EP0936477B1 - Auswertung von Stoneleywellen und Formationsparametern - Google Patents

Auswertung von Stoneleywellen und Formationsparametern Download PDF

Info

Publication number
EP0936477B1
EP0936477B1 EP99301183A EP99301183A EP0936477B1 EP 0936477 B1 EP0936477 B1 EP 0936477B1 EP 99301183 A EP99301183 A EP 99301183A EP 99301183 A EP99301183 A EP 99301183A EP 0936477 B1 EP0936477 B1 EP 0936477B1
Authority
EP
European Patent Office
Prior art keywords
borehole
fluid
formation
stoneley
permeability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99301183A
Other languages
English (en)
French (fr)
Other versions
EP0936477A2 (de
EP0936477A3 (de
Inventor
Wilson C. Chin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Halliburton Energy Services Inc
Original Assignee
Halliburton Energy Services Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Halliburton Energy Services Inc filed Critical Halliburton Energy Services Inc
Publication of EP0936477A2 publication Critical patent/EP0936477A2/de
Publication of EP0936477A3 publication Critical patent/EP0936477A3/de
Application granted granted Critical
Publication of EP0936477B1 publication Critical patent/EP0936477B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • G01V1/44Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging using generators and receivers in the same well
    • G01V1/48Processing data
    • G01V1/50Analysing data

