EP0959817A1 - Heart valve activation system and activated heart valve - Google Patents

Heart valve activation system and activated heart valve

Info

Publication number
EP0959817A1
EP0959817A1 EP97906229A EP97906229A EP0959817A1 EP 0959817 A1 EP0959817 A1 EP 0959817A1 EP 97906229 A EP97906229 A EP 97906229A EP 97906229 A EP97906229 A EP 97906229A EP 0959817 A1 EP0959817 A1 EP 0959817A1
Authority
EP
European Patent Office
Prior art keywords
valve
magnetic
seat
valves
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97906229A
Other languages
German (de)
French (fr)
Inventor
Alain Carpentier
Vincent Garitey
Michel Hassler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INDUSTRIELLE DE COMBUSTIBLE NUCLEAIRE -SICN Ste
Original Assignee
INDUSTRIELLE DE COMBUSTIBLE NUCLEAIRE -SICN Ste
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INDUSTRIELLE DE COMBUSTIBLE NUCLEAIRE -SICN Ste filed Critical INDUSTRIELLE DE COMBUSTIBLE NUCLEAIRE -SICN Ste
Publication of EP0959817A1 publication Critical patent/EP0959817A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2403Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with pivoting rigid closure members

Definitions

  • the present invention relates to a system for activating a heart valve as well as an activated heart valve.
  • Artificial heart valves also called valvular, mitral or aortic prostheses, generally consist of one or two movable valves mounted on a seat by means of one or more joints, said seat being also sutured on the patient's natural pathways.
  • the opening and closing phases of the valves have very short durations compared to those which correspond to the blood flow or the obturation, however these opening and closing phases, and the precise moment when they intervene in the cardiac cycle largely determine the quality of the valve.
  • the opening and closing mechanisms of a traditional artificial valve are as follows.
  • the natural aortic valve opens simultaneously with the reversal of the ventriculo-aortic pressure difference, because being without inertia, it opens under a zero pressure difference unlike a mechanical valve prosthesis. It closes gradually, but quickly and without reflux, at the end of systole under the action of local pressure differences on the sheets which are the equivalent of the valves. These local pressure differences precede the global inversion of the pressure difference between the aorta and the ventricle, an inversion necessary for the initialization of a reflux. This is why the natural aortic valve closes without reflux when the aortic pressure becomes higher than the ventricular pressure while it is the reflux which closes a mechanical valve prosthesis.
  • the natural mitral valve opens actively under the effect of the tension of cords attached on the one hand to the edges of its leaves and on the other hand to the internal walls of the ventricle. It is the dilation of the ventricle during diastole that simultaneously causes the fall in ventricular pressure (and therefore the inversion of the difference in atrioventricular pressure) and the opening of the mitral valve by traction on its ropes.
  • the opening of the natural mitral valve is therefore strictly synchronous with the inversion of atrioventricular pressure, whereas a mechanical valve prosthesis requires the intervention of a pressure difference to open, and therefore opens in delay.
  • mitral valve closes without reflux, as opposed to an artificial valve whose valve (s) are driven throughout their closure by reflux.
  • valves of artificial valves therefore have a certain inertia and both their opening and their closing require an energy expenditure taken from the energy of the blood flows. It is clear that this energy which is produced by the heart, then communicated to the blood flows, will have to be all the more important that the loss of tra ⁇ svalvulaire load is great and that the blood reflux, through the valve, at closing, is important.
  • the additional cardiac effort thus generated is penalizing for the patient, particularly in the case of mitral valves where the flow rates and therefore the energies of the already weak blood flows naturally are even more so in the presence of cardiac pathologies.
  • valve prostheses see the ratio of the refluxing volume to the volume of the flow increasing in a prohibitive way (because the duration of the reflux necessary for the closing of the valves tends to occupy an important place in the cycle).
  • one of the valves may not open, which causes thrombosis. This can happen, in particular, when the patient has a pathological low flow cardiac regime and / or adopts a substantially horizontal position.
  • the blood flows at the cardiac orifices are not necessarily symmetrical, conventional valve prostheses can therefore have an asymmetrical operation.
  • such a mode of operation can be detrimental to the integrity of the valve prosthesis due to the poor distribution of stresses which it then undergoes.
  • valves pass directly from a fully open position to a closed position, which requires large and sudden movements of the valves, sometimes causing rupture or premature wear of the valve as well as the appearance of noise and cavitation.
  • the invention aims to solve the above problems or at least to mitigate them satisfactorily.
  • This object is achieved according to the invention by means of an activation system for a heart valve comprising a seat and at least one pivoting valve mounted on the seat, characterized in that it comprises at least one mobile magnetic element, formed by said valve and possibly at least one fixed magnetic element, integral with the seat, said magnetic elements creating a force which is exerted on said valve during its opening and / or closing movements.
  • said mobile magnetic element produces a first magnetic field and said fixed magnetic element produces a second magnetic field.
  • the first and second magnetic fields are determined in such a way that their mutual influence creates, when the blood pressure is identical on both sides of the valve, an equilibrium position, towards which the valve is recalled at all moment by said force which varies according to the position of said valve so 7/30658 5 PCI7FR97 / 00312
  • This equilibrium position preferably corresponds to an intermediate opening position of the valve. According to an advantageous characteristic, the variations of said force, as a function of the position of the valve, are independent on either side of the equilibrium position.
  • said force produces a magnetic torque exerted on the valve, the maximum value of which is between 10 ⁇ 3 e t lO ' ⁇ Nm This torque is less than the blood pressure forces exerted on the valve in its full opening and closing positions.
  • the first and second magnetic fields are determined so that the valve pivots in the seat with the minimum of friction.
  • the equilibrium position is located between the full opening and closing positions.
  • the mutual influence of the first and second magnetic fields produces repulsive magnetic forces between the mobile magnetic element and the fixed magnetic element.
  • said fixed magnetic element is integrated into the thickness of the seat, for example, in the vicinity of a joint.
  • said movable magnetic element is integrated into the thickness of the valve and sealed so that also avoids contact with the blood.
  • the valve is made in the mass with a hemocompatible material allowing the incorporation of magnets without modification of their magnetic characteristics.
  • the system comprises a mobile magnetic element and two or three fixed magnetic elements, for each articulation of the valve.
  • the fixed magnetic elements are then arranged in a ring around an axis of articulation of the valve.
  • said magnetic elements are so-called permanent rare earth magnets, based on Samarium and Cobalt, or based on Neodymium, Iron and Boron.
  • Another object of the invention is a heart valve equipped with the activation system described above.
  • a particular embodiment of such a valve consists in machining a valve made in the mass of a hemocompatible titanium alloy to form a housing, placing the movable magnetic element in this housing, closing this housing with a cover of the same titanium alloy, and finally hermetically weld this cover to the valve.
  • valve of the invention consists in providing it with two valves activated by the only reciprocal influence of the mobile magnetic elements of each valve.
  • a second variant consists in producing at least one of the two valves or one of the two seats with a ferromagnetic material, so as to form at least one mobile or fixed magnetic element which does not produce a magnetic field but which is under influence of the magnetic field (s) produced by other mobile or fixed magnetic elements.
  • Another variant consists in providing only movable magnetic elements on the valve; the seat then comprising no magnetic element.
  • Yet another variant consists in providing for the presence of interactive mobile magnetic elements and the presence on the seat fixed magnetic elements that are inactive, or whose influence is negligible.
  • the s y stem Activation of the invention allows, thanks to the intermediate open position of the valve, resulting in pressure equilibrium on either side of the valve, an active valve opening, especially in the mitral position, guaranteeing a symmetrical opening of all the valves, even in the event of very low blood flow, and reducing the reflux on closing. Guaranteed opening of all valves reduces the risk of thrombus formation.
  • the valves fitted with these activation systems are controlled by variations in blood pressure, and not by the flow rates as is the case with passive valves, that is to say not activated according to the principle of the invention. Because the flow is itself generated by the pressure variations, it is possible to have anticipated opening and closing phases with respect to the operating sequences of the artificial and traditional valves that are not activated.
  • the valves of the activated valves appear to be without inertia for the blood flows which thus conserve all their acquired energy.
  • the activation system of the invention also makes it possible to improve the efficiency of the valves by reducing blood reflux. Indeed, the magnetic assistance causes the anticipated closure of the valve even though the rate of blood reflux is still almost zero.
  • the jets which occur at the time of closing when it is carried out in the presence of a significant reflux speed (as is the case with the valves not activated) generally involve risks of cavitation and hemolysis which are therefore limited by the use of the invention.
  • the opening and closing movements have a first phase which takes place under the impulse of magnetic forces and a second phase which is under the influence of hydraulic forces.
  • the automatic return of the valves to the intermediate equilibrium opening position also makes it possible to break down the movements and reduce the speeds at the end of opening and closing, which eliminates violent shocks on the seat, thereby reducing the risks of rupture, noise, cavitation and hemolysis.
  • the activation system of the invention allows a greater opening of the valve to reduce the transvalvular pressure loss and this without increasing the reflux thanks to the anticipation of the movement at closing.
  • the magnetic activation of the valve has particularly important effects especially in the phases of the cardiac cycle where the hydraulic forces are weak, that is to say between the diastole and the systole and conversely between the systole and the diastole.
  • the intensities of the torques and the magnetic forces at play can remain low while being effective. They are therefore not likely to disturb the hydraulic functioning of the valve during the diastolic and systolic phases.
  • the values of these couples are not likely to cause any increase in the transvalvular pressure drop, when the valve is open, any more than an increase in the transvalvular leakage flow rate when the valve is closed.
  • FIG. 2a and 2b are graphs respectively representing the pressure variations and the ventricular volume variations during the cardiac cycle for the left heart;
  • FIG. 3a, 3b, 3c are respectively perspective views, in cross section and in top view of a valve equipped with an embodiment of the activation system of the invention, in the closed position;
  • FIG. 4a, 4b, 4c are perspective views respectively, in cross section and in top view of the valve of Figures 3a, 3b, 3c in the intermediate equilibrium position;
  • FIGS. 5a, 5b, 5c are respectively perspective views, in cross section and in top view of the valve of Figures 3a, 3b and 3c in the fully open position;
  • FIGS. 9, 10 and 11 show the graphs of variations of the magnetic return torque corresponding, respectively, to the magnetic configurations of FIGS. 6, 7 and 8.
  • FIGS. 2a and 2b The behavior of the right heart is qualitatively identical to that of the left heart.
  • the systole corresponds to the period of ventricular contraction (figures le and ld), while the diastole corresponds to that of the relaxation (figures la and lb).
  • the following description will make it possible to locate in the cardiac cycle the opening and closing movements of the aortic and mitral valves previously described.
  • the systole phase begins and the ventricle B begins to contract by compressing the blood it contains.
  • the ventricular pressure therefore increases very suddenly, almost immediately exceeding the atrial pressure, which causes the closure of the valve VI, facilitated by the equally abrupt release of the tension on the strings (FIG. 1a and point f in FIG. 2a). . Blood reflux to atrium A is no longer possible.
  • the aortic valve V2 remains closed. Then the ventricular pressure exceeds the aortic pressure, the valve V2 opens and the ventricular ejection occurs ( Figure 1d and point 0 in Figure 2a).
  • the aortic pressure increases but the ventricle B does not empty completely and the maximum aortic pressure is reached before the ejection is completed.
  • the flow of blood from ventricle B during the terminal phase of systole is low and less than the flow of blood from the aorta.
  • the atrial pressure also increases slowly over the duration of the ejection.
  • ventricle B relaxes and the ventricular pressure drops below the aortic pressure, which causes the aortic valve V2 to close (point f, Figure 2a).
  • the decreasing ventricular pressure is still greater than the atrial pressure, so that the atrioventricular valve VI remains closed (Figure le).
  • valve VI opens (point 0 ', FIG. 2a) and the filling of the ventricle begins again as described previously in relation to the start of the diastole (figure la).
  • FIGS. 2a and 2b respectively represent the variations in pressure and ventricular volume during the different phases described above and with reference to FIGS. 1a to 1c as mentioned at the bottom of FIG. 2b. It appears quite clearly in the study of the cardiac cycle that the natural valves are synchronized with the relative pressures prevailing in the atrium, the ventricle and / or the aorta and not with the flow rates. These valves therefore have anticipated opening and closing modes with respect to variations in flow rates. In addition, the opening of the mitral valve is facilitated by ventricular dilation which is accompanied by traction on the tendon cord.
  • the activation system of the invention aims to operate the artificial valves, according to opening and closing modes which are very close to those of natural valves.
  • valve shown in Figures 3a, 3b and 3c and following is an artificial valve equipped with the activation system of the invention.
  • This valve comprises a seat 1, at least one valve and preferably here two valves 2a, 2b identical, mounted on the seat 1 symmetrically, with respect to the diametrical axis XX '.
  • Each of the valves 2a, 2b pivots about an axis YY ', parallel and close to the axis XX' by means of two symmetrical articulations, arranged on either side of each valve.
  • a joint is, for example, made up of a transverse finger 10 integral with the internal lateral flank of the seat 1 and intended to engage with freedom of relative rotation inside a cylindrical cavity 20 formed in the thickness of the edge lateral of the valve 2a, 2b or in an added boss 21.
  • the two valves 2a, 2b come into the closed position ( Figures 3a to 3c), abutted against each other by their respective inner edge 22a, 22b oriented along the axis XX '.
  • the inner edges 22a, 22b are chamfered so that in the closed position, the valves 2a, 2b make between them an angle of 2 ⁇ between 90 ° and 180 °.
  • the actual activation system comprises, by articulation, on the one hand, at least one and in the embodiment shown, three fixed magnetic elements 3, integral with the seat 1 and at least one mobile magnetic element 4 here carried by the valve 2a, 2b.
  • the magnetic elements 3,4 are adapted and intended to create a force which is exerted on the valve 2a, 2b during its opening and / or closing movements.
  • the fixed magnetic elements 3 and mobile 4 respectively produce a first and a second magnetic field whose specific characteristics are possibly different.
  • These magnetic elements 3, 4 are preferably permanent magnets called rare earths (for example based on Samarium and Cobalt or based on Neodymium of Iron and Boron) with strong magnetizations and coercivities and therefore with great magnetic stability.
  • the fixed magnetic elements 3 which are compact and can be integrated into the thickness of the outer flank of the seat 1 and are therefore not likely to come into contact with the blood.
  • the fixed magnetic elements 3 can be arranged in a crown as illustrated in particular in FIG. 3b, but they can have any other arrangement favorable for obtaining the desired magnetic fields.
  • the first and second magnetic fields are determined so as to produce repulsive magnetic forces between the mobile element 4 and the fixed element 3. These forces have an intensity between 0 and 10 _ lN. These repulsive forces allow both the control of the pivoting of the valve 2a, 2b and the centering of said valve in the seat, this which in particular ensures a minimum of friction.
  • the mobile magnetic element 4 is integrated into the thickness of the valve 2a, 2b.
  • the movable magnetic element 4 is fixed integrally in a housing 24 formed laterally in the boss 21.
  • the housing 24 is itself sealed in a sealed manner by a welded cover (not shown) thereby enclosing the element 4.
  • the valves 2a, 2b are, at least as far as the bosses 21, preferably made of a hemocompatible titanium alloy.
  • This metal also has the advantage of being light, resistant and allowing both the machining of the housings 24 and the welding of the cover. It also allows, because of its solidity, the production of thinner valves than those existing in traditional materials (for example pyrocarbon), and thus makes it possible to free up a larger passage surface, and therefore to reduce the pressure drop transvalvular.
  • the activation system is compatible with any other hemocompatible material (ceramics, metal alloys, pyrolytic carbon ).
  • the respective magnetic fields of the fixed 3 and mobile 4 elements are determined in such a way that their reciprocal influence can ensure control of the movements of the valve.
  • an equilibrium position E of the valves 2a, 2b is created.
  • the valves are returned to this stable equilibrium position E at any time by a force which produces a magnetic torque varying as a function of the angular position of said valves.
  • the laws and graphs of the variations of the magnetic return torque are determined so as to minimize the blood reflux without increasing the transvalvular pressure drop.
  • these graphs, represented in FIG. 9 (in relation to the embodiment described), are independent on either side of the equilibrium position E.
  • the maximum torque is between 10-3 e t lO - Nm
  • the equilibrium position E is shown in Figures 4a, 4b and 4c. It corresponds to zero magnetic torque and offers an intermediate opening of the valves, here halfway between the positions closing angles (Figures 3a to 3c) and full opening ( Figures 5a to 5c).
  • This intermediate opening generally corresponds to an angle of 2 ⁇ between the valves 2a, 2b between 60 ° and 140 °, the positions of the valves being at all times symmetrical with respect to the diametrical plane D passing through the axis XX '.
  • the equilibrium position E of the valves corresponds, here, to an angle ⁇ of 55 °, relative to the base plane S of the seat 1 (see FIG. 9).
  • valve is shown with the valves 2a, 2b in the fully open position. In this position, the two valves 2a, 2b are oriented in planes parallel both to each other and to the diametral plane D.
  • the mobile magnetic element 4 In the half-opening position corresponding to equilibrium, the mobile magnetic element 4 is oriented opposite but perpendicular to the fixed magnetic element 3 in between.
  • the first and second magnetic fields produced respectively by the mobile magnetic element 4 and by the magnetic elements 3 depend, of course, on the respective geometry and the relative positions of said elements 3, 4 as well as their magnetization directions.
  • Figures 6, 7 and 8 show only some of the various magnetic configurations of the activation system of the invention. Other configurations are possible allowing, as here, to obtain variations of the booster torque which minimize blood reflux without increasing the transvalvular pressure drop.
  • the magnetization vector is always directed towards the magnetic North of the magnet considered.
  • the magnetization vectors N of the fixed magnets 31, 32, 33 are oriented positively along the axis of articulation YY ', that is to say from Y to Y'.
  • the magnetization vector N * of the mobile magnet 4 is also oriented parallel to the axis of articulation but in the opposite direction, that is to say from Y ′ to Y.
  • FIG. 9 represents the graphs of variation of the magnetic torque as a function of the angle ⁇ of the valve relative to the base plane S of the seat 1 (see FIG. 3b, 4b , 5b).
  • the fully open position corresponds to an angle ⁇ of 85 °, the equilibrium position E to an angle ⁇ of 55 ° and the closed position to an angle ⁇ of 25 °.
  • the magnetic return torque, applied from the closed position to the magnetic equilibrium position E gives the valve an impulse to open it when the pressure difference on either side of the valve is zero, and guides it to 'at its magnetic equilibrium position E.
  • the valves open symmetrically, during the downstream flow phase, at least at 55 °, so as to offer the blood an area of significant passage, which guarantees a minimum pressure drop.
  • the rest of the opening path (from 55 ° to full opening) is done without significant loss of energy for the flow, because the magnetic forces are very weak compared to the hydraulic forces.
  • This example of magnetic assistance corresponds well to the functional requirements of a mitral valve prosthesis.
  • FIG. 7 represents a magnetic configuration with two fixed magnets 31, 32 and a movable magnet 4.
  • the magnetization vectors N, fixed magnets 31, 32, are oriented along the axis of articulation Y'Y, that is to say, in the direction of Y 'towards Y, contrary to the configuration of the figure 6.
  • the magnetization vector N ', of the mobile magnet 4 is oriented along the longitudinal axis AA' of the valve 2a, which makes an angle ⁇ with the base plane S of the seat 1 and towards the free end edge of the said valve.
  • the return torque applied from the fully open position to the magnetic equilibrium position E, makes it possible to initiate and then to guide the valve to this position when the transvalvular pressure difference reverses. From this latter position, the movement of the valve to its closed position is almost instantaneous, because the valve offers a large bearing surface for the fluid, and there remains only an angular travel of 10 ° to travel.
  • the magnetic return torque towards the magnetic equilibrium position still exists when the valve forms an angle of 90 ° with the base plane S of the seat, the profile of the valve can therefore allow the valves to be opened at 90 °, so to minimize the loss of transvalvular load in the event of high flow, without having to fear an increase in reflux.
  • This example of magnetic assistance corresponds well to the functional requirements of an aortic valve prosthesis.
  • FIG. 10 represents the graph of the variations of the return torque as a function of the angular position of the valve for the magnetic configuration represented in FIG. 7.
  • FIG. 8 represents a magnetic configuration with a fixed magnet 3 and a movable magnet 4.
  • the magnetization vector N of the fixed magnet 3 is oriented in a direction d, while the magnetization vector N 'of the movable magnet 4 is oriented according to the normal on the upper surface of the valve 2a. Consequently, the mobile magnet 4 tends to move, so that its magnetization vector N ′ is parallel to the magnetization vector N of the fixed magnet 3, but in an opposite direction, so as to loop the field lines magnetic. This amounts to putting the fixed 3 and mobile 4 magnets facing each other.
  • This phenomenon creates a magnetic torque for returning the valve 2a to an equilibrium position E, materialized by the plane BB 'of FIG. 8.
  • the valve is in its magnetic equilibrium position E, when it forms an angle 45 ° with 30658
  • the magnetic return torque applied from the closed position to the magnetic equilibrium position, guarantees a minimum opening of the valve at 45 ° during the downstream blood flow phase.
  • the return torque applied from the fully open position to the magnetic equilibrium position, makes it possible to guide the valve to this position, at the moment when the transvalvular pressure difference reverses, and thus minimize reflux.
  • This example of magnetic assistance may also be suitable for the functional requirements of an aortic or mitral valve prosthesis, but will constitute a less optimal solution, because it is less specific.
  • the activation system operates under the sole influence of mobile magnetic elements.
  • the fixed magnetic elements of the seat are then non-existent or inactive or else produce a negligible influence compared to that produced by the mobile magnetic elements.

