EP0949132B1 - Elektronische Notbremslast-Berücksichtigungseinrichtung - Google Patents

Elektronische Notbremslast-Berücksichtigungseinrichtung Download PDF

Info

Publication number
EP0949132B1
EP0949132B1 EP98116306A EP98116306A EP0949132B1 EP 0949132 B1 EP0949132 B1 EP 0949132B1 EP 98116306 A EP98116306 A EP 98116306A EP 98116306 A EP98116306 A EP 98116306A EP 0949132 B1 EP0949132 B1 EP 0949132B1
Authority
EP
European Patent Office
Prior art keywords
truck
pressure
emergency
application
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98116306A
Other languages
English (en)
French (fr)
Other versions
EP0949132A2 (de
EP0949132A3 (de
Inventor
James A. Wood
Richard J. Mazur
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Westinghouse Air Brake Co
Original Assignee
Westinghouse Air Brake Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Air Brake Co filed Critical Westinghouse Air Brake Co
Publication of EP0949132A2 publication Critical patent/EP0949132A2/de
Publication of EP0949132A3 publication Critical patent/EP0949132A3/de
Application granted granted Critical
Publication of EP0949132B1 publication Critical patent/EP0949132B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/18Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to vehicle weight or load, e.g. load distribution
    • B60T8/1893Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to vehicle weight or load, e.g. load distribution especially adapted for railway vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/665Electrical control in fluid-pressure brake systems the systems being specially adapted for transferring two or more command signals, e.g. railway systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/18Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to vehicle weight or load, e.g. load distribution
    • B60T8/1881Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to vehicle weight or load, e.g. load distribution characterised by failure-responsive means

