EP0926337A1 - Ionisation sensor for ignition system for internal combustion engine - Google Patents

Ionisation sensor for ignition system for internal combustion engine Download PDF

Info

Publication number
EP0926337A1
EP0926337A1 EP98403128A EP98403128A EP0926337A1 EP 0926337 A1 EP0926337 A1 EP 0926337A1 EP 98403128 A EP98403128 A EP 98403128A EP 98403128 A EP98403128 A EP 98403128A EP 0926337 A1 EP0926337 A1 EP 0926337A1
Authority
EP
European Patent Office
Prior art keywords
current
transistor
ionization
voltage
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98403128A
Other languages
German (de)
French (fr)
Inventor
Mirela Agache-Durand
André AGNERAY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP0926337A1 publication Critical patent/EP0926337A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current

Definitions

  • the present invention relates to an ionization sensor, in an electronically controlled ignition system an internal combustion engine, especially for motor vehicle. Performing a current measurement gas ionization in the engine cylinders, this sensor allows the detection of rattling, misfires of combustion and keying of cylinders.
  • a current solution to know the quality of combustion of the air-fuel mixture in the cylinders consists in measuring the ionization current of the gases in the cylinders, by means of spark plugs, after the spark between the electrodes of each candle.
  • the invention provides a sensor using one of the wires of the primary of the single output coil to make the measurement.
  • This measurement of the ionization current allows the detection of misfire and rattling, since the presence of this current, measured in the engine cylinder which is in compression after the spark, is an indication of the presence of the combustion.
  • This measure is also used for detection of cycles without combustion or of the appearance rattling during combustion.
  • the sensor according to the invention also makes it possible to measure the duration of the spark on the candle for the purpose of detecting the cylinder compression and to distinguish it from the cylinder in exhaust to achieve cylinder keying.
  • This invention can be applied to injection engines direct and conventional indirect injection.
  • the object of the invention is a sensor for measuring the ionization current of the combustion gases in the cylinders of a heat engine, including the system ignition system includes a single output coil the secondary winding is connected to at least one spark plug and whose primary winding is connected on one side to the supply battery of the vehicle and on the other side to an electronic module of control, characterized in that the current measurement ionization is carried out on the control wire of the coil after the end of the induced spark between the spark plug electrodes.
  • the ionization current measurement sensor performs the measurement of this current on the supply wire of the primary winding connected to the vehicle battery.
  • the measurement of the ionization current is done by polarization of the central electrode of the spark plug, with a voltage positive, after the ignition spark has appeared between the spark plug electrodes.
  • the electronic diagram of FIG. 1 represents an ionization current sensor of a spark plug 1 assigned to a cylinder of the engine, the ignition of which is controlled by an electronic computer.
  • the ignition system comprises an ignition coil 2, the secondary winding L s of which is connected, by its high voltage part, to an electrode of the spark plug 1 and by its low voltage part, to a module 3 for polarizing the candle.
  • This module 3 composed of a Zener diode of polarization Z p and a polarization capacity C p , polarizes the spark plug at the end of the spark induced between the two electrodes of the spark plug, with a positive voltage on the central electrode. It is integrated into the single output coil, in the low voltage part of the secondary.
  • the primary winding L p of the coil 2 is connected on one side to the positive voltage V bat of the vehicle's power supply battery, generally equal to 12 Volts, and on the other side, to a module 4 of control of the coil, delivering a rectangular signal S c .
  • the sensor further includes a module 5 for measuring the ionization current connected to control wire 6 of the primary coil winding, serving as a cell anti-glare to protect components electronic against high voltage, around 400 Volts, existing across the coil when the spark.
  • This module 5 is integrated into the computer ignition electronics, such as control module 4 of the coil. For voltage values close to the vehicle supply voltage, about 12 Volts, this module has an impedance low in front of the primary winding impedance of the spool, to allow the use of the wire control of the primary winding of the coil in the purpose of measuring the ionization current after the spark.
  • the anti-dazzle module 5 is composed of three circuits, the first of which 7 is both a current mirror and a high voltage protection cell. First of all, it comprises an assembly producing a current mirror, consisting of two identical transistors, thermally coupled, T 2 and T 3 , and of a resistor R 2 between the base and the collector of the transistor T 2 . It further comprises a second assembly consisting of a transistor T 1 , identical to the previous two and thermally coupled with them, of its base-emitter resistance R 1 and of a diode D 1 , producing a differential receiver in current with the transistor T 2 and its resistance R 2 , associated with a diode D 2 . The diodes D 1 and D 2 protect the transistors T 1 , T 2 and T 3 by supporting the clamp voltage, close to 400 Volts.
  • the resistors R 1 and R 2 are identical and have the sole function of avoiding, when the diodes D 1 or D 2 are blocked, very high voltage values between the base and the emitter of the transistors T 1 and T 2 . These two diodes D 1 and D 2 are identical and must support the clamp voltage, in reverse bias.
  • This circuit 7 is supplied by the voltage V bat of the battery.
  • the second circuit 8 is a current generator which imposes a current in a resistor R 3 and which simultaneously ensures the polarization of the transistor T 3 of the current mirror 7. It comprises two identical transistors T 4 and T 5 , connected together by their bases, with a bias voltage Va on their bases, of value lower than the voltage of the battery, equal to 2.5 Volts for example.
  • a diode D 3 limits the voltage on the collector of transistor T 4 to a value equal to the sum (V bat + 0.6 Volts).
  • Resistor R 3 then supports a voltage close to the difference (V clamp - V bat ). If the transistor T 4 can support the clamp voltage, the diode D 3 can be removed and the resistor R 3 replaced by a short circuit.
  • I 5 (V at - V BE ) / (2R 4 + ⁇ ).
  • the current I s measured on the output resistance R 5 is then equal to: by making the approximation that ⁇ is smaller than R 4.
  • the third circuit 9 is a current-voltage converter comprising a resistance R s of the order of 100 k ⁇ , on which the ionization current I s is measured.
  • the value of ⁇ must be very low, which induces low tolerances on the components.
  • the electronic diagram of FIG. 2 represents an alternative embodiment of the ionization sensor according to the invention, comprising the same module 3 for polarizing the spark plug 1 and the same module 4 for controlling the coil 2.
  • the anti-module 5 glare connected to the control wire 6 of the coil has the same circuit 7 current mirror and protection cell, but circuit 10 is only current generator, consisting of transistor T 4 and its emitter resistor R 4 , supplied by a voltage V ' a' lower than the battery voltage, and protected from high voltage by the assembly consisting of the resistor R 3 and the diode D 3 connected to the voltage V bat of the battery, the bias of the transistor T 3 of circuit 7 being provided by another circuit 11.
  • the bias circuit 11 of transistor T 3 is composed of transistor T 5 of NPN type associated with the emitter resistance R 5 and of an assembly comprising an operational amplifier. nnel A 1 and a first order filter for example, consisting of a resistor R 6 and a capacitor C 6 polarizing the base of the transistor T 5 with a positive voltage V ' a .
  • the circuit 9 converts the output current I s into a voltage V s representative of the ionization of the gases.
  • FIG. 3 represents a second alternative embodiment of a sensor according to the invention, in which all the biasings of transistors are made from the supply of the battery.
  • the bias circuit 11 of the transistor T 3 in the previous variant, is replaced by a circuit 12 providing the same function, with a voltage divider, consisting of the two resistors R 7 and R 8 and of a capacitor C 7 , which ensures, with the operational amplifier A 1 and the voltage V bat of the battery, the polarization of the transistor T 5 and therefore that of the resistor R 5 .
  • the additional voltage source V a has thus been eliminated.
  • the object of FIGS. 4 to 6 is an ionization sensor in which the amplification of the ionization current is carried out at the foot of the coil 2 and its measurement is carried out on the control wire 6.
  • This type of sensor has the advantage of delivering a strong signal, not very sensitive to noise and of using the same wire for controlling the coil and measuring the current. It includes the same modules 3 for polarizing the spark plug 1 and the same module 4 for controlling the coil 2. It also includes a module 14 for amplifying the ionization current at the foot of the primary winding L p of the coil, comprising a transistor T 6 which amplifies the ionization current sent to its base, a Zener diode Z 6 and a resistor R 9 which polarize the base of transistor T 6 .
  • the value of the diode Z 6 is 15 Volts for example.
  • a diode D 6 allows the current to flow during the arcing phase.
  • the Zener diode Z 6 has a protective role against high voltage during the spark and allows the use of a low voltage transistor T 6 .
  • the anti-glare module 5 is composed as before of a current mirror circuit 7, of the circuit 9 current to voltage converter and of a current generator circuit 15.
  • This circuit 15 is a variant of the circuit 10 of FIG. 2, for which the polarization of the base of the transistor T 4 is ensured by the voltage divider circuit, composed of the resistors R 7 and R 8 and of the capacitor C 7 , at from the battery voltage V bat .
  • the characteristics and constraints of the electronic components of this circuit 15 are the same as in module 10.
  • FIG. 5 is an alternative embodiment of the sensor according to FIG. 4, in which the current generator circuit 15 is replaced by the circuit 13 described in FIG. 3 and consisting of the only resistor R 3 .
  • the battery supply source V bat is filtered in a first order low-pass filter composed of a capacitance C f and a resistance R f .
  • Figure 6 is a variant of the electronic diagram of the ionization sensor shown in Figure 5 above, in which the supply voltage comes directly from the vehicle battery without filtering.
  • the anti-glare module 5 is composed of the current mirror circuit 7, the bias circuit 12 of the transistor T 3 , the current generator circuit 13 and the current-voltage converter 9.
  • FIG. 7 a is an example of a timing diagram of the control signal S c delivered by the electronic ignition computer. It takes the form of voltage slots C c , whose rising edge f m triggers the charging of the ignition coil at time t 1 and the falling edge f d controls the spark at time t 2 . Simultaneously, the signal S B of the high voltage on the spark plug, represented in FIG. 7 b , increases at the instant t 1 of charging start from a zero value to a positive value V c , then decreases slowly according to a level until time t 3 of regulation when it becomes zero again. Between the instants t 2 and t 4 corresponding to the duration of the spark, it has a negative value -V e .
  • the response of the sensor is a voltage V s of value equal to a reference V ref , of 5 volts for example, before the spark between the spark plug electrodes, which becomes zero during this spark. At the end of the spark, the presence of a gas ionization current results in a value greater than this reference V ref.
  • FIG. 8 is the electronic diagram of an ionization current sensor according to the invention in which the measurement of the ionization current is made on the supply wire 16 of the coil 2 connected to the battery V bat .
  • the module 3 for polarizing the spark plug 1 the module 14 for amplifying the ionization current and the module 4 for controlling the primary winding L p of the coil 2.
  • the wire measurement is the wire 16 connecting the power supply of the vehicle, therefore the battery, to the primary winding of the coil, wire on which one can make a current measurement with Hall effect sensors for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