Landscapes

  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Transplantation (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)
  • External Artificial Organs (AREA)
  • Magnetically Actuated Valves (AREA)
  • Lift Valve (AREA)
  • Mechanically-Actuated Valves (AREA)
  • Air-Flow Control Members (AREA)

Abstract

A heart valve activation system including a seat (1) and at least one pivotable flap (2a, 2b) mounted thereon. The system includes at least one movable magnetic member (4) consisting of said flap (2a, 2b) and optionally at least one stationary magnetic member (3) secured to the seat (1). Said magnetic members (3, 4) generate a force that is exerted on said flap (2a, 2b) as it is opened and/or closed.

Description

SYSTEME D'ACTIVATION D'UNE VALVE CARDIAQUE ET VALVE CARDIAQUE ACTIVEE ACTIVATION SYSTEM OF A HEART VALVE AND ACTIVATED HEART VALVE
La présente invention concerne un système d'activation d'une valve cardiaque ainsi qu'une valve cardiaque activée.The present invention relates to a system for activating a heart valve as well as an activated heart valve.
Les valves cardiaques artificielles, appelées aussi prothèses valvulaires, mitrales ou aortiques, sont généralement constituées d'un ou deux clapets mobiles montés sur un siège au moyen d'une ou plusieurs articulations, ledit siège étant par ailleurs suturé sur les voies naturelles du patient.Artificial heart valves, also called valvular, mitral or aortic prostheses, generally consist of one or two movable valves mounted on a seat by means of one or more joints, said seat being also sutured on the patient's natural pathways.
Dans le cycle de travail des valves, les phases d'ouverture et de fermeture des clapets ont des durées très courtes par rapport à celles qui correspondent à l'écoulement sanguin ou à l'obturation, cependant ces phases d'ouverture et de fermeture, et l'instant précis où elles interviennent dans le cycle cardiaque déterminent en grande partie la qualité de la valve.In the working cycle of the valves, the opening and closing phases of the valves have very short durations compared to those which correspond to the blood flow or the obturation, however these opening and closing phases, and the precise moment when they intervene in the cardiac cycle largely determine the quality of the valve.
Les mécanismes d'ouverture et de fermeture d'une valve artificielle traditionnelle sont les suivants.The opening and closing mechanisms of a traditional artificial valve are as follows.
Quand une valve artificielle est fermée, et que la différence de pression de part et d'autre de l'orifice valvulaire s'inverse, la force de pression qui maintenait les clapets fermés change de direction et tend à les ouvrir. Cette force et donc la différence de pression qui la génère doivent atteindre un niveau suffisant pour amorcer l'ouverture du ou des clapets et par la même occasion initialiser le flux sanguin à travers la prothèse. La fermeture d'une valve mécanique ouverte et laissant passer le flux sanguin se déroule comme suit. La différence de pression de part et d'autre de l'orifice valvulaire s'inverse et croît, puis produit à terme une inversion du flux sanguin, ce reflux ferme ensuite la valve en entraînant ses clapets. En résumé, une valve mécanique traditionnelle fonctionne avec un temps de retard par rapport aux fluctuations de pressions puisqu'il doit s'instaurer une différence de pression significative avant qu'un mouvement ne s'initie. De plus, les mécanismes d'ouverture et de fermeture des valves artificielles traditionnelles sont identiques, qu'elles soient implantées en position aortique ou mitrale, ce qui n'est pas le cas des valves naturelles.When an artificial valve is closed, and the pressure difference on either side of the valve orifice is reversed, the pressure force which kept the valves closed changes direction and tends to open them. This force and therefore the pressure difference which generates it must reach a level sufficient to initiate the opening of the valve (s) and at the same time initialize the blood flow through the prosthesis. The closing of an open mechanical valve allowing the blood flow to pass takes place as follows. The pressure difference on either side of the valve orifice reverses and increases, then eventually produces an inversion of the blood flow, this reflux then closes the valve by driving its valves. In summary, a traditional mechanical valve operates with a delay time compared to pressure fluctuations since it must establish a significant pressure difference before a movement is initiated. In addition, the opening and closing mechanisms Traditional artificial valve closure are identical, whether implanted in the aortic or mitral position, which is not the case with natural valves.
Les mécanismes d'ouverture et de fermeture des valves naturelles sont décrits ci-après.The opening and closing mechanisms of natural valves are described below.
La valve aortique naturelle s'ouvre simultanément à l'inversion de la différence de pression ventriculo-aortique, car étant sans inertie, elle s'ouvre sous une différence de pression nulle contrairement à une prothèse valvulaire mécanique. Elle se ferme progressivement, mais rapidement et sans reflux, en fin de systole sous l'action de différences de pression locales sur les feuillets qui sont l'équivalent des clapets. Ces différences de pression locales précèdent l'inversion globale de la différence de pression entre l'aorte et le ventricule, inversion nécessaire à l'initialisation d'un reflux. Cest pourquoi la valve aortique naturelle se ferme sans reflux au moment où la pression aortique devient supérieure à la pression ventriculaire alors que c'est le reflux qui ferme une prothèse valvulaire mécanique.The natural aortic valve opens simultaneously with the reversal of the ventriculo-aortic pressure difference, because being without inertia, it opens under a zero pressure difference unlike a mechanical valve prosthesis. It closes gradually, but quickly and without reflux, at the end of systole under the action of local pressure differences on the sheets which are the equivalent of the valves. These local pressure differences precede the global inversion of the pressure difference between the aorta and the ventricle, an inversion necessary for the initialization of a reflux. This is why the natural aortic valve closes without reflux when the aortic pressure becomes higher than the ventricular pressure while it is the reflux which closes a mechanical valve prosthesis.
La valve mitrale naturelle s'ouvre de façon active sous l'effet de la tension de cordages attachés d'une part aux rebords de ses feuillets et d'autre part aux parois internes du ventricule. C'est la dilatation du ventricule lors de la diastole qui provoque simultanément la chute de la pression ventriculaire (et donc l'inversion de la différence de pression auriculo-ventriculaire) et l'ouverture de la valve mitrale par traction sur ses cordages. L'ouverture de la valve mitrale naturelle est donc rigoureusement synchrone à l'inversion de pression auriculo- ventriculaire, alors qu'une prothèse valvulaire mécanique nécessite l'intervention d'une différence de pression pour s'ouvrir, et s'ouvre donc en retard. La fermeture des feuillets de la valve mitrale naturelle se fait par le concours simultané de plusieurs événements : les cordages qui maintiennent les feuillets se relâchent, les feuillets se ferment progressivement sous l'action de différences de pression locales (précédant l'inversion globale de la différence de pression entre l'oreillette et le ventricule) , et l'orifice valvulaire mitral se rétrécit (ce qui rapproche les feuillets). Ainsi comme la valve aortique, la valve /30658 *The natural mitral valve opens actively under the effect of the tension of cords attached on the one hand to the edges of its leaves and on the other hand to the internal walls of the ventricle. It is the dilation of the ventricle during diastole that simultaneously causes the fall in ventricular pressure (and therefore the inversion of the difference in atrioventricular pressure) and the opening of the mitral valve by traction on its ropes. The opening of the natural mitral valve is therefore strictly synchronous with the inversion of atrioventricular pressure, whereas a mechanical valve prosthesis requires the intervention of a pressure difference to open, and therefore opens in delay. The closure of the sheets of the natural mitral valve is done by the simultaneous competition of several events: the ropes that hold the sheets relax, the sheets gradually close under the action of local pressure differences (preceding the global reversal of the pressure difference between the atrium and the ventricle), and the mitral valve orifice narrows (which brings the leaflets together). So like the aortic valve, the valve / 30658 *
mitrale se ferme sans reflux, par opposition à une valve artificielle dont le ou les clapets sont entraînés tout au long de leur fermeture par le reflux.mitral valve closes without reflux, as opposed to an artificial valve whose valve (s) are driven throughout their closure by reflux.
Les clapets des valves artificielles ont donc une certaine inertie et tant leur ouverture que leur fermeture nécessitent une dépense énergétique prise sur l'énergie des flux sanguins. Il est clair que cette énergie qui est produite par le coeur, puis communiquée aux flux sanguins, devra être d'autant plus importante que la perte de charge traπsvalvulaire est grande et que le reflux sanguin, au travers de la valve, à la fermeture, est important. Le surcroît d'effort cardiaque ainsi généré est pénalisant pour le patient, particulièrement dans le cas des valves mitrales où les débits et donc les énergies des flux sanguins déjà faibles naturellement le sont plus encore en présence de pathologies cardiaques. Si l'on veut diminuer la perte de charge transvalvulaire, on peut donner aux clapets une capacité d'ouverture maximale par de grandes amplitudes de déplacement, mais ceci entraîne alors une augmentation du reflux lors de la phase de fermeture nécessairement allongée. A l'inverse, en voulant réduire le reflux par diminution de la course d'ouverture et de fermeture des clapets, on augmente la perte de charge transvalvulaire.The valves of artificial valves therefore have a certain inertia and both their opening and their closing require an energy expenditure taken from the energy of the blood flows. It is clear that this energy which is produced by the heart, then communicated to the blood flows, will have to be all the more important that the loss of traπsvalvulaire load is great and that the blood reflux, through the valve, at closing, is important. The additional cardiac effort thus generated is penalizing for the patient, particularly in the case of mitral valves where the flow rates and therefore the energies of the already weak blood flows naturally are even more so in the presence of cardiac pathologies. If we want to reduce the transvalvular pressure drop, we can give the valves a maximum opening capacity by large amplitudes of movement, but this then causes an increase in reflux during the necessarily elongated closing phase. Conversely, by wanting to reduce the reflux by reducing the opening and closing stroke of the valves, the transvalvular pressure drop is increased.
A fréquence cardiaque élevée, certaines prothèses valvulaires voient le rapport du volume refluant sur le volume débitant augmenter de façon rédhibitoire (car la durée du reflux nécessaire à la fermeture des clapets tend à occuper une place importante dans le cycle). Dans le cas de prothèses valvulaires à plusieurs clapets, un des clapets peut ne pas s'ouvrir, ce qui provoque des thromboses. Cela peut se produire, notamment, lorsque le patient a un régime cardiaque pathologique de bas débit et/ou adopte une position sensiblement horizontale. Par ailleurs, les flux sanguins au niveau des orifices cardiaques ne sont pas nécessairement symétriques, les prothèses valvulaires classiques peuvent donc avoir un fonctionnement dissymétrique. Or, un tel mode de fonctionnement peut être préjudiciable à l'intégrité de la prothèse valvulaire en raison de la mauvaise répartition des contraintes qu'elle subit alors.At high heart rate, some valve prostheses see the ratio of the refluxing volume to the volume of the flow increasing in a prohibitive way (because the duration of the reflux necessary for the closing of the valves tends to occupy an important place in the cycle). In the case of valve prostheses with several valves, one of the valves may not open, which causes thrombosis. This can happen, in particular, when the patient has a pathological low flow cardiac regime and / or adopts a substantially horizontal position. Furthermore, the blood flows at the cardiac orifices are not necessarily symmetrical, conventional valve prostheses can therefore have an asymmetrical operation. However, such a mode of operation can be detrimental to the integrity of the valve prosthesis due to the poor distribution of stresses which it then undergoes.
De plus, dans les valves artificielles traditionnelles, les clapets passent directement d'une position de pleine ouverture à une position de fermeture, ce qui nécessite des déplacements importants et brutaux des clapets entraînant parfois une rupture ou une usure prématurée de la valve ainsi que l'apparition de bruits et de cavitation.In addition, in traditional artificial valves, the valves pass directly from a fully open position to a closed position, which requires large and sudden movements of the valves, sometimes causing rupture or premature wear of the valve as well as the appearance of noise and cavitation.
Tous ces inconvénients liés à la nature même de toutes les prothèses valvulaires mécaniques existantes expliquent en grande partie les complications que l'on rencontre chez les malades porteurs d'une prothèse valvulaire : perte de charge excessive, et accidents thromboemboliques. Ces derniers sont particulièrement fréquents en position mitrale lorsque l'on remplace la valve mitrale naturelle à ouverture active par une prothèse valvulaire à ouverture passive. En effet, munie de deux clapets, la prothèse peut s'ouvrir de façon asymétrique, particulièrement lorsque le malade est à bas débit, condition dans laquelle le risque de thrombose est majoré.All these drawbacks linked to the very nature of all existing mechanical valve prostheses largely explain the complications encountered in patients with a valve prosthesis: excessive pressure drop, and thromboembolic accidents. The latter are particularly frequent in the mitral position when the natural mitral valve with active opening is replaced by a valve prosthesis with passive opening. Indeed, fitted with two valves, the prosthesis can open asymmetrically, particularly when the patient is at low flow rate, a condition in which the risk of thrombosis is increased.
