EP0950458B1 - Verfahren zum Gewindefräsen - Google Patents
Verfahren zum Gewindefräsen Download PDFInfo
- Publication number
- EP0950458B1 EP0950458B1 EP99106785A EP99106785A EP0950458B1 EP 0950458 B1 EP0950458 B1 EP 0950458B1 EP 99106785 A EP99106785 A EP 99106785A EP 99106785 A EP99106785 A EP 99106785A EP 0950458 B1 EP0950458 B1 EP 0950458B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- thread
- tooth
- milling
- teeth
- circular movement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23G—THREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
- B23G5/00—Thread-cutting tools; Die-heads
- B23G5/18—Milling cutters
- B23G5/182—Milling cutters combined with other tools
Definitions
- the invention relates to a method for thread milling.
- a thread milling tool known from practice is a common thread milling cutter, which only distributes full thread milling teeth evenly in each row having.
- the profile length corresponds to the longer thread length in the workpiece threads to be generated and is correspondingly large. They are full thread milling teeth in the distance of the pitch P of the thread to be generated arranged. It becomes the thread milling cutter over the entire profile length or thread length to be generated engaged so that the thread generated after only one circular movement. This will be a very significant one Bending moment exerted on the thread milling tool, which leads to a bending break of the tool.
- a combined drilling and thread milling tool is known with offset thread milling teeth , whereby the chip thickness is doubled and lateral forces are reduced by the lower stress and this enables a higher feed rate and less wear.
- the thread milling teeth for generating the threads are arranged in rows without a pitch and one behind the other in rows and there is a tooth recess in the axial direction between two full thread milling teeth. This tool creates a core hole with a drilling section at its front end and then the threads of the thread through the thread milling teeth during rotation and lateral offset to the wall of the core hole.
- EPC 168 A1 describes a thread milling cutter with a shaft and a milling part, which has thread teeth lying in circumferential planes, which are arranged in divisions are. This allows large thread lengths to be produced with the thread milling cutter can be removed without the risk of breakage at intervals the thread teeth of divisions within a circumferential plane completely.
- the thread milling cutter thus has free pitches at certain intervals without thread counts. This significantly reduces the cutting forces and the bending moment in the critical area at the transition from the milled part significantly reduced to the shaft.
- the bore wall becomes the tool rotating around its axis Axis of the threaded bore moves circumferentially, due to the existing free pitches on the tool two revolutions around the axis of the bore are required and during each of these two rounds the tool by each a division is shifted axially.
- the thread milling teeth are with this thread milling tool Gradient-free and one behind the other over a profile length arranged in rows and each have at least one tooth recess in Axis direction between two full thread milling teeth.
- the thread will produced with this known thread milling cutter by circular milling.
- An object of the invention is to provide a method for thread milling, where a thread milling tool is positioned only once and at which the bending moment caused by the effective thread milling teeth is reduced on the thread milling tool.
- the invention consists in a method for thread milling, which uses a thread milling tool for larger thread lengths, the thread milling teeth that are pitch-free over a profile length for generation of threads, the thread milling teeth one behind the other are arranged in rows, each with a tooth recess - in Axis direction and / or seen in the circumferential direction - between two full Has thread milling teeth arranged, in which the thread milling tool the thread creation is positioned only once in a core hole is set by moving it in the axial direction and moving it outwards the generation of threads under rotation, feed and circular movement of the thread milling tool is carried out and subsequently corresponding to the circular movement following only one positioning the tooth recess without additional positioning additional circular movement is carried out during rotation and feed.
- each tooth after one positioning is not only one Circulation of the circular movement works, but according to the number of the number of teeth left out of each tooth recess additional rounds works.
- every tooth makes pro Orbiting the circular movement an axial path p, which is the distance between an existing thread milling tooth and an axially adjacent one "recessed" tooth corresponds.
- the thread milling tooth works with one tooth recess limited to only one tooth via an axial path 2p.
