EP0950795B1 - Werkzeug und Verfahren zur Erkundung und zum Testen geologischer Formationen - Google Patents

Werkzeug und Verfahren zur Erkundung und zum Testen geologischer Formationen Download PDF

Info

Publication number
EP0950795B1
EP0950795B1 EP19990300512 EP99300512A EP0950795B1 EP 0950795 B1 EP0950795 B1 EP 0950795B1 EP 19990300512 EP19990300512 EP 19990300512 EP 99300512 A EP99300512 A EP 99300512A EP 0950795 B1 EP0950795 B1 EP 0950795B1
Authority
EP
European Patent Office
Prior art keywords
geological formation
pressure waveform
probe
pulsed pressure
pulse generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19990300512
Other languages
English (en)
French (fr)
Other versions
EP0950795A2 (de
EP0950795A3 (de
Inventor
Mark A. Proett
Wilson C. Chin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Halliburton Energy Services Inc
Original Assignee
Halliburton Energy Services Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Halliburton Energy Services Inc filed Critical Halliburton Energy Services Inc
Publication of EP0950795A2 publication Critical patent/EP0950795A2/de
Publication of EP0950795A3 publication Critical patent/EP0950795A3/de
Application granted granted Critical
Publication of EP0950795B1 publication Critical patent/EP0950795B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/008Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells by injection test; by analysing pressure variations in an injection or production test, e.g. for estimating the skin factor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells

Definitions

  • This invention relates to the field of measuring characteristics of earth formations penetrated by a borehole and, more particularly, relates to a tool for and method of formation evaluation testing using pressure pulse velocity.
  • Permeability can be determined by taking and analysing core samples from the formation, but this is a difficult and lengthy process. Therefore, various methods have been developed for determining the permeability of a formation in situ.
  • a method of determining properties of a geological formation comprises: providing downhole a tool having a pulse generator and at least one receiver probe the or each receiver probe being spaced apart a predetermined distance from the pulse generator; generating a pulsed pressure waveform in the geological formation with the pulse generator, wherein the pulsed pressure waveform is created about a first center frequency; sensing, at a receiver probe, a first arrival time of the pulsed pressure waveform; and determining the velocity of the pulsed pressure waveform.
  • a geological formation tester tool comprising: a pulse generator for generating a pulsed pressure waveform in a geological formation wherein the pulsed pressure waveform is created about a first center frequency; at least one, receiver probe the or each receiver probe being spaced apart a predetermined distance from the pulse generator and in contact with the geological formation; and a sensor operably connected to the, or each receiver probe, for sensing a first arrival time at each receiver probe, of the pulsed pressure waveform.
  • the present invention provides a method and apparatus for testing geological formations using a pulsed pressure waveform created about a center frequency, preferably, a short duration sinusoidal pressure wave.
  • a downhole tool including a pulse generator, for example, a formation tester reciprocating piston, and a receiver probe.
  • the receiver probe is spaced apart a predetermined distance from the pulse generator and is, for instance, in contact with the geological formation.
  • the pulse generator (or transmitter) generates a pulsed pressure waveform in the geological formation.
  • the pulsed pressure waveform is created about a center frequency.
  • a first arrival time of the pulsed pressure waveform is sensed by a sensor operably connected to the receiver probe and includes, for example, a high accuracy quartz gauge. The velocity of the pulsed pressure waveform is then determined.
  • the velocity of the pulsed pressure waveform is used to determine permeability, porosity, and compressibility of the geological formation and to determine viscosity of fluids in the geological formation.
  • the center frequency is, preferably, increased to allow high resolution shallow depths of investigation of the geological formation and decreased to allow deeper depths of investigation with lower resolution of the geological formation.
  • a transmitter probe operably connected to the pulse generator and in contact with the geological formation, transmits the pulsed pressure waveform to the geological formation.
  • the first arrival time of the pulsed pressure waveform is sensed by a sensor operably connected to the receiver probe.
  • more than one receiver probe and sensor is used on the downhole tool to observe more than one arrival time at different spacings or azimuthal orientations in the borehole.
  • the method and apparatus of the present invention provides a simple system for the testing of a geological formation in situ and is especially advantageous in formations having a low permeability.
  • a downhole tool 100 is lowered into a borehole 102, for example, by a cable 104 connected to a truck 106.
  • Various types of downhole tool testing apparatus are well known in the art as well as various deployment methods, such as wireline or drillpipe deployment.
  • the apparatus of the present invention is positioned in the borehole and deployed in the same manner.
  • the apparatus of the present invention may also be permanently affixed within the borehole or be movable for a continuous measurement over a depth interval.
  • An electrical motor or electrohydraulic system 108 powers the other components in the downhole tool 100. Electrical power to operate the downhole tool is transmitted through cable 104.
  • the downhole tool 100 includes a receiver probe 110 and backup pads 112 which are, for example, extended from the downhole tool 100 in order to engage the walls of the borehole 102. Engagement of the receiver probe 110 with the wall of the borehole 102 is necessary to isolate the receiver probe 110 from fluids contained in the borehole 102. Backup pads 112 are used to stabilize the downhole tool 100 and insure that the receiver probe 110 remains in place against the wall of the borehole 102.
  • the receiver probe 110 is spaced apart a predetermined distance from a reciprocating piston 114 (or transmitter), preferably in a range of about one-half to ten feet. (0.15 to 3m).
  • the reciprocating piston 114 controls the pressure and flow rate at the receiver probe 110.
  • the piston 114 is hydraulically connected to flow line tubing of the tool 116.
  • Valve 124 is opened to allow communication of the pressure pulse to an opening between the packers.
  • the piston 114 is designed such that it can generate a pressure pulse and therefore operate as a pulse generator.
  • Packers 126 are used to isolate and center the pressure pulse between the packers within the borehole 102.
  • a sensor 118 including, for example, a high accuracy quartz gauge, is connected to the receiver probe 110 and is used to record the pressure at the receiver probe 110.
  • the receiver probe 110 can be isolated from the piston 114 by isolation valve 120 and the piston 114 is isolated from the borehole fluids by isolation valve 124.
  • An equalization valve 122 allows borehole fluids to enter flow line tubing 116 when testing is completed.
  • the downhole tool 100 is, for example, lowered into the borehole 102 on cable 104 from the truck 106.
  • the electrical motor or eletrohydraulic system 108 then causes the receiver probe 110 and backup pads 112 to be extended such that they engage the borehole walls.
  • the electrical motor or eletrohydraulic system 108 also causes the packers 126 to extend by inflating, which isolates an interval of formation between the packers 126.
  • the piston 114 is used as a pulse generator to pulse the borehole fluids trapped between the packers 126 which immediately generates a pressure pulse in the formation adjacent to this section of the borehole.