L'invention a pour but de résoudre les problèmes précédents ou du moins de les atténuer de manière satisfaisante. Ce but est atteint selon l'invention au moyen d'un système d'activation pour valve cardiaque comprenant un siège et au moins un clapet pivotant monté sur le siège, caractérisé en ce qu'il comprend au moins un élément magnétique mobile, formé par ledit clapet et éventuellement au moins un élément magnétique fixe, solidaire du siège, lesdits éléments magnétiques créant une force qui s'exerce sur ledit clapet pendant ses mouvements d'ouverture et/ou de fermeture.The invention aims to solve the above problems or at least to mitigate them satisfactorily. This object is achieved according to the invention by means of an activation system for a heart valve comprising a seat and at least one pivoting valve mounted on the seat, characterized in that it comprises at least one mobile magnetic element, formed by said valve and possibly at least one fixed magnetic element, integral with the seat, said magnetic elements creating a force which is exerted on said valve during its opening and / or closing movements.
Selon un mode de réalisation particulier ledit élément magnétique mobile produit un premier champ magnétique et ledit élément magnétique fixe produit un second champ magnétique. De préférence, les premier et second champs magnétiques sont déterminés de telle façon que leur influence réciproque crée, lorsque la pression sanguine est identique de part et d'autre de la valve, une position d'équilibre, vers laquelle le clapet est rappelé à tout moment par ladite force qui varie en fonction de la position dudit clapet de façon 7/30658 5 PCI7FR97/00312According to a particular embodiment, said mobile magnetic element produces a first magnetic field and said fixed magnetic element produces a second magnetic field. Preferably, the first and second magnetic fields are determined in such a way that their mutual influence creates, when the blood pressure is identical on both sides of the valve, an equilibrium position, towards which the valve is recalled at all moment by said force which varies according to the position of said valve so 7/30658 5 PCI7FR97 / 00312
à minimiser le reflux sanguin sans augmenter la perte de charge transvalvulaire.to minimize blood reflux without increasing the loss of transvalvular load.
Cette position d'équilibre correspond de préférence à une position d'ouverture intermédiaire du clapet. Selon une caractéristique avantageuse, les variations de ladite force, en fonction de la position du clapet, sont indépendantes de part et d'autre de la position d'équilibre.This equilibrium position preferably corresponds to an intermediate opening position of the valve. According to an advantageous characteristic, the variations of said force, as a function of the position of the valve, are independent on either side of the equilibrium position.
Selon une autre caractéristique, ladite force produit un couple magnétique s'exerçant sur le clapet, dont la valeur maximale est comprise entre 10~3 et lO'^N.m. Ce couple est inférieur aux forces de pression sanguine s'exerçant sur le clapet dans ses positions de pleine ouverture et de fermeture.According to another characteristic, said force produces a magnetic torque exerted on the valve, the maximum value of which is between 10 ~ 3 e t lO '^ Nm This torque is less than the blood pressure forces exerted on the valve in its full opening and closing positions.
Selon d'autres caractéristiques avantageuses, les premier et second champs magnétiques sont déterminés de façon à ce que le clapet pivote dans le siège avec le minimum de frottement.According to other advantageous characteristics, the first and second magnetic fields are determined so that the valve pivots in the seat with the minimum of friction.
De préférence, la position d'équilibre est située entre les positions de pleine ouverture et de fermeture.Preferably, the equilibrium position is located between the full opening and closing positions.
En outre, l'influence réciproque des premier et second champs magnétiques produit des forces magnétiques répulsives entre l'élément magnétique mobile et l'élément magnétique fixe.Furthermore, the mutual influence of the first and second magnetic fields produces repulsive magnetic forces between the mobile magnetic element and the fixed magnetic element.
Ces forces magnétiques répulsives ont une intensité d'au plus 10-1 N.These repulsive magnetic forces have an intensity of at most 10-1 N.
Selon un premier mode de réalisation, ledit élément magnétique fixe est intégré dans l'épaisseur du siège, par exemple, au voisinage d'une articulation. Cette disposition permet d' éviter tout contact avec le sang. Parallèlement, ledit élément magnétique mobile est intégré dans l'épaisseur du clapet et enfermé de façon etanche ce qui permet également d'éviter tout contact avec le sang. Ces dispositions permettent de rendre le système d'activation de l'invention, biocompatible et surtout hémocompatible.According to a first embodiment, said fixed magnetic element is integrated into the thickness of the seat, for example, in the vicinity of a joint. This arrangement avoids contact with blood. In parallel, said movable magnetic element is integrated into the thickness of the valve and sealed so that also avoids contact with the blood. These provisions make it possible to make the activation system of the invention biocompatible and above all hemocompatible.
De manière générale, le clapet est réalisé dans la masse avec un matériau hémocompatible permettant l'incorporation d'aimants sans modification de leurs caractéristiques magnétiques. Selon un autre mode de réalisation, le système comprend un élément magnétique mobile et deux ou trois éléments magnétiques fixes, pour chaque articulation du clapet. De préférence, les éléments magnétiques fixes sont alors disposés en couronne autour d'un axe articulation du clapet.Generally, the valve is made in the mass with a hemocompatible material allowing the incorporation of magnets without modification of their magnetic characteristics. According to another embodiment, the system comprises a mobile magnetic element and two or three fixed magnetic elements, for each articulation of the valve. Preferably, the fixed magnetic elements are then arranged in a ring around an axis of articulation of the valve.
Selon encore un autre mode de réalisation, lesdits éléments magnétiques sont des aimants permanents dits de terres rares, à base de Samarium et de Cobalt, ou à base de Néodyme, de Fer et de Bore.According to yet another embodiment, said magnetic elements are so-called permanent rare earth magnets, based on Samarium and Cobalt, or based on Neodymium, Iron and Boron.
Un autre objet de l'invention est une valve cardiaque équipée du système d'activation précédemment décrit.Another object of the invention is a heart valve equipped with the activation system described above.
Un mode de réalisation particulier d'une telle valve consiste à usiner un clapet réalisé dans la masse en un alliage de titane hémocompatible pour former un logement, de placer l'élément magnétique mobile dans ce logement, de refermer ce logement avec un capot du même alliage de titane, et enfin de souder hermétiquement ce capot au clapet.A particular embodiment of such a valve consists in machining a valve made in the mass of a hemocompatible titanium alloy to form a housing, placing the movable magnetic element in this housing, closing this housing with a cover of the same titanium alloy, and finally hermetically weld this cover to the valve.
Bien entendu, une alternative peut consister à réaliser le clapet en un matériau quelconque, puis à revêtir complètement ledit clapet avec un matériau hémocompatible. Une première variante de réalisation de la valve de l'invention consiste à la pourvoir de deux clapets activés par la seule influence réciproque des éléments magnétiques mobiles de chaque clapet.Of course, an alternative may consist in producing the valve in any material, then in completely coating said valve with a hemocompatible material. A first variant embodiment of the valve of the invention consists in providing it with two valves activated by the only reciprocal influence of the mobile magnetic elements of each valve.
Une seconde variante, consiste à réaliser au moins l'un des deux clapets ou l'un des deux sièges avec un matériau ferromagnétique, de façon à former au moins un élément magnétique mobile ou fixe qui ne produit pas de champ magnétique mais qui est sous influence du ou des champs magnétiques produits par les autres éléments magnétiques mobile ou fixe.A second variant consists in producing at least one of the two valves or one of the two seats with a ferromagnetic material, so as to form at least one mobile or fixed magnetic element which does not produce a magnetic field but which is under influence of the magnetic field (s) produced by other mobile or fixed magnetic elements.
Une autre variante consiste à ne prévoir sur la valve que des éléments magnétiques mobiles ; le siège ne comportant alors aucun élément magnétique.Another variant consists in providing only movable magnetic elements on the valve; the seat then comprising no magnetic element.
Encore une autre variante consiste à prévoir la présence d'éléments magnétiques mobiles interactifs et la présence sur le siège d'éléments magnétiques fixes inactifs, ou dont l'influence est négligeable.Yet another variant consists in providing for the presence of interactive mobile magnetic elements and the presence on the seat fixed magnetic elements that are inactive, or whose influence is negligible.
Le système d'activation de l'invention permet, grâce à la position d'ouverture intermédiaire du clapet, obtenue à l'équilibre des pressions de part et d'autre de la valve, une ouverture active de la valve, en particulier en position mitrale, en garantissant une ouverture symétrique de tous les clapets, même en cas de débit sanguin très faible, et de diminuer le reflux à la fermeture. La garantie de l'ouverture de tous les clapets réduit les risques de formation de thrombus. Les valves équipées de ces systèmes d'activation sont commandées par les variations de pression sanguine, et non par les débits comme cela est le cas avec les valves passives, c'est-à-dire non activées selon le principe de l'invention. Du fait que le débit est lui- même généré par les variations de pression, il est possible d'avoir des phases d'ouverture et de fermeture anticipées par rapport aux séquences de fonctionnement des valves artificielles et traditionnelles non activées. Il en résulte que les clapets des valves activées apparaissent comme étant sans inertie pour les flux sanguins qui conservent ainsi toute leur énergie acquise. Le système d'activation de l'invention permet, en outre, d'améliorer le rendement des valves en réduisant le reflux sanguin. En effet, l'assistance magnétique provoque la fermeture anticipée du clapet alors même que la vitesse de reflux sanguin est encore quasiment nulle. Les jets qui se produisent au moment de la fermeture lorsque celle-ci s'effectue en présence d'une vitesse de reflux significative (comme cela est le cas avec les valves non activées) entraînent généralement des risques de cavitation et d'hémolyse qui sont donc limités par l'utilisation de l'invention.The s y stem Activation of the invention allows, thanks to the intermediate open position of the valve, resulting in pressure equilibrium on either side of the valve, an active valve opening, especially in the mitral position, guaranteeing a symmetrical opening of all the valves, even in the event of very low blood flow, and reducing the reflux on closing. Guaranteed opening of all valves reduces the risk of thrombus formation. The valves fitted with these activation systems are controlled by variations in blood pressure, and not by the flow rates as is the case with passive valves, that is to say not activated according to the principle of the invention. Because the flow is itself generated by the pressure variations, it is possible to have anticipated opening and closing phases with respect to the operating sequences of the artificial and traditional valves that are not activated. As a result, the valves of the activated valves appear to be without inertia for the blood flows which thus conserve all their acquired energy. The activation system of the invention also makes it possible to improve the efficiency of the valves by reducing blood reflux. Indeed, the magnetic assistance causes the anticipated closure of the valve even though the rate of blood reflux is still almost zero. The jets which occur at the time of closing when it is carried out in the presence of a significant reflux speed (as is the case with the valves not activated) generally involve risks of cavitation and hemolysis which are therefore limited by the use of the invention.
Il est admis que les phases transitoires de l'écoulement sanguin s'accompagnent de variations brusques de pression provoquant l'ouverture ou la fermeture. L'anticipation des mouvements d'ouverture et de fermeture par rapport aux inversions de débit au niveau de l'orifice valvulaire permet donc au clapet, d'effectuer son mouvement sous des charges faibles, à la différence des valves passives dont les clapets, surtout en fin de course, supportent des charges élevées. En outre, la portion de course du clapet s'effectuant sous différence de pression élevée est plus courte qu'avec les valves non activées, ce qui limite les chocs et donc l'usure. Cette même anticipation symétrise les mouvements des clapets car ce sont des couples magnétiques identiques qui initient les mouvements des clapets. En conséquence, les mouvements des clapets étant symétriques, la répartition des contraintes est symétrique, ce qui est favorable à la bonne tenue en fatigue de la prothèse valvulaire active. Les mouvements d'ouverture et de fermeture présentent une première phase qui s'effectue sous l'impulsion des forces magnétiques et une seconde phase qui est sous l'influence des forces hydrauliques. Ainsi, le retour automatique des clapets dans la position d'ouverture intermédiaire d'équilibre permet aussi de décomposer les mouvements et de réduire les vitesses de fins d'ouverture et de fermeture, ce qui supprime les chocs violents sur le siège en diminuant ainsi les risques de rupture, de bruits, de cavitation et d'hémolyse.It is recognized that the transient phases of blood flow are accompanied by sudden changes in pressure causing opening or closing. The anticipation of the opening and closing movements with respect to the flow reversals at the level of the valve orifice therefore allows the valve to perform its movement under low loads, unlike passive valves including valves, especially at the end of the race, support high loads. In addition, the stroke portion of the valve being effected under a high pressure difference is shorter than with the valves not activated, which limits shock and therefore wear. This same anticipation balances the movements of the valves because they are identical magnetic couples which initiate the movements of the valves. Consequently, the movements of the valves being symmetrical, the distribution of the stresses is symmetrical, which is favorable to the good fatigue strength of the active valve prosthesis. The opening and closing movements have a first phase which takes place under the impulse of magnetic forces and a second phase which is under the influence of hydraulic forces. Thus, the automatic return of the valves to the intermediate equilibrium opening position also makes it possible to break down the movements and reduce the speeds at the end of opening and closing, which eliminates violent shocks on the seat, thereby reducing the risks of rupture, noise, cavitation and hemolysis.
