EP0953964A2 - Foam-molded sound-absorbing articles - Google Patents
Foam-molded sound-absorbing articles Download PDFInfo
- Publication number
- EP0953964A2 EP0953964A2 EP99108136A EP99108136A EP0953964A2 EP 0953964 A2 EP0953964 A2 EP 0953964A2 EP 99108136 A EP99108136 A EP 99108136A EP 99108136 A EP99108136 A EP 99108136A EP 0953964 A2 EP0953964 A2 EP 0953964A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- foam
- sound
- particles
- khz
- molded
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/16—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/162—Selection of materials
Definitions
- the invention relates to a sound-absorbing molded foam body with a degree of sound absorption in the frequency range of 0.5 to 4 kHz from 50 to 95%.
- Open cell foam plastics based on polyurethane and Melamine / formaldehyde condensation resins are ideal as sound absorption materials, they are increasing used in many technical applications. However, are natural these foams also have some disadvantages, for example in damp rooms, in the hygiene area and in dust-sensitive areas Investments. There was therefore a need for another Foam plastic with sound absorbing properties.
- the crystallite melting point (DSC maximum) of the under a. to e. listed Polyolefins are generally between 90 and 170 ° C.
- Their heat of fusion, determined by the DSC method, is preferably between 20 and 300 J / g, the melt index MFI (230 ° C, 2.16 kp for propylene polymers and 190 ° C, 2.16 kp for ethylene polymers) according to DIN 53 735 between 0.1 and 100 g / 10 min.
- a preferred method for producing the EPO particles is based on polyolefin granules, which preferably have average diameters of 0.5 to 5 mm. 100 parts by weight of these granules are dispersed in 100 to 500 parts by weight of water in a stirred reactor with the aid of a suspension aid. A blowing agent is then injected in amounts of preferably 2 to 50 parts by weight, based on 100 parts by weight of polymer, and the reactor contents are heated. Suitable blowing agents are hydrocarbons, such as butane, halogenated hydrocarbons, alcohols and CO 2 , N 2 and NH 3 . The blowing agent can be added before or during the heating (this also includes holding times) of the reactor contents to the expansion temperature.
- the preferred propylene polymers are used at 110 ° C to 180 ° C.
- a pressure is established in the reactor which is generally higher than 2 bar and does not exceed 100 bar.
- the bulk density of the resulting EPO particles can be controlled by the choice of the impregnation temperature and the blowing agent.
- the reactor is expanded, the expansion advantageously being carried out in an intermediate container in which a pressure of preferably 0.5 to 5 bar prevails.
- the polyolefin granulate containing blowing agent expands and EPO particles with an average diameter of 1 to 20 mm are formed.
- the bulk density of the EPO particles can be set between 10 and 200 g / l. EPO particles with relatively low bulk densities between 15 and 40 g / l are particularly suitable.
- the EPO particles are predominantly closed-cell and have a cell number of 1 to 5000 cells / mm 2 , in particular 10 to 1500 cells / mm 2 .
- foam particles are now in conventional molding machines with the help of water vapor in perforated tools welded. It is essential that, in contrast to the usual Molding production no or at most a low counter pressure prevails during the filling process. In this way the Incomplete welding according to the invention achieved.
- the amount at cavities, i.e. the gusset volume is between 10 and 40%, preferably between 20 and 38%. A small one, at least spot welding is necessary, however, so that a coherent Shaped body is created.
- Polystyrene foam particles are produced by another, also known and conventional method.
- the monomeric styrene optionally in a mixture with other olefinically unsaturated comonomers, initiators, auxiliaries and additives, is suspended in water and polymerized in the presence of suspension stabilizers.
- the resulting polystyrene beads are separated, washed and dried.
- the blowing agent can be added during the polymerization, but it is also possible to introduce the blowing agent into the polystyrene beads in a subsequent process step.
- Suitable blowing agents are C 4 -C 8 hydrocarbons, preferably pentane.
- the foaming of the polystyrene particles containing blowing agents usually also takes place according to those known in the prior art Procedure by first using water vapor in open or closed pre-expanders in several stages be foamed.
- the pre-expanded polystyrene particles show generally an average particle size of 1 to 10 mm, in particular from 2 to 8 mm.
- the preferred bulk density is 10 to 20 g / l.
