EP0925452B9 - Screw rotor set - Google Patents

Screw rotor set Download PDF

Info

Publication number
EP0925452B9
EP0925452B9 EP97930285A EP97930285A EP0925452B9 EP 0925452 B9 EP0925452 B9 EP 0925452B9 EP 97930285 A EP97930285 A EP 97930285A EP 97930285 A EP97930285 A EP 97930285A EP 0925452 B9 EP0925452 B9 EP 0925452B9
Authority
EP
European Patent Office
Prior art keywords
screw
rotor
balancing
per
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97930285A
Other languages
German (de)
French (fr)
Other versions
EP0925452B1 (en
EP0925452A1 (en
Inventor
Ulrich Becher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ateliers Busch SA
Original Assignee
Ateliers Busch SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ateliers Busch SA filed Critical Ateliers Busch SA
Publication of EP0925452A1 publication Critical patent/EP0925452A1/en
Application granted granted Critical
Publication of EP0925452B1 publication Critical patent/EP0925452B1/en
Publication of EP0925452B9 publication Critical patent/EP0925452B9/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/082Details specially related to intermeshing engagement type machines or pumps
    • F04C2/084Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0042Systems for the equilibration of forces acting on the machines or pump

Definitions

  • the invention relates to measures for balancing a screw rotor set in axially parallel arrangement with opposing external axis engagement as well as with Wrap angles of at least 720 ° in a catchy version.
  • Center of gravity center distance, end face and wrap angle determine the sizes of the static and dynamic unbalance, which with screws catchy profiles occur
  • this method offers the possibility of using Special materials or on the other hand leads to reduced balancing cavities, with what an increase in dimensional stability is achieved.
  • the invention has for its object to define measures for Balancing of catchy screws with a cavern-free, smooth surface without the Use of external additional masses.
  • Design options within a given screw geometry lie in the choice of number, shape and material of the individual rotor parts as well as in the Design of the balancing room 3, as characterized in the subclaims.
  • the screw rotors 101; 201 each consisting of two parts, a cylindrical screw body and one coaxial rotor axis formed.
  • the screw body 104; 204 (Fig.3; 8) is with a screw thread of approx. 9/2 loops as well as with a coaxial Provide central bore.
  • Within the screw body 104; 204 is the Central bore 106; 206 (Fig. 3; 8) expanded to an eccentric cavity, Balancing room 103; 203 (Fig. 3; 8).
  • the rotor axis has no influence on the unbalance; the balancing chamber is formed inside the solid screw and it alone provides compensation for static and dynamic imbalance; thus the problem here is reduced to pure design without the influence of the material data, ie the static and dynamic values of the solid screw and the balancing chamber have to be matched in such a way that the following 4 equations are fulfilled:
  • the index " 3 " indicates the affiliation to the balancing room.
  • the required Pitch depth t (Fig. 3) is relatively large, corresponding to a relatively small core diameter c (Fig.3).
  • the effective balancing space 103 here consists of three axially aligned equidistantly arranged, congruent, spiral wings 108 (Fig.4), which the Follow the course of the screw thread parallel to the distance. 5 shows dash-dotted lines 5 potential wing positions I-V; in the variant described here, only the middle positions II, III, IV, equipped (rough coordination).
  • the area f 0 and the center of gravity position r 0 , ⁇ s can first be determined from the given screw face contour (FIG. 6) using known methods. You get
  • the shape of the balancing space can be determined from the conditions (2b), (4b), (1b), (3b) are not necessarily derived; rather, it is necessary to have a geometry First of all, to determine the 4 key data, then the geometry to correct, redefine the 4 key data etc., until (2b), (4b), (1b), (3b) are met with sufficient accuracy.
  • the balancing space is arranged axially one after the other in staggered fashion Split slices of the same thickness ⁇ W.
  • the front contour of each disc is separate defined by many individual points and saved in this way.
  • a computer program then calculates the values g n and ⁇ n for each slice and stores them in field data memories.
  • pane front cut contour is now being constructed in the middle area of the wing optimally extended to the limit line (dash-dotted in Fig. 6) and the Center of gravity positions of solid screw and balancing chamber to cover brought 108 (Fig.4),
  • the middle area extends over a (initially) variable number of m of the same Disks, the end areas each have 5 disks of decreasing contours (Fig.7).
  • ⁇ W 0.108 [cm] and variation of m one obtains for the 3-winged Balancing room the values shown in Table 2.
  • the required one Gait t relatively small, corresponding to a relatively large core diameter c (Fig.8).
  • the effective balancing space 203 (FIG. 8) runs in a straight line, axially parallel with constant cross section (Fig. 9) eccentrically within the Screw core area, axially mediated (Fig. 10).
  • the screw rotor 302 flying on the rotor axis coaxially attached to the screw body on one side stored.
  • the eccentric balancing chamber 303 is from the axisless end face of the Screw rotor accessible via a large coaxial bore and can therefore open several types can be manufactured.
  • Form screw body and rotor axis preferably a one-piece unit, the coaxial bore on the rotor face side is optionally closed by a plug 309. Special proportions of the Screw body, i.a. due to the one-sided storage, lead to the same Calculation of deviating proportions e, d, j of balancing space 303.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)
  • Supercharger (AREA)
  • Cereal-Derived Products (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Refuse Collection And Transfer (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PCT No. PCT/CH97/00279 Sec. 371 Date Feb. 11, 1999 Sec. 102(e) Date Feb. 11, 1999 PCT Filed Jul. 21, 1997 PCT Pub. No. WO98/11351 PCT Pub. Date Mar. 19, 1998Known designs of single-thread screw rotors in single-piece cast iron constructions having wrap angles of >720 degrees with balancing cavities on the face of the screw operate with no unbalance at average rotary frequencies of ( DIFFERENCE 3000 min-1). The use of a pump in processes having sensitive purity and maintenance requirements or working with corrosive substances or where limited space is available and quality is demanded, brings about problems for rotor designing and balancing, which the present invention solves. An uneven mass distribution is accomplished by constructing the rotors with several single parts inside the rotor, by forming cavities and/or by choosing the adequate material, which, combined with the screw length/pitch ratio, cause a static and dynamic balancing. Screw rotors designed as described offer several advantages since they are easy to assemble and have a compact and stable construction. Moreover, they can be used in pumps for the food industry, chemistry, medicine and semi-conductor construction due to the flexibility in material and to the smooth surfaces free from cavities.