Le système d'activation de l'invention autorise une plus grande ouverture du clapet pour réduire la perte de charge transvalvulaire et ceci sans augmenter le reflux grâce à l'anticipation du mouvement à la fermeture.The activation system of the invention allows a greater opening of the valve to reduce the transvalvular pressure loss and this without increasing the reflux thanks to the anticipation of the movement at closing.
L'activation magnétique de la valve a des effets particulièrement importants surtout dans les phases du cycle cardiaque où les forces hydrauliques sont faibles, c'est-à-dire entre la diastole et la systole et inversement entre la systole et la diastole. Les intensités des couples et des forces magnétiques en jeu peuvent rester faibles tout en étant efficaces. Elles ne sont donc pas susceptibles de perturber le fonctionnement hydraulique de la valve pendant les phases diastolique et systolique. Ainsi, les valeurs de ces couples ne sont pas susceptibles d'entraîner une quelconque augmentation de la perte de charge transvalvulaire, lorsque la valve est ouverte, pas plus qu'une élévation du débit de fuite transvalvulaire lorsque la valve est fermée.The magnetic activation of the valve has particularly important effects especially in the phases of the cardiac cycle where the hydraulic forces are weak, that is to say between the diastole and the systole and conversely between the systole and the diastole. The intensities of the torques and the magnetic forces at play can remain low while being effective. They are therefore not likely to disturb the hydraulic functioning of the valve during the diastolic and systolic phases. Thus, the values of these couples are not likely to cause any increase in the transvalvular pressure drop, when the valve is open, any more than an increase in the transvalvular leakage flow rate when the valve is closed.
L'invention sera mieux comprise à la lecture de la description qui va suivre, accompagnée des dessins sur lesquels : - les figures la à le représentent des vues schématiques en coupe du coeur lors des différentes phases du cycle cardiaque;The invention will be better understood on reading the description which follows, accompanied by the drawings in which: - Figures la to the represent schematic sectional views of the heart during the different phases of the cardiac cycle;
- les figures 2a et 2b sont des graphes représentant respectivement les variations de pression et les variations de volume ventriculaire au cours du cycle cardiaque pour le coeur gauche;- Figures 2a and 2b are graphs respectively representing the pressure variations and the ventricular volume variations during the cardiac cycle for the left heart;
- les figures 3a, 3b, 3c sont des vues respectivement en perspective, en coupe transversale et en vue de dessus d'une valve équipée d'un mode de réalisation du système d'activation de l'invention, en position de fermeture; - les figures 4a, 4b, 4c sont des vues respectivement en perspectives, en coupe transversale et en vue de dessus de la valve des figures 3a, 3b, 3c en position d'équilibre intermédiaire;- Figures 3a, 3b, 3c are respectively perspective views, in cross section and in top view of a valve equipped with an embodiment of the activation system of the invention, in the closed position; - Figures 4a, 4b, 4c are perspective views respectively, in cross section and in top view of the valve of Figures 3a, 3b, 3c in the intermediate equilibrium position;
- les figures 5a, 5b, 5c sont des vues respectivement en perspective, en coupe transversale et en vue de dessus de la valve des figures 3a, 3b et 3c en position de pleine ouverture;- Figures 5a, 5b, 5c are respectively perspective views, in cross section and in top view of the valve of Figures 3a, 3b and 3c in the fully open position;
- les figures 6, 7 et 8 représentent quelques unes des diverses configurations magnétiques possibles pour le système d'activation de l'invention;- Figures 6, 7 and 8 show some of the various magnetic configurations possible for the activation system of the invention;
- les figures 9, 10 et 11 représentent les graphes de variations du couple magnétique de rappel correspondant, respectivement, aux configurations magnétiques des figures 6, 7 et 8.FIGS. 9, 10 and 11 show the graphs of variations of the magnetic return torque corresponding, respectively, to the magnetic configurations of FIGS. 6, 7 and 8.
Les figures la à le représentent les différentes phases du cycle cardiaque. Le sang se comporte comme tous les fluides, il s'écoule toujours d'une zone de haute pression vers une zone de basse pression en générant ainsi un débit. La contraction cardiaque met le sang sous pression et les valves orientent le débit de sang ainsi généré. Les variations de pression et de débit qui apparaissent lors du cycle cardiaque sont représentées, pour le coeur gauche, sur les figures 2a et 2b. Le comportement du coeur droit est qualitativement identique à celui du coeur gauche. La systole correspond à la période de contraction ventriculaire (figures le et ld), tandis que la diastole correspond à celle du relâchement (figures la et lb). La description suivante va permettre de situer dans le cycle cardiaque les mouvements d'ouverture et de fermeture des valves aortique et mitrale précédemment décrits.Figures la to le represent the different phases of the cardiac cycle. Blood behaves like all fluids, it always flows from a high pressure area to a low pressure area, thereby generating a flow. The heart contraction puts the blood under pressure and the valves direct the flow of blood thus generated. The pressure and flow variations which appear during the cardiac cycle are shown, for the left heart, in FIGS. 2a and 2b. The behavior of the right heart is qualitatively identical to that of the left heart. The systole corresponds to the period of ventricular contraction (figures le and ld), while the diastole corresponds to that of the relaxation (figures la and lb). The following description will make it possible to locate in the cardiac cycle the opening and closing movements of the aortic and mitral valves previously described.
Pendant le début de la diastole (figure la) l'oreillette gauche A est relâchée et le ventricule gauche B commence à se dilater. Cette dilatation entraîne une ouverture précoce de la valve mitrale VI par traction sur les cordages. La pression dans l'oreillette devenant supérieure à celle du ventricule, le sang passe de l'oreillette A dans le ventricule B. Pendant ce temps, la valve aortique V2 est fermée car la pression dans l'aorte C est plus élevée que dans le ventricule B. Mais la pression aortique chute lentement alors que la pression ventriculaire s'élève légèrement. A la fin de la diastole (figure lb), l'oreillette A se contracte de façon à injecter un volume de sang supplémentaire dans le ventricule B. Ensuite, la phase de systole débute et le ventricule B commence à se contracter en comprimant le sang qu'il contient. La pression ventriculaire augmente donc de façon très brutale en dépassant presque immédiatement la pression auriculaire, ce qui provoque la fermeture de la valve VI, facilitée par le relâchement également brutal de la tension sur les cordages (figure le et point f sur la figure 2a). Le reflux sanguin vers l'oreillette A n'est alors plus possible. En outre, du fait que pendant une brève durée la pression aortique dépasse encore la pression ventriculaire, la valve aortique V2 reste fermée. Puis la pression ventriculaire dépasse la pression aortique, la valve V2 s'ouvre et l'éjection ventriculaire se produit (figure ld et point 0 sur la figure 2a). A mesure que le sang s'écoule dans l'aorte C, la pression aortique augmente mais le ventricule B ne se vide pas complètement et la pression aortique maximale est atteinte avant la fin de l'éjection. Le débit de sang qui sort du ventricule B pendant la phase terminale de la systole est faible et inférieur au débit de sang quittant l'aorte. Parallèlement, la pression auriculaire augmente aussi, lentement, pendant toute la durée de l'éjection. Puis le ventricule B se relâche et la pression ventriculaire chute en dessous de la pression aortique, ce qui provoque la fermeture de la valve aortique V2 (point f, figure 2a). Cependant, la pression ventriculaire qui décroît est encore supérieure à la pression auriculaire, de sorte que la valve auriculo-ventriculaire VI reste fermée (figure le). Lorsque le ventricule gauche commence à se dilater, simultanément à l'inversion de la pression ventriculo- auriculaire, la valve VI s'ouvre (point 0', figure 2a) et le remplissage du ventricule recommence comme décrit précédemment en relation avec le début de la diastole (figure la).During the start of the diastole (Figure la) the left atrium A is released and the left ventricle B begins to dilate. This expansion leads to an early opening of the mitral valve VI by traction on the ropes. As the pressure in the atrium becomes greater than that of the ventricle, blood passes from atrium A into ventricle B. Meanwhile, the aortic valve V2 is closed because the pressure in aorta C is higher than in the ventricle B. But the aortic pressure drops slowly while the ventricular pressure rises slightly. At the end of the diastole (figure lb), the atrium A contracts so as to inject an additional volume of blood into the ventricle B. Then, the systole phase begins and the ventricle B begins to contract by compressing the blood it contains. The ventricular pressure therefore increases very suddenly, almost immediately exceeding the atrial pressure, which causes the closure of the valve VI, facilitated by the equally abrupt release of the tension on the strings (FIG. 1a and point f in FIG. 2a). . Blood reflux to atrium A is no longer possible. In addition, because for a short time the aortic pressure still exceeds the ventricular pressure, the aortic valve V2 remains closed. Then the ventricular pressure exceeds the aortic pressure, the valve V2 opens and the ventricular ejection occurs (Figure 1d and point 0 in Figure 2a). As blood flows into aorta C, the aortic pressure increases but the ventricle B does not empty completely and the maximum aortic pressure is reached before the ejection is completed. The flow of blood from ventricle B during the terminal phase of systole is low and less than the flow of blood from the aorta. At the same time, the atrial pressure also increases slowly over the duration of the ejection. Then ventricle B relaxes and the ventricular pressure drops below the aortic pressure, which causes the aortic valve V2 to close (point f, Figure 2a). However, the decreasing ventricular pressure is still greater than the atrial pressure, so that the atrioventricular valve VI remains closed (Figure le). When the left ventricle begins to dilate, simultaneously with the inversion of the ventriculo-atrial pressure, the valve VI opens (point 0 ', FIG. 2a) and the filling of the ventricle begins again as described previously in relation to the start of the diastole (figure la).
Les figures 2a et 2b représentent respectivement les variations de pression et de volume ventriculaire au cours des différentes phases décrites ci-dessus et en référence aux figures la à le comme mentionné dans le bas de la figure 2b. Il apparaît assez clairement dans l'étude du cycle cardiaque que les valves naturelles sont synchronisées sur les pressions relatives régnant dans l'oreillette, le ventricule et/ou l'aorte et non sur les débits. Ces valves ont donc des modes d'ouverture et de fermeture anticipés par rapport aux variations de débits. De plus l'ouverture de la valve mitrale est facilitée par la dilatation ventriculaire qui s'accompagne d'une traction sur les cordage tendineux.FIGS. 2a and 2b respectively represent the variations in pressure and ventricular volume during the different phases described above and with reference to FIGS. 1a to 1c as mentioned at the bottom of FIG. 2b. It appears quite clearly in the study of the cardiac cycle that the natural valves are synchronized with the relative pressures prevailing in the atrium, the ventricle and / or the aorta and not with the flow rates. These valves therefore have anticipated opening and closing modes with respect to variations in flow rates. In addition, the opening of the mitral valve is facilitated by ventricular dilation which is accompanied by traction on the tendon cord.
Le système d'activation de l'invention vise à faire fonctionner les valves artificielles, selon des modes d'ouverture et de fermeture qui sont très proches de ceux des valves naturelles.The activation system of the invention aims to operate the artificial valves, according to opening and closing modes which are very close to those of natural valves.
La valve représentée sur les figures 3a, 3b et 3c et suivantes est une valve artificielle équipée du système d'activation de l'invention.The valve shown in Figures 3a, 3b and 3c and following is an artificial valve equipped with the activation system of the invention.
Cette valve comprend un siège 1, au moins un clapet et de préférence ici deux clapets 2a, 2b identiques, montés sur le siège 1 de façon symétrique, par rapport à l'axe diamétral XX'. Chacun des clapets 2a, 2b pivote autour d'un axe YY', parallèle et voisin de l'axe XX' au moyen de deux articulations symétriques, disposées de part et d'autre de chaque clapet.This valve comprises a seat 1, at least one valve and preferably here two valves 2a, 2b identical, mounted on the seat 1 symmetrically, with respect to the diametrical axis XX '. Each of the valves 2a, 2b pivots about an axis YY ', parallel and close to the axis XX' by means of two symmetrical articulations, arranged on either side of each valve.