Definitions

  • the invention generally relates to a system for controlling the brakes of a railcar. More particularly, the invention pertains to a brake control unit capable of being used with many different types of electropneumatic brake control systems for controlling the brakes on one or more trucks of a railcar. Still more particularly, the invention pertains to a device that electronically compensates for the weight of the load borne by a railcar truck in formulating the braking effort to be applied to the wheels of that truck.
  • a typical passenger transit or subway type train includes a locomotive, a plurality of railcars and several trainlines.
  • the trainlines include both pneumatic and electrical lines most of which run from the locomotive to the last railcar in the train.
  • the main reservoir equalization (MRE) pipe is one such pneumatic trainline. It consists of a series of individual pipe lengths. Secured to the underside of each railcar, one such pipe length connects via a coupler to another such pipe length secured to a neighboring railcar.
  • the MRE pipe is thus essentially one long continuous pipe that -runs from the locomotive to the last railcar. Charged by various air compressors located throughout the train, it is the MRE pipe that serves to supply air to the various reservoirs, such as the supply reservoir, located on each railcar in the train.
  • the brake pipe One pneumatic trainline of particular importance to passenger transit and subway type trains is the brake pipe. It is used to convey to each railcar in the train an emergency brake signal when an emergency condition arises. Of similar importance is the brake control trainline that is used to carry the brake command to each railcar in the train as discussed below. Contained within a protective conduit along with other electrical trainlines, the brake control trainline is similarly formed from individual conduits connected in series.
  • a locomotive for a passenger transit or a subway type train typically has an electropneumatic brake control system such as the RT-5 Brake Control System produced by the Westinghouse Air Brake Company (WABCO).
  • WABCO Westinghouse Air Brake Company
  • RT-5 style systems currently in service feature a master controller by which a train operator can direct the overall braking and propulsive efforts for the entire train.
  • the master controller in the locomotive houses a handle, a computer and various other related components.
  • the handle can be moved longitudinally anywhere along its range of motion and into any one of several designated positions.
  • a train operator can initiate, maintain or halt braking or propulsion of the train.
  • moving the handle to what is referred to as the full service position causes a service application of the brakes.
  • the operator can initiate an even faster type of braking referred to as an emergency application of the brakes.
  • There are other positions for the handle whose purposes are beyond the scope of the invention described and claimed below.
  • the computer of the master controller can ascertain whether, and to what degree, the overall braking or propulsive effort of the train should be reduced or increased.
  • a keyboard may also be used to permit the operator greater access to the brake equipment, allowing, for example, input of set-up parameters.
  • Other known components may also be used to provide various other signals to the computer.
  • the master controller Based on the inputs it receives and the software that dictates its operation, the master controller essentially controls the overall operation of the brakes. For service braking, the master controller formulates the brake command appropriate to current conditions and conveys it along the brake control trainline to each of the railcars in the train. Through its brake command, the master controller can order any action from a release of brakes to a service application of the brakes or any degree of brake application in between those two extremes. For emergency braking, a push-button type emergency valve in the locomotive can be used to effect a drop in brake pipe pressure to an emergency level using both pneumatic and electrical means simultaneously. When push-actuated, the emergency valve provides a path for the brake pipe to vent directly to atmosphere.
  • an emergency brake control valve on the locomotive could be used to decrease brake pipe pressure to the emergency level. By reducing the brake pipe pressure to the emergency level, whether initiated from the locomotive or from any other point in the train, this sends an emergency brake signal along the brake pipe to all other railcars in the train.
  • the brake pipe On passenger transit and subway type trains, the brake pipe is typically operated according to a binary logic scheme. Normal operating pressure for the brake pipe during non-emergency situations ranges from 130 to 150 psi, the pressure to which it is charged via the MRE pipe. The transition point, or emergency level, lies at approximately 90 psi. A pressure of 90 psi or below indicates an emergency. It is this lower pressure range that constitutes the emergency brake signal.
  • Each passenger transit railcar typically includes an electronic controller and two trucks, with each truck typically having two axles.
  • the electronic controller controls the operation of both trucks on the railcar.
  • the electronic controller has two central processing units (CPUs). Along with its associated interface equipment, each CPU controls the brake equipment of one truck independently of the other truck. It does so based on the brake command and various other inputs specific to the truck that it controls.
  • the brake equipment for a truck includes a pneumatic control unit and one or more pneumatically operated brake cylinders.
  • the pneumatic control unit typically houses an application magnet valve (AMV), a release magnet valve (RMV), a relay valve, an emergency transfer valve (ETV), a variable load valve (VLV) and an air spring pressure transducer. Used to convert the pressure received from a load sensing system on the truck, the air spring transducer provides a feedback signal indicative of the load borne by the truck.
  • AMV application magnet valve
  • RMV release magnet valve
  • ETV emergency transfer valve
  • VLV variable load valve
  • the -relay valve typically takes the form of a J-1 relay valve or similar type valve. It is an air piloted device whose construction and operation are well known in the brake control art. It features a control port connected to the ETV, a supply port supplied by the supply reservoir, an output port from which air can be directed from the supply reservoir to the brake cylinder(s) and an exhaust port from which to vent the brake cylinder(s) to atmosphere.
  • the pressure of the air impinging upon its control port and the pressure of the air that the relay valve delivers to the brake cylinders will be approximately equal, though the air delivered by the latter will be in much greater quantity than that received by the former.
  • the ETV assumes an access state in which it connects the control port to both the AMV and RMV.
  • the AMV when opened then allows air from the supply reservoir via the VLV to reach the control port.
  • the RMV when opened allows whatever pressure that impinges on the control port to be vented to atmosphere.
  • the electronic controller can control the magnitude of the pressure received by the control port.
  • a brake cylinder control transducer also a part of the pneumatic control unit, converts the pressure at the control port-to yet another feedback signal. Along with other signals such as those relating to speed, dynamic braking, wheel slip, the air spring feedback and others, this feedback signal is conveyed to the electronic controller to aid it in controlling each pneumatic control unit independently.
  • the electronic controller acts upon the brake command that it receives from the master controller in the locomotive. Specifically, during service braking, each CPU formulates the exact amount of braking effort appropriate for its truck. It does this by processing the brake command and the aforementioned other signals according to a brake control process whose specifics are beyond the scope of the invention described and claimed below.
  • the pneumatic control unit Operating in what can be referred to as a service braking mode when its ETV is switched to the access state, the pneumatic control unit has its AMV and RMV magnet valves controlled by their corresponding CPU; each magnet valve being energizable by the CPU with a field effect transistor (FET).
  • FET field effect transistor
  • the CPU can control the flow of air from the supply reservoir via the VLV and the AMV and RMV magnet valves to the control port via the ETV. This produces at the control port of the relay valve a low capacity pressure corresponding to the amount of braking effort formulated for that particular truck.
  • the pneumatic control unit operates in what can be referred to as an emergency braking mode when its ETV is switched to the bypass state.
  • the ETV responds to the emergency brake signal by pneumatically switching itself to the bypass state in which the AMV and RMV are cutoff from the control port. Air from the supply reservoir is then allowed to flow via the VLV through the ETV directly to the control port.
  • a low capacity pressure capable of initiating an emergency application of the brakes on the truck.
  • the relay valve In response to whatever low capacity pressure is impinging on its control port, the relay valve provides to the brake cylinder(s) a corresponding pressure of high capacity. This compels the brake cylinder(s) to apply the brakes on the truck.
  • the magnitude of the braking force applied to the wheels is directly proportional to the pressure built up in the brake cylinder(s).