- the production of molded bodies takes place in block presses, beforehand in a mixer on the foam particle surface an adhesion promoter (e.g. bitumen) is applied. In the block press, the foam particles become light Back pressure welded into a loose bond.
- an adhesion promoter e.g. bitumen
- a great advantage of the sound-absorbing foam molded body based on polyolefins and polystyrene is that these thermoplastic materials meltable and therefore recyclable are.
- PP foam particles with an average bulk density of 28 g / l were pneumatically compressed from a container under 0.5 bar using a conventional automatic molding machine transported a perforated mold cavity that was under atmospheric pressure.
- the foam particles in bulk in the mold cavity were cross-steamed with 2.8 bar superheated steam from both sides for 3 seconds each, the shut-off valves in the condensate line being open, and being welded in a punctiform manner.
- Example 2 The procedure was analogous to Example 1, but with the differences that for filling the mold cavity under atmospheric pressure a differential pressure between the filling container and the mold cavity is applied was and the transverse steaming with 3.2 bar and a steaming time of 4 sec.
- the resulting cuboid shaped part had a gusset portion from 25% to.
- the degree of sound absorption in the frequency domain 1.25-2 kHz was between 55 and 70%.
- Acoustic panels with the dimensions 300 x 200 x 60 mm were produced from PP foam particles with an average bulk density of 17 g / l (Neopolen 2 9220) on a conventional molding machine.
- the foam particles were transported pneumatically into a perforated mold cavity under atmospheric pressure.
- the foam particles in bulk in the mold cavity were cross-steamed with hot steam of 2.4 bar from both sides for 3 seconds each (with the shut-off valves in the condensate line of the machine open).
- the foam particles were spot welded.
- a cuboid molding with a density of 24 kg / m 3 could be removed.
- the gusset percentage inside the molded part was 30%.
- the degree of sound absorption was 80% in the frequency range between 1.25 and 2 kHz.
- PE foam particles (Neopolen E 1710 from BASF AG) with a bulk density of 13 g / l, which had previously been physically cross-linked by electron radiation, were poured onto an air-permeable, rotating conveyor belt (belt width 1100 mm) approx. 200 mm high and through a Hot air duct transport. The transport speed was 1.6 m / min. and the circulating air in the heating duct 160 ° C. After leaving the 6 m long channel, a point-welded coherent foam particle composite was obtained, which had about 40% voids. The degree of sound absorption in the frequency range 1.25 to 2 kHz of this molded part (density: 14 kg / m 3 ) was 85 to 90%.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
Description
Die Erfindung betrifft einen schallabsorbierenden Schaumstoff-Formkörper mit einem Schallabsorptionsgrad im Frequenzbereich von 0,5 bis 4 kHz von 50 bis 95 %.The invention relates to a sound-absorbing molded foam body with a degree of sound absorption in the frequency range of 0.5 to 4 kHz from 50 to 95%.
Offenzellige Schaumkunststoffe auf Basis von Polyurethanen und Melamin/Formaldehyd-Kondensationsharzen eignen sich hervorragend als Schallabsorptionsmaterialien, sie werden in zunehmenden Maße in vielen technischen Anwendungen eingesetzt. Naturgemäß sind jedoch auch diese Schaumstoffe mit einigen Nachteilen behaftet, etwa in Feuchträumen, im Hygienebereich und in staubempfindlichen Anlagen. Es bestand daher das Bedürfnis nach einem weiteren Schaumkunststoff mit schallabsorbierenden Eigenschaften.Open cell foam plastics based on polyurethane and Melamine / formaldehyde condensation resins are ideal as sound absorption materials, they are increasing used in many technical applications. However, are natural these foams also have some disadvantages, for example in damp rooms, in the hygiene area and in dust-sensitive areas Investments. There was therefore a need for another Foam plastic with sound absorbing properties.
Es wurde nun gefunden, daß nicht vollständig verschweißte Polyolefin- und Polystyrol-Partikelschaumstoffe mit einem Zwickelvolumen zwischen 10 und 40 % einen Schallabsorptionsgrad nach DIN 52215 im Frequenzbereich von 0,5 bis 4 kHz, vorzugsweise von 1,25 bis 2 kHz von 30 - 95 %, vorzugsweise von 50 bis 95 % aufweisen.It has now been found that incompletely welded polyolefin and polystyrene particle foams with a gusset volume between 10 and 40% according to a degree of sound absorption DIN 52215 in the frequency range from 0.5 to 4 kHz, preferably from 1.25 to 2 kHz from 30 to 95%, preferably from 50 to 95%.