  • the isolation valves 120 and 124, respectively, and equalization valve 122 are normally open as the downhole tool 100 is lowered in the borehole 102. Prior to setting the tool, valves 120, 122 and 124 are closed to isolate the flow line 116 from wellbore fluids. The isolation valve 120 is then opened and the piston 114 withdraws a small volume of fluid from the received probe 110 to create a drawdown that is recorded by the pressure gauge sensor 118. Preferably, the drawdown is about five to ten cubic centimetres of fluid. Isolation valve 120 is then closed, creating a buildup of pressure at the receiver probe 110. The pressure drawdowns and buildups are performed to insure that the receiver probe 110 is in hydraulic communication with the formation 128.
  • Isolation valve 124 is then opened and the piston 114 withdraws a larger volume of fluid, about 10 to 100 cubic centimetres from the borehole 102. Valve 124 is then closed and the pressure is allowed to build up. Valve 124 is again opened and piston 114 displaced to produce a short duration pulsed pressure waveform, for example, a pulsed well transient consisting of a short duration sinusoidal pressure waveform.
  • the short duration sinusoidal pressure wave may be from about four to about ten cycles of the center frequency.
  • the pulsed pressure waveform propagates through the geological formation 128.
  • the sensor 118 senses a first arrival time (At) of the pulsed pressure waveform at the receiver probe 110.
  • the short duration pulsed pressure waveform is created about a center frequency. Once the pulsed pressure waveform is generated, it propagates through the geological formation with a "group velocity" (the velocity of energy propagation for wave-like disturbances).
  • the corresponding group velocity will be constant.
  • the velocity of the pulsed pressure waveform is calculated by using the distance (D) of the receiver probe 110 from the pulse generator (shown herein as reciprocating piston 114), and the first arrival time ( ⁇ t) at the receiver probe 110 of the pulsed pressure waveform.
  • the center frequency can also be varied and multiple regressions performed to determine all four formation parameters. For example, the center frequency can be increased to study shallow depths of investigation at higher resolution in the geological formation, and decreased to study deeper depths of investigation in the geological formation at lower resolution.
  • FIG 2 illustrates a second preferred embodiment of the apparatus of the present invention, wherein downhole tool 200 is essentially identical the downhole tool 100 of Figure 1, except for the addition of a transmitter probe 202 and the absence of packers 126.
  • the transmitter probe 202 is operably connected to the reciprocating piston 114 and transmits the pulsed pressure waveform to the geological formation 128.
  • the transmitter probe 202 is preferably, positioned within the same azimuthal angle as the receiver probe 110 and is in contact with the wall of the borehole 102 to isolate the transmitter probe 202 from the borehole fluids.
  • the receiver probe 110 and the transmitter probe 202 are spaced about one half to ten feet (0.15 to 3m) apart.
  • FIG 3 illustrates a third embodiment of the apparatus of the present invention, wherein downhole tool 300 is essentially identical to the downhole tool 200 of Figure 2, except for the addition of a second receiver probe 302, and corresponding isolation valve 304 and sensor 306. More than one receiver probe can be used with the method and apparatus of the present invention.
  • the receiver probes 110 and 302, respectively, are both spaced apart a predetermined distance from the transmitter probe 202. In the preferred embodiment, receiver probe 110 and receiver probe 302 are spaced apart from transmitter probe 202 by about one-half to ten feet (0.15 to 3m). Preferably, both receiver probes 110 and 302, respectively, are positioned within the same azimuthal angle as the transmitter probe 202, as illustrated.
  • the receiver probes may be positioned at a different azimuthal angle.
  • the first receiver can be at the same depth, but at an 180° azimuthal angle.
  • the receiver probes 110 and 302, respectively, are in contact with the wall of the borehole 102 to isolate the receiver probes 110 and 302, respectively, from the borehole fluids.
  • the tool is operated in the same manner as the tool in the first embodiment but the addition of more than one receiver probe provides additional data especially useful in redundancy analysis.
  • the use of more than one receiver probe also provides additional data especially useful for investigation at various depths within the formation and for determining permeability barriers within the formation. In the case of two receiver probes with varying azimuthal angles, anisotropy with respect the bore hole can be determined.
  • sample results are plotted in Figure 4, wherein the group velocity (C g ) in feet per second (0.3048 ms -1 ) is plotted on the vertical axis, and the permeability (k) and the center frequency in hertz (Hz) are plotted on the horizontal axes.
  • the permeability (k) ranges from 0 md to 1000 md
  • the frequency (f) ranges from 0 Hz to 10 Hz, an oscillation rate that is easily sustained mechanically, for example, with a formation tester piston.
  • the example assumes a 20% porosity ( ⁇ ) formation and water at room temperature and pressure, having a viscosity ( ⁇ ) of 1 cp (0.001 Pa s) and a compressibility (c) of 3 x 10 6 1/psi (20.67 1/KPa).
  • the velocities are found to be in the range of 10 to 200 feet per second (3 to 61 ms -1 ) and are easily measurable.
  • the group velocity (C g ) versus the permeability (k) at a fixed center frequency changes approximately parabolically, illustrating that pulsed well transients can be used to resolve low permeability formation properties in a stable manner.
  • the method and apparatus of the present invention can be used alone or to augment either the standard drawdown-buildup method or the phase delay method and is advantageous in low permeability formations.
  • One advantage is that problems associated with phase wrapping do not arise.
  • Another advantage is in the use of the first arrival times of a waveform, which are simple to detect.
  • Still another advantage lies in the use of a short duration pulse, wherein the problem of "digging out” or deciphering amplitude information from a mean background field that decays geometrically, is not as severe.
  • the use of a centered frequency excitation also offers the use of a simple formula for determining formation properties.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Geophysics And Detection Of Objects (AREA)