The ionization detector measures the ionization current in the ignition coil command wire (6) after the finish of the spark generated between the electrodes of the spark plug (1). In an alternative implementation the ionization current is measured in the wire supplying the primary winding (Lp) of the ignition coil.

Description

La présente invention concerne un capteur d'ionisation, dans un système d'allumage commandé électroniquement d'un moteur à combustion interne, notamment pour véhicule automobile. Réalisant une mesure du courant d'ionisation des gaz dans les cylindres du moteur, ce capteur permet la détection du cliquetis, des ratés de combustion et le détrompage des cylindres.The present invention relates to an ionization sensor, in an electronically controlled ignition system an internal combustion engine, especially for motor vehicle. Performing a current measurement gas ionization in the engine cylinders, this sensor allows the detection of rattling, misfires of combustion and keying of cylinders.

Une solution actuelle pour connaítre la qualité de la combustion du mélange air-carburant dans les cylindres consiste à mesurer le courant d'ionisation des gaz dans les cylindres, au moyen des bougies d'allumage, après l'étincelle éclatant entre les électrodes de chaque bougie. Dans certaines publications, sont décrits des circuits de mesure au pied du secondaire d'une bobine monosortie connectée aux bougies, dans lesquels l'amplification du signal pour augmenter l'immunité du bruit n'est pas prévue dès le pied de la bobine, mais à l'extérieur de la bobine, au moyen d'amplificateurs opérationnels, ce qui nécessite des sources d'alimentation supplémentaires.A current solution to know the quality of combustion of the air-fuel mixture in the cylinders consists in measuring the ionization current of the gases in the cylinders, by means of spark plugs, after the spark between the electrodes of each candle. Some publications describe measurement circuits at the bottom of the secondary of a coil single output connected to the candles, in which signal amplification to increase the immunity of the noise is not expected from the bottom of the coil, but at the outside of the coil, using amplifiers operational, which requires sources additional power.

Ces circuits utilisés antérieurement ne permettent pas la réalisation avec le même capteur des trois objectifs cités, que sont la détection du cliquetis, les ratés de combustion et le détrompage cylindrique, sur les moteurs à injection directe pour lesquels la suppression du capteur de cliquetis et du capteur d'arbre à cames peut permettre de rentabiliser cette solution. These circuits used previously do not allow the achievement with the same sensor of the three objectives cited, that is the rattling detection, the failures of combustion and cylindrical polarization, on the direct injection engines for which the removal of knock sensor and sensor camshaft can make this solution.

Les solutions actuelles de mesure du courant d'ionisation au pied de la bobine imposent l'introduction d'un fil supplémentaire dans le calculateur électronique d'allumage pour sortir le signal.Current current measurement solutions ionization at the bottom of the coil impose introducing an additional wire into the electronic ignition computer to take out the signal.

L'invention propose un capteur utilisant un des fils du primaire de la bobine monosortie pour faire la mesure. Cette mesure du courant d'ionisation permet la détection des ratés de combustion et le cliquetis, puisque la présence de ce courant, mesuré dans le cylindre du moteur qui est en compression après l'étincelle, est une indication de la présence de la combustion. Cette mesure est aussi utilisée pour la détection des cycles sans combustion ou de l'apparition du cliquetis pendant la combustion.The invention provides a sensor using one of the wires of the primary of the single output coil to make the measurement. This measurement of the ionization current allows the detection of misfire and rattling, since the presence of this current, measured in the engine cylinder which is in compression after the spark, is an indication of the presence of the combustion. This measure is also used for detection of cycles without combustion or of the appearance rattling during combustion.