Description

Die Erfindung betrifft Maßnahmen zur Auswuchtung eines Schraubenrotorsatzes in achsparalleler Anordnung mit gegenläufigem außenachsigen Eingriff sowie mit Umschlingungswinkeln von mindestens 720° in eingängiger Ausführung.The invention relates to measures for balancing a screw rotor set in axially parallel arrangement with opposing external axis engagement as well as with Wrap angles of at least 720 ° in a catchy version.

Schwerpunktmittenabstand, Stirnfläche und Umschlingungswinkel bestimmen hierbei die Größen der statischen und der dynamischen Unwucht, die bei Schrauben mit eingängignen Profilen auftreten;Center of gravity center distance, end face and wrap angle determine the sizes of the static and dynamic unbalance, which with screws catchy profiles occur;

In der Offenlegungsschrift Sho 62 (1987)-291486 der Fa. Taiko, Japan, wird eine Methode zur Schraubenauswuchtung beschrieben : Zunächst wird statische Auswuchtung erreicht durch Festsetzen der Schraubenlänge auf ganzzahlige Vielfache der Steigung. Durch beidseitig stirnseitige Aussparungen in der Schraube, die hohl oder mit leichtem Material gefüllt sind, wird dynamisch ausgewuchtet.In the publication Sho 62 (1987) -291486 from Taiko, Japan, one Screw balancing method described: First, static Balancing achieved by fixing the screw length to whole numbers Multiples of the slope. Through cutouts in the screw on both sides, which are hollow or filled with light material is dynamically balanced.