Claims (14)

  1. Eine Methode für das Bestimmen der Eigenschaften einer geologischen Formation, wobei dieselbe Methode das Folgende umfasst: das Bereitstellen eines Tieflochwerkzeugs (100; 200; 300) mit einem Impulsgenerator (114) und mindestens einen Empfängersensor (110; 302), wobei der oder jeder der Empfängesensoren getrennt und einen vorbestimmten Abstand von dem Impulsgenerator entfernt positioniert ist; das Erzeugen einer Impulsdruckwellenform in der geologischen Formation mit Hilfe des Impulsgenerators, wobei die Impulsdruckwellenform um eine erste Mittelfrequenz herum erzeugt wird; das Aufspüren einer ersten Ankunftszeit der Impulsdruckwellenform an einem Empfängersensor; und das Bestimmen der Geschwindigkeit der Impulsdruckwellenform.
  2. Eine Methode nach Anspruch 1, bei welcher die Impulsdruckwellenform aus einer kurzzeitigen sinodischen Druckwelle besteht, vorzugsweise von zwischen vier und zehn Takten der ersten Mittelfrequenz.
  3. Eine Methode nach Anspruch 1 oder 2, bei welcher die Geschwindigkeit der Impulsdruckwellenform für das Bestimmen der Durchlässigkeit und/oder der Porosität der geologischen Formation und/oder der Geschwindigkeit und/oder der Verdichtbarkeit der Flüssigkeiten innerhalb der geologischen Formation angewendet wird.
  4. Eine Methode nach Anspruch 1, 2 oder 3, bei welcher die Mittelfrequenz variabel ist und relativ zu der ersten Mittelfrequenz gesteigert wird, um seichte Untersuchungstiefen mit hoher Auflösung innerhalb der geologischen Formation oder eine Reduktion relativ zu der ersten Mittelfrequenz zu ermöglichen, für das Untersuchen von grösseren Tiefen innerhalb der geologischen Formation.
  5. Eine Methode nach Anspruch 1, 2, 3 oder 4, bei welcher die Mittelfrequenz zwischen ein und hundert Herz liegt.
  6. Ein geologisches Formationstesterwerkzeug (100; 200; 300), welches das Folgende umfasst: einen Impulsgenerator (114) für das Erzeugen einer Impulsdruckwellenform in einer geologischen Formation, wobei die Impulsdruckwellenform um eine erste Mittelfrequenz herum erzeugt wird; mindestens einen Empfängersensor (110; 302), wobei der oder ein jeder Empfängersensor getrennt und einen vorbestimmten Abstand von dem Impulsgenerator entfernt positioniert ist und mit der geologischen Formation in Kontakt steht; und ein Sensor (118; 306), welcher operativ mit dem oder einem jeden Empfängersensor verbunden ist, für das Aufspüren einer ersten Ankunftszeit der Impulsdruckwellenform an jedem Empfängersensor.
  7. Ein Werkzeug nach Anspruch 6, welches weiter das Folgende umfasst: einen Übertragungssensor (202), welcher operativ mit dem Impulsgenerator (114) verbunden ist, für das Übertragen der Impulsdruckwellenform an die geologische Formation, wobei der Übertragungssensor die geologische Formation kontaktieren kann.
  8. Ein Werkzeug nach Anspruch 7, bei welchem der Übertragungssensor auf dem gleichen Azimuthwinkel positioniert ist wie der oder ein jeder der Empfängersonden (110; 302).
  9. Ein Werkzeug nach Anspruch 6, 7 oder 8, bei welchem der Impulsgenerator aus einem sich hin und her bewegenden Kolben besteht.
  10. Ein Werkzeug nach Anspruch 6, 7, 8 oder 9, bei welchem die Impulsdruckwellenform aus einer kurzzeitigen sinodischen Druckwelle besteht.
  11. Ein Werkzeug nach einem der obigen Ansprüche 6 bis 10, bei welchem der Sensor eine hoch akkurate Quartzmeßuhr umfasst.
  12. Ein Werkzeug nach einem der obigen Ansprüche 6 bis 11, welches weiter eine Vorrichtung für das Bestimmen einer Geschwindigkeit der Impulsdruckwellenform und das Bestimmen der Durchlässigkeit der geologischen Formation mit Hilfe der bestimmten Geschwindigkeit umfasst, wobei der Impulsgenerator eine Vorrichtung für das Variieren der Mittelfrequenz umfasst.
  13. Ein Werkzeug nach einem der obigen Ansprüche 6 bis 12, bei welchem die Mittelfrequenz zwischen ein und hundert Herz liegt.
  14. Ein Werkzeug nach einem der obigen Ansprüche 6 bis 13, bei welchem der Abstand zwischen dem Empfängersensor (110; 302) und dem Impulsgenerator (114) oder dem Übertragungssensor (202) zwischen einem halben und zehn Fuß (0.15 bis 3m) liegt.
EP19990300512 1998-04-15 1999-01-25 Werkzeug und Verfahren zur Erkundung und zum Testen geologischer Formationen Expired - Lifetime EP0950795B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US6090898A 1998-04-15 1998-04-15
US60908 1998-04-15

Publications (3)

Publication Number Publication Date
EP0950795A2 EP0950795A2 (de) 1999-10-20
EP0950795A3 EP0950795A3 (de) 2001-08-08
EP0950795B1 true EP0950795B1 (de) 2004-11-10

Family

ID=22032492

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19990300512 Expired - Lifetime EP0950795B1 (de) 1998-04-15 1999-01-25 Werkzeug und Verfahren zur Erkundung und zum Testen geologischer Formationen

Country Status (3)