Definitions

  • the present invention relates to a method of and apparatus for evaluating a parameter of a sub-surface formation using Stoneley waves, for determining the properties of earth formations, such as permeability, through evaluation of Stoneley wave data.
  • Interfacial waves are waveforms generated at fluid interfaces.
  • the interface can be that between two fluids, as in the interface between two liquids; or it can be between a fluid and a solid, as in the case of Stoneley waves.
  • Stoneley waves will traverse the interface between a generally compressible fluid column in a borehole and the slightly elastic sidewalls defining that borehole.
  • Stoneley waves have long been recognized in well logging and seismic surveying, but typically have been regarded as undesirable manifestations which have interfered with obtaining sonic speed data associated with pressure and shear waves. Many conventional logging systems have sought to eliminate, or compensate for, the detection of Stoneley waves in evaluating formation parameters.
  • US-A-4 813 028 describes an acoustic well-logging method and apparatus that utilises a rare earth acoustic transducer to provide low frequency acoustic energy within the borehole.
  • a set ofreceivers is provided within the borehole and several times each second a particular different transducer and receiver combination is selected.
  • the receivers thus provide a set of waveforms from which Stoneley wave attenuation and shear wave velocity measurements are obtained.
  • the measured values of Stoneley wave attenuation and shear wave velocity are then combined with other known measured values of borehole characteristics to enable the formation permeability to be determined.
  • WO 93 075 13 describes methods and apparatus for discrete frequency tube-wave logging of boreholes.
  • the present invention provides a method of evaluating a parameter of a sub-surface formation as set out in claim 1.
  • the present invention provides apparatus for evaluating a parameter ofa sub-surface formation as set out in claim 19.
  • An embodiment of the present invention provides a method and apparatus for evaluating formation parameters in response to Stoneley wave data that are less complex than previously known analysis, and different approaches are provided which facilitate alternative methods of determining formation parameters.
  • parameters of a sub-surface formation are evaluated through use ofmeasurements of Stoneley wave propagation from an energy source, preferably measured at at least two spaced locations within the wellbore.
  • the Stoneley wave propagation data will be correlated with parameters ofthe formation and ofthe fluids within which the Stoneley waves are propagating. Analysis maybe made in reference to either Stoneley wave amplitude or phase velocity.
  • the method includes the defining of a single velocity parameter which is functionally representative of sound speed within the fluid column within the borehole, adjusted for the effects ofsidewall elasticity.
  • a predetermined relationship is established between the velocity parameter, the formation parameters and the fluid parameters to define a single lithology parameter which maybe utilized to determine permeability, thereby minimizing the number of variables which must be considered.
  • Methods in accordance with the present invention utilize measurements of at least two Stoneley waveforms obtained at spaced receiver stations.
  • energy will be transmitted from a logging tool transmitter within an earth borehole into the fluid column within the borehole, and will be received at two or more spaced receiver stations within the logging tool in a manner known to those skilled in the art.
  • the energy input will preferably be input to the borehole at a frequency within a range of approximately 500 Hz - 2KHz, with frequencies toward the lower end of this range being preferred.
  • the multiple receivers within the logging tool should have either matched responses or known responses to facilitate compensation to achieve response equalization.
  • receivers can either be manufactured and selected to provide two receivers which yield essentially identical responses to the same energy stimulus (i.e., "matched receivers"); or the response characteristics of the receivers may be evaluated such that an actual measured response may be adjusted (such as through amplification, attenuation, etc.) to yield a compensated waveform, or numerical representation thereof, which matches the responses (either actual or compensated) of other receivers.
  • known responses of individual receivers may be normalized to a selected reference response curve.
  • the present invention facilitates evaluating the permeability of a formation in response to the sound speed in the fluid column within the borehole relative to the time differential between receipt of a Stoneley wave at each of the two receivers.
  • the velocity parameter (V) is representative of the sound speed within the mud column, and takes into consideration the elasticity of the rock which contains the column. As those skilled in the art will recognize, if G shear were infinite, then the velocity parameter (V) would reduce to the mud sound speed ( B mud ⁇ mud ) . However, since G shear will always be finite, the velocity parameter always will be less than the mud sound speed. Velocity parameter (V), therefore, represents the mud sonic speed as a function of solid shear modulus.
  • a first trace 10a represents the receiver pressure at a receiver closest to the energy source generating the wave.
  • trace 10a represents the receiver pressure at a receiver closest to the energy source generating the wave.
  • the center energy remains essentially constant in time.
  • the energy in the Stoneley wave redistributes from the back of the wave to the front of the wave as the wave travels in time.
  • one method for determining permeability in accordance with the present invention relies upon the determining of Stoneley wave amplitudes at a plurality of receivers.
  • the filtering to isolate Stoneley waves can potentially lend to erroneous amplitude determinations.
  • the depicted energy redistribution may be utilized to conform accurate filtering, and thus accurate Stoneley wave data.
  • FIGS 2-10 A-B therein are depicted exemplary synthetic time domain Stoneley waveforms generated across a range of assumed permeabilities, with all other formation and fluid properties fixed.
  • the waveforms of Figures 1 and 2-10 A-B were generated utilizing a computer program developed by the M.I.T. Full Waveform Acoustic Logging Consortium which solves the coupled elastic and fluid equations describing general Stoneley waves.
  • the program is essentially run as a "black box" model. Prior to the present invention, this model is believed to generally represent the state of the art in permeability analysis through Stoneley waveforms.
  • the computer program itself is used as part of a numerically intensive effort to determine permeability.
  • the present invention is analytically based.
  • the waveforms generated by the program are therefore depicted here to demonstrate the results obtained through application of the inventor's analytical methods.
  • the "predicted kdc” is the permeability "k” which is predicted according to equation 1.
  • the model of equation 1 assumes a monochromatic frequency, whereas the source utilized to generate the synthetic waveforms is a transient excitation about a given center frequency. For purposes of the modeling reported in Table 1, the center frequency was assumed to be a monochromatic frequency. It is believed that improved filtering would yield a further improved correlation.