Le capteur selon l'invention permet également de mesurer la durée de l'étincelle sur la bougie d'allumage, dans le but de détecter le cylindre en compression et de le distinguer du cylindre en échappement pour réaliser le détrompage cylindre. Cette invention peut s'appliquer aux moteurs à injection directe et à injection classique indirecte.The sensor according to the invention also makes it possible to measure the duration of the spark on the candle for the purpose of detecting the cylinder compression and to distinguish it from the cylinder in exhaust to achieve cylinder keying. This invention can be applied to injection engines direct and conventional indirect injection.

Pour cela deux variantes de réalisation du capteur selon l'invention sont proposées : l'une mesurant le signal d'ionisation sur le fil de commande de l'enroulement primaire de la bobine et l'autre effectuant la mesure sur le fil d'alimentation de cet enroulement primaire relié à la batterie du véhicule. For this two variants of the sensor according to the invention are proposed: one measuring the ionization signal on the control wire of the primary coil winding and the other performing the measurement on the supply wire of this primary winding connected to the vehicle battery.

L'objet de l'invention est un capteur de mesure du courant d'ionisation des gaz en combustion dans les cylindres d'un moteur thermique, dont le système d'allumage comprend une bobine monosortie dont l'enroulement secondaire est relié à au moins une bougie d'allumage et dont l'enroulement primaire est relié d'un côté à la batterie d'alimentation du véhicule et de l'autre côté à un module électronique de commande, caractérisé en ce que la mesure du courant d'ionisation est réalisée sur le fil de commande de la bobine après la fin de l'étincelle induite entre les électrodes de la bougie.The object of the invention is a sensor for measuring the ionization current of the combustion gases in the cylinders of a heat engine, including the system ignition system includes a single output coil the secondary winding is connected to at least one spark plug and whose primary winding is connected on one side to the supply battery of the vehicle and on the other side to an electronic module of control, characterized in that the current measurement ionization is carried out on the control wire of the coil after the end of the induced spark between the spark plug electrodes.

Selon une autre caractéristique de l'invention, le capteur de mesure du courant d'ionisation réalise la mesure de ce courant sur le fil d'alimentation de l'enroulement primaire relié à la batterie du véhicule.According to another characteristic of the invention, the ionization current measurement sensor performs the measurement of this current on the supply wire of the primary winding connected to the vehicle battery.

D'autres caractéristiques et avantages de l'invention apparaítront à la lecture de la description de plusieurs exemples de réalisation, illustrée par les figures suivantes qui sont :

  • les figures 1 à 3 : trois schémas électroniques d'un capteur d'ionisation selon l'invention, avec mesure sur le fil de commande de la bobine et sans amplification du signal de mesure ;
  • les figures 4 à 6 : trois schémas électroniques d'un capteur d'ionisation selon l'invention, avec mesure sur le fil de commande de la bobine et avec amplification du signal de mesure ;
  • les figures 7a à 7c : des chronogrammes des signaux de commande et de mesure du courant d'ionisation pour un capteur selon l'invention;
  • la figure 8 : un schéma électronique d'un capteur d'ionisation selon l'invention, avec mesure sur le fil d'alimentation de la bobine.
Other characteristics and advantages of the invention will appear on reading the description of several exemplary embodiments, illustrated by the following figures which are:
  • Figures 1 to 3: three electronic diagrams of an ionization sensor according to the invention, with measurement on the control wire of the coil and without amplification of the measurement signal;
  • FIGS. 4 to 6: three electronic diagrams of an ionization sensor according to the invention, with measurement on the control wire of the coil and with amplification of the measurement signal;
  • FIGS. 7 a to 7 c : timing diagrams of the control and measurement signals of the ionization current for a sensor according to the invention;
  • Figure 8: an electronic diagram of an ionization sensor according to the invention, with measurement on the coil supply wire.

Les éléments portant les mêmes références dans les différentes figures remplissent les mêmes fonctions en vue des mêmes résultats.Items with the same references in the different figures perform the same functions by view of the same results.

Selon une caractéristique de l'invention, la mesure du courant d'ionisation se fait par polarisation de l'électrode centrale de la bougie, avec une tension positive, après l'apparition de l'étincelle d'allumage entre les électrodes de la bougie.According to a characteristic of the invention, the measurement of the ionization current is done by polarization of the central electrode of the spark plug, with a voltage positive, after the ignition spark has appeared between the spark plug electrodes.

Le schéma électronique de la figure 1 représente un capteur de courant d'ionisation d'une bougie 1 d'allumage affectée à un cylindre du moteur, dont l'allumage est commandé par un calculateur électronique. Le système d'allumage comporte une bobine d'allumage 2 dont l'enroulement secondaire Ls est relié, par sa partie haute tension, à une électrode de la bougie 1 et par sa partie basse tension, à un module 3 de polarisation de la bougie. Ce module 3, composé d'une diode Zener de polarisation Zp et d'une capacité de polarisation Cp, polarise la bougie à la fin de l'étincelle induite entre les deux électrodes de la bougie, avec une tension positive sur l'électrode centrale. Il est intégré à la bobine monosortie, dans la partie basse tension du secondaire.The electronic diagram of FIG. 1 represents an ionization current sensor of a spark plug 1 assigned to a cylinder of the engine, the ignition of which is controlled by an electronic computer. The ignition system comprises an ignition coil 2, the secondary winding L s of which is connected, by its high voltage part, to an electrode of the spark plug 1 and by its low voltage part, to a module 3 for polarizing the candle. This module 3, composed of a Zener diode of polarization Z p and a polarization capacity C p , polarizes the spark plug at the end of the spark induced between the two electrodes of the spark plug, with a positive voltage on the central electrode. It is integrated into the single output coil, in the low voltage part of the secondary.

L'enroulement primaire Lp de la bobine 2 est relié d'un côté à la tension positive Vbat de la batterie d'alimentation électrique du véhicule, égale généralement à 12 Volts, et de l'autre côté, à un module 4 de commande de la bobine, délivrant un signal rectangulaire Sc.The primary winding L p of the coil 2 is connected on one side to the positive voltage V bat of the vehicle's power supply battery, generally equal to 12 Volts, and on the other side, to a module 4 of control of the coil, delivering a rectangular signal S c .

Le capteur comprend de plus un module 5 de mesure du courant d'ionisation relié au fil de commande 6 de l'enroulement primaire de la bobine, servant de cellule anti-éblouissement pour protéger les composants électroniques contre la haute tension, de l'ordre de 400 Volts, existant aux bornes de la bobine lors de l'étincelle. Ce module 5 est intégré au calculateur électronique d'allumage, comme le module 4 de commande de la bobine. Pour des valeurs de tension électrique voisines de la tension d'alimentation du véhicule, environ 12 Volts, ce module présente une impédance faible devant l'impédance de l'enroulement primaire de la bobine, pour permettre l'utilisation du fil de commande de l'enroulement primaire de la bobine dans le but de mesurer le courant d'ionisation après l'étincelle.The sensor further includes a module 5 for measuring the ionization current connected to control wire 6 of the primary coil winding, serving as a cell anti-glare to protect components electronic against high voltage, around 400 Volts, existing across the coil when the spark. This module 5 is integrated into the computer ignition electronics, such as control module 4 of the coil. For voltage values close to the vehicle supply voltage, about 12 Volts, this module has an impedance low in front of the primary winding impedance of the spool, to allow the use of the wire control of the primary winding of the coil in the purpose of measuring the ionization current after the spark.

