Isolation unit
The invention concerns an isolation unit for use somatic health care, according to the introductory part of Patent Claim 1.
Background
Infections at hospitals and health care institutions is an increasing problem. This has created a need for simple systems that isolate and protect both patient and staff. In addition, patients often have reduced body functions and require special environmental conditions such as controlled air temperature, air moisture and oxygen supply.
From US-patent 2 915 074 is known a device for patient treatment comprising a rectangular horizontal bottom piece having semi-rigid side walls. The side walls have inflatable air channels for support. This known device is primarily intended as an alternative to different masks, that is, to cover the head. The possibility of covering the whole body, or to be able to open certain parts for operations, etc. is not disclosed. Furthermore, US-patent 2 915 074 describes the use of a plastic material that has a stiffness which implies that the device has a supporting ability per se. The described air channels comprise only a part of the supporting construction, and is integrated with the side walls. Thus the construction is only collapsible and not totally flexible, and it is not possible to use different materials for covering of walls.
Object
It is thus an object of present invention to provide an inflatable isolation unit that can protect patient and staff in respect of danger of infection, and establish a controllable inner environment in respect of oxygen, temperature, etc.
The invention
The object of the invention is achieved with a device having features as stated in the characterizing part of Claim 1. Further features are clear from the accompanying dependent claims.
Example
In the following, the invention will be explained further by way of examples of embodiments and with reference to the accompanying drawings, where
Fig. 1 shows a first example of an embodiment of an isolation unit according to the present invention when inflated,
Fig. 2 shows the isolation unit from Fig. 1 when unfolded,
Fig. 3 shows a connection of two modules of the isolation unit from Fig. 1 together with accompanying equipment,
Fig. 4 shows a second example of an embodiment of an incubator according to the present invention when inflated, and
Fig. 5 shows the incubator from Fig. 4 when folded up.
In Fig. 1 is illustrated an isolation unit 1 according to present invention. The isolation unit 1 comprises a framework of inflatable channels 2-6, a bottom 7 and windows 8-10. Preferably, isolation unit 1 is made in a plastic material. The bottom 7 is also inflatable, and constitutes a mattress for the isolation unit 1. Perforated tubes 11 and 12 are situated in the bottom 7, in order to provide controlled entry of air or another gas mixture of a desired quality into isolation unit 1.
The inflation of isolation unit 1 is performed through a nipple 13 located at bottom 7. All of the channels 2-6 and the bottom 7 are connected to each other, so that the whole isolation unit 1 can be inflated by provision of air through the nipple 13.
The construction detail of the isolation unit is best illustrated by Fig. 2. A channel 2 is situated at each of the short sides of the isolation unit 1, over a lower cross channel 3. A lower longitudinal channel 4 is connected to the channels 2 and 3. Furthermore, an upper longitudinal channel 5 connects with the two opposing channels 2. Between upper longitudinal channel 5 and lower longitudinal channel 4 are situated middle channel 6. All support channels 2-6 are interconnected, so they all may be filled with air from one site, i.e. nipple 13. The cross channel, is at its two ends, provided with a texture tape or a "Velcro" fastener 20. These are provided to fasten to corresponding "Velcro" fastener 21 for connecting the bottom channels in the isolation unit. This connection can also be performed in other known ways, for example by hooks or push buttons.
In the areas delimited by the channels 2-6 are provided recesses or windows 8-10. Delimited by the channel 2 and lower cross channel 3 is a short side window 8. Between two opposite channels 2 and opposite upper longitudinal channels is situated a top win¬ dow 9. Furthermore, a total of four side windows 10 are delimited by the upper longi- tudinal channel 5, lower longitudinal channels 4, middle channels 6 and the channels 2.
Around the window 9, there is preferably a perforated channel 22 is situated, communicating with a nipple 23. Through this nipple 23, filtered air may be provided, or air may be sucked out, forming an overpressure or underpressure. The purpose therefore is to produce a controlled air flow so that dust particles and similar potential infection carriers are kept away from the operation area.