  • model of equation 1 is based upon the dimension of a borehole radius without a tool therein.
  • the borehole radius was adjusted to utilize an "effective radius" which subtracts out the cross-sectional area occupied by a conventional logging tool.
  • Parameter ⁇ incorporates the modified mud sonic speed (V) and all other fluid, rock and geometrical effects. Parameter ⁇ , therefore, controls both wave energy dispersion and dissipation, and is proportional to the square root of permeability. Because this parameter reduces the number of dependent parameters to one (from eight), the parameter facilitates solution for formation characteristics such as permeability in a logging environment. Permeability is not the only parameter that can be determined using the present approach. Whenever any seven of the eight listed parameters are available, the remaining single parameter can be predicted. Such solutions may be obtained through multiple methods.
  • the Stoneley waves may be studied in terms of amplitude.
  • E (x, t) is the energy density
  • x 2 (t) represent ray trajectories
  • x and t denote propagation coordinate and time, respectively
  • the entire right side of the equation may be evaluated using data filtered to pass only Stoneley waves.
  • the relative loss of total energy (d ⁇ / ⁇ ) can be obtained from any two receivers separated by a travel time of ⁇ t.
  • any term in the right side of equation 3 which cannot otherwise be supplied from experimental data may be solved for when the remaining terms are known.
  • this amplitude measurement approach is dependent upon direct measurement of wave amplitudes at each receiver, and upon the filtering to remove non-Stoneley waves. This approach may be satisfactory for many applications.
  • an alternative approach has been discovered which facilitates the determination of permeability through reference to Stoneley wave phase velocity.
  • the spectral amplitudes of the waveforms may be compared frequency by frequency to facilitate a fit to the regression of equation 12.
  • parameter ⁇ may be calculated and used, as shown previously, to obtain permeability.
  • the use of a single constant, or of a single parameter ⁇ as a constant facilitates a new methodology for correlating logging data wherein the multiple physical variables may be correlated with one another through self-consistent acoustic arguments.
  • the effects of differing formations may be readily modeled by altering the mean current speed in the water (U). Changes in the gravitational acceleration g, intended to model different ⁇ 's, are accomplished by acceleration of the test tank facility in an upward or downward vertical direction.
  • a wave tank on a vertically movable platform 16 facilitates alteration of the acceleration due to gravity, and similarly facilitates observation and measurements of the elevation of the fluid waves.
  • This vertical elevation of the water waves will be analogous to the physical radial displacement of Stoneley waves in a cylindrical borehole, and the alteration of the acceleration due to gravity along a generally vertical axis 18 will facilitate adjustment of the lumped parameter Stoneley ⁇ .
  • Figure 12 illustrates very diagrammatically the collection of Stoneley wave data for use in a method in accordance with the present invention.
  • a logging tool 1 is positioned within a borehole 2 formed within the surrounding geological formation 3.
  • the logging tool 1 will be supported within the borehole 2 using a standard borehole support rig.
  • the rig has not been shown in Figure 12.
  • the logging tool 1 carries a logging tool transmitter 4 for generating acoustic energy within a frequency range of approximately 500Hz to 2kHz with frequencies toward the lower end of this range being preferred.
  • the logging tool also carries multiple receivers spaced apart along its length. In the example shown in Figure 12, two receivers R1 and R2 are provided. As noted above, the receivers are preferably matched so as to provide the same response to the same energy stimulus.
  • Each of the receivers R1 and R2 is coupled via conventional means, for example cables C as illustrated diagrammatically in Figure 12, to a data logger 5 of known form.
  • the data logger may be, for example, a personal computer or the like which logs data received from the receivers R1 and R2 onto, for example, a removable tape drive of a standard tape drive. It will, of course, be appreciated that any known form of data logging system and data storage device may be used.
  • Stoneley wave data received by the receivers R1 and R2 may be logged for various depths within the borehole 2 by moving the logging tool up and down the borehole 2.
  • Figure 13 illustrates diagrammatically apparatus for processing Stoneley wave data logged by the data logger 5.
  • the apparatus comprises a processor unit 10 having a data store 11.
  • the processor unit 10 will comprise a personal computer, a supercomputer or a parallel processing computer and the data store unit 11 may consist of a hard disc or an array of hard disc drives as is known in the art.
  • the input arrangement 12 comprises a computer terminal connected to the processor unit 10 by a remote communications link RCL which may be of known form.
  • the link may be via an internet or intranet connection or a local area or wide area network (LAN or WAN).
  • the terminal 12 has a processor unit 13 including a motherboard carrying the microprocessor, ROM and RAM as is known in the art.
  • the processor unit 13 is coupled to a display 14, printer 15, input device in the form of a keyboard 16 and data storage devices, as shown a hard disc drive 17 and a tape drive 18 arranged to receive a tape TDD from the data logger 5 carrying Stoneley wave data logged during use of the logging tool 1.
  • Stoneley wave data received by the input device 12 via the tape drive 18 is processed by the processor unit 10 in accordance with any one of the methods described above and the resultant processed data is returned to the input device 12 for display on the display 14 and/or print out by the printer 15 so providing the user of the apparatus with information relating to the properties of the earth formation in which the borehole was formed as described above.
  • the processor unit 12 may be programmed to carry out the methods described above by use of the computer terminal 12 with the computer program code being supplied to the processor unit 10 via the communications link RCL as a signal carrying processor implementable instructions for controlling the processor unit or apparatus to carry out a method as described above.
  • an aspect of the present invention provides an electrical signal carrying processor implementable instructions for controlling a processor apparatus to carry out the method as hereinbefore described.
  • the computer program code may be supplied to the processor unit 10 on a storage medium insertable into a drive connected to the processor unit, for example the storage medium may be a tape TDD insertable into the tape drive TD or may be supplied on an exchangeable or recordable hard disc which can be inserted into the data store.
  • An aspect of the present invention thus provides a storage medium storing processor implementable instructions for controlling a processor apparatus to carry out the method as hereinbefore described.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Claims (24)