Le module 5 d'anti-éblouissement est composé de trois circuits, dont le premier 7 est à la fois un miroir de courant et une cellule de protection contre la haute tension. Il comprend tout d'abord un ensemble réalisant un miroir de courant, constitué de deux transistors identiques, couplés thermiquement, T2 et T3, et d'une résistance R2 entre la base et le collecteur du transistor T2. Il comprend de plus un second ensemble constitué d'un transistor T1, identique aux deux précédents et couplé thermiquement avec eux, de sa résistance base-émetteur R1 et d'une diode D1, réalisant un récepteur différentiel en courant avec le transistor T2 et sa résistance R2, associés à une diode D2. Les diodes D1 et D2 assurent la protection des transistors T1, T2 et T3 en supportant la tension de clamp, voisine de 400 Volts.The anti-dazzle module 5 is composed of three circuits, the first of which 7 is both a current mirror and a high voltage protection cell. First of all, it comprises an assembly producing a current mirror, consisting of two identical transistors, thermally coupled, T 2 and T 3 , and of a resistor R 2 between the base and the collector of the transistor T 2 . It further comprises a second assembly consisting of a transistor T 1 , identical to the previous two and thermally coupled with them, of its base-emitter resistance R 1 and of a diode D 1 , producing a differential receiver in current with the transistor T 2 and its resistance R 2 , associated with a diode D 2 . The diodes D 1 and D 2 protect the transistors T 1 , T 2 and T 3 by supporting the clamp voltage, close to 400 Volts.

Les résistances R1 et R2 sont identiques et ont pour unique fonction d'éviter, lors du blocage des diodes D1 ou D2, des valeurs de tensions très importantes entre la base et l'émetteur des transistors T1 et T2. Ces deux diodes D1 et D2 sont identiques et doivent supporter la tension de clamp, en polarisation inverse. Ce circuit 7 est alimenté par la tension Vbat de la batterie.The resistors R 1 and R 2 are identical and have the sole function of avoiding, when the diodes D 1 or D 2 are blocked, very high voltage values between the base and the emitter of the transistors T 1 and T 2 . These two diodes D 1 and D 2 are identical and must support the clamp voltage, in reverse bias. This circuit 7 is supplied by the voltage V bat of the battery.

Le second circuit 8 est un générateur de courant qui impose un courant dans une résistance R3 et qui assure simultanément la polarisation du transistor T3 du miroir de courant 7. Il comprend deux transistors identiques T4 et T5, reliés entre eux par leurs bases, avec une tension de polarisation Va sur leurs bases, de valeur inférieure à la tension de la batterie, égale à 2,5 Volts par exemple. Une diode D3 limite la tension sur le collecteur du transistor T4 à une valeur égale à la somme (Vbat + 0.6 Volts). La résistance R3 supporte alors une tension voisine de la différence (Vclamp - Vbat). Si le transistor T4 peut supporter la tension de clamp, la diode D3 peut être supprimée et la résistance R3 remplacée par un court-circuit.
Le circuit 8 comprend de plus deux résistances R4 et R5, entre la masse et respectivement les transistors T4 et T5, telles que la valeur de R5 est égale au double de la valeur de R4, à laquelle on ajoute une valeur très faible ∈ définie par les relations suivantes: R5 = 2R4 + ∈.
The second circuit 8 is a current generator which imposes a current in a resistor R 3 and which simultaneously ensures the polarization of the transistor T 3 of the current mirror 7. It comprises two identical transistors T 4 and T 5 , connected together by their bases, with a bias voltage Va on their bases, of value lower than the voltage of the battery, equal to 2.5 Volts for example. A diode D 3 limits the voltage on the collector of transistor T 4 to a value equal to the sum (V bat + 0.6 Volts). Resistor R 3 then supports a voltage close to the difference (V clamp - V bat ). If the transistor T 4 can support the clamp voltage, the diode D 3 can be removed and the resistor R 3 replaced by a short circuit.
The circuit 8 further comprises two resistors R 4 and R 5 , between the mass and the transistors T 4 and T 5 , respectively, such that the value of R 5 is equal to twice the value of R 4 , to which a very low value ∈ defined by the following relationships: R 5 = 2R 4 + ∈.

Le courant I4 qui circule dans le transistor T4 est égal à : I4 = (Va - VBE) / R4, VBE étant la tension base-émetteur du transistor T4.The current I 4 which flows in the transistor T 4 is equal to: I 4 = (V at - V BE ) / R 4 , V BE being the base-emitter voltage of transistor T 4 .

De même, le courant I5 qui circule dans le transistor T5 est égal à : I5 = (Va - VBE) / (2R4 + ∈). Similarly, the current I 5 which flows in the transistor T 5 is equal to: I 5 = (V at - V BE ) / (2R 4 + ∈).

Le courant Is mesuré sur la résistance de sortie R5 est alors égal à :

Figure 00070001
en faisant l'approximation que ∈ est plus petit que R4. The current I s measured on the output resistance R 5 is then equal to:
Figure 00070001
by making the approximation that ∈ is smaller than R 4.

Le troisième circuit 9 est un convertisseur courant-tension comprenant une résistance Rs de l'ordre de 100kΩ, sur laquelle est mesuré le courant d'ionisation Is. La sortie du signal utile est une sortie en tension Vs (Vs = Is * Rs). La valeur de ∈ doit être très faible, ce qui induit de faibles tolérances sur les composants.The third circuit 9 is a current-voltage converter comprising a resistance R s of the order of 100 kΩ, on which the ionization current I s is measured. The output of the useful signal is a voltage output V s (V s = I s * R s ). The value of ∈ must be very low, which induces low tolerances on the components.

Le schéma électronique de la figure 2 représente une variante de réalisation du capteur d'ionisation selon l'invention, comprenant le même module 3 de polarisation de la bougie 1 et le même module 4 de commande de la bobine 2. Le module 5 anti-éblouissement relié au fil de commande 6 de la bobine comporte le même circuit 7 miroir de courant et cellule de protection, mais le circuit 10 est uniquement générateur de courant, constitué du transistor T4 et de sa résistance R4 d'émetteur, alimentés par une tension V'a' inférieure à la tension de la batterie, et protégés de la haute tension par l'ensemble constitué de la résistance R3 et de la diode D3 reliée à la tension Vbat de la batterie, la polarisation du transistor T3 du circuit 7 étant assurée par un autre circuit 11. Le circuit 11 de polarisation du transistor T3 est composé du transistor T5 de type NPN associé à la résistance d'émetteur R5 et d'un ensemble comprenant un amplificateur opérationnel A1 et un filtre du premier ordre par exemple, constitué par une résistance R6 et une capacité C6 polarisant la base du transistor T5 avec une tension positive V'a.The electronic diagram of FIG. 2 represents an alternative embodiment of the ionization sensor according to the invention, comprising the same module 3 for polarizing the spark plug 1 and the same module 4 for controlling the coil 2. The anti-module 5 glare connected to the control wire 6 of the coil has the same circuit 7 current mirror and protection cell, but circuit 10 is only current generator, consisting of transistor T 4 and its emitter resistor R 4 , supplied by a voltage V 'a' lower than the battery voltage, and protected from high voltage by the assembly consisting of the resistor R 3 and the diode D 3 connected to the voltage V bat of the battery, the bias of the transistor T 3 of circuit 7 being provided by another circuit 11. The bias circuit 11 of transistor T 3 is composed of transistor T 5 of NPN type associated with the emitter resistance R 5 and of an assembly comprising an operational amplifier. nnel A 1 and a first order filter for example, consisting of a resistor R 6 and a capacitor C 6 polarizing the base of the transistor T 5 with a positive voltage V ' a .