Diese Methode der Auswuchtung ist nicht durchführbar, wenn Sonderwerkstoffe verlangt werden, die nicht gegossen werden können. Auch bei außergewöhnlichen Profilgeometrien hat diese Methode ihre Grenzen, da einerseits die Wandstärken der Schrauben aus Stabilitätsgründen nicht beliebig verringert werden können, andererseits eine zu große axiale Ausdehnung der Auswuchthöhlen wegen der spiraligen Form erhebliche Fertigungsprobleme mit sich bringt; das Füllen der Aussparungen mit leichtem Material verschärft dieses Problem noch.This method of balancing is not feasible when using special materials that cannot be cast. Even with extraordinary Profile geometries, this method has its limits, because on the one hand the wall thicknesses of the Screws cannot be reduced arbitrarily for reasons of stability, on the other hand, an excessive axial expansion of the balancing cavities because of the spiral shape brings significant manufacturing problems; filling the Recesses with light material exacerbate this problem.

In der schweizerischen Patentanmeldung 3487/95 der Fa. Busch S.A, Schweiz (WO-A-97/21925), wird eine andere Methode der Schraubenauswuchtung beschrieben : Die Schraubenlänge (= 2W2) ist um ganzzahlig vielfache der Steigung I größer als das 1½ - fache der Steigung (2W2 = 5 · I/2 , 7 · I/2 , 9 · I/2...).Another method of screw balancing is described in Swiss patent application 3487/95 by Busch SA, Switzerland (WO-A-97/21925): the screw length (= 2W 2 ) is a multiple of the pitch I greater than the 1½ - times the slope (2W 2 = 5I / 2, 7I / 2, 9I / 2 ...).

Zum Ausgleich der verbleibenden statischen und dynamischen Unwucht dienen saugseitige Veränderungen an äußeren, passiven Schraubenteilen und/oder eine oder mehrere stirnseitige Auswuchthöhlen und/oder äußere Zusatzmassen.To compensate for the remaining static and dynamic imbalance Changes on the outside on passive passive screw parts and / or a or several end balancing cavities and / or external additional masses.

Diese Methode bietet einerseits die Möglichkeit der Verwendung von Sonderwerkstoffen oder führt andererseits zu reduzierten Auswuchthöhlen, womit eine Erhöhung der Formstabilität erreicht wird. On the one hand, this method offers the possibility of using Special materials or on the other hand leads to reduced balancing cavities, with what an increase in dimensional stability is achieved.

Der Einsatz von Schraubenrotoren zum Pumpen bestimmter Medien sowie eine angestrebte Temperaturreduzierung am ausgangseitigen Schraubenende erfordern kleine, glatte, kavernenfreie Schraubenoberflächen, die schmutzabweisend und gut zu reinigen sind. Die Forderungen nach Aufwandreduzierung bei Service, Montage, Ersatzteilhaltung und nach kleinen, kompakten Pumpen lassen den Einsatz äußerer Zusatzmassen zum Hindernis werden.The use of screw rotors for pumping certain media as well as a Desired temperature reduction at the end of the screw required small, smooth, cavern-free screw surfaces that are dirt-repellent and good are to be cleaned. The demands for reduced effort in service, assembly, Spare parts and after small, compact pumps leave the use of external Additional masses become an obstacle.

Der Erfindung liegt die Aufgabe zugrunde, Maßnahmen zu definieren zur Auswuchtung eingängiger Schrauben mit kavernenfreier, glatter Oberfläche ohne die Verwendung äußerer Zusatzmassen.The invention has for its object to define measures for Balancing of catchy screws with a cavern-free, smooth surface without the Use of external additional masses.