  1. Verfahren zum Auswerten eines Parameters einer Sub-Oberflächenformation, wobei
    Messungen einer Stoneley-Wellenausbreitung in einer Fluidsäule innerhalb eines Bohrlochs, das die Formation durchdringt, bereitgestellt werden, und
    die Stoneley-Wellenausbreitungsdaten mit Parametern der Formation und Parametern der Fluidsäule innerhalb des Bohrlochs korreliert werden, um einen eindimensionalen Parameter zu definieren, der Erd-, Fluid- und Bohrlochgeometrie-Eigenschaften darstellt, wodurch es möglich wird, einen Wert für eine einzelne der Erd-, Fluid- und Bohrlochgeometrie-Eigenschaften aus dem bestimmten Wert für den eindimensionalen Parameter und übergebenen Werten für die anderen der Erd-, Fluid- und Bohrlochgeometrie-Eigenschaften zu bestimmen.
  2. Verfahren nach Anspruch 1, wobei die Stoneley-Wellenausbreitungsdaten, die Formationsparameter und die Fluidparameter korreliert werden, um die Permeabilität der Formation auszuwerten.
  3. Verfahren nach Anspruch 2, wobei die Messungen der Stoneley-Wellenausbreitung die Amplitude und/oder die Phasengeschwindigkeit der Stoneley-Wellen umfassen, und die Permeabilität gemäß der Amplitude und/oder der Phasengeschwindigkeit der Stoneley-Wellen ausgewertet wird.
  4. Verfahren nach einem der vorstehenden Ansprüche, wobei die Messungen der Stoneley-Wellenausbreitung aus Stoneley-Wellendaten bereitgestellt werden, die an zwei in Abstand voneinander befindlichen Empfangsstationen in Reaktion auf die Einwirkung von Energie auf das Fluid innerhalb des Bohrlochs empfangen werden, und der eindimensionale Parameter einen einzelnen Geschwindigkeitsparameter enthält, der die Schallgeschwindigkeit innerhalb einer Fluidsäule darstellt und bezüglich der Seitenwandelastizität korrigiert ist.
  5. Verfahren nach Anspruch 4, wobei ferner ein Indikator des einzelnen Geschwindigkeitsparameters funktionsmäßig in Bezug zu empirisch bestimmten Parametern der Formation und des Fluids in dem Bohrloch gesetzt werden, um den eindimensionalen Parameter zu definieren, und der eindimensionale Parameter verwendet wird, um die Permeabilität der Formation zu bestimmen.
  6. Verfahren nach Anspruch 5, wobei die Formationsparameter und die Fluidparameter funktionsmäßig zueinander durch die folgende Relation in Bezug gesetzt werden: β ( ρ mud V 5 / 2 / R well ) ( k ϕ / ( 2 μ oil B oil ) ) > 0
    Figure imgb0019