Une articulation est, par exemple, constituée d'un doigt transversal 10 solidaire du flanc latéral intérieur du siège 1 et destiné à s'engager avec liberté de rotation relative à l'intérieur d'une cavité cylindrique 20 ménagée dans l'épaisseur du bord latéral du clapet 2a, 2b ou dans un bossage rapporté 21. Dans le mode de réalisation de la valve représenté, les deux clapets 2a, 2b viennent en position de fermeture (figures 3a à 3c), en butée l'un contre l'autre par leur bord intérieur respectif 22a, 22b orienté selon l'axe XX'. A cet effet, les bords intérieurs 22a, 22b sont chanfreinés pour qu'en position de fermeture, les clapets 2a, 2b fassent entre eux un angle de 2β compris entre 90° et 180°. La position d'ouverture est ici fixée à α = 85°(voir figure 9), par rapport au plan de base S du siège 1.A joint is, for example, made up of a transverse finger 10 integral with the internal lateral flank of the seat 1 and intended to engage with freedom of relative rotation inside a cylindrical cavity 20 formed in the thickness of the edge lateral of the valve 2a, 2b or in an added boss 21. In the embodiment of the valve shown, the two valves 2a, 2b come into the closed position (Figures 3a to 3c), abutted against each other by their respective inner edge 22a, 22b oriented along the axis XX '. For this purpose, the inner edges 22a, 22b are chamfered so that in the closed position, the valves 2a, 2b make between them an angle of 2β between 90 ° and 180 °. The open position is here fixed at α = 85 ° (see Figure 9), relative to the base plane S of the seat 1.
Le système d'activation proprement dit comprend, par articulation, d'une part, au moins un et dans le mode de réalisation représenté, trois éléments magnétiques fixes 3, solidaires du siège 1 et au moins un élément magnétique mobile 4 ici porté par le clapet 2a, 2b. Les éléments magnétiques 3,4 sont adaptés et destinés à créer une force qui s'exerce sur le clapet 2a,2b pendant ses mouvements d'ouverture et/ou de fermeture.The actual activation system comprises, by articulation, on the one hand, at least one and in the embodiment shown, three fixed magnetic elements 3, integral with the seat 1 and at least one mobile magnetic element 4 here carried by the valve 2a, 2b. The magnetic elements 3,4 are adapted and intended to create a force which is exerted on the valve 2a, 2b during its opening and / or closing movements.
Dans le mode de réalisation représenté sur les figures, les éléments magnétiques fixes 3 et mobile 4 produisent respectivement un premier et un second champs magnétiques dont les caractéristiques propres sont éventuellement différentes. Ces éléments magnétiques 3, 4 sont de préférence des aimants permanents dits de terres rares (par exemple à base de Samarium et de Cobalt ou à base de Néodyme de Fer et de Bore) à fortes aimantations et coercivités et donc à grande stabilité magnétique.In the embodiment shown in the figures, the fixed magnetic elements 3 and mobile 4 respectively produce a first and a second magnetic field whose specific characteristics are possibly different. These magnetic elements 3, 4 are preferably permanent magnets called rare earths (for example based on Samarium and Cobalt or based on Neodymium of Iron and Boron) with strong magnetizations and coercivities and therefore with great magnetic stability.
Les éléments magnétiques fixes 3, faiblement encombrants peuvent être intégrés dans l'épaisseur du flanc extérieur du siège 1 et ne sont donc pas susceptibles d'entrer en contact avec le sang. Les éléments magnétiques fixes 3 peuvent être disposés en couronne comme illustré notamment sur la figure 3b, mais ils peuvent avoir tout autre disposition favorable à l'obtention des champs magnétiques recherchés. Les premier et second champs magnétiques sont déterminés de façon à produire des forces magnétiques répulsives entre l'élément mobile 4 et l'élément fixe 3. Ces forces ont une intensité comprise entre 0 et 10_lN. Ces forces répulsives permettent à la fois le contrôle du pivotement du clapet 2a, 2b et le centrage dudit clapet dans le siège, ce qui assure notamment un minimum de frottement. L'élément magnétique mobile 4 est intégré dans l'épaisseur du clapet 2a, 2b.The fixed magnetic elements 3, which are compact and can be integrated into the thickness of the outer flank of the seat 1 and are therefore not likely to come into contact with the blood. The fixed magnetic elements 3 can be arranged in a crown as illustrated in particular in FIG. 3b, but they can have any other arrangement favorable for obtaining the desired magnetic fields. The first and second magnetic fields are determined so as to produce repulsive magnetic forces between the mobile element 4 and the fixed element 3. These forces have an intensity between 0 and 10 _ lN. These repulsive forces allow both the control of the pivoting of the valve 2a, 2b and the centering of said valve in the seat, this which in particular ensures a minimum of friction. The mobile magnetic element 4 is integrated into the thickness of the valve 2a, 2b.
Dans le mode de réalisation représenté en écorché sur la figureIn the embodiment shown cut away in the figure
3a, l'élément magnétique mobile 4 est fixé intégralement dans un logement 24 ménagé latéralement dans le bossage 21. Le logement 24 est lui-même obturé de manière etanche par un capot soudé (non représenté) en enfermant ainsi l'élément 4.3a, the movable magnetic element 4 is fixed integrally in a housing 24 formed laterally in the boss 21. The housing 24 is itself sealed in a sealed manner by a welded cover (not shown) thereby enclosing the element 4.
Les clapets 2a, 2b sont, au moins en ce qui concerne les bossages 21, de préférence réalisés en un alliage de titane hémocompatible. Ce métal présente, en outre, l'avantage d'être léger, résistant et de permettre tant l'usinage des logements 24 que le soudage du capot. Il autorise également, en raison de sa solidité, la réalisation de clapets plus minces que ceux existants dans des matériaux traditionnels (par exemple le pyrocarbone), et permet ainsi de libérer une surface de passage plus importante, et donc de diminuer la perte de charge transvalvulaire. Toutefois, le système d'activation est compatible avec tout autre matériau hémocompatible (céramiques, alliages métalliques, carbone pyrolytique...).The valves 2a, 2b are, at least as far as the bosses 21, preferably made of a hemocompatible titanium alloy. This metal also has the advantage of being light, resistant and allowing both the machining of the housings 24 and the welding of the cover. It also allows, because of its solidity, the production of thinner valves than those existing in traditional materials (for example pyrocarbon), and thus makes it possible to free up a larger passage surface, and therefore to reduce the pressure drop transvalvular. However, the activation system is compatible with any other hemocompatible material (ceramics, metal alloys, pyrolytic carbon ...).
Les champs magnétiques respectifs des éléments fixes 3 et mobiles 4 sont déterminés de telle façon que leur influence réciproque puisse assurer le contrôle des mouvements du clapet. En particulier, lorsque la pression sanguine est identique de part et d'autre de la valve, il se crée une position d'équilibre E des clapets 2a, 2b. Les clapets sont rappelés à tout moment vers cette position d'équilibre stable E par une force qui produit un couple magnétique variant en fonction de la position angulaire desdits clapets. Les lois et les graphes des variations du couple magnétique de rappel sont déterminés de façon à minimiser le reflux sanguin sans augmenter la perte de charge transvalvulaire. Par ailleurs, ces graphes, représentés sur la figure 9 (en relation avec le mode de réalisation décrit), sont indépendants de part et d'autre de la position d'équilibre E. Le couple maximal est compris entre 10-3 et lO- N.m. La position d'équilibre E est représentée sur les figures 4a, 4b et 4c. Elle correspond à un couple magnétique nul et offre une ouverture intermédiaire des clapets, ici à mi-distance entre les positions angulaires de fermeture (figures 3a à 3c) et de pleine ouverture (figures 5a à 5c). Cette ouverture intermédiaire correspond, en général, à un angle de 2β entre les clapets 2a, 2b compris entre 60° et 140°, les positions des clapets étant à tout moment symétriques par rapport au plan diamétral D passant par l'axe XX'. La position d'équilibre E des clapets correspond, ici, à un angle αde 55°, par rapport au plan de base S du siège 1 (voir figure 9).The respective magnetic fields of the fixed 3 and mobile 4 elements are determined in such a way that their reciprocal influence can ensure control of the movements of the valve. In particular, when the blood pressure is identical on either side of the valve, an equilibrium position E of the valves 2a, 2b is created. The valves are returned to this stable equilibrium position E at any time by a force which produces a magnetic torque varying as a function of the angular position of said valves. The laws and graphs of the variations of the magnetic return torque are determined so as to minimize the blood reflux without increasing the transvalvular pressure drop. Furthermore, these graphs, represented in FIG. 9 (in relation to the embodiment described), are independent on either side of the equilibrium position E. The maximum torque is between 10-3 e t lO - Nm The equilibrium position E is shown in Figures 4a, 4b and 4c. It corresponds to zero magnetic torque and offers an intermediate opening of the valves, here halfway between the positions closing angles (Figures 3a to 3c) and full opening (Figures 5a to 5c). This intermediate opening generally corresponds to an angle of 2β between the valves 2a, 2b between 60 ° and 140 °, the positions of the valves being at all times symmetrical with respect to the diametrical plane D passing through the axis XX '. The equilibrium position E of the valves corresponds, here, to an angle α of 55 °, relative to the base plane S of the seat 1 (see FIG. 9).
Sur les figures 5a, 5b et 5c, la valve est représentée avec les clapets 2a, 2b en position de pleine ouverture. Dans cette position, les deux clapets 2a, 2b sont orientés selon des plans parallèles à la fois entre eux et par rapport au plan diamétral D.In FIGS. 5a, 5b and 5c, the valve is shown with the valves 2a, 2b in the fully open position. In this position, the two valves 2a, 2b are oriented in planes parallel both to each other and to the diametral plane D.
Dans la position de fermeture (figure 3a) et dans la position de pleine ouverture (figure 5a), l'élément magnétique mobile 4 porté par le clapet 2a, 2b, est disposé exactement parallèlement et en vis-à-vis de l'un des éléments magnétiques fixes 3 extrêmes.In the closed position (Figure 3a) and in the fully open position (Figure 5a), the movable magnetic element 4 carried by the valve 2a, 2b, is arranged exactly parallel and opposite one 3 extreme fixed magnetic elements.
Dans la position de demi-ouverture correspondant à l'équilibre, l'élément magnétique mobile 4 est orienté en vis-à-vis mais perpendiculairement à l'élément magnétique fixe 3 intercalaire.In the half-opening position corresponding to equilibrium, the mobile magnetic element 4 is oriented opposite but perpendicular to the fixed magnetic element 3 in between.
Les premier et second champs magnétiques produits respectivement par l'élément magnétique mobile 4 et par les éléments magnétiques 3, dépendent, bien entendu, de la géométrie respective et des positions relatives des dits éléments 3, 4 ainsi que leurs directions d'aimantation.The first and second magnetic fields produced respectively by the mobile magnetic element 4 and by the magnetic elements 3 depend, of course, on the respective geometry and the relative positions of said elements 3, 4 as well as their magnetization directions.
Les figures 6, 7 et 8 représentent seulement quelques unes des diverses configurations magnétiques du système d'activation de l'invention. D'autres configurations sont possibles permettant, comme ici, d'obtenir des variations du couple de rappel qui minimisent le reflux sanguin sans augmenter la perte de charge transvalvulaire.Figures 6, 7 and 8 show only some of the various magnetic configurations of the activation system of the invention. Other configurations are possible allowing, as here, to obtain variations of the booster torque which minimize blood reflux without increasing the transvalvular pressure drop.
La configuration magnétique à trois aimants fixes 3 et un aimant mobile 4, par clapet correspondant au mode de réalisation des figures 3a, 4a et 5a, est représentée sur la figure 6, dans la position d'équilibre E.The magnetic configuration with three fixed magnets 3 and a movable magnet 4, by valve corresponding to the embodiment of Figures 3a, 4a and 5a, is shown in Figure 6, in the equilibrium position E.
De manière générale, le vecteur aimantation est toujours dirigé vers le Nord magnétique de l'aimant considéré. Dans la configuration représentée, les vecteurs aimantation N des aimants fixes 31, 32, 33 sont orientés positivement selon l'axe d'articulation YY', c'est à dire de Y vers Y'.Generally, the magnetization vector is always directed towards the magnetic North of the magnet considered. In the configuration shown, the magnetization vectors N of the fixed magnets 31, 32, 33 are oriented positively along the axis of articulation YY ', that is to say from Y to Y'.
Le vecteur aimantation N* de l'aimant mobile 4 est également orienté parallèlement à l'axe d'articulation mais dans le sens opposé, c'est à dire de Y' vers Y.The magnetization vector N * of the mobile magnet 4 is also oriented parallel to the axis of articulation but in the opposite direction, that is to say from Y ′ to Y.