Country Link
EP (1) EP0950795B1 (de)
DE (1) DE69921722T2 (de)
NO (1) NO990872L (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1309772B1 (de) * 2000-08-15 2007-11-28 Baker Hughes Incorporated Vorrichtung zum formationstesten mit axialen und spiralförmigen öffnungen
US7823689B2 (en) 2001-07-27 2010-11-02 Baker Hughes Incorporated Closed-loop downhole resonant source
US6795373B1 (en) * 2003-02-14 2004-09-21 Baker Hughes Incorporated Permanent downhole resonant source
EP1619520A1 (de) * 2004-07-21 2006-01-25 Services Petroliers Schlumberger Vorrichtung und Verfahren zur Schätzung der Permeabilität für ein Ölbohrlochtestsystem
CA2817593C (en) * 2010-11-12 2018-09-18 Chevron U.S.A. Inc. System and method for remote sensing
US9574437B2 (en) 2011-07-29 2017-02-21 Baker Hughes Incorporated Viscometer for downhole use
US11655709B2 (en) 2020-01-24 2023-05-23 Halliburton Energy Services, Inc. Reservoir characterization with directional permeability

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3962674A (en) * 1975-02-27 1976-06-08 Atlantic Richfield Company Acoustic logging using ultrasonic frequencies
EP0131351A3 (de) * 1983-07-05 1986-07-23 Mobil Oil Corporation Verfahren zur Permeabilitätsbestimmung einer Formation
WO1997027502A1 (en) * 1996-01-26 1997-07-31 Baker Hughes Incorporated A drilling system with an acoustic measurement-while-drilling system for determining parameters of interest and controlling the drilling direction
US5672819A (en) 1996-03-13 1997-09-30 Halliburton Energy Services, Inc. Formation evaluation using phase shift periodic pressure pulse testing

Also Published As

Publication number Publication date
NO990872D0 (no) 1999-02-24
DE69921722D1 (de) 2004-12-16
NO990872L (no) 1999-10-18
EP0950795A2 (de) 1999-10-20
DE69921722T2 (de) 2005-04-07
EP0950795A3 (de) 2001-08-08

Similar Documents

Publication Publication Date Title
US9477002B2 (en) Microhydraulic fracturing with downhole acoustic measurement
US5672819A (en) Formation evaluation using phase shift periodic pressure pulse testing
CA2501480C (en) System and method for installation and use of devices in microboreholes
US5741962A (en) Apparatus and method for analyzing a retrieving formation fluid utilizing acoustic measurements
EP1444416B1 (de) Verwendung von schneidgeschwindigkeiten für echtzeitporendruck- und bruchgradientenvorhersage
US7310580B2 (en) Method for borehole measurement of formation properties
US11762115B2 (en) Fracture wave depth, borehole bottom condition, and conductivity estimation method
WO2009086279A2 (en) Acoustic measurements with downhole sampling and testing tools
US20060087919A1 (en) Method for predicting pore pressure
WO1993007514A1 (en) System for real-time look-ahead exploration of hydrocarbon wells
GB2404983A (en) Generating directional low frequency acoustic signals for well logging
CA2859141A1 (en) Wireless logging of fluid filled boreholes
US11230923B2 (en) Apparatus and method for determining properties of an earth formation with probes of differing shapes
US10047601B2 (en) Moving system
EP3408497B1 (de) Nichtlineare akustische formationsbeurteilung
US7944211B2 (en) Characterization of formations using electrokinetic measurements
EP0950795B1 (de) Werkzeug und Verfahren zur Erkundung und zum Testen geologischer Formationen
Kuchuk et al. Estimating permeability distribution from 3D interval pressure transient tests
EP0953726A1 (de) Vorrichtung und Verfahren zur Untersuchung von Formationsflüssigkeiten in einem Bohrloch mittels akustischer Signale
USH1156H (en) Downhole fracture detection and characterization
Marsala et al. Sonic while drilling: Have you thought about cuttings?
GB2459365A (en) Investigating subterranean formations using electromagnetic and seismic measurements obtained simultaneously using an EM receiver for both measurements
Sinha et al. Applications of sonics and ultrasonics in geophysical prospecting
Lin et al. A new method for direct measurement of in-situ stress directions and formation rock properties
AU2004232863B2 (en) Method for predicting pore pressure

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7E 21B 47/14 A, 7E 21B 49/00 B, 7G 01V 1/44 B

17P Request for examination filed

Effective date: 20010926

AKX Designation fees paid

Free format text: DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69921722

Country of ref document: DE

Date of ref document: 20041216

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050811

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69921722

Country of ref document: DE

Representative=s name: WEISSE, RENATE, DIPL.-PHYS. DR.-ING., DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20131227

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140131

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20131223

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69921722

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150125

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150202