    wobei
    β den eindimensionalen Parameter,
    ρmud die Dichte des Schlamms,
    Rwell den Lochradius,
    k die Formationspermeabilität,
    ϕ die Porösität der Formation,
    µoil die Poren-Fluidviskosität,
    Boil das Poren-Fluid-Massenmodul, und
    V einen durch die Relation V = 1 / ρ mud ( 1 / B mud + 1 / G shear )
    Figure imgb0020
    definierten Geschwindigkeitsparameter darstellt, wobei
    Bmud das Massenmodul des Bohrlochschlamms oder Fluids, und
    Gshear das Festkörper-Schermodul darstellt.
  7. Verfahren nach Anspruch 6, wobei die Permeabilität durch die Relation k = 2 μ oil ρ oil c oil 2 R well 2 { ( Σ c Σ d ) / Σ c } 2 ( V / Δ t ) 2 ρ mud 2 V 5 ϕ { 8 π V f 0 ( 2 V / Δ t ) ( Σ c Σ d ) / Σ c }
    Figure imgb0021

    bestimmt wird, wobei
    ρoil die Dichte des Fluids innerhalb des Bohrlochs,
    coil die Schallgeschwindigkeit in dem Fluid innerhalb des Bohrlochs,
    Σc die Gesamtenergie der Wellenform von einer der zwei in Abstand voneinander befindlichen Empfangsstationen, die näher an der Energieeinwirkungsstelle liegt als die zweite der zwei in Abstand voneinander befindlichen Empfangsstationen,
    Σd die Gesamtenergie der Wellenform von der zweiten Empfangsstation,
    f0 die mittlere Frequenz (Hz), auf der der Transmitter betrieben wird, und
    Δt den Abstand zwischen den zwei Empfängern Drecvr geteilt durch die Geschwindigkeit V, d.h. Δt = Drecvr/V, darstellt.
  8. Verfahren nach Anspruch 1, wobei beim Bereitstellen der Messungen der Stoneley-Wellenausbreitung in der Fluidsäule die Amplitude der Stoneley-Wellen an mehreren in Abstand voneinander befindlichen Stellen innerhalb des Bohrlochs in Reaktion auf ein Schallsignal bestimmt wird, das in das Bohrloch eingeleitet wird, und wobei der eindimensionale Parameter einen Ausdruck aufweist, der die Geschwindigkeit der Schallenergie innerhalb der Fluidsäule angibt, wobei der Ausdruck ein einzelner Geschwindigkeitsparameter ist, der funktionsmäßig die Ausbreitungsgeschwindigkeit des Schallsignals in der Fluidsäule innerhalb des Bohrlochs darstellt, wenn die Ausbreitungsgeschwindigkeit durch die Elastizität der Erdformationen beeinflußt wird, die das Bohrloch eingrenzen und die Fluidsäule enthalten.
  9. Verfahren nach Anspruch 8, wobei die durch die Korrelation bestimmte Eigenschaft in der Formationspermeabilität besteht, und der eindimensionale Parameter proportional zur Quadratwurzel der Permeabilität ist.
  10. Verfahren nach Anspruch 1, das ferner das Einwirken von Energie auf die Fluidsäule umfaßt, wobei die Messungen der Stoneley-Wellenausbreitung vorgenommen werden, indem eine Eigenschaft der durch die eingewirkte Energie erzeugten Stoneley-Wellen innerhalb des Bohrlochs bestimmt wird, und wobei es durch die Korrelation möglich wird, die Permeabilität der Erdformationen gemäß der bestimmten Stoneley-Welleneigenschaft zu modellieren.
  11. Verfahren nach Anspruch 10, wobei die bestimmte Stoneley-Welleneigenschaft die Phasengeschwindigkeit der Stoneley-Wellen ist.
  12. Verfahren nach Anspruch 10, wobei die bestimmte Stoneley-Welleneigenschaft die Amplitude der Stoneley-Wellen ist.
  13. Verfahren nach Anspruch 10, wobei der eindimensionale Parameter funktionsmäßig auf einen der folgenden anderen Parametern bezogen ist:
    die Dichte des Fluids (ρmud), das Poren-Fluidmodul (Boil), den Radius des Bohrlochs (Rwell), die Felsporösität (ϕ), die Poren-Fluidviskosität (µoil), und das Festkörper-Schermodul (Gshear).
  14. Verfahren nach Anspruch 13, wobei die funktionsmäßig bezogenen Parameter ferner einen Parameter umfassen, der die Schallgeschwindigkeit innerhalb des Fluids darstellt.
  15. Verfahren nach Anspruch 14, wobei der die Schallgeschwindigkeit innerhalb des Fluids darstellende Parameter die Effekte der Bohrlochseitenwandelastizität auf die Schallgeschwindigkeit widerspiegelt.