L'intensité du champ magnétique, produit par l'aimant fixe intercalaire 32 (et donc la valeur de son vecteur N), est inférieure à celle des autres aimants fixes 31 et 33. Comme le pivotement du clapet 2a ne modifie pas l'orientation du champ magnétique produit par l'aimant mobile 4 (le vecteur aimantation N' restant, dans ce pivotement, orienté selon X'X), il se crée donc automatiquement un couple tendant à aligner l'aimant mobile 4 avec l'aimant fixe intercalaire 32, rappelant le clapet 2a vers la position d'équilibre E. La figure 9 représente les graphes de variation du couple magnétique en fonction de l'angle α du clapet par rapport au plan de base S du siège 1 (voir figure 3b, 4b, 5b). La position de pleine ouverture correspond à un angle α de 85°, la position d'équilibre E à un angle α de 55° et la position de fermeture à un angle α de 25°. Le couple de rappel magnétique, appliqué de la position fermée vers la position d'équilibre magnétique E, donne au clapet une impulsion pour l'ouvrir lorsque la différence de pression de part et d'autre de la valve est nulle , et le guide jusqu'à sa position d'équilibre magnétique E. Ainsi, même si le débit est très faible, les clapets s'ouvrent symétriquement, pendant la phase d'écoulement aval, au moins à 55°, de façon à offrir au sang une aire de passage importante, ce qui garantit une perte de charge minimum. Le reste du trajet d'ouverture (de 55° jusqu'à la pleine ouverture) se fait sans perte d'énergie notable pour l'écoulement, car les forces magnétiques sont très faibles devant les forces hydrauliques.The intensity of the magnetic field produced by the intermediate fixed magnet 32 (and therefore the value of its vector N) is less than that of the other fixed magnets 31 and 33. As the pivoting of the valve 2a does not change the orientation of the magnetic field produced by the mobile magnet 4 (the magnetization vector N 'remaining, in this pivoting, oriented along X'X), a torque is therefore automatically created tending to align the mobile magnet 4 with the fixed intermediate magnet 32, recalling the valve 2a towards the equilibrium position E. FIG. 9 represents the graphs of variation of the magnetic torque as a function of the angle α of the valve relative to the base plane S of the seat 1 (see FIG. 3b, 4b , 5b). The fully open position corresponds to an angle α of 85 °, the equilibrium position E to an angle α of 55 ° and the closed position to an angle α of 25 °. The magnetic return torque, applied from the closed position to the magnetic equilibrium position E, gives the valve an impulse to open it when the pressure difference on either side of the valve is zero, and guides it to 'at its magnetic equilibrium position E. Thus, even if the flow rate is very low, the valves open symmetrically, during the downstream flow phase, at least at 55 °, so as to offer the blood an area of significant passage, which guarantees a minimum pressure drop. The rest of the opening path (from 55 ° to full opening) is done without significant loss of energy for the flow, because the magnetic forces are very weak compared to the hydraulic forces.
Le couple de rappel, appliqué de la position de pleine ouverture vers la position d'équilibre magnétique E, permet d'initier le mouvement, puis de guider le clapet vers sa position d'équilibre magnétique, au moment où la différence de pression transvalvulaire s'inverse. De cette dernière position, le mouvement du clapet vers sa position fermée est très bref, car le clapet offre une importante surface d'appui au fluide, ce qui minimise le reflux. Le clapet reste ensuite fermé, en assurant une étanchéité de même niveau qu'une valve passive de même profil, jusqu'au début du cycle suivant.The return torque, applied from the fully open position to the magnetic equilibrium position E, makes it possible to initiate the movement, then to guide the valve to its magnetic equilibrium position, at the moment when the transvalvular pressure difference reverses. From this last position, the movement of the valve towards its closed position is very brief, because the valve offers a large bearing surface for the fluid, which minimizes the reflux. The valve then remains closed, ensuring a seal of the same level as a passive valve of the same profile, until the start of the next cycle.
Cet exemple d'assistance magnétique correspond bien aux exigences fonctionnelles d'une prothèse valvulaire mitrale.This example of magnetic assistance corresponds well to the functional requirements of a mitral valve prosthesis.
Il apparaît sur la figure 9, que le graphe du couple de fermeture du clapet pour α compris entre 55° et 85°, est différent du graphe du couple d'ouverture pour α compris entre 55° et 25°. En effet, la symétrie des graphes, de part et d'autre de la position d'équilibre E, n'existe que pour α compris entre 35° et 75°. Au-delà, les courbes diffèrent, du fait même que les lois régissant les variations du couple, pour l'ouverture et la fermeture, sont indépendantes l'une de l'autre. La figure 7 représente une configuration magnétique à deux aimants fixes 31, 32 et un aimant mobile 4.It appears in FIG. 9, that the graph of the closing torque of the valve for α between 55 ° and 85 °, is different from the graph of the opening torque for α between 55 ° and 25 °. Indeed, the symmetry of the graphs, on both sides of the equilibrium position E, exists only for α between 35 ° and 75 °. Beyond that, the curves differ, by the very fact that the laws governing the variations of the torque, for opening and closing, are independent of each other. FIG. 7 represents a magnetic configuration with two fixed magnets 31, 32 and a movable magnet 4.
Les vecteurs aimantation N, des aimants fixes 31, 32, sont orientés selon l'axe d'articulation Y'Y, c'est à dire, dans le sens de Y' vers Y, à l'inverse de la configuration de la figure 6. Le vecteur aimantation N', de l'aimant mobile 4, est orienté selon l'axe longitudinal AA' du clapet 2a, qui fait un angle α avec le plan de base S du siège 1 et vers le bord libre d'extrémité du dit clapet. Quand le clapet 2a se rapproche de sa position de pleine ouverture, l'aimant mobile 4 est repoussé par l'aimant fixe 32, ce qui crée un couple de rappel vers la position d'équilibre E, représentée sur la figure 7 où le clapet fait un angle α de 35* avec le plan de base S.The magnetization vectors N, fixed magnets 31, 32, are oriented along the axis of articulation Y'Y, that is to say, in the direction of Y 'towards Y, contrary to the configuration of the figure 6. The magnetization vector N ', of the mobile magnet 4, is oriented along the longitudinal axis AA' of the valve 2a, which makes an angle α with the base plane S of the seat 1 and towards the free end edge of the said valve. When the valve 2a approaches its fully open position, the movable magnet 4 is pushed back by the fixed magnet 32, which creates a return torque towards the equilibrium position E, shown in FIG. 7 where the valve makes an angle α of 35 * with the base plane S.
Le même phénomène se produit quand le clapet 2a se rapproche de sa position de fermeture par interaction de l'aimant mobile 4 avec l'aimant fixe 31. Le couple de rappel magnétique, appliqué de la position fermée vers la position d'équilibre magnétique, garantit une ouverture minimale du clapet à 35° pendant la phase d'écoulement aval du sang.The same phenomenon occurs when the valve 2a approaches its closed position by interaction of the mobile magnet 4 with the fixed magnet 31. The magnetic return torque, applied from the closed position to the position of magnetic equilibrium, guarantees a minimum opening of the valve at 35 ° during the downstream blood flow phase.
Le couple de rappel, appliqué de la position de pleine ouverture vers la position d'équilibre magnétique E, permet d'initier, puis de guider le clapet vers cette position, au moment où la différence de pression transvalvulaire s'inverse. De cette dernière position, le mouvement du clapet vers sa position fermée est quasi instantané, car le clapet offre une importante surface d'appui au fluide, et il ne lui reste qu'une course angulaire de 10° à parcourir. Le couple de rappel magnétique vers la position d'équilibre magnétique existe encore lorsque le clapet forme un angle de 90° avec le plan de base S du siège, le profil de la valve peut donc autoriser une ouverture à 90° des clapets, de façon à minimiser la perte de charge transvalvulaire en cas de débit élevé, sans avoir à redouter une augmentation du reflux.The return torque, applied from the fully open position to the magnetic equilibrium position E, makes it possible to initiate and then to guide the valve to this position when the transvalvular pressure difference reverses. From this latter position, the movement of the valve to its closed position is almost instantaneous, because the valve offers a large bearing surface for the fluid, and there remains only an angular travel of 10 ° to travel. The magnetic return torque towards the magnetic equilibrium position still exists when the valve forms an angle of 90 ° with the base plane S of the seat, the profile of the valve can therefore allow the valves to be opened at 90 °, so to minimize the loss of transvalvular load in the event of high flow, without having to fear an increase in reflux.
Cet exemple d'assistance magnétique correspond bien aux exigences fonctionnelles d'une prothèse valvulaire aortique.This example of magnetic assistance corresponds well to the functional requirements of an aortic valve prosthesis.
La figure 10 représente le graphe des variations du couple de rappel en fonction de la position angulaire du clapet pour la configuration magnétique représentée sur la figure 7.FIG. 10 represents the graph of the variations of the return torque as a function of the angular position of the valve for the magnetic configuration represented in FIG. 7.
La position d'équilibre E se trouve à α = 35° par rapport au plan S et ne correspond donc pas, ici, à une demi-ouverture. Il est clair, d'après ce graphe, qu'il n'existe aucune symétrie dans la loi de variation du couple magnétique, de part et d'autre de la position d'équilibre E. Cette variation n'obéit donc pas nécessairement aux mêmes règles pour la phase d'ouverture et pour la phase de fermeture, mais elle ne doit présenter, en aucun cas, des changements brusques de pente.The equilibrium position E is at α = 35 ° relative to the plane S and therefore does not correspond, here, to a half-opening. It is clear from this graph that there is no symmetry in the law of variation of the magnetic torque on either side of the equilibrium position E. This variation does not therefore necessarily obey the same rules for the opening phase and for the closing phase, but it must in no case present abrupt changes in slope.
La figure 8 représente une configuration magnétique à un aimant fixe 3 et un aimant mobile 4. Le vecteur aimantation N de l'aimant fixe 3 est orienté selon une direction d, tandis que le vecteur aimantation N' de l'aimant mobile 4 est orienté suivant la normale à l'extrados du clapet 2a. Par conséquent, l'aimant mobile 4 a tendance à se déplacer, pour que son vecteur aimantation N' soit parallèle au vecteur aimantation N de l'aimant fixe 3, mais avec un sens opposé, de façon à réaliser le bouclage des lignes de champ magnétique. Cela revient à mettre les aimants fixe 3 et mobile 4 en vis-à-vis. Ce phénomène crée un couple magnétique de rappel du clapet 2a vers une position d'équilibre E, matérialisée par le plan BB' de la figure 8. Ici, le clapet est dans sa position d'équilibre magnétique E, lorsqu'il forme un angle de 45° avec 30658FIG. 8 represents a magnetic configuration with a fixed magnet 3 and a movable magnet 4. The magnetization vector N of the fixed magnet 3 is oriented in a direction d, while the magnetization vector N 'of the movable magnet 4 is oriented according to the normal on the upper surface of the valve 2a. Consequently, the mobile magnet 4 tends to move, so that its magnetization vector N ′ is parallel to the magnetization vector N of the fixed magnet 3, but in an opposite direction, so as to loop the field lines magnetic. This amounts to putting the fixed 3 and mobile 4 magnets facing each other. This phenomenon creates a magnetic torque for returning the valve 2a to an equilibrium position E, materialized by the plane BB 'of FIG. 8. Here, the valve is in its magnetic equilibrium position E, when it forms an angle 45 ° with 30658
le plan de base S du siège. Le couple de rappel magnétique, appliqué de la position fermée vers la position d'équilibre magnétique, garantit une ouverture minimale du clapet à 45° pendant la phase d'écoulement aval du sang. Le couple de rappel, appliqué de la position de pleine ouverture vers la position d'équilibre magnétique, permet de guider le clapet vers cette position, au moment où la différence de pression transvalvulaire s'inverse, et de minimiser ainsi le reflux.the basic plan S of the seat. The magnetic return torque, applied from the closed position to the magnetic equilibrium position, guarantees a minimum opening of the valve at 45 ° during the downstream blood flow phase. The return torque, applied from the fully open position to the magnetic equilibrium position, makes it possible to guide the valve to this position, at the moment when the transvalvular pressure difference reverses, and thus minimize reflux.
Cet exemple d'assistance magnétique peut aussi bien convenir aux exigences fonctionnelles d'une prothèse valvulaire aortique ou mitrale, mais constituera une solution moins optimale, car moins spécifique.This example of magnetic assistance may also be suitable for the functional requirements of an aortic or mitral valve prosthesis, but will constitute a less optimal solution, because it is less specific.
Bien entendu, il est possible, toujours selon l'invention, d'obtenir les graphes de variations des figures 9, 10 et 11 avec des configurations différentes de celles représentées sur les figures 6, 7 et 8, ou d'autres configurations, en choisissant des geométries et/ou des positions relatives, et/ou des aimantations particulières des aimants fixes 3 et mobile 4.Of course, it is also possible, still according to the invention, to obtain the graphs of variations of FIGS. 9, 10 and 11 with configurations different from those represented in FIGS. 6, 7 and 8, or other configurations, by choosing geometries and / or relative positions, and / or particular magnetizations of the fixed 3 and mobile 4 magnets.
Par ailleurs, il est également envisageable de créer une influence réciproque entre le système d'activation du clapet 2a et le système d'activation du clapet 2b.Furthermore, it is also conceivable to create a reciprocal influence between the activation system of the valve 2a and the activation system of the valve 2b.
Selon ce mode de réalisation, le système d'activation fonctionne sous la seule influence des éléments magnétiques mobiles. Dans ce cas, les éléments magnétiques fixes du siège sont alors inexistants ou inactifs ou bien produisent une influence négligeable par rapport à celle produite par les éléments magnétiques mobiles. According to this embodiment, the activation system operates under the sole influence of mobile magnetic elements. In this case, the fixed magnetic elements of the seat are then non-existent or inactive or else produce a negligible influence compared to that produced by the mobile magnetic elements.