Le circuit 9 convertit le courant de sortie Is en tension Vs représentative de l'ionisation des gaz.The circuit 9 converts the output current I s into a voltage V s representative of the ionization of the gases.

La figure 3 représente une deuxième variante de réalisation d'un capteur selon l'invention, dans laquelle toutes les polarisations de transistors sont faites à partir de l'alimentation de la batterie. Ainsi, le circuit 11 de polarisation du transistor T3, dans la variante précédente, est remplacé par un circuit 12 assurant la même fonction, avec un diviseur de tension, constitué des deux résistances R7 et R8 et d'une capacité C7, qui assure, avec l'amplificateur opérationnel A1 et la tension Vbat de la batterie, la polarisation du transistor T5 et donc celle de la résistance R5. On a ainsi supprimé la source supplémentaire de tension Va. Le circuit générateur de courant 13 est constitué par la résistance R3, telle que le courant I3 qui la traverse est égal au rapport entre, d'une part la différence entre la tension de la batterie Vbat et la somme des tensions VD2 de la diode D2 et du transistor VBE et, d'autre part la résistance R3 : I3 = [Vbat - (VD2 + VBE)] / R3. FIG. 3 represents a second alternative embodiment of a sensor according to the invention, in which all the biasings of transistors are made from the supply of the battery. Thus, the bias circuit 11 of the transistor T 3 , in the previous variant, is replaced by a circuit 12 providing the same function, with a voltage divider, consisting of the two resistors R 7 and R 8 and of a capacitor C 7 , which ensures, with the operational amplifier A 1 and the voltage V bat of the battery, the polarization of the transistor T 5 and therefore that of the resistor R 5 . The additional voltage source V a has thus been eliminated. The current generator circuit 13 is constituted by the resistor R 3 , such that the current I 3 which passes through it is equal to the ratio between, on the one hand, the difference between the voltage of the battery V bat and the sum of the voltages V D2 diode D 2 and transistor V BE and, on the other hand, resistance R 3 : I 3 = [V bat - (V D2 + V BE )] / R 3 .

L'objet des figures 4 à 6 est un capteur d'ionisation dans lequel l'amplification du courant d'ionisation est réalisée au pied de la bobine 2 et sa mesure est réalisée sur le fil 6 de commande. Ce type de capteur présente comme avantage de délivrer un signal fort, peu sensible au bruit et d'utiliser le même fil pour la commande de la bobine et la mesure du courant. Il comprend les mêmes modules 3 de polarisation de la bougie 1 et le même module 4 de commande de la bobine 2. Il comprend de plus un module 14 d'amplification du courant d'ionisation au pied de l'enroulement primaire Lp de la bobine, comportant un transistor T6 qui amplifie le courant d'ionisation envoyé sur sa base, une diode Zener Z6 et une résistance R9 qui polarisent la base du transistor T6. La valeur de la diode Z6 est de 15 Volts par exemple. Une diode D6 laisse passer le courant pendant la phase d'arc. La diode Zener Z6 a un rôle de protection contre la haute tension lors de l'étincelle et permet l'utilisation d'un transistor T6 basse tension.The object of FIGS. 4 to 6 is an ionization sensor in which the amplification of the ionization current is carried out at the foot of the coil 2 and its measurement is carried out on the control wire 6. This type of sensor has the advantage of delivering a strong signal, not very sensitive to noise and of using the same wire for controlling the coil and measuring the current. It includes the same modules 3 for polarizing the spark plug 1 and the same module 4 for controlling the coil 2. It also includes a module 14 for amplifying the ionization current at the foot of the primary winding L p of the coil, comprising a transistor T 6 which amplifies the ionization current sent to its base, a Zener diode Z 6 and a resistor R 9 which polarize the base of transistor T 6 . The value of the diode Z 6 is 15 Volts for example. A diode D 6 allows the current to flow during the arcing phase. The Zener diode Z 6 has a protective role against high voltage during the spark and allows the use of a low voltage transistor T 6 .

Le module 5 anti-éblouissement est composé comme précédemment d'un circuit miroir de courant 7, du circuit 9 convertisseur de courant en tension et d'un circuit 15 générateur de courant. Ce circuit 15 est une variante du circuit 10 de la figure 2, pour laquelle la polarisation de la base du transistor T4 est assurée par le circuit diviseur de tension, composé des résistances R7 et R8 et de la capacité C7, à partir de la tension de la batterie Vbat. Les caractéristiques et les contraintes des composants électroniques de ce circuit 15 sont les mêmes que dans le module 10.The anti-glare module 5 is composed as before of a current mirror circuit 7, of the circuit 9 current to voltage converter and of a current generator circuit 15. This circuit 15 is a variant of the circuit 10 of FIG. 2, for which the polarization of the base of the transistor T 4 is ensured by the voltage divider circuit, composed of the resistors R 7 and R 8 and of the capacitor C 7 , at from the battery voltage V bat . The characteristics and constraints of the electronic components of this circuit 15 are the same as in module 10.

Le schéma de la figure 5 est une variante de réalisation du capteur d'après la figure 4, dans laquelle le circuit générateur de courant 15 est remplacé par le circuit 13 décrit à la figure 3 et constitué de la seule résistance R3. La source d'alimentation de la batterie Vbat est filtrée dans un filtre passe-bas du premier ordre composé d'une capacité Cf et d'une résistance Rf.The diagram in FIG. 5 is an alternative embodiment of the sensor according to FIG. 4, in which the current generator circuit 15 is replaced by the circuit 13 described in FIG. 3 and consisting of the only resistor R 3 . The battery supply source V bat is filtered in a first order low-pass filter composed of a capacitance C f and a resistance R f .

La figure 6 est une variante du schéma électronique du capteur d'ionisation représenté sur la figure 5 précédente, dans lequel la tension d'alimentation provient directement de la batterie du véhicule sans filtrage. Dans ce cas, le module 5 anti-éblouissement est composé du circuit 7 miroir de courant, du circuit 12 de polarisation du transistor T3, du circuit 13 générateur de courant et du convertisseur courant-tension 9.Figure 6 is a variant of the electronic diagram of the ionization sensor shown in Figure 5 above, in which the supply voltage comes directly from the vehicle battery without filtering. In this case, the anti-glare module 5 is composed of the current mirror circuit 7, the bias circuit 12 of the transistor T 3 , the current generator circuit 13 and the current-voltage converter 9.

Dans les trois précédents schémas électroniques représentés sur les figures 4 à 6, il est possible de supprimer la diode Zener Z6 et la résistance R9 du module 14 d'amplification du courant d'ionisation si le transistor T6 est capable de supporter la tension de clamp, de 400 Volts par exemple. In the three previous electronic diagrams represented in FIGS. 4 to 6, it is possible to suppress the Zener diode Z 6 and the resistor R 9 of the module 14 for amplifying the ionization current if the transistor T 6 is capable of supporting the clamp voltage, 400 Volts for example.