  • the brake cylinder(s) convert the pressurized air that they receive to mechanical force. This force is transmitted by mechanical linkage to the brake shoes. Forced against the truck wheels and/or disc brakes, the brake shoes are used to slow or stop the rotation of the wheels according to the braking effort sought via the brake command or the emergency brake signal.
  • variable load valve (such as that shown and described in Operation & Maintenance Publication 4229-1 published by WABCO) is an air piloted device whose construction and operation are well known in the brake control art.
  • the VLV typically features two spring-biased piston assemblies, at least one of which adjustable, that are designed to work with the air pressure received from the load sensing system (i.e., air springs) on the truck.
  • the magnitude of the air spring pressure is indicative of the load that the truck is currently carrying.
  • the VLV is designed to limit the maximum pressure at which air from the supply reservoir is directed to the control port of the relay valve. This maximum control pressure level is proportional to the pressure that the VLV receives from the air springs. For any particular level of air spring pressure, the VLV determines the maximum allowable pressure that will be supplied to the control port of the relay valve in an emergency.
  • the pneumatic control unit when the pneumatic control unit operates in the emergency braking mode, its ETV is in the bypass state thereby bypassing the AMV and RMV valves and allowing air to flow from the VLV directly to the control port.
  • the control port thus receives the maximum allowable pressure (i.e., emergency brake control pressure) that the VLV can provide based on the load that the truck is currently carrying.
  • the VLV is essentially set so that the emergency brake control pressure for an empty railcar is X psi and for a fully loaded railcar it is (X+Y) psi.
  • the emergency brake control pressure can vary from X to (X+Y) psi depending on the load borne by the railcar at any given time, it will never decrease below X or increase beyond (X+Y).
  • the relay valve responds to the emergency brake control pressure by pressurizing the brake cylinder(s) to an emergency pressure level, a level determined by the setting of the VLV.
  • the pneumatic control unit When operating in the service braking mode with its ETV in the access state, the pneumatic control unit has its AMV and RMV valves controlled by their corresponding CPU. By manipulating the AMV and RMV valves according to aforementioned brake control process, the CPU produces at the control port a lower capacity pressure (i.e., a service brake control pressure) corresponding to the amount of braking effort formulated for that particular truck.
  • the magnitude of the service brake control pressure is determined by the CPU according to the aforementioned brake control process.
  • the relay valve responds to the service brake control pressure by pressurizing the brake cylinder(s) to a service pressure level, a level determined by the CPU and one that will never exceed the emergency brake control pressure setting of the VLV. In this manner, the VLV allows the truck to be braked at a relatively constant rate under fluctuating passenger loads.
  • variable load valve has certain disadvantages when compared to the invention described and claimed below.
  • the VLV is inherently compromised in its reliability due to its purely mechanical nature. It is a device that necessarily requires many parts, properly assembled and maintained, to perform its intended function, each part being subject to mechanical wear and tear.
  • the VLV occupies a comparatively large amount of space in, and adds weight to, the system into which it is incorporated.
  • the pneumatic piping that is necessary to connect the VLV to and from the pneumatic components in the system in which it is employed also occupies space in, and adds weight to, the system.
  • the design of the VLV has basically reached its zenith, it cannot be feasibly reduced much in size or in weight. Weight and space are two especially important factors in the rail industry where the costs of fuel and the capability to transport cargo or passengers affect the viability of railroad and passenger transit authorities alike.
  • an objective of the invention to provide a device that electronically compensates for the load borne by a railcar truck in formulating the braking effort to be applied to the wheels of that truck during an emergency.
  • Another objective of the invention is to provide an electronic brake load weigh device for use with a truck control unit of a railcar to enable the truck control unit to compensate for the load borne by the truck during braking operations.
  • Yet another objective is to provide an electronic brake load weigh device that is far more reliable, smaller in size, lighter in weight, less likely to need maintenance and less costly than prior art mechanical apparatus used to perform the brake load weigh function on a truck of a railcar.
  • Still another objective is to add to a truck control unit an electronically implemented brake load weigh device that allows easier diagnosis of faults in the device and the annunciation of those faults to an appropriate apparatus.
  • the invention provides an electronic brake load weigh device for use with a truck control unit of a rail vehicle.
  • the truck control unit has a relay valve, application and release valves, first and second transducers, a pressure switch and an electronic controller.
  • the relay valve provides to at brake cylinder a pressure proportional to the control pressure that impinges upon a control port of the relay valve.
  • the first transducer converts the control pressure at the control port to a first feedback signal.
  • the second transducer converts the pressure received from a load sensing system to a second feedback signal indicative of the load borne by a truck of the rail vehicle. Normally closed, the pressure switch opens when the pressure within a pneumatic trainline of the rail vehicle changes to a level indicative of an emergency.
  • the electronic controller controls service braking of the wheels on the truck.
  • the electronic brake load weigh device includes first and second amplifier circuits, lower and upper level detector-driver circuits, and a means for giving the detector-driver circuits exclusive control over the application and release valves.
  • the first amplifier circuit conditions the first feedback signal received from the first transducer and produces therefrom a first conditioned signal.
  • the second amplifier circuit amplifies and offsets the second feedback signal received from the second transducer and produces therefrom a second conditioned signal appropriate for comparison with the first conditioned signal.
  • the lower level detector-driver circuit commands the application valve to (i) close when the first conditioned signal is equal to or greater than the second conditioned signal and (ii) assume a normally open default state otherwise.
  • the upper level detector-driver circuit commands the release valve to (i) open when the first conditioned signal is greater than the second conditioned signal by at least a preset amount and (ii) assume a normally closed default state otherwise.
  • the detector-driver circuits command the application and release valves to hold pressure at the control port within a range appropriate for empty rail vehicles when the second conditioned signal indicates the truck bears no load.
  • the giving means is controlled by operation of the pressure switch.
  • the pressure switch When opened, the pressure switch compels the giving means to disconnect the electronic controller from the application and release valves thereby giving the detector-driver circuits exclusive control of the application and release valves. This enables the detector-driver circuits to compensate for the load borne by the truck during emergency braking.
  • the pressure switch empowers the giving means to connect the electronic controller to the application and release valves by which the service braking on the truck is normally controlled. The detector-driver circuits are still enabled to compensate for the load borne by the truck during the service braking.
  • the invention an electronic brake load weigh device - is described in the ensuing text as if incorporated into a truck control unit for a passenger transit railcar.
  • the invention may be incorporated into other types of vehicles on which the brake equipment may be configured differently from what is described in this document.
  • the invention is presented in this context not to limit its scope but merely to simplify the description, and consequently the understanding, of the invention.
  • FIGS 4-6 illustrate the essential details of a truck control unit that features the electronic brake load weigh device.
  • the truck control unit 10 has three sections: a pneumatic section 100, an electropneumatic section 200 and an electronics section 300.
  • the pneumatic section 100 includes a relay valve 110 and a pressure limiting valve (PLV) 120.
  • PLV pressure limiting valve
  • the relay valve 110 may take the form of a J-1 relay valve or similar type valve known in the brake control art. As shown in Figure 4, the relay valve features a control port 111, a supply port 112 supplied by a supply reservoir, an output port 113 from which air ultimately from the supply reservoir can be directed to the brake cylinder(s) and an exhaust port 114 from which to vent the brake cylinder(s) to atmosphere.
  • the pressure of the air that the relay valve delivers from its output port 113 to the brake cylinder(s) approximately equals the pressure that impinges upon its control port 111.
  • the quantity of air it delivers to the brake cylinder(s) is much greater than the quantity of air received by its control port.
  • the PLV 120 may take the form of any one of a variety of pressure limiting valves known in the brake control art such as the one shown and described in WABCO O & M Publication 4237-65.
  • the PLV is an adjustable device capable of being set to deliver a maximum pressure selected from a range encompassing approximately 30 to 100 psi.
