-03 2011-08-30 Bolton Medical, Inc. Method of forming a non-circular stent
US8062345B2 (en) 2003-09-03 2011-11-22 Bolton Medical, Inc. Delivery systems for delivering and deploying stent grafts
US8062349B2 (en) 2003-09-03 2011-11-22 Bolton Medical, Inc. Method for aligning a stent graft delivery system
US8070790B2 (en) 2003-09-03 2011-12-06 Bolton Medical, Inc. Capture device for stent graft delivery
US10646365B2 (en) 2003-09-03 2020-05-12 Bolton Medical, Inc. Delivery system and method for self-centering a proximal end of a stent graft
US8292943B2 (en) 2003-09-03 2012-10-23 Bolton Medical, Inc. Stent graft with longitudinal support member
US8308790B2 (en) 2003-09-03 2012-11-13 Bolton Medical, Inc. Two-part expanding stent graft delivery system
US8449595B2 (en) 2003-09-03 2013-05-28 Bolton Medical, Inc. Delivery systems for delivering and deploying stent grafts
US11813158B2 (en) 2003-09-03 2023-11-14 Bolton Medical, Inc. Stent graft delivery device
US8500792B2 (en) 2003-09-03 2013-08-06 Bolton Medical, Inc. Dual capture device for stent graft delivery system and method for capturing a stent graft
US8636788B2 (en) 2003-09-03 2014-01-28 Bolton Medical, Inc. Methods of implanting a prosthesis
US11103341B2 (en) 2003-09-03 2021-08-31 Bolton Medical, Inc. Stent graft delivery device
US11596537B2 (en) 2003-09-03 2023-03-07 Bolton Medical, Inc. Delivery system and method for self-centering a proximal end of a stent graft
US9913743B2 (en) 2003-09-03 2018-03-13 Bolton Medical, Inc. Methods of implanting a prosthesis and treating an aneurysm
US8740963B2 (en) 2003-09-03 2014-06-03 Bolton Medical, Inc. Methods of implanting a prosthesis and treating an aneurysm
US9907686B2 (en) 2003-09-03 2018-03-06 Bolton Medical, Inc. System for implanting a prosthesis
US9877857B2 (en) 2003-09-03 2018-01-30 Bolton Medical, Inc. Sheath capture device for stent graft delivery system and method for operating same
US10918509B2 (en) 2003-09-03 2021-02-16 Bolton Medical, Inc. Aligning device for stent graft delivery system
US11413173B2 (en) 2003-09-03 2022-08-16 Bolton Medical, Inc. Stent graft with a longitudinal support member
US9173755B2 (en) 2003-09-03 2015-11-03 Bolton Medical, Inc. Vascular repair devices
US9655712B2 (en) 2003-09-03 2017-05-23 Bolton Medical, Inc. Vascular repair devices
US9198786B2 (en) 2003-09-03 2015-12-01 Bolton Medical, Inc. Lumen repair device with capture structure
US10390929B2 (en) 2003-09-03 2019-08-27 Bolton Medical, Inc. Methods of self-aligning stent grafts
US9561124B2 (en) 2003-09-03 2017-02-07 Bolton Medical, Inc. Methods of self-aligning stent grafts
US9320631B2 (en) 2003-09-03 2016-04-26 Bolton Medical, Inc. Aligning device for stent graft delivery system
US9333104B2 (en) 2003-09-03 2016-05-10 Bolton Medical, Inc. Delivery systems for delivering and deploying stent grafts
US10945827B2 (en) 2003-09-03 2021-03-16 Bolton Medical, Inc. Vascular repair devices
US11259945B2 (en) 2003-09-03 2022-03-01 Bolton Medical, Inc. Dual capture device for stent graft delivery system and method for capturing a stent graft
US9408735B2 (en) 2003-09-03 2016-08-09 Bolton Medical, Inc. Methods of implanting a prosthesis and treating an aneurysm
US9408734B2 (en) 2003-09-03 2016-08-09 Bolton Medical, Inc. Methods of implanting a prosthesis
WO2005087138A1 (en) * 2004-03-08 2005-09-22 Cook Incorporated Great retainer for a stent-graft
US7497872B2 (en) 2004-03-08 2009-03-03 Cook Incorporated Retainer for a stent-graft
AU2005221618B2 (en) * 2004-03-08 2010-03-18 Cook Medical Technologies Llc Great retainer for a stent-graft
WO2006065665A1 (en) * 2004-12-13 2006-06-22 Robert Hunt Carpenter, Dvm, Pc Multi-wall expandable device capable of drug delivery
EP1931281A4 (en) * 2005-08-31 2010-04-14 Advanced Bio Prosthetic Surfac Covered stent with proximal and distal attachment, delivery catheter, and method of making same
US8732935B2 (en) 2005-08-31 2014-05-27 Advanced Bio Prosthetic Surfaces, Ltd., A Wholly Owned Subsidiary Of Palmaz Scientific, Inc. Stent-graft with proximal and distal attachment, delivery catheter and methods of making same
EP1931281A2 (en) * 2005-08-31 2008-06-18 Advanced Bio Prosthetic Surfaces, Ltd. Covered stent with proximal and distal attachment, delivery catheter, and method of making same
US8187318B2 (en) 2005-08-31 2012-05-29 Advanced Bio Prosthetic Surfaces, Ltd. Covered stent with proximal and distal attachment, delivery catheter, and method of making same
US9980834B2 (en) 2007-12-26 2018-05-29 Cook Medical Technologies Llc Low profile non-symmetrical stent
US8740966B2 (en) 2007-12-26 2014-06-03 Cook Medical Technologies Llc Low profile non-symmetrical stent
US8992593B2 (en) 2007-12-26 2015-03-31 Cook Medical Technologies Llc Apparatus and methods for deployment of a modular stent-graft system
US9687336B2 (en) 2007-12-26 2017-06-27 Cook Medical Technologies Llc Low profile non-symmetrical stent
AU2017201234B2 (en) * 2007-12-26 2018-05-10 Cook Medical Technologies Llc Prosthesis
US11471263B2 (en) 2007-12-26 2022-10-18 Cook Medical Technologies Llc Low profile non-symmetrical stent
US9993331B2 (en) 2007-12-26 2018-06-12 Cook Medical Technologies Llc Low profile non-symmetrical stent
US10729531B2 (en) 2007-12-26 2020-08-04 Cook Medical Technologies Llc Low profile non-symmetrical stent
US9345595B2 (en) 2007-12-26 2016-05-24 Cook Medical Technologies Llc Low profile non-symmetrical stent
US9180030B2 (en) 2007-12-26 2015-11-10 Cook Medical Technologies Llc Low profile non-symmetrical stent
US9226813B2 (en) 2007-12-26 2016-01-05 Cook Medical Technologies Llc Low profile non-symmetrical stent
US10588736B2 (en) 2007-12-26 2020-03-17 Cook Medical Technologies Llc Low profile non-symmetrical stent
US10828183B2 (en) 2007-12-26 2020-11-10 Cook Medical Technologies Llc Low profile non-symmetrical stent
US10307275B2 (en) 2008-06-30 2019-06-04 Bolton Medical, Inc. Abdominal aortic aneurysms: systems and methods of use
US9364314B2 (en) 2008-06-30 2016-06-14 Bolton Medical, Inc. Abdominal aortic aneurysms: systems and methods of use
US10105248B2 (en) 2008-06-30 2018-10-23 Bolton Medical, Inc. Abdominal aortic aneurysms: systems and methods of use
US10864097B2 (en) 2008-06-30 2020-12-15 Bolton Medical, Inc. Abdominal aortic aneurysms: systems and methods of use
US11382779B2 (en) 2008-06-30 2022-07-12 Bolton Medical, Inc. Abdominal aortic aneurysms: systems and methods of use
US8728145B2 (en) 2008-12-11 2014-05-20 Cook Medical Technologies Llc Low profile non-symmetrical stents and stent-grafts
US9827123B2 (en) 2009-03-13 2017-11-28 Bolton Medical, Inc. System for deploying an endoluminal prosthesis at a surgical site
US9101506B2 (en) 2009-03-13 2015-08-11 Bolton Medical, Inc. System and method for deploying an endoluminal prosthesis at a surgical site
US10898357B2 (en) 2009-03-13 2021-01-26 Bolton Medical, Inc. System for deploying an endoluminal prosthesis at a surgical site
US9757263B2 (en) 2009-11-18 2017-09-12 Cook Medical Technologies Llc Stent graft and introducer assembly
US9717611B2 (en) 2009-11-19 2017-08-01 Cook Medical Technologies Llc Stent graft and introducer assembly
EP2606854A1 (en) * 2011-12-22 2013-06-26 Cook Medical Technologies LLC Low profile non-symmetrical stents and stent grafts
US9554929B2 (en) 2012-04-12 2017-01-31 Bolton Medical, Inc. Vascular prosthetic delivery device and method of use
US11351049B2 (en) 2012-04-12 2022-06-07 Bolton Medical, Inc. Vascular prosthetic delivery device and method of use
US8998970B2 (en) 2012-04-12 2015-04-07 Bolton Medical, Inc. Vascular prosthetic delivery device and method of use
US10299951B2 (en) 2012-04-12 2019-05-28 Bolton Medical, Inc. Vascular prosthetic delivery device and method of use
US11998469B2 (en) 2012-04-12 2024-06-04 Bolton Medical, Inc. Vascular prosthetic delivery device and method of use
US9439751B2 (en) 2013-03-15 2016-09-13 Bolton Medical, Inc. Hemostasis valve and delivery systems
US10555826B2 (en) 2013-03-15 2020-02-11 Bolton Medical, Inc. Hemostasis valve and delivery systems
US11666467B2 (en) 2013-03-15 2023-06-06 Bolton Medical, Inc. Hemostasis valve and delivery systems