La figure 7a est un exemple de chronogramme du signal de commande Sc délivré par le calculateur électronique d'allumage. Il se présente sous forme de créneaux de tension Cc, dont le front montant fm déclenche la charge de la bobine d'allumage à l'instant t1 et le front descendant fd commande l'étincelle à l'instant t2. Simultanément, le signal SB de la haute tension sur la bougie, représenté sur la figure 7b, croít à l'instant t1 de début de charge d'une valeur nulle à une valeur positive Vc, puis décroít lentement selon un palier jusqu'à l'instant t3 de mise en régulation où il redevient nul. Entre les instants t2 et t4 correspondant à la durée de l'étincelle, il présente une valeur négative -Ve. La réponse du capteur, représentée sur la figure 7c, est une tension Vs de valeur égale à une référence Vref, de 5 Volts par exemple, avant l'étincelle entre les électrodes de la bougie, qui devient nulle pendant cette étincelle. A la fin de l'étincelle, la présence d'un courant d'ionisation des gaz se traduit par une valeur supérieure à cette référence Vref. FIG. 7 a is an example of a timing diagram of the control signal S c delivered by the electronic ignition computer. It takes the form of voltage slots C c , whose rising edge f m triggers the charging of the ignition coil at time t 1 and the falling edge f d controls the spark at time t 2 . Simultaneously, the signal S B of the high voltage on the spark plug, represented in FIG. 7 b , increases at the instant t 1 of charging start from a zero value to a positive value V c , then decreases slowly according to a level until time t 3 of regulation when it becomes zero again. Between the instants t 2 and t 4 corresponding to the duration of the spark, it has a negative value -V e . The response of the sensor, shown in FIG. 7 c , is a voltage V s of value equal to a reference V ref , of 5 volts for example, before the spark between the spark plug electrodes, which becomes zero during this spark. At the end of the spark, the presence of a gas ionization current results in a value greater than this reference V ref.

La figure 8 est le schéma électronique d'un capteur de courant d'ionisation selon l'invention dans lequel la mesure du courant d'ionisation est faite sur le fil d'alimentation 16 de la bobine 2 relié à la batterie Vbat. Dans ce mode de réalisation, on retrouve le module 3 de polarisation de la bougie 1 , le module 14 d'amplification du courant d'ionisation et le module 4 de commande de l'enroulement primaire Lp de la bobine 2. Le fil de mesure est le fil 16 reliant l'alimentation électrique du véhicule, donc la batterie, à l'enroulement primaire de la bobine, fil sur lequel on peut faire une mesure de courant avec des capteurs à effet Hall par exemple.FIG. 8 is the electronic diagram of an ionization current sensor according to the invention in which the measurement of the ionization current is made on the supply wire 16 of the coil 2 connected to the battery V bat . In this embodiment, there is the module 3 for polarizing the spark plug 1, the module 14 for amplifying the ionization current and the module 4 for controlling the primary winding L p of the coil 2. The wire measurement is the wire 16 connecting the power supply of the vehicle, therefore the battery, to the primary winding of the coil, wire on which one can make a current measurement with Hall effect sensors for example.

Claims (12)