  • the PLV 120 features an input port 121 supplied by the supply reservoir and an output port 122 from which air at this maximum pressure level is delivered.
  • the pressure of the air supplied by the supply reservoir is approximately 130 to 150 psi on the passenger transit trains for which this invention is ideally suited.
  • the PLV is ideally set so that it can deliver a pressure capable of initiating an emergency application of brakes on a truck when the railcar is maximally loaded. It is this emergency brake control pressure that the invention conveys to the control port 111 of relay valve 110 during an emergency.
  • the pneumatic section 100 may also include a brake cut out valve (BCOV) 130 interposed between the relay valve and the brake cylinder(s) for maintenance purposes.
  • the BCOV 130 may be installed in the pneumatic piping that interconnects the output port 113 of relay valve 110 and the brake cylinder(s) of the truck.
  • the brakes of the truck may be cut-out (i.e., rendered inoperable).
  • the BCOV is a normally open valve that may be closed by a railyard worker should a problem with the brakes of the truck be detected after the train departs from a station.
  • each BCOV on the railcar can thus assume an open position wherein the brakes of its truck are cut-in or a closed position wherein the brakes of its truck are cut-out. Even though a few trucks may have their brakes cut-out, a train can still operate safely as long as the number of affected trucks is not excessive.
  • the electropneumatic section 200 features an application magnet valve (AMV) 210 and a release magnet valve (RMV) 220, both normally under the control of. the electronic controller 50 of the railcar.
  • AMV and RMV valves both connect to the control port 111 of relay valve 110.
  • the AMV and RMV magnet valves are controlled during non-emergency situations by their corresponding CPU in the electronic controller 50.
  • the electropneumatic section 200 also has three pressure transducers and a pressure switch.
  • the first transducer 230, the brake cylinder control transducer (BCCT), converts the pressure resident at the control port 111 of relay valve 110 to a first feedback signal.
  • the second transducer 240, the air spring pressure transducer (AST), converts the pressure received from a load sensing system on the truck. As the load sensing system is comprised of air springs, the second feedback signal is indicative of the pressure endured by those air springs and thus the load borne by the truck. As shown in Figure 5, these feedback signals are fed to the electronic controller 50 via the BCCTOUT and ASTOUT terminals.
  • the pressure switch 250 responds to the pressure contained in the pneumatic trainline that is used to carry the emergency brake signal. As used in a preferred embodiment of the invention on a passenger transit railcar, this pressure switch opens when pressure in the brake pipe drops to an emergency level of approximately 90 psi. A rise in pressure within the brake pipe above this emergency level causes the pressure switch to close
  • the third transducer that the electropneumatic section 200 may feature is a brake cylinder transducer (BCT) 260.
  • BCT brake cylinder transducer
  • This transducer is used to convert the pressure at the output port 113 of relay valve 110 to a third feedback signal indicative of the pressure in the brake cylinder(s) of the truck. As shown in Figure 5, this feedback signal is fed to the electronic controller 50 via the BCTOUT terminals. It is typically to be used by the CPU of the electronic controller that is responsible for controlling the AMV 210 and RMV 220 of the truck control unit during non-emergency situations. Along with the brake command received from the master controller and the aforementioned other signals, the CPU can use this third feedback signal to formulate the exact amount of braking effort appropriate for the truck over which it has control.
  • the CPU derives the braking effort by processing those signals according to the aforementioned brake control process, the specifics of which not being necessary to understand the invention.
  • the magnet valves With the RMV in its normally closed (i.e., deenergized) state and the AMV in its normally open (i.e., deenergized) state, the magnet valves compel relay valve 110 to assume an APPLY STATE. In this state, air flows from the output port of PLV 120 to the control port 111 of relay valve 110. As pressure builds at the control port, the relay valve 110 provides pressure to the brake cylinder(s) of the truck.
  • the brake cylinders on the truck will continue to pressurize as long as the magnet valves are held in the APPLY STATE. If the magnet valves are held in the APPLY STATE, the rise in brake cylinder pressure will eventually stop at the level dictated by the setting of the PLV 120. With the RMV closed, the CPU can energize (i.e., close) the AMV 210 via its corresponding FET to prevent air from flowing to the control port 111. Controlled in this manner, the magnet valves place the relay valve 110 in a LAP STATE wherein pressure is held constant at the control port.
  • relay valve 110 This causes relay valve 110 to hold the pressure in the brake cylinder (s) at a level that corresponds to that impinging upon its control port. Furthermore, by energizing both the AMV and RMV via their respective FETs, the CPU can close the AMV and open the RMV so as to place relay valve 110 in a RELEASE STATE wherein the pressure at the control port vents to atmosphere. Relay valve 110 responds by reducing correspondingly the pressure held in the brake cylinder(s) of the truck as long as the magnet valves are held in the RELEASE STATE. Once pressure at the control port falls below a minimal level, the relay valve responds by completely venting the brake cylinder(s) to atmosphere.
  • the electronics section 300 of the truck control unit houses the electronic brake load weigh device. It includes two amplifier circuits 310 and 320, two level detector/driver circuits 330 and 340 and an emergency brake relay (EBR) 350. Each amplifier circuit features a linear amplifier whose output current is directly proportional to the changes in the applied input voltage coming from its corresponding transducer.
  • the first amplifier circuit 310 is used to condition the first feedback signal received from the BCCT 230 to produce a first conditioned signal.
  • the second amplifier circuit 320 is used to condition and offset the second feedback signal received from the AST 240 to produce a second conditioned signal.
  • the air spring pressure feedback signal must be offset by a preset fixed percentage. This is so that the intensity of the resulting second conditioned signal is appropriate for comparison with the first conditioned signal, the latter signal being representative of the control pressure currently impinging on the control port.
  • Figure 3 illustrates an example of the gain and offset sought by the second amplifier circuit and the resulting relationship that is preferred between the air spring pressure and the brake cylinder control pressure on a passenger transit railcar.
  • the amplifier circuits pass the first and second conditioned signals to both of the lower and upper detector-driver circuits 330 and 340.
  • Each detector-driver circuit features a comparator circuit and a field effect transistor (FET).
  • Each comparator circuit turns on or off its corresponding FET according to predetermined criteria that employs the first and second conditioned signals.
  • Each FET (not shown), in turn, is used to drive one of the magnet valves in the electropneumatic section 200 of the truck control unit.
  • the output of the lower level detector-driver circuit 330 connects directly to the power and return lines of the AMV 210.
  • the output of the upper level detector-driver circuit 340 connects directly to the power and return lines of the RMV 220.
  • the lower level detector-driver circuit 330 closes (i.e., energizes) the AMV when the first conditioned signal is equal to or greater than the second conditioned signal. Otherwise, the AMV 210 defaults to its normally open (i.e., deenergized) state.
  • the upper level detector-driver circuit 340 opens (i.e., energizes) the RMV when the first conditioned signal is greater than the second conditioned signal by at least a preset amount. Otherwise, the RMV defaults to its normally closed (i.e., deenergized) state.
  • the amplifier and detector-driver circuits essentially comprise a means for electronically compensating for the load borne by the truck during braking.
  • this load compensation means can control the magnitude of the pressure impinging upon the control port 111 of relay valve 110.
  • the load compensation means places the relay valve in the APPLY STATE.
  • the load compensation means compels the relay valve to assume the LAP STATE.
  • the load compensation means forces the relay valve to assume the RELEASE STATE.
  • Figure 6 illustrates an example of the predetermined criteria that the electronic brake load weigh device may employ in operation.
  • the emergency brake relay is connected between the electronic controller 50 of the railcar and the AMV and RMV magnet valves of the truck control unit.
  • the EBR 350 features a set of normally open contacts and a set of normally closed contacts, with each normally closed contact paired, and designed to move, with one normally open contact.
  • each normally open contact is incorporated within one of the conductive paths that electrically interconnects the electronic controller 50 and the AMV and RMV magnet valves.
  • one normally open contact is incorporated within the power line that interconnects the AMV 210 and the FET of its corresponding CPU in the electronic controller.
  • Another normally open contact is incorporated within the return line that interconnects that FET and the AMV.
  • one normally open contact is incorporated into the power line that interconnects the RMV 220 to the other FET controlled by that CPU.