  16. Verfahren nach Anspruch 1, wobei der eindimensionale Parameter ferner gemäß der Dämpfung der Stoneley-Wellen aufgrund der Permeabilität der das Bohrloch eingrenzenden Formationen bestimmt wird.
  17. Verfahren nach Anspruch 1, wobei der eindimensionale Parameter proportional zur Quadratwurzel der Permeabilität ist.
  18. Verfahren nach Anspruch 14, wobei der eindimensionale Parameter funktionsmäßig Variationen im Festkörper-Schermodul der das Bohrloch eingrenzenden Formation darstellt.
  19. Gerät zum Auswerten eines Parameters einer Sub-Oberflächenformation, mit
    einer Empfangseinrichtung zum Empfangen von Messungen einer Stoneley-Wellenausbreitung in einer Fluidsäule innerhalb eines die Formation durchdringenden Bohrlochs, und
    einer Korrelationseinrichtung zum Korrelieren der empfangenen Stoneley-Wellenausbreitungsdaten mit Parametern der Formation und Parametern der Fluidsäule innerhalb des Bohrlochs, um einen eindimensionalen Parameter zu definieren, der Erd-, Fluid- und Bohrlochgeometrie-Eigenschaften darstellt, wodurch es möglich ist, einen Wert für eine einzelne dieser Erd-, Fluid- und Bohrlochgeometrie-Eigenschaften aus dem bestimmten Wert des eindimensionalen Parameters und übergebenen Werten der anderen dieser Erd-, Fluid- und Bohrlochgeometrie-Eigenschaften zu bestimmen.
  20. Gerät nach Anspruch 19, wobei die Empfangseinrichtung dazu ausgelegt ist, Meßdaten in Bezug auf die an zwei in Abstand voneinander befindlichen Empfängern innerhalb des Bohrlochs erzeugten Stoneley-Wellendaten zu empfangen, und
    wobei die Korrelationseinrichtung dazu ausgelegt ist, die Korrelation zum Bestimmen der Permeabilität der Formation unter Verwendung des eindimensionalen Parameters durchzuführen.
  21. Gerät nach Anspruch 19, wobei die Empfangseinrichtung eine Einrichtung zum Bestimmen der Amplitude der Stoneley-Wellen an mehreren in Abstand voneinander befindlichen Stellen innerhalb eines die Erdformation durchdringenden Bohrlochs aus Daten zu bestimmen, die sich auf Stoneley-Wellen-Daten beziehen, die durch zwei in Abstand voneinander innerhalb des Bohrlochs befindliche Empfänger empfangen wurden, und
    wobei die Korrelationseinrichtung eine Einrichtung zum Definieren des eindimensionalen Parameters als einen einzelnen Geschwindigkeitsparameter aufweist, der funktionsmäßig die Schallgeschwindigkeit in der Fluidsäule innerhalb des Bohrlochs darstellt, wenn die Schallgeschwindigkeit durch die Elastizität der das Bohrloch eingrenzenden und die Fluidsäule enthaltenden Erdformationen beeinflußt wird.
  22. Gerät nach Anspruch 19, wobei die Korrelationseinrichtung aufweist:
    eine Einrichtung zum Bestimmen einer Eigenschaft der Stoneley-Wellen,
    eine Einrichtung zum Bestimmen eines einzelnen Parameters, der Dispersion und Dissipation der Stoneley-Wellen widerspiegelt, als den eindimensionalen Parameter, und
    eine Einrichtung zum Modellieren der Permeabilität der Formation gemäß der ermittelten Stoneley-Welleneigenschaft.
  23. Speichermedium, das prozessorimplementierbare Befehle zum Steuern eines Prozessor-Geräts aufweist, um das Verfahren nach einem der Ansprüche 1 bis 18 auszuführen.
  24. Elektrisches Signal, das prozessorimplementierbare Befehle zum Steuern eines Prozessor-Geräts trägt, um das Verfahren nach einem der Ansprüche 1 bis 18 auszuführen.
EP99301183A 1998-02-17 1999-02-17 Auswertung von Stoneleywellen und Formationsparametern Expired - Lifetime EP0936477B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/024,325 US6327538B1 (en) 1998-02-17 1998-02-17 Method and apparatus for evaluating stoneley waves, and for determining formation parameters in response thereto
US24325 1998-02-17