Capteur de mesure du courant d'ionisation des gaz en combustion dans les cylindres d'un moteur thermique, dont le système d'allumage comprend une bobine monosortie dont l'enroulement secondaire est relié à au moins une bougie d'allumage et dont l'enroulement primaire est relié d'un côté à la batterie d'alimentation du véhicule par un premier fil de liaison, dit d'alimentation, et de l'autre côté à un module électronique de commande par un second fil de liaison, dit de commande, caractérisé en ce que la mesure du courant d'ionisation est réalisée sur l'un des fils de liaison (6, 16) de l'enroulement primaire de la bobine.Sensor for measuring the ionization current of gases in combustion in the cylinders of a heat engine, the ignition system of which includes a coil single output whose secondary winding is connected to the minus a spark plug and whose winding primary is connected on one side to the battery vehicle supply by a first wire link, said feed, and on the other side to a electronic control module by a second wire connection, called control, characterized in that the measurement of the ionization current is carried out on one connecting wires (6, 16) of the primary winding of the coil. Capteur de mesure du courant d'ionisation selon la revendication 1, caractérisé en ce que la mesure du courant d'ionisation est réalisée sur le fil (6) de commande de l'enroulement primaire (Lp) de la bobine (2) après la fin de l'étincelle induite entre les électrodes de la bougie (1).Ionization current measurement sensor according to claim 1, characterized in that the measurement of the ionization current is carried out on the wire (6) for controlling the primary winding (L p ) of the coil (2) after the end of the spark induced between the spark plug electrodes (1). Capteur de mesure du courant d'ionisation selon la revendication 1, caractérisé en ce que la mesure du courant d'ionisation est réalisée sur le fil (16) d'alimentation de l'enroulement primaire (Lp) de la bobine, relié à la batterie.Ionization current measurement sensor according to claim 1, characterized in that the measurement of the ionization current is carried out on the wire (16) supplying the primary winding (L p ) of the coil, connected to drums. Capteur de mesure du courant d'ionisation selon la revendication 2, caractérisé en ce qu'il comprend de plus un module (5) de mesure du courant d'ionisation relié au fil (6) de commande de l'enroulement primaire (Lp) de la bobine (2), présentant une impédance très inférieure à l'impédance de cet enroulement primaire (Lp) constitué par : un circuit (7) miroir de courant et protection des éléments électroniques du module (5) contre la haute tension apparaissant sur le fil de commande lors de l'étincelle, alimenté par la tension (Vbat) de la batterie ; un circuit générateur de courant, relié au circuit (7) miroir de courant ; un circuit (9) convertisseur de courant en tension. Ionization current measurement sensor according to claim 2, characterized in that it further comprises a module (5) for measuring the ionization current connected to the wire (6) for controlling the primary winding (L p ) of the coil (2), having an impedance much lower than the impedance of this primary winding (L p ) constituted by: a circuit (7) current mirror and protection of the electronic elements of the module (5) against the high voltage appearing on the control wire during the spark, supplied by the voltage (V bat ) of the battery; a current generator circuit, connected to the current mirror circuit (7); a circuit (9) for converting current into voltage. Capteur de mesure du courant d'ionisation selon la revendication 4, caractérisé en ce que le circuit (7) miroir de courant est composé d'un ensemble réalisant un miroir de courant, constitué de deux transistors identiques (T2 et T3) reliés par leurs bases et d'une résistance (R2) entre la base et l'émetteur du transistor (T2), et d'un ensemble d'un transistor (T1), identique aux deux transistors précédents (T2 et T3) et couplés thermiquement avec eux, de sa résistance base-émetteur (R1) et d'une diode (D1), constituant un récepteur différentiel en courant avec le transistor (T2) et la résistance (R2) précédents et une diode (D2), les résistances (R1 et R2) étant identiques et les diodes (D1 et D2) identiques assurant la protection des transistors (T1, T2 et T3) en supportant la tension de clamp.Ionization current measurement sensor according to claim 4, characterized in that the current mirror circuit (7) is composed of an assembly producing a current mirror, consisting of two identical transistors (T 2 and T 3 ) connected by their bases and a resistor (R 2 ) between the base and the emitter of the transistor (T 2 ), and of a set of a transistor (T 1 ), identical to the two previous transistors (T 2 and T 3 ) and thermally coupled with them, its base-emitter resistor (R 1 ) and a diode (D 1 ), constituting a differential current receiver with the above transistor (T 2 ) and resistor (R 2 ) and a diode (D 2 ), the resistors (R 1 and R 2 ) being identical and the diodes (D 1 and D 2 ) identical ensuring the protection of the transistors (T 1 , T 2 and T 3 ) by supporting the clamp voltage . Capteur de mesure du courant d'ionisation selon la revendication 4, caractérisé en ce que le circuit (8) générateur de courant comprend : deux transistors identiques (T4 et T5) reliés entre eux par leurs bases, polarisées par une tension (Va) déterminée, et dont leurs émetteurs sont reliés à une résistance respectivement (R4, R5) telles que la valeur de l'une (R5) vaut le double de la valeur de l'autre (R4), et un ensemble de protection du transistor (T4) contre la haute tension au primaire de la bobine pendant l'étincelle, constitué par une résistance (R3), connectée aux deux diodes (D1 et D2) du circuit (7) miroir de courant, et d'une diode (D3) reliée à la tension (Vbat) de la batterie. Ionization current measuring sensor according to claim 4, characterized in that the current generating circuit (8) comprises: two identical transistors (T 4 and T 5 ) connected together by their bases, polarized by a determined voltage (V a ), and whose emitters are connected to a resistor respectively (R 4 , R 5 ) such that the value of l 'one (R 5 ) is twice the value of the other (R 4 ), and a set for protecting the transistor (T 4 ) against high voltage at the primary of the coil during the spark, constituted by a resistor (R 3 ), connected to the two diodes (D 1 and D 2 ) of the mirror circuit (7) current, and a diode (D 3 ) connected to the voltage (V bat ) of the battery. Capteur de mesure du courant d'ionisation selon la revendication 4, caractérisé en ce que le circuit (10) générateur de courant est constitué par un transistor (T4) et sa résistance d'émetteur (R4), alimentés par une tension (V'a) et protégés de la haute tension par une résistance (R3), connectée aux deux diodes (D1 et D2) du circuit (7) miroir de courant, et par une diode (D3) reliée à la tension d'alimentation (Vbat) de la batterie, et en ce que le module (5) de mesure du courant d'ionisation comprend de plus un circuit (11) de polarisation du transistor (T3) du circuit (7) miroir de courant, constitué par un transistor (T5) associé à sa résistance d'émetteur (R5) et d'un ensemble, comprenant un amplificateur opérationnel (A1) et un filtre du premier ordre, composé d'une résistance (R6) et d'une capacité (C6), polarisant la base du transistor (T5) avec la tension (V'a).Ionization current measurement sensor according to claim 4, characterized in that the current generator circuit (10) consists of a transistor (T 4 ) and its emitter resistance (R 4 ), supplied by a voltage ( V ' a ) and protected from high voltage by a resistor (R 3 ), connected to the two diodes (D 1 and D 2 ) of the current mirror circuit (7), and by a diode (D 3 ) connected to the voltage supply (V bat ) of the battery, and in that the module (5) for measuring the ionization current further comprises a circuit (11) for biasing the transistor (T 3 ) of the mirror circuit (7) current, consisting of a transistor (T 5 ) associated with its emitter resistance (R 5 ) and of an assembly, comprising an operational amplifier (A 1 ) and a first order filter, composed of a resistance (R 6 ) and of a capacity (C 6 ), polarizing the base of the transistor (T 5 ) with the voltage (V ' a ). Capteur de mesure du courant d'ionisation selon la revendication 4, caractérisé en ce que le circuit générateur de courant (13) est constitué par une résistance (R3) connectée entre la masse et les deux diodes (D1 et D2) du circuit (7) miroir de courant, et en ce que le module (5) de mesure du courant d'ionisation comprend de plus un circuit (11) de polarisation du transistor (T3) du circuit (7) miroir de courant, constitué par un transistor (T5) associé à sa résistance d'émetteur (R5) et d'un ensemble, comprenant un amplificateur opérationnel (A1) et un filtre du premier ordre, composé d'une résistance (R6) et d'une capacité (C6) , polarisant la base du transistor (T5) avec la tension (Vbat) de la batterie du véhicule.Ionization current measuring sensor according to claim 4, characterized in that the current generating circuit (13) is constituted by a resistor (R 3 ) connected between the ground and the two diodes (D 1 and D 2 ) of the circuit (7) current mirror, and in that the module (5) for measuring the ionization current further comprises a circuit (11) for biasing the transistor (T 3 ) of the circuit (7) current mirror, consisting by a transistor (T 5 ) associated with its emitter resistance (R 5 ) and an assembly, comprising an operational amplifier (A 1 ) and a first order filter, composed of a resistance (R 6 ) and d '' a capacity (C 6 ), polarizing the base of the transistor (T 5 ) with the voltage (V bat ) of the vehicle battery. Capteur de mesure du courant d'ionisation selon la revendication 3, caractérisé en ce que le courant d'ionisation est amplifié au pied de l'enroulement primaire (Lp) de la bobine (2), avant le circuit (4) de commande électronique de l'allumage.Ionization current measuring sensor according to claim 3, characterized in that the ionization current is amplified at the foot of the primary winding (L p ) of the coil (2), before the control circuit (4) ignition electronics. Capteur de mesure du courant d'ionisation selon la revendication 9, caractérisé en ce qu'il comprend de plus un module (14) d'amplification du courant d'ionisation, comportant un transistor (T6), destiné à amplifier le courant d'ionisation envoyé sur sa base, une diode Zener (Z6) entre sa base et le collecteur, et une résistance (R9) entre son collecteur et la masse déterminées pour polariser la base du transistor (T6), et une diode (D6) entre sa base et son émetteur laissant passer le courant pendant l'étincelle.Ionization current measurement sensor according to claim 9, characterized in that it further comprises a module (14) for amplification of the ionization current, comprising a transistor (T 6 ), intended to amplify the current d ionization sent to its base, a Zener diode (Z 6 ) between its base and the collector, and a resistor (R 9 ) between its collector and ground determined to polarize the base of the transistor (T 6 ), and a diode ( D 6 ) between its base and its transmitter letting the current flow during the spark. Capteur de mesure du courant d'ionisation selon la revendication 9, caractérisé en ce qu'il comprend de plus un module (14) d'amplification du courant d'ionisation, constitué par un transistor (T6), recevant le courant d'ionisation sur sa base et choisi pour supporter la haute tension pendant l'étincelle, et par une diode (D6) entre sa base et son émetteur, laissant passer le courant pendant l'étincelle.Ionization current measurement sensor according to claim 9, characterized in that it further comprises a module (14) for amplification of the ionization current, constituted by a transistor (T 6 ), receiving the current ionization on its base and chosen to support the high voltage during the spark, and by a diode (D 6 ) between its base and its emitter, allowing the current to flow during the spark. Capteur de mesure du courant d'ionisation selon les revendications 8 et 10, caractérisé en ce que la tension délivrée par la batterie d'alimentation est filtrée par un filtre passe-bas du premier ordre, composé d'une capacité (Cf) et d'une résistance (Rf).Ionization current measuring sensor according to claims 8 and 10, characterized in that the voltage delivered by the supply battery is filtered by a first-order low-pass filter, composed of a capacity (C f ) and resistance (R f ).
EP98403128A 1997-12-16 1998-12-11 Ionisation sensor for ignition system for internal combustion engine Withdrawn EP0926337A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9715967A FR2772435B1 (en) 1997-12-16 1997-12-16 IONIZATION SENSOR IN AN IGNITION SYSTEM FOR AN INTERNAL COMBUSTION ENGINE
FR9715967 1997-12-16