Claims

REVENDICATIONS
1. Système d'activation pour valve cardiaque comprenant un siège (1) et au moins un clapet (2a, 2b) pivotant monté sur le siège (1) caractérisé en ce qu'il comprend au moins un élément magnétique mobile (4), formé par ledit clapet (2a, 2b) et éventuellement au moins un élément magnétique fixe (3), solidaire du siège (1) ; lesdits éléments magnétiques (3, 4) créant une force qui s'exerce sur ledit clapet (2a, 2b) pendant ses mouvements d'ouverture et/ou de fermeture.1. Activation system for heart valve comprising a seat (1) and at least one pivoting valve (2a, 2b) mounted on the seat (1) characterized in that it comprises at least one mobile magnetic element (4), formed by said valve (2a, 2b) and possibly at least one fixed magnetic element (3), integral with the seat (1); said magnetic elements (3, 4) creating a force which is exerted on said valve (2a, 2b) during its opening and / or closing movements.
2. Système selon la revendication 1, caractérisé en ce que ledit élément magnétique mobile (4) produit un premier champ magnétique et ledit élément magnétique fixe (3) produit un second champ magnétique. 2. System according to claim 1, characterized in that said mobile magnetic element (4) produces a first magnetic field and said fixed magnetic element (3) produces a second magnetic field.
3. Système selon la revendication 2, caractérisé en ce que les premier et second champs magnétiques sont déterminés de telle façon que leur influence réciproque crée, lorsque la pression sanguine est identique de part et d'autre de la valve, une position d'équilibre (E), vers laquelle le clapet (2a,2b) est rappelé à tout moment par ladite force qui varie en fonction de la position dudit clapet de façon à minimiser le reflux sanguin sans augmenter la perte de charge transvalvulaire.3. System according to claim 2, characterized in that the first and second magnetic fields are determined in such a way that their reciprocal influence creates, when the blood pressure is identical on either side of the valve, a position of equilibrium (E), to which the valve (2a, 2b) is recalled at any time by said force which varies according to the position of said valve so as to minimize blood reflux without increasing the transvalvular pressure drop.
4. Système selon la revendication 3, caractérisé en ce que ladite position d'équilibre (E) correspond à une position d'ouverture intermédiaire du clapet (2a,2b). 4. System according to claim 3, characterized in that said equilibrium position (E) corresponds to an intermediate opening position of the valve (2a, 2b).
5. Système selon la revendication 3 ou 4, caractérisé en ce que les variations de ladite force, en fonction de la position du clapet (2a, 2b), sont indépendantes de part et d'autre de la position d'équilibre (E).5. System according to claim 3 or 4, characterized in that the variations of said force, depending on the position of the valve (2a, 2b), are independent on either side of the equilibrium position (E) .
6. Système selon l'une des revendications précédentes, caractérisé en ce que ladite force produit un couple magnétique s'exerçant sur le clapet (2a, 2b), dont la valeur maximale est comprise entre 10~3 et lO-^N.m.6. System according to one of the preceding claims, characterized in that said force produces a magnetic torque exerted on the valve (2a, 2b), whose maximum value is between 10 ~ 3 and lO- ^ N.m.
7. Système selon l'une des revendications 2 à 6, caractérisé en ce que les premier et second champs magnétiques sont déterminés de façon que le clapet (2a, 2b) pivote dans le siège avec le minimum de frottement.7. System according to one of claims 2 to 6, characterized in that the first and second magnetic fields are determined from so that the valve (2a, 2b) pivots in the seat with the minimum of friction.
8. Système selon l'une des revendications 3 à 7, caractérisé en ce que la position d'équilibre (E) est située entre les positions de pleine ouverture et de fermeture.8. System according to one of claims 3 to 7, characterized in that the equilibrium position (E) is located between the full opening and closing positions.
9. Système selon l'une des revendications 2 à 8, caractérisé en ce que l'influence réciproque des premier et second champs magnétiques produit des forces magnétiques répulsives entre l'élément magnétique mobile (4) et l'élément magnétique fixe (3). 9. System according to one of claims 2 to 8, characterized in that the reciprocal influence of the first and second magnetic fields produces repulsive magnetic forces between the mobile magnetic element (4) and the fixed magnetic element (3) .
10. Système selon la revendication 9, caractérisé en ce que lesdites forces magnétiques répulsives ont une intensité d'au plus 10-1 N,10. System according to claim 9, characterized in that said repulsive magnetic forces have an intensity of at most 10-1 N,
11. Système selon l'une des revendications précédentes, caractérisé en ce que ledit élément magnétique fixe (3) est intégré dans l'épaisseur du siège (1).11. System according to one of the preceding claims, characterized in that said fixed magnetic element (3) is integrated into the thickness of the seat (1).
12. Système selon l'une des revendications précédentes, caractérisé en ce que ledit élément magnétique mobile (4) est intégré de manière etanche dans l'épaisseur dudit clapet.12. System according to one of the preceding claims, characterized in that said mobile magnetic element (4) is integrated in a sealed manner in the thickness of said valve.
13. Système selon l'une des revendications précédentes, caractérisé en ce qu'il comprend trois éléments magnétiques fixes (3).13. System according to one of the preceding claims, characterized in that it comprises three fixed magnetic elements (3).
14. Système selon l'une des revendications 1 à 12, caractérisé en ce qu'il comprend deux éléments magnétiques fixes (3).14. System according to one of claims 1 to 12, characterized in that it comprises two fixed magnetic elements (3).
15. Système selon la revendication 14, caractérisé en ce que les deux éléments magnétiques (3) fixes sont placés sur le siège (1) de façon à définir respectivement les positions d'ouverture et de fermeture du clapet (2a, 2b).15. System according to claim 14, characterized in that the two fixed magnetic elements (3) are placed on the seat (1) so as to respectively define the opening and closing positions of the valve (2a, 2b).
16. Système selon l'une des revendications 13 à 15, caractérisé en ce que les éléments magnétiques fixes (3) sont disposés en couronne autour d'un axe d'articulation (YY') du clapet (2a, 2b). 16. System according to one of claims 13 to 15, characterized in that the fixed magnetic elements (3) are arranged in a ring around an axis of articulation (YY ') of the valve (2a, 2b).
17. Système selon l'une des revendications précédentes, caractérisé en ce qu'au moins l'un desdits éléments magnétiques (3, 4) est un aimant permanent.17. System according to one of the preceding claims, characterized in that at least one of said magnetic elements (3, 4) is a permanent magnet.
18. Système selon l'une des revendications précédentes, caractérisé en ce qu'au moins l'un desdits éléments magnétiques (3, 4) est un aimant permanent dit de terres rares à base de Samarium et de Cobalt ou à base de Néodyme, de Fer et de Bore.18. System according to one of the preceding claims, characterized in that at least one of said magnetic elements (3, 4) is a permanent magnet called rare earth based on Samarium and Cobalt or based on Neodymium, Iron and Boron.
19. Système selon l'une des revendications précédentes, caractérisé en ce que le clapet (2a, 2b) est réalisé dans la masse ou revêtu avec un matériau hémocompatible permettant l'incorporation d'aimants sans modification de leurs caractéristiques magnétiques.19. System according to one of the preceding claims, characterized in that the valve (2a, 2b) is made in the mass or coated with a hemocompatible material allowing the incorporation of magnets without modification of their magnetic characteristics.
20. Valve cardiaque comportant un système d'activation selon l'une des revendications précédentes.20. Heart valve comprising an activation system according to one of the preceding claims.
21. Valve selon la revendication 20, caractérisée en ce qu'elle comporte deux clapets (2a, 2b) activés par la seule influence réciproque des éléments magnétiques mobiles (4) de chaque clapet (2a, 2b).21. Valve according to claim 20, characterized in that it comprises two valves (2a, 2b) activated by the only reciprocal influence of the mobile magnetic elements (4) of each valve (2a, 2b).
22. Valve selon la revendication 20 ou 21, caractérisée en ce que le clapet (2a, 2b) est réalisé dans la masse en un alliage de Titane hémocompatible. 22. Valve according to claim 20 or 21, characterized in that the valve (2a, 2b) is made in the mass of a hemocompatible Titanium alloy.
EP97906229A 1996-02-20 1997-02-20 Heart valve activation system and activated heart valve Withdrawn EP0959817A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9602052A FR2744909B1 (en) 1996-02-20 1996-02-20 HEART VALVE ACTIVATION SYSTEM
FR9602052 1996-02-20
PCT/FR1997/000312 WO1997030658A1 (en) 1996-02-20 1997-02-20 Heart valve activation system and activated heart valve