Polyolefine im Sinne der vorliegenden Erfindung sind
Der Kristallitschmelzpunkt (DSC-Maximum) der unter a. bis e. aufgelisteten Polyolefine liegt im allgemeinen zwischen 90 und 170°C. Ihre Schmelzwärme, bestimmt nach der DSC-Methode, liegt vorzugsweise zwischen 20 und 300 J/g, der Schmelzindex MFI (230°C, 2,16 kp für Propylenpolymerisate und 190°C, 2,16 kp für Ethylenpolymerisate) nach DIN 53 735 zwischen 0,1 und 100 g/10 min.The crystallite melting point (DSC maximum) of the under a. to e. listed Polyolefins are generally between 90 and 170 ° C. Their heat of fusion, determined by the DSC method, is preferably between 20 and 300 J / g, the melt index MFI (230 ° C, 2.16 kp for propylene polymers and 190 ° C, 2.16 kp for ethylene polymers) according to DIN 53 735 between 0.1 and 100 g / 10 min.
Bei einem bevorzugten Verfahren zur Herstellung der EPO-Partikel geht man von Polyolefingranulat aus, welches vorzugsweise mittlere Durchmesser von 0,5 bis 5 mm aufweist. In einem Rührreaktor werden 100 Gew.-Teile dieses Granulats in 100 bis 500 Gew.-Teilen Wasser, mit Hilfe eines Suspendierhilfsmittels dispergiert. Dann wird ein Treibmittel in Mengen von vorzugsweise 2 bis 50 Gew.-Teilen bezogen auf 100 Gew.-Teile Polymer, eingepreßt und der Reaktorinhalt aufgeheizt. Geeignete Treibmittel sind Kohlenwasserstoffe, wie Butan, Halogenkohlenwasserstoffe, Alkohole sowie CO2, N2 und NH3. Die Treibmittelzugabe kann dabei vor oder während des Aufheizens (dazu gehören auch Haltezeiten) des Reaktorinhalts auf die Entspannungstemperatur erfolgen. Diese sollte 5°C unter bis 20°C über, vorzugsweise 2 bis 10°C über dem Kristallitschmelzpunkt des Polyolefins liegen. Bei den bevorzugten Propylenpolymerisaten arbeitet man bei 110°C bis 180°C. Je nach Menge und Art des Treibmittels sowie nach der Höhe der Temperatur stellt sich im Reaktor ein Druck ein, der im allgemeinen höher als 2 bar ist und 100 bar nicht übersteigt. Durch die Wahl der Imprägniertemperatur und des Treibmittels kann die Schüttdichte der entstandenen EPO-Partikel gesteuert werden. Nach Erreichen der Entspannungstemperatur wird der Reaktor entspannt, wobei die Entspannung zweckmäßigerweise in einen Zwischenbehälter erfolgt, in dem ein Druck von vorzugsweise 0,5 bis 5 bar herrscht. Beim Entspannen des Reaktors erfolgt eine Expansion des treibmittelhaltigen Polyolefin-Granulats und es entstehend EPO-Partikel mit einem mittleren Durchmesser von 1 bis 20 mm.A preferred method for producing the EPO particles is based on polyolefin granules, which preferably have average diameters of 0.5 to 5 mm. 100 parts by weight of these granules are dispersed in 100 to 500 parts by weight of water in a stirred reactor with the aid of a suspension aid. A blowing agent is then injected in amounts of preferably 2 to 50 parts by weight, based on 100 parts by weight of polymer, and the reactor contents are heated. Suitable blowing agents are hydrocarbons, such as butane, halogenated hydrocarbons, alcohols and CO 2 , N 2 and NH 3 . The blowing agent can be added before or during the heating (this also includes holding times) of the reactor contents to the expansion temperature. This should be 5 ° C below to 20 ° C above, preferably 2 to 10 ° C above the crystalline melting point of the polyolefin. The preferred propylene polymers are used at 110 ° C to 180 ° C. Depending on the amount and type of blowing agent and on the level of the temperature, a pressure is established in the reactor which is generally higher than 2 bar and does not exceed 100 bar. The bulk density of the resulting EPO particles can be controlled by the choice of the impregnation temperature and the blowing agent. After the expansion temperature has been reached, the reactor is expanded, the expansion advantageously being carried out in an intermediate container in which a pressure of preferably 0.5 to 5 bar prevails. When the reactor is decompressed, the polyolefin granulate containing blowing agent expands and EPO particles with an average diameter of 1 to 20 mm are formed.