Publications (3)

Publication Number Publication Date
EP0936477A2 EP0936477A2 (de) 1999-08-18
EP0936477A3 EP0936477A3 (de) 2000-12-13
EP0936477B1 true EP0936477B1 (de) 2006-05-03

Family

ID=21820012

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99301183A Expired - Lifetime EP0936477B1 (de) 1998-02-17 1999-02-17 Auswertung von Stoneleywellen und Formationsparametern

Country Status (5)

Country Link
US (1) US6327538B1 (de)
EP (1) EP0936477B1 (de)
AT (1) ATE325355T1 (de)
DE (1) DE69931093D1 (de)
NO (1) NO990615L (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7463027B2 (en) 2003-05-02 2008-12-09 Halliburton Energy Services, Inc. Systems and methods for deep-looking NMR logging
WO2005017560A2 (en) * 2003-08-15 2005-02-24 The Regents Of The University Of California Tube-wave monitoring of underground fluid reservoirs
CA2852097A1 (en) 2003-10-03 2005-04-21 Halliburton Energy Services, Inc. System and methods for t1-based logging
WO2005036338A2 (en) * 2003-10-04 2005-04-21 Halliburton Energy Services Group System and methods for upscaling petrophysical data
US7660196B2 (en) * 2004-05-17 2010-02-09 Schlumberger Technology Corporation Methods for processing dispersive acoustic waveforms
US6957572B1 (en) 2004-06-21 2005-10-25 Schlumberger Technology Corporation Apparatus and methods for measuring mud slowness in a borehole
US7529151B2 (en) * 2004-08-13 2009-05-05 The Regents Of The University Of California Tube-wave seismic imaging
US7529152B2 (en) * 2005-05-10 2009-05-05 Schlumberger Technology Corporation Use of an effective tool model in sonic logging data processing
US7652950B2 (en) * 2005-06-03 2010-01-26 Schlumberger Technology Corporation Radial profiling of formation mobility using horizontal and vertical shear slowness profiles
BRPI0611629B1 (pt) * 2005-06-24 2018-01-02 Exxonmobil Upstream Research Company Método para determinar a permeabilidade de uma formação de sub-superfície de dados de registro sônicos e dados de registro de poço e para produzir hidrocarbonetos de uma formação de sub-superfície
US7970544B2 (en) * 2007-06-26 2011-06-28 Baker Hughes Incorporated Method and apparatus for characterizing and estimating permeability using LWD Stoneley-wave data
US20090132169A1 (en) * 2007-11-19 2009-05-21 Schlumberger Technology Corporation Methods and systems for evaluating fluid movement related reservoir properties via correlation of low-frequency part of seismic data with borehole measurements
BRPI0819608B1 (pt) * 2007-11-30 2018-12-18 Shell Int Research métodos para monitorar escoamento de fluido e para produzir hidrocarbonetos através de ondas acústicas
WO2011035280A2 (en) 2009-09-21 2011-03-24 National Oilwell Varco, L. P. Systems and methods for improving drilling efficiency
JP5441781B2 (ja) * 2010-03-25 2014-03-12 キヤノン株式会社 光音響イメージング装置、光音響イメージング方法及びプログラム
US10267941B2 (en) * 2014-06-24 2019-04-23 Halliburton Energy Services, Inc. Estimate of formation mobility from Stoneley waveforms
CA3034219C (en) * 2016-08-18 2023-03-21 Seismos, Inc. Method for evaluating and monitoring formation fracture treatment using fluid pressure waves
US10662761B2 (en) 2017-07-13 2020-05-26 Saudi Arabian Oil Company Evaluation of cased hole perforations in under-pressured gas sand reservoirs with stoneley wave logging
US11519879B2 (en) 2021-01-25 2022-12-06 Saudi Arabian Oil Company Two methods of determining permeabilities of naturally fractured rocks from laboratory measurements