  • Another normally open contact is incorporated into the return line that connects that second FET to the RMV 220.
  • these power and return lines feed into the electronic controller 50 via the AMVCOM and RMVCOM terminals.
  • Each normally closed contact is incorporated into a feedback circuit that is used by the electronic controller 50 primarily to ascertain the status of the normally open contact with which it is paired. The feedback circuits feed into the electronic controller 50 via the ANNUNCIATION terminals.
  • Energizing the coil of the EBR 350 causes the normally open contacts to close and the normally closed contacts to open.
  • the electronic controller 50 is enabled to control the AMV and RMV magnet valves for the truck.
  • Each normally closed contact that has failed to close while the EBR is deenergized signifies that the normally open contact with which it is designed to move cooperatively has failed.
  • the electronic controller 50 can ascertain when any one or more of the normally open contacts have broken, welded or otherwise failed. In this manner, failure of any of the contacts is annunciated to the electronic controller.
  • a DC-DC converter 370 receives the 22-44V dc (37V dc nominal) from the battery of the railcar. It converts the 37V dc to 15V dc to power each amplifier circuit 310 and 320, each detector-driver circuit 330 and 340 and each transducer 230, 240 and 260.
  • the 37V dc nominal from the battery is also fed directly to the FETs in the detector-driver circuits 330 and 340.
  • the comparator circuit in detector-driver circuit 330 causes that FET to energize the AMV magnet valve 210 using the power fed to it by the battery.
  • the upper level detector-driver circuit 340 is operated in the same fashion. Battery power is thus used to drive the AMV and RMV magnet valves in the electropneumatic section 200 of the truck control unit.
  • Power is also supplied to the pressure switch 250 via the positive EMBAT terminal.
  • the return EMBAT terminal connects to the return side of the EBR coil.
  • the pressure switch and the EBR operate cooperatively as just one of many possible means for granting the load compensation means exclusive control over the AMV and RMV magnet valves.
  • the EBR comprises just one of many possible means for giving the load compensation means exclusive control over the magnet valves.
  • the state of the EBR 350 is dictated by the operation of pressure switch 250. Normally closed while pressure in the brake pipe stays above the emergency level of approximately 90 psi, the pressure switch 250 allows power from the positive EMBAT terminal to flow to the coil of the EBR 350. When its coil is energized, the EBR 350 responds by closing its normally open contacts (and opening its normally closed contacts) thereby connecting the AMV and RMV magnet valves to their corresponding CPU in the electronic controller 50. With the EBR 350 in its normally energized state, it is in this posture that service braking and wheel slippage on the truck are normally controlled by the electronic controller 50 during non-emergency situations according to the aforementioned brake control process.
  • the pressure switch 250 opens. By opening, the pressure switch disconnects the positive EMBAT terminal from the coil of the EBR 350 thereby causing the coil of the EBR to deenergize. The contacts of the EBR 350 then return to their default states thereby disconnecting the electronic controller 50 from the AMV and RMV magnet valves.
  • the detector-driver circuits 330 and 340 of the electronic brake load weigh device thus assume exclusive control over the AMV and RMV magnet valves. With the EBR 350 in its deenergized state, the detector-driver circuits compensate for the load borne by the truck during emergency situations according to the previously recited predetermined criteria.
  • Figure 6 illustrates an example of the predetermined criteria that the electronic brake load weigh device may employ during an emergency.
  • the cross-hatched area indicates the desired range for pressure at the control port 111 for a truck bearing a fixed load. It also indicates the upper and lower threshold pressure levels according to which the detector-driver circuits will open or close the AMV and RMV magnet valves.
  • the truck bears a load that yields an air spring pressure around 58 psi.
  • the desired pressure at the control port 111 i.e., emergency brake control pressure
  • the lower threshold pressure levels below which the AMV and RMV valves will deenergize are assumed at 35 and 39 psi, respectively.
  • the upper threshold pressure levels above which the AMV and RMV will energize are assumed at 36.5 and 40 psi, respectively.
  • the invention allows the AMV and RMV to assume, or at least remain in, their normally deenergized states (i.e., open and closed, respectively). This places the relay valve in the APPLY STATE. As pressure at the control port increases above 35 psi though not yet above 36.5 psi, the invention still allows the AMV to remain open, the RMV in this range still remaining closed. This illustrates the hysteresis range for the AMV. Once pressure at the control port rises above 36.5 psi though not yet above 40, the invention energizes (i.e., closes) the AMV, thereby placing relay valve 110 in the LAP STATE.
  • the invention will now energize (i.e., open) the RMV to reduce the pressure at the control port to the desired range of 36.5 to 39 psi. This places the relay valve in the RELEASE STATE. Even after the pressure reduces below 40 psi, the invention will not deenergize (i.e., close) the RMV until the pressure drops below 39 psi. This illustrates the hysteresis range for the RMV. As the pressure falls below 39 psi, the invention again deenergizes the RMV. Because both the AMV and RMV are now closed, the relay valve again assumes LAP STATE.
  • the invention will keep the RMV and AMV magnet valves closed, and the relay valve in the LAP STATE, until the pressure at the control port 111 falls below 35 psi. Should the pressure fall below 35 psi, the invention will again allow the AMV to open so as to again increase the pressure at the control port 111 thereby causing the relay valve to assume the APPLY STATE again.
  • the invention tries to keep the pressure at the control port between 36.5 and 39 psi. Should the pressure slip out of that range, then the invention manipulates the AMV and RMV valves appropriately to bring it back within that range. It is this type of action that allows the invention to provide a load compensated pressure to the brake cylinders during an emergency in which the brake pipe pressure remains below the emergency level of 90 psi.
  • Figure 6 also illustrates that for empty railcars the pressure at the control port 111 will be held within a range appropriate for empty rail vehicles.
  • the detector-driver circuits will selectively open and close the AMV and RMV magnet valves to hold the pressure at the control port within this range of pressure when the second conditioned signal indicates that the truck bears little or no load.
  • an air spring pressure of near 47 psi is considered to be the lowest possible, i.e., the pressure indicative of an empty railcar.
  • the brake control pressure that corresponds to this minimum air spring pressure lies in a range around 31 psi.
  • the electronic brake load weigh device can be used to compensate for the load borne by the truck even when the electronic controller 50 is connected to the AMV and RMV magnet valves. This is because the detector-driver circuits 330 and 340 connect directly to the power and return lines of the AMV and RMV magnet valves, respectively, regardless of the state of the EBR 350. Should the electronic controller 50 operate the AMV 210 and RMV 220 valves in such a manner as to build pressure at the control port 111 of relay valve 110 contrary to the predetermined criteria, the detector-driver circuits will temporarily override the electronic controller 50 to compensate for the load borne by the truck by selectively energizing the AMV and RMV magnet valves according to the predetermined criteria.
  • the electronic brake load weigh device may therefore include a wheel slip relay 360. It is primarily intended that this wheel slip relay work in cooperation with a safety timer circuit housed within the electronic controller 50.
  • the safety timer circuit allows the electronic controller 50 to energize the wheel slip relay only for a limited time.
  • the wheel slip relay 360 In its normally deenergized (i.e., closed) state, the wheel slip relay 360 connects the pressure switch 250 to the coil of the EBR 350, as shown in Figure 5.
  • the wheel slip relay 360 interrupts that connection by directly connecting the positive EMBAT terminal to the coil of the EBR 350.
  • the EBR With its coil energized, the EBR responds by again closing its normally open contacts (and opening its normally closed contacts) thereby connecting the AMV and RMV magnet valves to their corresponding CPU in the electronic controller 50.
  • the electronic controller 50 can reestablish control over the AMV and RMV valves for the purpose of controlling the slipping of the wheels on the truck.
  • the electronic brake load weigh device can be used within and made a part of a variety of train brake control systems.
  • the invention may be incorporated into electropneumatic brake control systems such as the R-142 and R-142A styles of the RT-5 Brake Control System that is designed for passenger transit and subway type trains.
  • electropneumatic brake control systems such as the R-142 and R-142A styles of the RT-5 Brake Control System that is designed for passenger transit and subway type trains.
  • certain modifications that should be apparent to persons skilled in the brake control art may be necessary. Any of the brake control systems featuring the invention will more reliably control the brakes of a railcar truck as compared to such brake control systems lacking the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Braking Systems And Boosters (AREA)
  • Regulating Braking Force (AREA)