Die Schüttdichte der EPO-Partikel ist in weiten Grenzen zwischen 10 und 200 g/l, einstellbar. Besonders geeignet sind EPO-Partikeln mit verhältnismäßig niedrigen Schüttdichten zwischen 15 und 40 g/l. Die EPO-Partikel sind überwiegend geschlossenzellig und besitzen eine Zellzahl von 1 bis 5000 Zellen/mm2, insbesondere 10 bis 1500 Zellen/mm2.The bulk density of the EPO particles can be set between 10 and 200 g / l. EPO particles with relatively low bulk densities between 15 and 40 g / l are particularly suitable. The EPO particles are predominantly closed-cell and have a cell number of 1 to 5000 cells / mm 2 , in particular 10 to 1500 cells / mm 2 .
Diese Schaumstoffpartikel werden nun in üblichen Formteilautomaten mit Hilfe von Wasserdampf in perforierten Werkzeugen miteinander verschweißt. Wesentlich ist, daß im Gegensatz zur üblichen Formteilherstellung kein oder höchstens ein geringer Gegendruck während des Füllvorgangs herrscht. Auf diese Weise wird die erfindungsgemäß unvollständige Verschweißung erreicht. Der Anteil an Hohlstellen, d.h., das Zwickelvolumen liegt zwischen 10 und 40 %, vorzugsweise zwischen 20 und 38 %. Eine geringe, wenigstens punktuelle Verschweißung ist aber notwendig, damit ein zusammenhängender Formkörper entsteht.These foam particles are now in conventional molding machines with the help of water vapor in perforated tools welded. It is essential that, in contrast to the usual Molding production no or at most a low counter pressure prevails during the filling process. In this way the Incomplete welding according to the invention achieved. The amount at cavities, i.e. the gusset volume is between 10 and 40%, preferably between 20 and 38%. A small one, at least spot welding is necessary, however, so that a coherent Shaped body is created.
Bei einem anderen Hersteilverfahren wird in einem Extruder das Polyolefin aufgeschmolzen und ein flüchtiges Treibmittel, vorzugsweise wieder ein Kohlenwasserstoff, wird eingepreßt. Danach wird die treibmittelhaltige Schmelze an die Atmosphäre ausgepreßt, wo sie aufschäumt. Der entstandene Schaumstoffstrang wird dann zu Schaumstoffpartikeln zerkleinert, die im Falle des Polyethylens zweckmäßigerweise einer Elektronenstrahlvernetzung unterworfen werden. Dabei sind verhältnismäßig niedrige Schüttdichten im Bereich von 10 bis 20 g/l erreichbar. Im Falle der Polyethylen-Schaumstoffpartikel kann die Halbzeugherstellung auch auf einem luftdurchlässigen Transportband erfolgen, das einen Heißluftkanal durchläuft.In another manufacturing process, this is done in an extruder Melted polyolefin and a volatile blowing agent, preferably another hydrocarbon, is injected. After that the melt containing the blowing agent is pressed out into the atmosphere, where it foams. The resulting strand of foam is then crushed into foam particles, which in the case of Polyethylene expediently an electron beam crosslinking be subjected. Here are relatively low bulk densities achievable in the range of 10 to 20 g / l. In the case of polyethylene foam particles can also manufacture semi-finished products take place on an air-permeable conveyor belt, the one Passes through the hot air duct.