Diese Aufgabe wird bei einem Schraubenrotorsatz für Schraubenpumpen in achsparalleler Anordnung mit gegenläufigem außenachsigem Eingriff sowie mit Umschlingungswinkeln von mindestens 720° in eingängiger Ausführung und mit glatten, planparallelen Rotor-Stimflächen, dadurch gelöst, daß jeder Schraubenrotor aus mehreren starr miteinander verbundenen Einzelteilen mit gemeinsamer Drehachse, wahlweise exzentrischen Schwerpunktlagen und wahlweise unterschiedlichen Werkstoffdichten gebildet ist; daß die Einzelteile im Rotorinneren einen exzentrischen, zum Pumpenraum hin abgeschlossenen Hohlraum, den Auswuchtraum bilden; daß die Abstimmung der Werkstoffdichten und der Geometrien der Einzelteile im Rotorinneren die statische Auswuchtung bewirkt und die dynamische Unwucht beeinflußt und daß die dynamische Auswuchtung bei geringer Rückwirkung auf die statische Unwucht erreicht wird durch rechnerische Bestimmung des Verhältnisses Schraubenlänge/Steigung = a auf Werte, die jeweils etwas kleiner als ungeradzahlig Vielfache von 1/2 sind.This task is performed with a screw rotor set for screw pumps in axially parallel arrangement with opposing external axis engagement as well as with Wrap angles of at least 720 ° in a catchy version and with smooth, plane-parallel rotor end faces, solved by the fact that each screw rotor from several rigidly connected individual parts with a common one Rotation axis, optionally eccentric centers of gravity and optionally different material densities is formed; that the individual parts inside the rotor an eccentric cavity closed off from the pump chamber, the Form balancing room; that the coordination of the material densities and the Geometry of the individual parts inside the rotor causes the static balancing and affects the dynamic imbalance and that the dynamic balancing at less impact on the static unbalance is achieved by means of arithmetic Determination of the ratio screw length / pitch = a to values, each are slightly smaller than odd multiples of 1/2.

Ausgestaltungsmöglichkeiten im Rahmen einer vorgegebenen Schraubengeometrie liegen in der Wahl von Anzahl, Form und Werkstoff der Rotoreinzelteile sowie in der Gestaltung des Auswuchtraumes 3, wie in den Unteransprüchen gekennzeichnet.Design options within a given screw geometry lie in the choice of number, shape and material of the individual rotor parts as well as in the Design of the balancing room 3, as characterized in the subclaims.

Einem Mehraufwand in der Fertigung stehen folgende mit der Erfindung erzielten Vorteile gegenüber:

  • 1. Glatte, kavernenfreie, Prozess- und Service-freundliche Oberfläche:
  • 2. Temperaturreduzierung am Schraubenende durch Oberflächenverkleinerung.
  • 3. Optimierung in der Werkstoffauswahl der Einzelteile mit unterschiedlichen chemischen und mechanischen Beanspruchungen.
  • 4. Einfache Montage, Ersatzteilbeschaffung und - haltung.
  • 5. Kleiner, kompakter, formstabiler Aufbau.
  • 6. Baukastenprinzip durch Kombinationen von Schraubenkörpern mit verschiedenen Rotorachsen.
  • 7. Möglichkeit einer Rotor - Innenkühlung.
  • The following advantages achieved with the invention are offset by additional expenditure in production:
  • 1. Smooth, cavern-free, process and service-friendly surface:
  • 2. Temperature reduction at the screw end through surface reduction.
  • 3. Optimization of the material selection of the individual parts with different chemical and mechanical stresses.
  • 4. Easy assembly, spare parts procurement and maintenance.
  • 5. Small, compact, dimensionally stable construction.
  • 6. Modular principle by combinations of screw bodies with different rotor axes.
  • 7. Possibility of internal rotor cooling.
  • Anhand eines in den Abbildungen dargestellten Ausführungsbeispiels wird die Erfindung anschließend näher erläutert:Using an embodiment shown in the figures The invention is subsequently explained in more detail:

    Es zeigen:

    Fig.1:
    Einen Schraubenrotorsatz mit Pilotgetriebe für eine Schraubenpumpe in eingängiger Ausführung nach der Erfindung aus Einzelteilen zusammengesetzt mit exzentrischer innerer Massenkonzentration und mit einem Verhältnis Schraubenlänge/Steigung = 2 W2/I < 9/2 in einem axialen Schnitt.
    Fig.2:
    Die Darstellung der spiraligen Stirnprofilschwerpunkt-Ortskurve einer rechtssteigenden Schraube von Fig.1.
    Fig.3:
    Ein Ausführungsbeispiel eines Rotors des Schraubenrotorsatzes von Fig. 1 in zweiteiliger Ausführung in einer ersten Variante mit flügelförmig gegliedertem Auswuchtraum in einem axialen Schnitt.
    Fig.4:
    Den Rotor von Fig.3 im Stirnschnitt entsprechend der Linie A-A.
    Fig.5:
    Die Darstellung der spiraligen Stirnprofilschwerpunkt-Ortskurve sowie strichpunktiert die Ortskurvenäste I, II, III, IV, V der Stirnschnitt-Schwerpunkte des flügelförmig gegliederten Auswuchtraumes von Fig.3, 4.
    Fig.6:
    Die Stirnschnittgeometrie der ersten Rotorvariante mit Schwerpunkt sowie die maximal zulässige innere Aushöhlung.
    Fig.7:
    Unterschiedliche Stirnschnittkonturen eines Auswuchtraumes 103, variierend mit der Axialposition W.
    Fig.8:
    Ein Ausführungsbeispiel eines Rotors des Schraubenrotorsatzes von Fig. 1 in zweiteiliger Ausführung in einer zweiten Variante mit geradem Auswuchtraum in einem axialen Schnitt.
    Fig.9:
    Den Rotor von Fig.4 im Stirnschnitt entsprechend der Linie B-B.
    Fig.10:
    Die Darstellung der spiraligen Stirnprofilschwerpunkt-Ortskurve sowie strichpunktiert die Schwerachse des geraden Auswuchtraumes von Fig. 8, 9.
    Fig. 11:
    Ein Ausführungsbeispiel eines Rotors von Fig. 8 in einer Untervariante mit einseitiger Rotorachse.
    Show it:
    Fig.1:
    A screw rotor set with pilot gear for a screw pump in a single-thread design according to the invention composed of individual parts with an eccentric internal mass concentration and with a screw length / pitch = 2 W 2 / I <9/2 ratio in an axial section.
    Figure 2:
    The representation of the spiral front profile center of gravity locus of a right-hand screw of Fig.1.
    Figure 3:
    An embodiment of a rotor of the screw rotor set of FIG. 1 in a two-part design in a first variant with a wing-shaped balancing space in an axial section.
    Figure 4:
    The rotor of Figure 3 in the end section along the line AA.
    Figure 5:
    The representation of the spiral front profile center of gravity locus as well as dash-dotted lines of the locus branches I, II, III, IV, V of the front cut center of gravity of the wing-shaped balanced balancing area of Fig. 3, 4.
    Figure 6:
    The face cut geometry of the first rotor variant with the center of gravity as well as the maximum permissible internal cavity.
    Figure 7:
    Different end cut contours of a balancing room 103, varying with the axial position W.
    Figure 8:
    An embodiment of a rotor of the screw rotor set of FIG. 1 in a two-part design in a second variant with a straight balancing space in an axial section.
    Figure 9:
    The rotor of Figure 4 in the end section along the line BB.
    Figure 10:
    The representation of the spiral front profile center of gravity locus and dash-dotted line the center of gravity of the straight balancing area of Fig. 8, 9th
    Fig. 11:
    An embodiment of a rotor of FIG. 8 in a sub-variant with a rotor axis on one side.