The channels 2-6 are the carrying elements of the isolate 1. In inflated condition they will make the construction self-supporting, and not dependent upon an inner overpressure in order to maintain its desired shape.
In order to establish a closed, delimited room a flexible, transparent cover is located over the supporting channels 2-6. This forms walls and a roof for isolation unit 1, and may have a plurality of embodiments. Firstly, the channels 2-6 may be an integrated part of a plastic cover, having single or double walls. Double walls give large power savings when heating is necessary.
Furthermore it is possible to let the windows be covered by one or more separate free films of different shape, which are placed over the channels 2-6. For example, these can be in the form of disposable "plastic sheets" which are fixed to the supporting structure by texture tape.
Both with separate covers and in the cases where the channels 2-6 are an integrated part of the cover, different methods may be used. For example, a cover with cuffs having a rubber band in their ends may be used, making it possible for the staff to take their hands into the isolation unit without destroying the isolation. In some embodiments, such as incubators for small children, it may be necessary to open all or part of the side wall. It may be locked by use of a "Velcro" fastener. When used during a surgical operation, all or part of the roof may be opened in order to readily access the patient. The tubes 11, 12 are fed from the outside through a controller 14, which is illustrated in Fig. 3. The controller 14 is equipped with two tubes 15, providing a supply of air or another gas having a given quality through the perforated tubes 11, 12 which are situated
in the bottom of the isolation unit 1. Furthermore, the controller 14 is equipped with fans 16 and a heating element 17. The air flow can be programmed so that in-going air is on one side, and out-going air is on the other side. This provides a good air circulation in cases where, for example, heating is the primary issue. Alternatively, both sides may be run with in-going air so that a controlled filtration air flow is achieved, flowing from a possible operation area or similar, where unwanted particles can cause infections. By running in-going air and out-going air with different velocity, an over- or under-pressure can be generated in the isolation unit 1.
Furthermore, in-going air may be run from both sides. This can be favorable during operations, as a filtered air flow, flowing from the operation site is achieved, and prevents particles from the air from reaching the wound. In this kind of use, one is dependent upon the windows not being covered.
Channels are an integrated part of a mattress, that also allow it to be inflatable. A mattress having two or more channels constitutes a unit or a module. More modules can be connected to an isolation unit having varying size. Fig. 3 illustrates an isolation unit comprising two modules. The heating tubes 1 1, 12 from one of the modules are connected to the heating tubes 11, 12 in the next module, so that air is distributed in all of the isolation unit 1.
Fig. 4 and 5 show the isolation unit 1 used as an incubator for a newborn, in assembled and folded condition, respectively. The flexible inflatable top has been described above, where the channels 2-6 are integrated in a transparent, two-layer plastic. The top is connected to a bottom frame 18 that is equipped with a carrying handle 19. The bottom frame 18 is preferably made of metal, and has integrated control electronics and oxygen supply, etc. The incubator will, in its folded condition, not be much more space consuming than the bottom frame, and will be excellent as a transportable incubator. It requires a minimum of space for storage purposes and can, for example, be stored in most ambulances, medical offices and similar. Furthermore, it is light and easy to assemble, the weight down to 1/10 of previously known transporable incubators. A good thermal insulation gives a low power consumation, which means smaller batteries and longer life. An incubator according to present invention is also inexpensive.
The present invention provides a simple and very flexible inflatable isolation unit which can be used during operations for bacterial protection, and afterwards follow the patient to recovery ward and sleeping ward. In addition to protecting the patient, it is also possible to isolate any danger of infection and undesired spreading of bacteria. Besides bacterial protection, the isolation unit could also provide the patient with a controllable environment, and can for example replace the great number of systems with heating mattresses which are in use today. The isolation unit is produced in a plastic material and through modularity and flexibility there will be a number of applications possible.