Publications (1)

Publication Number Publication Date
EP0959817A1 true EP0959817A1 (en) 1999-12-01

Family

ID=9489373

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97906229A Withdrawn EP0959817A1 (en) 1996-02-20 1997-02-20 Heart valve activation system and activated heart valve

Country Status (13)

Country Link
US (2) US5814100A (en)
EP (1) EP0959817A1 (en)
JP (1) JP2000504613A (en)
KR (1) KR19990087088A (en)
CN (1) CN1213955A (en)
AU (1) AU734016B2 (en)
BR (1) BR9707591A (en)
CA (1) CA2246645A1 (en)
FR (1) FR2744909B1 (en)
HU (1) HUP9901124A3 (en)
IL (1) IL125727A0 (en)
NO (1) NO983703L (en)
WO (1) WO1997030658A1 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6402780B2 (en) 1996-02-23 2002-06-11 Cardiovascular Technologies, L.L.C. Means and method of replacing a heart valve in a minimally invasive manner
SE508717C2 (en) * 1996-05-24 1998-11-02 Atos Medical Ab voice prosthesis
US6395024B1 (en) * 1997-05-20 2002-05-28 Triflo Medical, Inc. Mechanical heart valve
US6638303B1 (en) 1998-03-13 2003-10-28 Carbomedics, Inc. Heart valve prosthesis
US6077299A (en) * 1998-06-22 2000-06-20 Eyetronic, Llc Non-invasively adjustable valve implant for the drainage of aqueous humor in glaucoma
US6206918B1 (en) 1999-05-12 2001-03-27 Sulzer Carbomedics Inc. Heart valve prosthesis having a pivot design for improving flow characteristics
WO2001091667A2 (en) 2000-05-31 2001-12-06 Cardioclasp, Inc. Devices and methods for assisting natural heart function
US7201771B2 (en) 2001-12-27 2007-04-10 Arbor Surgical Technologies, Inc. Bioprosthetic heart valve
US7959674B2 (en) 2002-07-16 2011-06-14 Medtronic, Inc. Suture locking assembly and method of use
US20080086202A1 (en) * 2002-09-27 2008-04-10 Didier Lapeyre Mechanical heart valve
KR100388936B1 (en) * 2002-10-02 2003-06-25 Newheart Bio Co Ltd Artificial polymer valve
US8551162B2 (en) 2002-12-20 2013-10-08 Medtronic, Inc. Biologically implantable prosthesis
US8021421B2 (en) 2003-08-22 2011-09-20 Medtronic, Inc. Prosthesis heart valve fixturing device
US7556647B2 (en) 2003-10-08 2009-07-07 Arbor Surgical Technologies, Inc. Attachment device and methods of using the same
US7819131B2 (en) * 2005-02-14 2010-10-26 Cameron International Corporation Springless compressor valve
US7513909B2 (en) 2005-04-08 2009-04-07 Arbor Surgical Technologies, Inc. Two-piece prosthetic valves with snap-in connection and methods for use
US8211169B2 (en) 2005-05-27 2012-07-03 Medtronic, Inc. Gasket with collar for prosthetic heart valves and methods for using them
US7967857B2 (en) 2006-01-27 2011-06-28 Medtronic, Inc. Gasket with spring collar for prosthetic heart valves and methods for making and using them
WO2007130881A2 (en) 2006-04-29 2007-11-15 Arbor Surgical Technologies, Inc. Multiple component prosthetic heart valve assemblies and apparatus and methods for delivering them
EP2118540B1 (en) * 2007-02-12 2020-11-25 Zahroof Valves, Inc. Valve assembly and system
US9179850B2 (en) 2007-10-30 2015-11-10 Neuropace, Inc. Systems, methods and devices for a skull/brain interface
US20090112278A1 (en) * 2007-10-30 2009-04-30 Neuropace, Inc. Systems, Methods and Devices for a Skull/Brain Interface
US8986253B2 (en) 2008-01-25 2015-03-24 Tandem Diabetes Care, Inc. Two chamber pumps and related methods
US8408421B2 (en) 2008-09-16 2013-04-02 Tandem Diabetes Care, Inc. Flow regulating stopcocks and related methods
US8650937B2 (en) 2008-09-19 2014-02-18 Tandem Diabetes Care, Inc. Solute concentration measurement device and related methods
CA2776475A1 (en) * 2008-10-10 2010-04-15 Peter Forsell An improved artificial valve
EP4159163A1 (en) * 2008-10-10 2023-04-05 MedicalTree Patent Ltd. An improved artificial valve
EP2724739B1 (en) 2009-07-30 2015-07-01 Tandem Diabetes Care, Inc. Portable infusion pump system
US9180242B2 (en) 2012-05-17 2015-11-10 Tandem Diabetes Care, Inc. Methods and devices for multiple fluid transfer
US9173998B2 (en) 2013-03-14 2015-11-03 Tandem Diabetes Care, Inc. System and method for detecting occlusions in an infusion pump
EP3308086B1 (en) * 2015-06-11 2021-08-11 Ik-Interklimat Spa Compensation valve for environments having a pressure different from the atmospheric one

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3370305A (en) * 1965-05-28 1968-02-27 Goott Bernard Heart valve with magnetic hinge means
US3959827A (en) * 1972-08-08 1976-06-01 Kaster Robert L Heart valve prosthesis
GB1444614A (en) * 1972-09-07 1976-08-04 Kurpanek W H Permanently implantable artificial heart
US3794854A (en) * 1972-11-30 1974-02-26 Rca Corp Signal sensing and storage circuit
CH608368A5 (en) * 1976-05-20 1979-01-15 Sulzer Ag Implantable closure member
US4276658A (en) * 1977-11-02 1981-07-07 St. Jude Medical, Inc. Heart valve prosthesis
US4245358A (en) * 1979-01-24 1981-01-20 Manoutcher Moasser Nontraumatic prosthetic valve with magnetic closure
USRE30507E (en) * 1979-03-22 1981-02-10 Heart valve prosthesis
US4328592A (en) * 1979-08-07 1982-05-11 Hemex, Inc. Heart valve prosthesis
DE3128704A1 (en) * 1981-07-21 1983-02-10 Peter Dr. 5012 Bedburg Küpper Artificial heart valve
US4417360A (en) * 1981-07-31 1983-11-29 Manoutchehr Moasser Nontraumatic prosthetic valve with magnetic closure
FR2543429B1 (en) * 1983-03-30 1986-09-26 Curie Universite Pierre Et Mar ARTIFICIAL HEART VALVE WITH ACTIVE OPENING
FR2587614B1 (en) * 1985-09-23 1988-01-15 Biomasys Sa PROSTHETIC HEART VALVE
US4863460A (en) * 1986-03-04 1989-09-05 Sta-Set Corporation Suture rings for heart valves
US4769032A (en) * 1986-03-05 1988-09-06 Bruce Steinberg Prosthetic valve and monitoring system and method
US4657545A (en) * 1986-04-29 1987-04-14 Zibelin Henry S Heart valve
US4661107A (en) * 1986-07-21 1987-04-28 Fink Irving E Heart valve
US4979955A (en) * 1988-06-06 1990-12-25 Smith Robert M Power assisted prosthetic heart valve
US5045298A (en) * 1988-11-04 1991-09-03 Kabushiki Kaisha Kobe Seiko Sho Carbon material and process for production thereof
FR2642960B1 (en) * 1989-02-15 1994-02-25 Dassault Breguet Aviation PROSTHETIC HEART VALVE
US5135538A (en) * 1989-09-29 1992-08-04 General Motors Corporation Electromagnetically controlled heart valve
DE19529388C2 (en) * 1995-08-10 1997-03-13 Max Speckhart Artificial heart valve

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9730658A1 *

Also Published As

Publication number Publication date
AU2098797A (en) 1997-09-10
CN1213955A (en) 1999-04-14
HUP9901124A3 (en) 2001-06-28
US5961550A (en) 1999-10-05
NO983703D0 (en) 1998-08-13
BR9707591A (en) 2000-01-04
CA2246645A1 (en) 1997-08-28
IL125727A0 (en) 1999-04-11
FR2744909A1 (en) 1997-08-22
FR2744909B1 (en) 1998-05-07
WO1997030658A1 (en) 1997-08-28
AU734016B2 (en) 2001-05-31
KR19990087088A (en) 1999-12-15
HUP9901124A2 (en) 1999-08-30
US5814100A (en) 1998-09-29
JP2000504613A (en) 2000-04-18
NO983703L (en) 1998-10-19

Similar Documents

Publication Publication Date Title
EP0959817A1 (en) Heart valve activation system and activated heart valve
EP0220097B1 (en) Prosthetic heart valve
EP0283413B1 (en) Valve with at least one flap swivelling about elastic pivots
EP0383676B1 (en) Prosthetic heart valve
EP0121473B1 (en) Artificial heart valve with positive opening
CA2458956C (en) Extra-stiff plastic clothes hanger
EP0465383A1 (en) Prosthetic heart valve
FR1464971A (en) Valve usable in particular in surgery
EP0079844B1 (en) Artificial heart valve
EP0318351B1 (en) Artificial heart valve
CH717037A1 (en) Mechanical prosthetic heart valve.
EP0054487A1 (en) Locking-pin for shafts, especially for agricultural implements
EP0884505A1 (en) Device with pivotable lever for transmission of movement and valve incorporating such a device
FR2503799A1 (en) PERISTALTIC PUMP FOR MEDICAL APPLICATIONS
EP0442559B1 (en) Fixed disc for hydraulic faucet, with means to evacuate the debris
EP0289490A1 (en) Snap hook for use in climbing, pot holing or similar activities.
WO2000053124A1 (en) Flexible intraocular implant
FR2971574A1 (en) VALVE FOR CONTROLLING A FLUID
FR2954806A1 (en) Electro-magnetic operated control valve i.e. quantity control valve, for controlling flow rate of petrol high-pressure pump, has rotor arranged in rotor chamber, and disk-shaped residual air gap disk arranged between rotor and body stop
CH717035A1 (en) Mechanical prosthetic heart valve.
FR3138297A1 (en) Mechanical heart valve prosthesis.
EP1548170A1 (en) Door for rotating drum for washing machine and/or laundry dryer
EP1364891A1 (en) Device for aeration by sudden discharge of compressed air with improved ejection duct
EP0713376A1 (en) Implantable heart valve
FR2661726A1 (en) Grooved seat for hydraulic or pneumatic valve or flap valve and system equipped with such a seat

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980807

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030902