Claims (21)

  1. Eine Wagensteuereinheit (10) zur Durchführung einer Bremslast-Berücksichtigungsfunktion an einem Wagen eines Schienenfahrzeugs, wobei derartige Schienenfahrzeuge eine Steuereinheit zur Steuerung von Betriebsbremsungen von Rädern eines Wagens aufweisen, wobei eine Wagensteuereinheit gekennzeichnet ist durch:
    a) Mittel zum elektronischen Kompensieren einer Last, die auf den Wagen während der Bremsung wirkt, durch wahlweises Öffnen oder Schließen von jeweils Einsatz- und Freigabeventilen (210) (220) nach vorbestimmten Kriterien unter Verwendung von ersten und zweiten Rückführungssignalen, um eine Größe des Steuerdrucks, der von einem Steuerkanal (111) eines Schaltventils (110) erhalten wird, zu steuern; und
    b) Mittel, um den genannten Lastkompensationsmitteln eine exklusive Kontrolle über die jeweiligen Einsatz- und Freigabeventile (210) und (220) derart zu erteilen, dass (i) die genannten Erteilungsmittel auf einen Notfall reagieren, indem ein elektronisches Steuergerät (50) von den jeweiligen Einsatz- und Freigabeventilen (210) und (220) getrennt wird, wodurch den Lastkompensationsmitteln die exklusive Kontrolle über die jeweiligen Einsatz- und Freigabeventile (210) und (220) gegeben wird, wobei die Lastkompensationsmittel eine Last, die auf einen Wagen während einer Notbremsung wirkt, ausgleichen, und (ii) die Erteilungsmittel auf ein Fehlen eines solchen Notfalls durch Verbindung des elektronischen Steuergerätes (50) mit den jeweiligen Einsatz- und Freigabeventilen (210) und (220) reagieren, wodurch Betriebsbremsungen an solch einem Wagen in normaler Weise gesteuert werden, wobei die Lastkompensationsmittel noch in der Lage sind, eine Last, die auf einen Wagen während einer Betriebsbremsung wirkt, auszugleichen.
  2. Eine Wagensteuereinheit (10) zur Durchführung einer Bremslast-Berücksichtigungsfunktion an einem Wagen eines Schienenfahrzeugs nach Anspruch 1, wobei das Öffnen und Schließen der jeweiligen Einsatz- und Freigabeventile (210) und (220) umfaßt:
    a) ein Druckbegrenzungsventil (120,) das mit einer ersten Druckquelle verbunden ist, um den Druck, der von dieser erhalten wird, auf einen Steuerdruck zu begrenzen, der eine Notfallanwendung der Bremsen an einem Wagen initiieren kann, wenn ein Schienenfahrzeug maximal beladen ist;
    b) ein Schaltventil (110), das einen Zufuhrkanal (112), der mit einer ersten Druckquelle verbunden ist, einen Auslasskanal (113), der mit einem Bremszylinder eines Wagens verbunden ist, einen Steuerkanal (111), um den Bremssteuerdruck zu erhalten, und einen Auspuffkanal (114), über den der Bremszylinder ausgeblasen wird, aufweist, wobei das Schaltventil (110) in Reaktion auf den Bremssteuerdruck an dem Steuerkanal (111) einen korrespondierenden Druck für einen Bremszylinder zur Verfügung stellt, damit eine Betätigung der Bremsen des Wagens bewirkt wird;
    c) wobei das Betätigungsventil (210) dazu dient, den von dem Druckbegrenzungsventil (120) erhaltenen Druck zu dem Steuerkanal (111) des Schaltventils (110) zu leiten, wenn das Einsatzventil (210) geöffnet ist; und
    d) wobei das Freigabeventil (220) zum Ausblasen des Druckes, der von dem Steuerkanal (111) des Schaltventil (110) erhalten wurde, dient, wenn das Freigabeventil (220) geöffnet ist.
  3. Eine Wagensteuereinheit (10) zur Durchführung einer Bremslast-Berücksichtigungsfunktion an einem Wagen eines Schienenfahrzeugs nach Anspruch 1, in der das erste Rückführungssignal einen ersten Wandler (230) zum Umwandeln des Druckes an dem Steuerkanal (111) zu einem ersten Rückführungssignal aufweist, dass indikativ für den Druck an dem Steuerkanal (111) des Schaltventil (110) ist.
  4. Eine Wagensteuereinheit (10) zur Durchführung einer Bremslast-Berücksichtigungsfunktion nach Anspruch 2, in der das zweite Rückführungssignal einen zweiten Wandler (240) enthält, um den Druck, der von einem Kraftmesssystem erhalten wird, in ein zweites Rückführungssignal umzuformen, das indikativ für eine Last ist, die der Wagen trägt.
  5. Die Wagensteuereinheit (10) nach Anspruch 2, in der die Erteilungsmittel enthalten:
    a) ein Notfallrelais (350), das, wenn es unter Spannung gesetzt ist, eine Reihe von normalerweise offenen Kontakten (Arbeitstromkontakten) schließt und eine Reihe von normalerweise geschlossenen Kontakten (Ruhekontakten) öffnet, wobei jeder der Arbeitsstromkontakte im geschlossenen Zustand einen von vielen Leitungspfaden vervollständigt, der elektrisch die Steuereinheit mit den jeweiligen Einsatz- und Freigabeventilen (210) und (220) verbindet, wenn jeder der Ruhekontakte, wenn das Schließen fehlgeschlagen ist, während der Notfallschalter (350) spannungslos ist, anzeigt, dass ein Öffnen eines der korrespondierenden Arbeitsstromkontakte, der mechanisch damit zusammenwirkt, fehlgeschlagen ist; und
    b) einen Druckschalter (250), der (i) auf einen Abfall des Druckes in einer Zugleitung eines solchen Schienenfahrzeugs auf ein Notfallniveau durch Öffnen reagiert, damit der Notfall angezeigt wird und der Notfallschalter (350) spannungslos geschaltet wird, und (ii) auf ein Ansteigen des Druckes in der Zugleitung über das Notfallniveau durch Schließen reagiert, damit der notfallfreie Zustand angezeigt der Notfallschalter (350) unter Spannung gesetzt wird.
  6. Die Wagensteuereinheit (10) nach Anspruch 4, in der die Lastkompensationsmittel enthalten:
    a) eine erste Verstärkerschaltung (310) zur Konditionierung des ersten Rückführungssignals, das von dem ersten Wandler (230) erhalten wurde, um daraus ein erstes konditioniertes Signal zu erzeugen;
    b) eine zweite Verstärkerschaltung (320) zum Verstärken und Versetzen des zweiten Rückführungssignals, das von dem zweiten Wandler (240) erhalten wurde, um daraus ein zweites konditioniertes Signal zu produzieren, das für einen Vergleich mit dem ersten konditioniertes Signal geeignet ist;
    c) eine Nidrigniveau-Detektor-Treiber-Schaltung, um dem Einsatzventil (210) gemäß einem ersten Teil der Kriterien zu befehlen (i) zu schließen, wenn das erste konditionierte Signal gleich oder größer als das zweite konditionierte Signal ist und (ii) andererseits einen normalerweise offenen Ausgangszustand anzunehmen;
    d) eine Hochniveau-Detektor-Treiber-Schaltung (330), um dem Freigabeventil (220) gemäß einem zweiten Teil der vorbestimmten Kriterien zu befehlen (i) zu Öffnen, wenn das erste konditionierte Signal um zumindest einen vorgegebenen Betrag größer als das zweite konditionierte Signal ist, und (ii) andererseits einen normalerweise geschlossenen Ausgangszustand anzunehmen; und
    e) wobei die Detektor-Treiber-Schaltungen (330) und (340) den jeweiligen Einsatz- und Freigabeventilen (210) und (220) gemäß einem dritten Teil der vorbestimmten Kriterien befehlen, die Größe des Bremssteuerdrucks innerhalb eines Bereiches, der für leere Schienenfahrzeuge geeignet ist, zu halten.
  7. Die Wagensteuereinheit (10) nach Anspruch 2, weiter enthaltend einen dritten Wandler (260) zur Umformung des Druckes an dem Auslasskanal (113) des Schaltventils (110) zu einem dritten Rückführungssignal, das indikativ für einen Druck in dem Bremszylinder ist, für die Verwendung von zumindest der Steuereinheit.
  8. Die Wagensteuereinheit (10) nach Anspruch 1, weiter enthaltend Mittel zur Ausführung einer Radschlupfsteuerung während der Notbremsung durch wahlweises Wiederverbinden des elektronischen Steuergerätes (50) mit dem jeweiligen Einsatz- und Freigabeventil (210) und (220) während des Notfalls, so dass das elektronische Steuergerät (50) die jeweiligen Einsatz- und Freigabeventile (210) und (220) steuern kann, um den Schlupf der Räder des Wagens aufzuheben.