Polystyrol-Schaumstoffpartikel werden nach einem anderen, ebenfalls an sich üblichen und bekannten Verfahren hergestellt. Dazu wird das monomere Styrol, gegebenenfalls im Gemisch mit anderen olefinisch ungesättigten Comonomeren, Initiatoren, Hilfs- und Zusatzstoffen in Wasser suspendiert und in Gegenwart von Suspensionsstabilisatoren polymerisiert. Die entstehenden Polystyrolperlen werden abgetrennt, gewaschen und getrocknet. Die Zugabe des Treibmittels kann dabei bereits während der Polymerisation erfolgen, es ist jedoch auch möglich, das Treibmittel in einem nachfolgenden Verfahrensschritt in die Polystyrolperlen einzubringen. Geeignete Treibmittel sind C4-C8-Kohlenwasserstoffe, vorzugsweise Pentan.Polystyrene foam particles are produced by another, also known and conventional method. For this purpose, the monomeric styrene, optionally in a mixture with other olefinically unsaturated comonomers, initiators, auxiliaries and additives, is suspended in water and polymerized in the presence of suspension stabilizers. The resulting polystyrene beads are separated, washed and dried. The blowing agent can be added during the polymerization, but it is also possible to introduce the blowing agent into the polystyrene beads in a subsequent process step. Suitable blowing agents are C 4 -C 8 hydrocarbons, preferably pentane.
Die Verschäumung der Treibmittel enthaltenden Polystyrol-Partikel erfolgt üblicherweise ebenfalls nach den im Stand der Technik bekannten Verfahren, indem sie zunächst mit Wasserdampf in offenen oder geschlossenen Vorschäumern in mehreren Stufen weitgehend ausgeschäumt werden. Die vorgeschäumten Polystyrolpartikel weisen im allgemeinen eine mittlere Partikelgröße von 1 bis 10 mm, insbesondere von 2 bis 8 mm auf. Die bevorzugte Schüttdichte beträgt 10 bis 20 g/l. Die Herstellung von Formkörpern erfolgt in Blockpressen, wobei vorher in einem Mischer auf die Schaumstoffpartikeloberfläche ein Haftvermittler (z.B. Bitumen) aufgebracht wird. In der Blockpresse werden die Schaumstoffpartikel unter leichtem Gegendruck zu einem lockeren Verbund verschweißt. The foaming of the polystyrene particles containing blowing agents usually also takes place according to those known in the prior art Procedure by first using water vapor in open or closed pre-expanders in several stages be foamed. The pre-expanded polystyrene particles show generally an average particle size of 1 to 10 mm, in particular from 2 to 8 mm. The preferred bulk density is 10 to 20 g / l. The production of molded bodies takes place in block presses, beforehand in a mixer on the foam particle surface an adhesion promoter (e.g. bitumen) is applied. In the block press, the foam particles become light Back pressure welded into a loose bond.
Ein großer Vorteil der schallabsorbierenden Schaumstoff-Formkörper auf Basis von Polyolefinen und Polystyrol ist, daß diese thermoplastischen Kunststoffe schmelzbar und somit recycelbar sind.A great advantage of the sound-absorbing foam molded body based on polyolefins and polystyrene is that these thermoplastic materials meltable and therefore recyclable are.
Zur Herstellung von Akustikplatten mit den Abmessungen 900x400x140 mm wurden PP-Schaumstoffpartikeln mit einer mittleren Schüttdichte von 28 g/l (Neopolen 2 9230 der BASF AG) unter Verwendung eines konventionellen Formteilautomaten druckpneumatisch von einem unter 0,5 bar stehenden Behälter in ein perforiertes Formnest, das unter Atmosphärendruck stand, transportiert. Die in loser Schüttung im Formnest befindlichen Schaumstoffpartikeln wurden mit 2,8 bar Heißdampf von beiden Seiten je 3 sec querbedampft, wobei die Absperrventile in der Kondensatleitung geöffnet waren, und dabei punktförmig verschweißt. Nach dem Abkühlen im Formnest konnte nach Öffnen der Formteilmaschine ein quaderförmiges Formteil mit einer Dichte von 33 kg/m3 entnommen werden, das eine relativ hohe Anzahl von Zwickeln (Fehlstellen zwischen den punktförmig verschweißten Schaumstoffpartikeln) aufwies. Der Zwickelanteil lag bei 35 %. Der Schallabsorptionsgrad nach DIN 52215 im Frequenzbereich 1,25-2 KHz lag zwischen 75 und 90 %.To produce acoustic panels with the dimensions 900 x 400 x 140 mm, PP foam particles with an average bulk density of 28 g / l (Neopolen 2 9230 from BASF AG) were pneumatically compressed from a container under 0.5 bar using a conventional automatic molding machine transported a perforated mold cavity that was under atmospheric pressure. The foam particles in bulk in the mold cavity were cross-steamed with 2.8 bar superheated steam from both sides for 3 seconds each, the shut-off valves in the condensate line being open, and being welded in a punctiform manner. After cooling in the mold cavity, after opening the molding machine, a cuboid molding with a density of 33 kg / m 3 could be removed, which had a relatively high number of gussets (defects between the point-welded foam particles). The gusset percentage was 35%. The degree of sound absorption according to DIN 52215 in the frequency range 1.25-2 KHz was between 75 and 90%.