Publications (1)

Publication Number Publication Date
EP0926337A1 true EP0926337A1 (en) 1999-06-30

Family

ID=9514692

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98403128A Withdrawn EP0926337A1 (en) 1997-12-16 1998-12-11 Ionisation sensor for ignition system for internal combustion engine

Country Status (2)

Country Link
EP (1) EP0926337A1 (en)
FR (1) FR2772435B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2396187A (en) * 2002-11-01 2004-06-16 Visteon Global Tech Inc I.c. engine in-cylinder ionization detection system with ionization detection circuit and ignition coil driver circuit integrated into a single package
DE10350855B4 (en) * 2002-11-01 2012-01-19 Visteon Global Technologies Inc. Ignition coil with integrated coil driver and ionization detection circuit
DE10350848B4 (en) * 2002-11-01 2012-04-05 Visteon Global Technologies Inc. Method for reducing the contact number of an integrated ignition coil with driver and ionization detection circuit
DE10350856B4 (en) * 2002-11-01 2012-06-21 Visteon Global Technologies Inc. Ionization detection circuit and integrated ignition system of an internal combustion engine
DE10350850B4 (en) * 2002-11-01 2012-06-21 Visteon Global Technologies Inc. Method for a regulated energy supply for detecting ionization in the cylinder of an internal combustion engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2812691B1 (en) 2000-08-02 2002-10-04 Renault METHOD AND DEVICE FOR CONTROLLING THE COMBUSTION OF AN INTERNAL COMBUSTION ENGINE PROVIDED WITH A VARIABLE TURBULENCE GENERATOR

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19524540C1 (en) * 1995-07-05 1996-06-27 Telefunken Microelectron Circuit for measuring ion currents in an engine combustion chamber
DE19524541C1 (en) * 1995-07-05 1996-12-05 Telefunken Microelectron Circuit arrangement for ion current measurement in the combustion chamber of an internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19524540C1 (en) * 1995-07-05 1996-06-27 Telefunken Microelectron Circuit for measuring ion currents in an engine combustion chamber
DE19524541C1 (en) * 1995-07-05 1996-12-05 Telefunken Microelectron Circuit arrangement for ion current measurement in the combustion chamber of an internal combustion engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2396187A (en) * 2002-11-01 2004-06-16 Visteon Global Tech Inc I.c. engine in-cylinder ionization detection system with ionization detection circuit and ignition coil driver circuit integrated into a single package
GB2396187B (en) * 2002-11-01 2005-03-23 Visteon Global Tech Inc A device for reducing the part count and package size of an in-cylinder ionization detection system
US7063079B2 (en) 2002-11-01 2006-06-20 Visteon Global Technologies, Inc. Device for reducing the part count and package size of an in-cylinder ionization detection system by integrating the ionization detection circuit and ignition coil driver into a single package
DE10350855B4 (en) * 2002-11-01 2012-01-19 Visteon Global Technologies Inc. Ignition coil with integrated coil driver and ionization detection circuit
DE10350848B4 (en) * 2002-11-01 2012-04-05 Visteon Global Technologies Inc. Method for reducing the contact number of an integrated ignition coil with driver and ionization detection circuit
DE10350856B4 (en) * 2002-11-01 2012-06-21 Visteon Global Technologies Inc. Ionization detection circuit and integrated ignition system of an internal combustion engine
DE10350850B4 (en) * 2002-11-01 2012-06-21 Visteon Global Technologies Inc. Method for a regulated energy supply for detecting ionization in the cylinder of an internal combustion engine

Also Published As

Publication number Publication date
FR2772435A1 (en) 1999-06-18
FR2772435B1 (en) 2000-02-18

Similar Documents

Publication Publication Date Title
EP2205858B1 (en) Device for measuring the ionization current in a radiofrequency ignition system for an internal combustion engine
EP0408436B1 (en) Detection circuit for a three-phase alternator phase control signal of a vehicle battery charging regulator and its use
FR2533261A1 (en) INSTALLATION FOR DETECTING PRESSURE FLUCTUATIONS IN THE COMBUSTION CHAMBER OF AN INTERNAL COMBUSTION ENGINE
EP2153056A1 (en) Measuring device in a radiofrequency ignition system for internal combustion engine
WO2019224177A1 (en) Device for detecting the presence of an occupant inside the passenger compartment of a vehicle
FR3090925A1 (en) Automatic detection device for coupling between electronic devices
EP0926337A1 (en) Ionisation sensor for ignition system for internal combustion engine
EP0825343B1 (en) Method and device for ignition diagnostics of a thermic engine by means of measuring the ionisation impedance
EP2321524A1 (en) Device for measuring the ionization current in a radiofrequency ignition system for an internal combustion engine
FR2788566A1 (en) COMBUSTION STATE DETECTOR DEVICE FOR AN INTERNAL COMBUSTION ENGINE
EP0654604B1 (en) Coil ignition method and device with additional discharges for diagnostics
EP0829941A1 (en) Alternator voltage regulation system
FR2859506A1 (en) METHOD FOR CONDITIONING AN IONIZATION SIGNAL OF AN INTERNAL COMBUSTION ENGINE
EP0692907B1 (en) Circuit for suppressing the dark current of a photodetector
EP0307325B1 (en) Ignition control circuit
FR2577623A1 (en) IGNITION CIRCUIT, IN PARTICULAR FOR MAGNETO IGNITION INTERNAL COMBUSTION ENGINES
EP0922857B1 (en) Ionisation sensor in an ignition system for an internal combustion engine
US6741080B2 (en) Buffered ion sense current source in an ignition coil
EP0216697B1 (en) Control device for an output circuit of an integrated circuit
EP0559540A1 (en) Electronic ignition device with coil for engine with controlled ignition
FR2742486A1 (en) DEVICE FOR MONITORING THE IGNITION SYSTEM OF AN INTERNAL COMBUSTION ENGINE
EP0638993A1 (en) Detector amplifier for guarding system
FR2753234A1 (en) PROCEDURE FOR DETECTING THE IGNITION PHASE OF A CYLINDER OF AN INTERNAL COMBUSTION ENGINE WITH CONTROLLED IGNITION, IN ORDER TO ENABLE IN PARTICULAR THE INITIALIZATION OF THE INJECTION SEQUENCE
WO2021104712A1 (en) Noise reduction sensor for a motor vehicle
FR2705511A1 (en) A method of controlling an electronic circuit by a bias current and an electronic circuit implementing the method.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19991129

AKX Designation fees paid

Free format text: DE ES GB IT

17Q First examination report despatched

Effective date: 20020531

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RENAULT S.A.S.

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20030430