  9. Die Wagensteuereinheit (10) nach Anspruch 5, weiter enthaltend ein Radschlupfrelais (360), das, wenn es unter Spannung gesetzt ist, eine Verbindung zwischen dem Druckschalter (250) und dem Notfallrelais (350) trennt, um das Notfallrelais (350) zu erregen, wobei die Steuereinheit durch das Erregen des Radschlupfrelais (360) während des Notfalls es der Steuereinheit gestattet, die jeweiligen Einsatz- und Freigabeventile (210) und (220) zumindest für den Zweck, den Schlupf dieser Räder des Wagens zu steuern zu steuern.
  10. Die Wagensteuereinheit (10) nach Anspruch 5, in der ein Versagen eines jeden der Kontakte der Steuereinheit mitgeteilt wird.
  11. Die Wagensteuereinheit (10) nach Anspruch 5, in der die Lastkompensationsmittel enthalten:
    a) eine erste Verstärkerschaltung (310) zur Konditionierung des ersten Rückführungssignals, das von dem ersten Wandler (230) erhalten wird, um daraus ein erstes Zustandssignal zu erzeugen;
    b) eine zweite Verstärkerschaltung (320) zum Verstärken und Versetzen des zweiten Rückführungssignals, das von dem zweiten Wandler (240) erhalten wird, um davon ein zweites konditioniertes Signal zu erzeugen, das für einen Vergleich mit dem ersten konditionierten Signal geeignet ist;
    c) eine Nidrigniveau-Detektor-Treiber-Schaltung (340), um das Einsatzventil (210) gemäß einem ersten Teil der Kriterien (i) zu schließen, wenn das erste konditionierte Signal gleich und größer als das zweite konditionierte Signal ist und (ii) andererseits einen mit normalerweise offenem Ausgangszustand anzunehmen;
    d) eine Hochniveau-Detektor-Treiber-Schaltung (330), um das Freigabeventil (220) (i) um zumindest einen vorbestimmten Wert zu Öffnen, wenn das erste konditionierte Signal größer als das zweite konditionierte Signal ist, und (ii) andererseits einen normalerweise geschlossenen Ausgangszustand anzunehmen; wobei die Detektor-Treiber-Schaltungen (330) und (340) den jeweiligen Einsatz- und Freigabeventilen (210) und (220) befehlen, den Druck an dem Steuerkanal (111) in einem Bereich, der für leere Schienenfahrzeuge geeignet ist, zu halten, wenn das zweite konditionierte Signal anzeigt, dass der Wagen keine Last trägt; und
    e) Mittel, um den Detektor-Treiber-Schaltungen (330) und (340) die exklusive Steuerung über die jeweiligen Einsatz- und Freigabeventile (210) und (220) zu geben, wobei die Gebermittel durch den Betrieb des Druckschalters (250) gesteuert werden, so dass der Druckschalter (250), (i) wenn dieser geöffnet ist, die Gebermittel zwingt, das elektronische Steuergerät (50) von den jeweiligen Einsatz- und Freigabeventilen (210) und (220) zu trennen, damit den Detektor-Treiber-Schaltungen (330) und (340) die exklusive Steuerung über die jeweiligen Einsatz- und Freigabeventile (210) und (220) gegeben werden kann, wobei die Detektor-Treiber-Schaltungen (330) und (340) die Last, die von dem Wagen während der Notbremsung getragen wird, kompensieren und (ii) wenn dieser geschlossen ist, die Gebermittel befähigt, das elektronische Steuergerät (50) mit den jeweiligen Einsatz- und Freigabeventilen (210) und (220) zu verbinden, wodurch die Betriebsbremsung des Wagens normal gesteuert wird, die Detektor-Treiber-Schaltungen (330) und (340), aber dennoch in der Lage sind, die Last, die von dem Wagen während der Betriebsbremsung getragen wird, auszugleichen.
  12. Die Wagensteuereinheit (10) nach Anspruch 5, in der die Lastkompensationsmittel enthalten:
    a) eine erste Verstärkerschaltung (310) zur Konditionierung des ersten Rückführungssignals, das von dem ersten Wandler (230) erhalten wird, um daraus ein erstes konditioniertes Signal zu erzeugen;
    b) eine zweite Verstärkerschaltung (320) zum Verstärken und Versetzen des zweiten Rückführungssignals, das von dem zweiten Wandler (240) erhalten wurde, um daraus ein zweites konditioniertes Signal zu erzeugen, das für einen Vergleich mit dem ersten konditionierten Signal geeignet ist;
    c) einer Nidrigniveau-Detektor-Treiber-Schaltung, um das Einsatzventil (210) gemäß einem ersten Teil der Kriterien (i) zu schließen, wenn das erste konditionierte Signal gleich oder größer als das zweite konditionierte Signal ist, und (ii) andererseits einen normalerweise offenen Ausgangszustand anzunehmen;
    d) eine Hochniveau-Detektor-Treiber-Schaltung (330), um das Freigabeventil (220) gemäß einem zweiten Teil der Kriterien (i) um zumindest einen vorgegebenen Wert zu öffnen, wenn das erste konditionierte Signal größer ist als das zweite konditionierte Signal ist, und (ii) andererseits einen normalerweise geschlossenen Ausgangszustand anzunehmen;
    e) wobei die Niveau Detektor-Treiber-Schaltungen (330) und (340) den jeweiligen Einsatz- und Freigabeventilen (210) und (220) gemäß einem dritten Teil der Maßstäbe befehlen, die Größe des Bremssteuerdrucks in einem Bereich entsprechend dem für leere Schienenfahrzeuge zu halten.
  13. Die Wagensteuereinheit (10) nach Anspruch 6, in der ein Versagen eines jeden der Kontakte der Steuereinheit mitgeteilt wird.
  14. Die Wagensteuereinheit (10) nach Anspruch 2, weiter enthaltend einen dritten Wandler (260) zur Umformung des Druckes an dem Auslasskanal (113) des Schaltventil (110) zu einem dritten Rückführungssignal, das indikativ für einen Druck in dem Bremszylinder ist und zur Verwendung durch zumindest die Steuereinheit dient.
  15. Die Wagensteuereinheit (10) nach Anspruch 6, weiter enthaltend einen dritten Wandler (260) zur Umformung des Druckes an dem Auslasskanal (113) des Schaltventil (110) zu einem dritten Rückführungssignal, das indikativ für einen Druck in dem Bremszylinder zur Verwendung durch zumindest die Steuereinheit ist.
  16. Die Wagensteuereinheit (10) nach Anspruch 6, in der ein Versagen eines jeden der Kontakte der Steuereinheit mitgeteilt wird.
  17. Die Wagensteuereinheit (10) nach Anspruch 11, weiter enthaltend einen dritten Wandler (260) zur Umformung des Druckes an dem Auslasskanal (113) des Schaltventil (110) zu einem dritten Rückführungssignal, das indikativ für einen Druck in dem Bremszylinder zur Verwendung durch zumindest die Steuereinheit ist.
  18. Die Wagensteuereinheit (10) nach Anspruch 11, in der ein Versagen eines jeden der Kontakte der Steuereinheit mitgeteilt wird.
  19. Die Wagensteuereinheit (10) nach Anspruch 11, in der die Gebermittel einen Notfallschalter aufweisen, der, wenn er durch Schließen des Druckschalters (250) unter Spannung gesetzt wird, eine Reihe von Arbeitstromkontakten schließt und eine Reihe von Ruhekontakten öffnet, und jeder der Arbeitstromkontakte, wenn er geschlossen ist, einen leitenden Pfad vervollständigt, der das elektronische Steuergerät (50) mit den jeweiligen Anwendungs- und Verminderungsventil (210) und (220) elektrisch verbindet, und jeder der Ruhekontakte, wenn die Schließung, während der Notschalter spannungslos, fehlschlägt, anzeigt, dass bei einem korrespondierenden Arbeitsstromkontakt, der mechanisch damit zusammenwirkt, das Öffnen versagt hat.
  20. Die Wagensteuereinheit (10) nach Anspruch 9, weiter enthaltend ein Radschlupfrelais (360), das, wenn es unter Spannung gesetzt ist, eine Verbindung zwischen dem Druckschalter (250) und dem Notfallschalter (350) trennt, um den Notfallschalter (350) zu erregen, und das elektronische Steuergerät (50) es während eines Notfalls durch das Erregen des Radschlupfrelais (360) dem elektronischen Steuergerät erlaubt, die jeweiligen Einsatz- und Freigabeventile (210) und (220) zu steuern, um zumindest den Schlupf der Räder des Wagens zu steuern.
  21. Die Wagensteuereinheit (10) nach Anspruch 20, in der ein Versagen eines jeden Kontakts dem elektronischen Steuergerät mitgeteilt wird.
EP98116306A 1998-04-09 1998-08-28 Elektronische Notbremslast-Berücksichtigungseinrichtung Expired - Lifetime EP0949132B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/057,673 US6120109A (en) 1998-04-09 1998-04-09 Electronic emergency brake load weigh device
US57673 1998-04-09