Es wurde analog Beispiel 1 verfahren, jedoch mit den Unterschieden, daß zur Befüllung der unter Atmosphärendruck stehenden Formkavität ein Differenzdruck zwischen Füllbehälter und Formnest angewandt wurde und die Querbedampfung mit 3,2 bar und einer Bedampfungszeit von 4 sec erfolgte.The procedure was analogous to Example 1, but with the differences that for filling the mold cavity under atmospheric pressure a differential pressure between the filling container and the mold cavity is applied was and the transverse steaming with 3.2 bar and a steaming time of 4 sec.
Das resultierende quaderförmige Formteil wies einen Zwickelanteil von 25 % auf. Der Schallabsorptionsgrad im Frequenzbereich 1,25-2 kHz lag zwischen 55 und 70 %.The resulting cuboid shaped part had a gusset portion from 25% to. The degree of sound absorption in the frequency domain 1.25-2 kHz was between 55 and 70%.
Aus PP-Schaumstoffpartikeln mit einer mittleren Schüttdichte von 17 g/l (Neopolen 2 9220) wurden Akustikplatten mit den Abmessungen 300x200x60 mm auf einem konventionellen Formteilautomaten hergestellt. Die Schaumstoffpartikel wurden pneumatisch in eine unter Atmosphärendruck stehende perforierte Formkavität transportiert. Die in loser Schüttung im Formnest befindlichen Schaumstoffpartikeln wurden mit Heißdampf von 2,4 bar von beiden Seiten je 3 sec querbedampft (bei geöffneten Absperrventilen in der Kondensatleitung der Maschine). Dabei wurden die Schaumstoffpartikel punktförmig verschweißt. Nach dem Abkühlen im Formnest konnte nach Öffnen der Formteilmaschine ein quaderförmiges Formteil mit einer Dichte von 24 kg/m3 entnommen werden. Der Zwickelanteil im Innern des Formteiles betrug 30 %. Der Schallabsorptionsgrad lag im Frequenzbereich zwischen 1,25 und 2 kHz bei 80 %.Acoustic panels with the dimensions 300 x 200 x 60 mm were produced from PP foam particles with an average bulk density of 17 g / l (Neopolen 2 9220) on a conventional molding machine. The foam particles were transported pneumatically into a perforated mold cavity under atmospheric pressure. The foam particles in bulk in the mold cavity were cross-steamed with hot steam of 2.4 bar from both sides for 3 seconds each (with the shut-off valves in the condensate line of the machine open). The foam particles were spot welded. After cooling in the mold cavity and after opening the molding machine, a cuboid molding with a density of 24 kg / m 3 could be removed. The gusset percentage inside the molded part was 30%. The degree of sound absorption was 80% in the frequency range between 1.25 and 2 kHz.
PE-Schaumstoffpartikel (Neopolen E 1710 der BASF AG) mit einer Schüttdichte von 13 g/l, die vorher physikalisch durch Elektronenbestrahlung vernetzt worden waren, wurden auf ein luftdurchlässiges, umlaufendes Transportband (Bandbreite 1100 mm) ca. 200 mm hoch aufgeschüttet und durch einen Heißluftkanal transport. Die Transportgeschwindigkeit betrug 1,6 m/min. und die Umwälzluft im Heizkanal 160°C. Nach Verlassen des 6 m langen Kanals wurde ein punktförmig verschweißter zusammenhängender Schaumstoffpartikelverbund erhalten, der ca. 40 % Hohlstellen aufwies. Der Schallabsorptionsgrad im Frequenzbereich 1,25 bis 2 kHz dieses Formteils (Dichte: 14 kg/m3) lag bei 85 bis 90 %.PE foam particles (Neopolen E 1710 from BASF AG) with a bulk density of 13 g / l, which had previously been physically cross-linked by electron radiation, were poured onto an air-permeable, rotating conveyor belt (belt width 1100 mm) approx. 200 mm high and through a Hot air duct transport. The transport speed was 1.6 m / min. and the circulating air in the heating duct 160 ° C. After leaving the 6 m long channel, a point-welded coherent foam particle composite was obtained, which had about 40% voids. The degree of sound absorption in the frequency range 1.25 to 2 kHz of this molded part (density: 14 kg / m 3 ) was 85 to 90%.