Also Published As

Publication number Publication date
AU3126099A (en) 1999-12-09
CA2272970A1 (en) 1999-11-28
US6099559A (en) 2000-08-08
JPH11347133A (en) 1999-12-21

Similar Documents

Publication Publication Date Title
US6099559A (en) Endoluminal support assembly with capped ends
US7799064B2 (en) Bifurcated stent and delivery system
US8632579B2 (en) Bifurcated stent and delivery system
CA2649381C (en) Balloon expandable stent with a self-expanding portion
US5556414A (en) Composite intraluminal graft
EP0876805B1 (en) Intravascular stent and stent delivery system for ostial vessel obstructions
US6533807B2 (en) Radially-expandable stent and delivery system
EP0969777B1 (en) Coiled sheet stent having helical articulation and methods of use
US5911732A (en) Articulated expandable intraluminal stent
US6695877B2 (en) Bifurcated stent
US8012197B2 (en) Hybrid ballon expandable/self-expanding stent
US20050154447A1 (en) Ostium stent system
US7118592B1 (en) Covered stent assembly for reduced-shortening during stent expansion
US7628806B2 (en) Stent with improved resistance to migration
US20020123790A1 (en) Enhanced engagement member for anchoring prosthetic devices in body lumen
CA2618003A1 (en) Hybrid bifurcated stent
US20090259299A1 (en) Side Branch Stent Having a Proximal Flexible Material Section

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IE NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000219

AKX Designation fees paid

Free format text: DE FR GB IE NL

17Q First examination report despatched

Effective date: 20020909

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040406