- tooth recess of a row of thread milling teeth compared to the Tooth cutout of the adjacent row of thread milling teeth in the axial direction is offset. If the tooth recess is only one thread milling tooth concerns, this design can with an even number of thread milling tooth rows be provided. Irregularities in the distribution of the Tooth cutouts also prevent unwanted vibrations of the tool.
- each row of thread milling teeth - seen in the feed direction - a tooth recess only a full thread milling tooth.
- one Tooth cutout follow several full thread milling teeth. You can e.g. B. the Grind the following full thread milling tooth if it is excessively worn.
- this design can also be provided advantageously if the tooth recess is offset from row to row.
- tooth recess extends over the entire thread milling tooth. It is so through Maximum tooth relief possible relief of the thread milling tool reached.
- the tooth recess only covers one of the tooth tips front part of the thread milling tooth that extends at least 50% of the tooth height accounts. This is sufficient if the tool is only partially relieved through tooth recess is desired. This training also prevents one Burr formation on the generated thread.
- the thread milling tool used in the process is due to the tooth recess the respective attack of thread milling tooth on the workpiece reduced and thus caused by the effective thread milling teeth Bending moment is reduced without additional downtime.
- the thread milling tooth following the tooth recess not only to participate in the creation of a first part of the threads but also when generating a second part of the threads has to participate.
- both of two immediately following thread milling teeth are evenly loaded, is the additional part of the thread generation of the two thread milling teeth immediately following one another only the one that loads the tooth recess - in the feed direction or in the circular movement direction seen - follows.
- the thread milling tool is usually a thread milling cutter, so it is only Thread milled. But it is also possible to use the thread milling tool as a thread milling drilling tool, which has cutting edges at the front end. It is possible to drill the thread milling tool Axially position the core hole or provide that to the thread generation is positioned in a pre-drilled core hole. Usually Every row of thread milling teeth is provided with tooth recess (s). Tooth cutout means that between two thread milling teeth one There is a gap that is so large that there would be room for a full thread milling tooth.
- the flutes are e.g. B. straight axially parallel.
- the flutes are twisted or helical, because this in conjunction with the tooth recess the effectiveness of the twisted Chip flutes improved.
- the number of flutes or rows of thread milling teeth is arbitrary in the context of the invention.
- the thread milling tool according to FIGS. 1 to 3 is in each case a thread milling cutter formed and has a shaft 1 to which a thread milling part 3, directly or via an intermediate piece 2 followed.
- the thread milling part 3 is provided with flutes 4, between which rows 5 of thread milling teeth 6 extend, which are not shown in detail in FIG. 1.
- 3 is one Tooth recess 7 is shown by every other row in each row Thread milling tooth is omitted, the omitted thread milling teeth 8 are drawn with dashed lines.
- each tooth recess 7 follows only a full thread milling tooth 6 and is each tooth recess on a single missing thread milling tooth limited.
- the four rows 5 of thread milling teeth 6 are another Thread milled part shown individually. There is 5 in each row a tooth recess 7 is provided between two thread milling teeth 6, which is due to two omitted thread milling teeth 8, which are shown in dashed lines. There is also 5 of each row Thread milling teeth 6 tooth recess 7 in the same axial Provided height or location and follows each tooth recess 7 only a full thread milling tooth 6. According to FIG. 5 are between the full Thread milling teeth 6 tooth recesses 7 provided in Omission of a front or outer dashed line Part 9 of a thread milling tooth, so that a milling tooth body residue 10 remains. 6 is in the tooth recess 7 Thread milling tooth 8 shown in dashed lines completely omitted and in Tool core 11 a deepening groove 12 is provided.
- tooth recess 7 and 8 is 5 of thread milling teeth in each of four rows 6 of a thread milling tool, not shown further a tooth recess 7 is provided between two thread milling teeth, which is determined by the lack of a thread milling tooth.