Claims (2)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19818811 | 1998-04-27 | ||
DE19818811A DE19818811A1 (en) | 1998-04-27 | 1998-04-27 | Sound absorbing foam molded body |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0953964A2 true EP0953964A2 (en) | 1999-11-03 |
EP0953964A3 EP0953964A3 (en) | 2002-04-17 |
EP0953964B1 EP0953964B1 (en) | 2005-08-31 |
Family
ID=7865953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99108136A Expired - Lifetime EP0953964B1 (en) | 1998-04-27 | 1999-04-26 | Foam-molded sound-absorbing articles |
Country Status (5)
Country | Link |
---|---|
US (1) | US6060529A (en) |
EP (1) | EP0953964B1 (en) |
BR (1) | BR9901288B1 (en) |
DE (2) | DE19818811A1 (en) |
ES (1) | ES2246552T3 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7832524B2 (en) | 2005-08-08 | 2010-11-16 | Alstom Technology Ltd | Sound absorber for gas turbine installations |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10311245A1 (en) * | 2003-03-14 | 2004-09-30 | Greiner Perfoam Ges.m.b.H. | Acoustic part made of composite foam |
BRPI0603479A (en) * | 2006-08-14 | 2008-04-01 | Maria Isabel Pinto Koleski | expanded polypropylene foam |
CN114835966B (en) * | 2022-06-02 | 2024-02-06 | 南京中远高分子材料科技有限公司 | Ultralow-frequency soundproof cotton, production process thereof and production detection device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4557970A (en) * | 1983-11-21 | 1985-12-10 | Monsanto Company | Laminate structure with improved acoustical absorption |
US4898783A (en) * | 1986-10-14 | 1990-02-06 | The Dow Chemical Company | Sound and thermal insulation |
US5068001A (en) * | 1987-12-16 | 1991-11-26 | Reinhold Haussling | Method of making a sound absorbing laminate |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5432454B2 (en) * | 1974-06-08 | 1979-10-15 | ||
US4111862A (en) * | 1974-07-25 | 1978-09-05 | Bell Fibre Products Corporation | Mastic composition and composite structural panels formed therefrom |
-
1998
- 1998-04-27 DE DE19818811A patent/DE19818811A1/en not_active Withdrawn
-
1999
- 1999-04-22 US US09/296,329 patent/US6060529A/en not_active Expired - Lifetime
- 1999-04-26 DE DE59912478T patent/DE59912478D1/en not_active Expired - Lifetime
- 1999-04-26 EP EP99108136A patent/EP0953964B1/en not_active Expired - Lifetime
- 1999-04-26 ES ES99108136T patent/ES2246552T3/en not_active Expired - Lifetime
- 1999-04-27 BR BRPI9901288-0A patent/BR9901288B1/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4557970A (en) * | 1983-11-21 | 1985-12-10 | Monsanto Company | Laminate structure with improved acoustical absorption |
US4898783A (en) * | 1986-10-14 | 1990-02-06 | The Dow Chemical Company | Sound and thermal insulation |
US5068001A (en) * | 1987-12-16 | 1991-11-26 | Reinhold Haussling | Method of making a sound absorbing laminate |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7832524B2 (en) | 2005-08-08 | 2010-11-16 | Alstom Technology Ltd | Sound absorber for gas turbine installations |
Also Published As
Publication number | Publication date |
---|---|
EP0953964A3 (en) | 2002-04-17 |
BR9901288A (en) | 2000-03-21 |
DE59912478D1 (en) | 2005-10-06 |
EP0953964B1 (en) | 2005-08-31 |
ES2246552T3 (en) | 2006-02-16 |
US6060529A (en) | 2000-05-09 |
DE19818811A1 (en) | 1999-10-28 |
BR9901288B1 (en) | 2009-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69807332T2 (en) | ENERGY ABSORBING ARTICLES MADE OF EXTRUDED THERMOPLASTIC FOAMS | |
EP0542066B1 (en) | Expandable polymeric styrenes containing carbon dioxide as blowing agent | |
EP0496111B1 (en) | Shock-absorbing propylene polymer composite moulding articles | |
DE69630454T2 (en) | MICRO CELL FOAM | |
US5252270A (en) | Method of forming foam moldings having varied density regions | |
DE3780709T2 (en) | USE OF PREVIEWED PROPYLENE RESIN PARTICLES IN MOLDING PROCESSES. | |
EP0865462B1 (en) | Process for the preparation of a material made from plastic beads | |
DE3413083C2 (en) | ||
EP1813409B1 (en) | Method for filling moulding tools with polymer foam plastic particles | |
DE2107683A1 (en) | Particulate foamed polyolefin prodn - by expansion with opt halogenated hydrocarbons in presence of water | |
DE2413375A1 (en) | PROCESS FOR THE PRODUCTION OF FOAM FROM BULK CONTAINING STYRENE AND ETHYLENE POLYMERISATE | |
EP0953964B1 (en) | Foam-molded sound-absorbing articles | |