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4183028A (en) 1978-09-29 1980-01-08 Buckeye International, Inc. High speed data recording arrangement
US4740928A (en) * 1984-10-09 1988-04-26 Amoco Corporation Sonic logging system
DE3522491A1 (de) * 1985-06-24 1987-01-02 Leitz Ernst Gmbh Akustische linsenanordnung
US4813028A (en) * 1987-07-07 1989-03-14 Schlumberger Technology Corporation Acoustic well logging method and apparatus
US4819214A (en) * 1987-10-29 1989-04-04 Amoco Corporation Sonic logging system
US5197038A (en) 1991-06-21 1993-03-23 Schlumberger Technology Corporation Method and sonic tool apparatus for investigating properties of earth formations transversed by a borehole
WO1993007513A1 (en) 1991-10-11 1993-04-15 Chang Shu Kong Methods and apparatus for discrete-frequency tube-wave logging of boreholes
US5357481A (en) * 1992-11-04 1994-10-18 Western Atlas International, Inc. Borehole logging tool
US5616840A (en) 1996-03-27 1997-04-01 Western Atlas International Method for estimating the hydraulic conductivity of a borehole sidewall fracture

Also Published As

Publication number Publication date
EP0936477A2 (de) 1999-08-18
DE69931093D1 (de) 2006-06-08
NO990615L (no) 1999-08-18
ATE325355T1 (de) 2006-06-15
US6327538B1 (en) 2001-12-04
NO990615D0 (no) 1999-02-09
EP0936477A3 (de) 2000-12-13

Similar Documents

Publication Publication Date Title
EP0936477B1 (de) Auswertung von Stoneleywellen und Formationsparametern
CA2235263C (en) Apparatus and method for combined acoustic and seismoelectric logging measurements
AU2006262684B2 (en) Method for determining reservoir permeability from borehole Stoneley-wave attenuation using Biot's poroelastic theory
Hardin et al. Fracture characterization by means of attenuation and generation of tube waves in fractured crystalline rock at Mirror Lake, New Hampshire
CN101553742B (zh) 使用图像和声波测井图的组合区分天然裂缝导致的声波各向异性和应力导致的声波各向异性
US7652950B2 (en) Radial profiling of formation mobility using horizontal and vertical shear slowness profiles
US7274992B2 (en) Method for predicting pore pressure
US5616840A (en) Method for estimating the hydraulic conductivity of a borehole sidewall fracture
US20150049585A1 (en) Acoustic logging systems and methods employing multi-mode inversion for anisotropy and shear slowness
US20080306692A1 (en) Method and Apparatus for Determining the Permeability of Earth Formations
US20030002388A1 (en) Acoustic logging tool having quadrapole source
US8387743B2 (en) Systems and methods for acoustically measuring bulk density
CN101281254B (zh) 用于随钻vsp作业的主子波井下库
Harrison et al. Acquisition and analysis of sonic waveforms from a borehole monopole and dipole source for the determination of compressional and shear speeds and their relation to rock mechanical properties and surface seismic data
WO2002031538A1 (en) Method for borehole measurement of formation properties
US20090225628A1 (en) Estimating seismic anisotropy of shales
WO2009090465A2 (en) Method for permeable zone detection
EP0969294A2 (de) Verfahren zur Abbildung von Permeabilität und Flüssigkeitsbehalt einer Struktur in Sediment
US11215035B2 (en) Method to predict reservoir formation permeability using combined acoustic and multi-frequency dielectric measurements
US4797859A (en) Method for determining formation permeability by comparing measured tube waves with formation and borehole parameters
US6061300A (en) Method of imaging the permeability and fluid content structure within sediment
US10989824B2 (en) Depth-dependent mud density determination and processing for horizontal shear slowness in vertical transverse isotropy environment using full-waveform sonic data
Lines et al. Integrated interpretation of borehole and crosswell data from a west Texas field
EP2304473B1 (de) Anlagen und verfahren zur akustischen messung der rohdichte
US10955577B2 (en) Systems and methods for evaluation of formation shear slowness

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7G 01V 1/30 A, 7G 01V 1/50 B

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010503

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20031219

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: EVALUATING STONELEY WAVES AND FORMATION PARAMETERS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060503

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69931093

Country of ref document: DE

Date of ref document: 20060608

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060803

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061003

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070228

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070206

EN Fr: translation not filed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060804

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070217

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070217

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503