- the Tooth recesses 7 of each row are opposite to those in the circumferential direction previous row around a tooth recess or axially offset by a thread milling tooth. This means that also seen in the circumferential direction in each case a tooth recess between two full thread milling teeth is provided.
- By the rows of tooth recesses also fall row-end Tooth vacancies 13, which is different from the real tooth recesses only on one axial side of a full thread milling tooth are limited.
- the axial offset according to FIGS. 7 and 8 requires an even number of rows 5.
- Fig. 9 shows an axial offset, which for a odd number of rows 5 is suitable.
- a tooth recess extends in FIG. 10 7 on the area of three missing thread milling teeth 6, the offset is in each case the area of a thread milling tooth and is between two tooth recesses or one tooth recess and an empty tooth 13 only one thread milling tooth 6 available.
- the tooth recess 7 extends in a row 5 or empty tooth 13 on the area of fewer thread milling teeth than in the adjacent row and accordingly the number of Thread milling teeth larger in one row than in the neighboring one Line.
- there are also no rows such tooth recesses exist in both ends in the axial direction are limited by thread milling teeth, but only as Tooth vacancies designated tooth recesses exist in Circumferential direction limited on both sides by thread milling teeth 6 are.
- the thread milling tool 14 by axial adjusting feed according to an arrow 15 in a core hole 16 brought a workpiece 17 and then by a to be delivered radial movement according to an arrow 18 into a state in which it is positioned.
- the thread milling tool 14 constantly rotates clockwise according to an arrow 19.
- the thread milling tool 14 has three full thread milling teeth seen in the axial direction 6, with two axially adjacent thread milling teeth 6 each through a tooth recess 7 for two thread milling teeth are separated.
- the thread milling tool 14 makes according to 14 first a circular movement with rotation and feed of a counterclockwise rotation, with each thread milling tooth makes a spiral circulation as it does through a spiral piece 20 is made clear. Then the thread milling tool does 14 according to FIG. 15 with rotation and feed an additional Circular movement of two revolutions counterclockwise, where each thread milling tooth makes two helical revolutions, as illustrated by a helix 21.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Milling Processes (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE29924549U DE29924549U1 (de) | 1998-04-17 | 1999-04-06 | Gewindefräs-Werkzeug für größere Gewindelängen |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19817018A DE19817018B4 (de) | 1998-04-17 | 1998-04-17 | Gewindefräs-Werkzeug für größere Gewindelängen |
DE19817018 | 1998-04-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0950458A1 EP0950458A1 (de) | 1999-10-20 |
EP0950458B1 true EP0950458B1 (de) | 2004-05-26 |
Family
ID=7864816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99106785A Expired - Lifetime EP0950458B1 (de) | 1998-04-17 | 1999-04-06 | Verfahren zum Gewindefräsen |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0950458B1 (ja) |
JP (1) | JPH11320256A (ja) |
DE (2) | DE19817018B4 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005037309B4 (de) * | 2005-08-04 | 2010-02-11 | EMUGE-Werk Richard Glimpel GmbH & Co. KG Fabrik für Präzisionswerkzeuge | Werkzeug und Verfahren zur Erzeugung oder Nachbearbeitung eines Gewindes |
KR20120016260A (ko) * | 2009-05-04 | 2012-02-23 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | 미세복제 공구를 제조하기 위한 방법 |
DE102011055210B4 (de) * | 2011-11-10 | 2020-05-07 | Mimatic Gmbh | Werkzeug zur Gewindeherstellung |
EP3715033A1 (en) | 2019-03-26 | 2020-09-30 | VARGUS Ltd. | Method of determining milling parameters, method of milling threads, and use of a thread milling cutter |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4396321A (en) * | 1978-02-10 | 1983-08-02 | Holmes Horace D | Tapping tool for making vibration resistant prevailing torque fastener |