Publications (3)

Publication Number Publication Date
EP0949132A2 EP0949132A2 (de) 1999-10-13
EP0949132A3 EP0949132A3 (de) 2001-11-14
EP0949132B1 true EP0949132B1 (de) 2003-11-12

Family

ID=22012050

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98116306A Expired - Lifetime EP0949132B1 (de) 1998-04-09 1998-08-28 Elektronische Notbremslast-Berücksichtigungseinrichtung

Country Status (8)

Country Link
US (2) US6120109A (de)
EP (1) EP0949132B1 (de)
AU (1) AU757673B2 (de)
BR (1) BR9803844B1 (de)
CA (2) CA2363462C (de)
DE (1) DE69819680T2 (de)
HK (1) HK1025079A1 (de)
ZA (1) ZA987502B (de)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9823203D0 (en) * 1998-10-24 1998-12-16 Lucas Ind Plc Parking-braking in vehicles
US6950732B2 (en) * 2000-09-15 2005-09-27 New York Air Brake Corproation Car control device electronics
US6520599B2 (en) * 2001-05-05 2003-02-18 Westinghouse Air Brake Technologies Corporation Four port variable load valve weigh system for a brake pipe controlled brake system
US6648424B2 (en) * 2002-03-29 2003-11-18 New York Air Brake Corporation Brake system with graduated empty/load
US20040119331A1 (en) * 2002-12-20 2004-06-24 Knorr Brake Corporation Electropneumatic brake control system
US20040124699A1 (en) * 2002-12-26 2004-07-01 Westinghouse Air Brake Technologies Corporation Dual feedback, high accuracy brake cylinder pressure control
US6820944B2 (en) * 2003-01-08 2004-11-23 Westinghouse Air Brake Technologies Corporation Digital multi-point electronic load weigh system
DE102004024462A1 (de) * 2004-05-14 2005-12-08 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Elektropneumatische Bremseinrichtung eines Schienenfahrzeugs mit durchgängigem Regelbereich
BRPI0617087A2 (pt) * 2005-09-16 2018-09-04 Wabtec Holding Corp módulo de garantia de freio de emergência pneumático
DE102008012700B3 (de) * 2008-03-05 2009-06-04 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Elektropneumatische Bremseinrichtung mit lastkorrigierter Bremsdruckregelung
US8000873B2 (en) * 2008-05-12 2011-08-16 Wabtec Holding Corp. Braking system
JP4762365B2 (ja) * 2008-10-21 2011-08-31 三菱電機株式会社 鉄道車両用ブレーキ制御装置
JP4638959B1 (ja) * 2010-01-21 2011-02-23 三菱電機株式会社 ブレーキ制御装置およびブレーキ制御方法
DE102014107402B4 (de) * 2014-05-26 2021-11-04 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Schienenfahrzeugbremssystem mit einer Konditionierungseinrichtung, Konditionierungseinrichtung und Verfahren zum Betreiben einer Konditionierungseinrichtung
EP3148853B1 (de) * 2014-05-28 2018-04-11 Faiveley Transport Italia S.r.l. Elektropneumatisches bremssystem für ein schienenfahrzeug
US9701323B2 (en) 2015-04-06 2017-07-11 Bedloe Industries Llc Railcar coupler
ITUB20152716A1 (it) * 2015-07-31 2017-01-31 Faiveley Transport Italia Spa Apparecchiatura elettropneumatica di controllo della frenatura per un veicolo ferroviario.
US11014585B2 (en) 2017-11-16 2021-05-25 Westinghouse Air Brake Technologies Corporation ECP overlay system for W-type triple valve
US11027756B2 (en) 2017-11-16 2021-06-08 Westinghouse Air Brake Technologies Corporation ECP overlay system for UIC-type distributor valve
US10994756B2 (en) 2017-11-16 2021-05-04 Westinghouse Air Brake Technologies Corporation Electronically controlled brake overlay system for distributor valve
IT201800004956A1 (it) * 2018-04-27 2019-10-27 Sistema di controllo elettro-pneumatico della frenatura di emergenza e di servizio, particolarmente per almeno un veicolo ferroviario.
CN114761291B (zh) * 2019-12-10 2024-06-14 沃尔沃卡车集团 冗余制动设备系统的控制

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US551765A (en) * 1895-12-24 Hydraulic elevator
US3059974A (en) * 1956-06-22 1962-10-23 Pullman Standard Car Mfg Co Brake system with fluid pressure spring control
US3653728A (en) * 1970-04-28 1972-04-04 Westinghouse Air Brake Co Brake control system utilizing fluidic logic elements
US3730597A (en) * 1971-07-16 1973-05-01 Gen Signal Corp Variable load brake control apparatus
DE2801778A1 (de) * 1978-01-17 1979-07-19 Knorr Bremse Gmbh Elektro-pneumatische bremse, insbesondere fuer schienenfahrzeuge
US4402047A (en) * 1980-12-16 1983-08-30 General Signal Corporation Computerized brake control system
US4453777A (en) * 1981-01-14 1984-06-12 General Signal Corporation Relay valve assembly
US4671576A (en) * 1985-03-06 1987-06-09 Wabco Westinghouse (Railway Brake) (Pty.) Ltd. Deceleration control system
US4904027A (en) * 1988-10-03 1990-02-27 American Standard Inc. Digital air brake control system
EP0586203B1 (de) * 1992-09-03 1997-01-02 Grau Limited Bremsanlagen
US5586813A (en) * 1995-04-27 1996-12-24 Westinghouse Air Brake Company Electro-pneumatic freight brake control system
US5551765A (en) * 1995-06-22 1996-09-03 Westinghouse Air Brake Company Electric brake control system and method for railroad car
US5887953A (en) * 1997-01-28 1999-03-30 Westinghouse Air Brake Company Dual pneumatic trainline control unit
US5735579A (en) * 1997-01-28 1998-04-07 Westinghouse Air Brake Company Brake assurance module
US5788339A (en) * 1997-01-28 1998-08-04 Westinghouse Air Brake Company Universal pneumatic brake control unit

Also Published As

Publication number Publication date
EP0949132A2 (de) 1999-10-13
AU8791198A (en) 1999-10-21
CA2363462A1 (en) 1999-10-09
DE69819680D1 (de) 2003-12-18
CA2239998A1 (en) 1999-10-09
ZA987502B (en) 1999-02-23
US6095621A (en) 2000-08-01
CA2363462C (en) 2002-12-10
CA2239998C (en) 2002-02-19
US6120109A (en) 2000-09-19
AU757673B2 (en) 2003-02-27
HK1025079A1 (en) 2000-11-03
EP0949132A3 (de) 2001-11-14
BR9803844A (pt) 2000-10-24
BR9803844B1 (pt) 2011-03-09
DE69819680T2 (de) 2004-09-16

Similar Documents

Publication Publication Date Title
EP0949132B1 (de) Elektronische Notbremslast-Berücksichtigungseinrichtung
US5791744A (en) Pneumatic trainline control unit
AU720584B2 (en) Brake pipe sensing unit
EP0855321B1 (de) Kontroll-Einheit einer pneumatischen Doppelt-Bremsleitung
US6520599B2 (en) Four port variable load valve weigh system for a brake pipe controlled brake system
US5788339A (en) Universal pneumatic brake control unit
US4651071A (en) Brake control system for supplementing electric brake with friction brake
US6820944B2 (en) Digital multi-point electronic load weigh system
US5735579A (en) Brake assurance module
US5700065A (en) Penalty brake scheme for straight air pipe brake control equipment
US5746485A (en) Penalty brake circuit for straight air pipe brake control equipment
US5700066A (en) Penalty brake design for straight air pipe brake control equipment

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Kind code of ref document: A2

Designated state(s): DE FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020408

AKX Designation fees paid

Free format text: DE FR GB IT

17Q First examination report despatched

Effective date: 20020705

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20031112

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69819680

Country of ref document: DE

Date of ref document: 20031218

Kind code of ref document: P

ET Fr: translation filed
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1025079

Country of ref document: HK

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040813

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070823

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070822

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070808

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080828

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080901

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080828