DE10241298A1 (en) | Process for the production of polystyrene foam particles with low bulk density | |
EP1702945B1 (en) | Polyolefin foam particles containing fillers | |
DE69931138T2 (en) | Pre-expanded polypropylene resin particles and process for producing a molded article thereof by foaming in the mold | |
EP2336225B1 (en) | Process for producing polyolefin foam particles | |
DE69307953T2 (en) | Pre-expanded particles from LLDPE | |
DE3853870T2 (en) | Process for the production of molded propylene foams. | |
JP2007283576A (en) | Manufacturing process of foamed polyolefinic resin molding utilizing compression volume-reduced waste foamed polyolefinic resin molding | |
DE4231512A1 (en) | Expandable thermoplastic polymers containing organic boron-silicon compounds and process for their production | |
EP3730543B1 (en) | Method for the preparation of expandable or at least partially expanded polymer particles based on polylactide and polymer particles produced from same | |
EP1072367B1 (en) | Process for making a foamed sheet | |
EP1144491A2 (en) | Expanded polypropylene particles | |
EP0831115B1 (en) | Process for preparing expanded polyolefin particles | |
DE4308764A1 (en) | Particle-foam mouldings based on olefin polymers with a compacted, smooth outer skin and process for their production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE Kind code of ref document: A2 Designated state(s): BE CH DE ES FR GB IT LI NL SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20020320 |
|
AKX | Designation fees paid |
Free format text: BE CH DE ES FR GB IT LI NL SE |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE CH DE ES FR GB IT LI NL SE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SCHMAUDER & PARTNER AG PATENTANWALTSBUERO Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 59912478 Country of ref document: DE Date of ref document: 20051006 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20051101 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2246552 Country of ref document: ES Kind code of ref document: T3 |
|
ET | Fr: translation filed | ||
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: KANEKA CORPORATION Effective date: 20060531 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: KANEKA CORPORATION |
|
PLBP | Opposition withdrawn |
Free format text: ORIGINAL CODE: 0009264 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PLBD | Termination of opposition procedure: decision despatched |
Free format text: ORIGINAL CODE: EPIDOSNOPC1 |
|
PLBM | Termination of opposition procedure: date of legal effect published |
Free format text: ORIGINAL CODE: 0009276 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: OPPOSITION PROCEDURE CLOSED |
|
27C | Opposition proceedings terminated |
Effective date: 20070223 |
|
NLR2 | Nl: decision of opposition |
Effective date: 20070223 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCAR Free format text: SCHMAUDER & PARTNER AG PATENT- UND MARKENANWAELTE VSP;ZWAENGIWEG 7;8038 ZUERICH (CH) |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20100330 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20100505 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20100402 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20100414 Year of fee payment: 12 Ref country code: BE Payment date: 20100423 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20100409 Year of fee payment: 12 |
|
BERE | Be: lapsed |
Owner name: *BASF A.G. Effective date: 20110430 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20111101 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20110426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110430 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111101 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110426 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20120604 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110427 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110427 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20160428 Year of fee payment: 18 Ref country code: FR Payment date: 20160428 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20160630 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59912478 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20171229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170502 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170426 |