US4761844A (en) * | 1986-03-17 | 1988-08-09 | Turchan Manuel C | Combined hole making and threading tool |
EP0912286A1 (en) * | 1996-09-12 | 1999-05-06 | Manuel C. Turchan | Hole making, threading, and chamfering tool |
DE19651425A1 (de) * | 1996-12-11 | 1998-06-18 | Link Johann & Ernst Gmbh & Co | Gewindefräser |
-
1998
- 1998-04-17 DE DE19817018A patent/DE19817018B4/de not_active Expired - Fee Related
-
1999
- 1999-04-06 DE DE59909555T patent/DE59909555D1/de not_active Expired - Lifetime
- 1999-04-06 EP EP99106785A patent/EP0950458B1/de not_active Expired - Lifetime
- 1999-04-14 JP JP11106953A patent/JPH11320256A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
EP0950458A1 (de) | 1999-10-20 |
DE19817018B4 (de) | 2004-03-04 |
JPH11320256A (ja) | 1999-11-24 |
DE59909555D1 (de) | 2004-07-01 |
DE19817018A1 (de) | 1999-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3880394T2 (de) | Kombiniertes werkzeug zum bohren eines lochs und beim gewindeschneiden. | |
DE69729467T2 (de) | Kaltformgewindebohrer mit inner diameter feinbearbeitungseinsatz und dessen herstellungsmethode | |
DE804314T1 (de) | Verbessertes bohr-und gewindeschneidwerkzeug und methode | |
DE10238775B4 (de) | Gewindebohrer | |
DE3828780A1 (de) | Bohrgewindefraeser | |
EP3433044B1 (de) | Verfahren und werkzeug zur erzeugung einer gewindebohrung | |
DE102010006796B4 (de) | Verfahren zur Herstellung eines Bohrers, sowie Bohrer | |
DE102004059264A1 (de) | Werkzeug und Verfahren zur Erzeugung eines Gewindes in einem Werkstück | |
DE3800489C2 (de) | Gewinde-Strehlwerkzeug | |
DE102005019921A1 (de) | Werkzeug und Verfahren zur Erzeugung oder Nachbearbeitung eines Gewindes | |
DE102008030100B4 (de) | Gewindefräser | |
DE112008004051T5 (de) | Spiralgewindebohrer | |
EP0950458B1 (de) | Verfahren zum Gewindefräsen | |
EP1958589B1 (de) | Dentalfraeser | |
EP0432621B1 (de) | Gewinde-Zirkularfräser | |
DE102006036434B4 (de) | Verfahren zum Erzeugen eines Gewindes in einem Werkstück | |
EP0760270B1 (de) | Gewindebohrer | |
EP0852168A1 (de) | Gewindefräser | |
DE102005042410B4 (de) | Werkzeug und Verfahren zur Erzeugung oder Nachbearbeitung eines Gewindes, insbesondere eines Innengewindes | |
DE102005037119B4 (de) | Verfahren zum Erzeugen eines Gewindes in einem Werkstück | |
DE4008833C2 (ja) | ||
DE3921734A1 (de) | Bohrgewindefraeser mit zahnungskerben | |
DE29924549U1 (de) | Gewindefräs-Werkzeug für größere Gewindelängen | |
EP0950457A2 (de) | Gewindefräser | |
DE102020130085B3 (de) | Methode zur herstellung eines multifunktionellen befestigungselements |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 19991118 |
|
AKX | Designation fees paid |
Free format text: DE FR GB IT |
|
17Q | First examination report despatched |
Effective date: 20021009 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RTI1 | Title (correction) |
Free format text: THREAD MILLING PROCESS |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20040526 |
|
REF | Corresponds to: |
Ref document number: 59909555 Country of ref document: DE Date of ref document: 20040701 Kind code of ref document: P |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20050301 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20080426 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20080418 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20080423 Year of fee payment: 10 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090406 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20091231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090406 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090406 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20130503 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59909555 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59909555 Country of ref document: DE Effective date: 20141101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141101 |