    In einem Ausführungsbeispiel sind die Schraubenrotoren 101; 201 (Fig.3, 4; 8, 9) jeweils aus zwei Teilen, einem zylinderförmigen Schraubenkörper und einer koaxialen Rotorachse gebildet. Der Schraubenkörper 104; 204 (Fig.3; 8) ist mit einem Schraubengang von ca. 9/2 Umschlingungen sowie mit einer koaxialen Zentralbohrung versehen. Innerhalb des Schraubenkörpers 104; 204 ist die Zentralbohrung 106; 206 (Fig.3; 8) erweitert zu einem exzentrischen Hohlraum, Auswuchtraum 103; 203 (Fig.3; 8) genannt. In der Zentralbohrung 106; 206 des Schraubenkörpers 104; 204 ist die Rotorachse 105; 205 (Fig.3; 8) durch Preßsitze fixiert und verschließt solchermaßen den Auswuchtraum 103; 203 nach außen. Ein formschlüssiger Bereich sichert jeweils die Drehmomentübertragung zwischen Rotorachse 105; 205 und Schraubenkörper 104; 204. Aus Fertigungs- und Festigkeitsgründen sind Schraubenkörper 104; 204 und Rotorachse 105; 205 aus unterschiedlichen metallischen Werkstoffen gefertigt.In one embodiment, the screw rotors 101; 201 (Fig. 3, 4; 8, 9) each consisting of two parts, a cylindrical screw body and one coaxial rotor axis formed. The screw body 104; 204 (Fig.3; 8) is with a screw thread of approx. 9/2 loops as well as with a coaxial Provide central bore. Within the screw body 104; 204 is the Central bore 106; 206 (Fig. 3; 8) expanded to an eccentric cavity, Balancing room 103; 203 (Fig. 3; 8). In the central bore 106; 206 of Screw body 104; 204 is the rotor axis 105; 205 (Fig.3; 8) by press fits fixes and closes the balancing room 103; 203 to the outside. On interlocking area ensures the torque transmission between Rotor axis 105; 205 and screw body 104; 204. From manufacturing and Strength reasons are screw body 104; 204 and rotor axis 105; 205 out different metallic materials.

    Ein in der Rotorachse 105; 205 vorgesehener Kanal 107; 207 (Fig.3; 8) dient der Belüftung oder Kühlung des Auswuchtraumes 103; 203 von einer gegen das Pumpmedium abgedichteten Stelle aus; vorliegende Ausführung zeigt eine saugseitig herausgeführte Zentralbohrung mit Querbohrung im Bereich des Auswuchtraumes zur Belüftung.A in the rotor axis 105; 205 provided channel 107; 207 (Fig.3; 8) is used Ventilation or cooling of the balancing chamber 103; 203 from one against that Pump medium sealed point out; present embodiment shows a Central bore on the suction side with cross bore in the area of the Balancing room for ventilation.

    Rechnerische Behandlung :Mathematical treatment:

    In einem rechtwinkligen Koordinatensystem u, v, w gelten allgemein für einen beliebig geformten Körper homogener Dichte bei Rotation um die w-Achse und einer Ausdehnung p ≤ w ≤ q folgende Beziehungen

    Figure 00050001
    Figure 00050002
    Figure 00050003
    Figure 00050004
    In a right-angled coordinate system u, v, w, the following relationships generally apply to an arbitrarily shaped body of homogeneous density when rotated around the w axis and having an extent p ≤ w ≤ q
    Figure 00050001
    Figure 00050002
    Figure 00050003
    Figure 00050004

    Es bedeuten:

    p, q =
    Integrationsgrenzen   [ cm ]
    Pu, Pv =
    Kraftkomponenten   [ g ]
    Mu,w, Mv,w =
    Momentkomponenten   [ gcm ]
    ω =
    2π/T = Drehzahl   [Rad/sec]
    π =
    Kreiszahl = 3,1415....
    T =
    Umlaufzeit   [ sec ]
    τ =
    γ/b   [ g sec2 / cm4]
    γ =
    Spez. Gewicht   [g/cm3]
    b =
    Erdbeschleunigung = 981   [cm/sec2]
    g <w> =
    f <w>. r<w>   [ cm3 ]
    f <w> =
    Stirnschnittfläche als Funktion von w   [ cm2 ]
    r <w> =
    Schwerpunktmittenabstand als Funktion von w   [ cm ]
     <w> =
    Schwerpunktpositionswinkel als Funktion von w   [ Rad ]
    It means:
    p, q =
    Integration limits [cm]
    P u , P v =
    Force components [g]
    M u, w , M v, w =
    Moment components [gcm]
    ω =
    2π / T = speed [wheel / sec]
    π =
    Circle number = 3.1415 ....
    T =
    Orbital period [sec]
    τ =
    γ / b [g sec 2 / cm 4 ]
    γ =
    Specific weight [g / cm 3 ]
    b =
    Acceleration due to gravity = 981 [cm / sec 2 ]
    g <w> =
    f <w>. r <w> [cm 3 ]
    f <w> =
    Face cut area as a function of w [cm 2 ]
    r <w> =
    Center of gravity center distance as a function of w [cm]
     <w> =
    Center of gravity position as a function of w [Rad]

    Für einen Schraubenkörper im u, v, w-System (Fig.2) mit mittlerem Stirnschnitt in der u-v-Ebene und Schwerpunkt So des mittleren Stirnschnitts auf der u-Achse sowie mit konstanter Steigung l, konstanter Stirnfläche fo und konstantem Schwerpunktmittenabstand r0 folgt insbesondere g<w> = g0 = f0·r0 = konst. f<w> = α = (2π/l) · W For a screw body in the u, v, w system (Fig. 2) with a middle face cut in the uv plane and center of gravity So the middle face cut on the u axis as well as with constant pitch l, constant face surface fo and constant center of gravity center distance r 0 follows in particular g <w> = g 0 = f 0 · r 0 = const. f <w> = α = (2π / l) · W

    Wegen der symmetrischen Ausdehnung von - W2 ... + W2 entsprechend Positionswinkeln von -α2 ....+α2 folgt ferner : p=-W2 q = +W2 W2 = α2 · (I/2π) Because of the symmetrical expansion of - W 2 ... + W 2 corresponding to position angles of -α 2 .... + α 2 it also follows: p = -W 2 q = + W 2 W 2 = α 2 · (I / 2π)

    Aus der Symmetrie folgt für die ungewuchtete Schraube (=Vollschraube) unmittelbar: PV =  Mu,w =  For the unbalanced screw (= full screw), the following immediately follows from the symmetry: P V =  M u, w = 

    Die verbleibenden Komponenten werden wie folgt ermittelt:The remaining components are determined as follows:

    Aus (1), (5), (6), (6a), (7), (8) =>

    Figure 00060001
    From (1), (5), (6), (6a), (7), (8) =>
    Figure 00060001

    Aus (3), (5), (6), (6a), (7), (8) =>

    Figure 00060002
    From (3), (5), (6), (6a), (7), (8) =>
    Figure 00060002

    Es bedeuten :

    τ0 =
    γ0/b   [g sec2/cm4]
    γ0 =
    Spez. Gewicht des Schraubenkörpers   [g/cm3]
    I =
    Steigung   [cm ]
    r0 =
    Schwerpunktmittenabstand der Vollschraubenstirnfläche   [cm]
    f0 =
    Stirnfläche der Vollschraube   [cm2]
    α2 =
    1/2 Schraubenumschlingungswinkel   [Rad ]
    I und g0 sind durch die Schraubengeometrie fixiert; ω ist eine rein betriebsabhängige Größe mit ω > ; τ0 ist werkstoffabhängig und somit bedingt variabel mit τ0 > ; Hauptvariable ist der Umschlingungswinkel = 2 α2.It means:
    τ 0 =
    γ 0 / b [g sec 2 / cm 4 ]
    γ 0 =
    Specific weight of the screw body [g / cm 3 ]
    I =
    Slope [cm]
    r 0 =
    Center of gravity of the solid screw face [cm]
    f 0 =
    Face of solid screw [cm 2 ]
    α 2 =
    1/2 screw wrap angle [wheel]
    I and g 0 are fixed by the screw geometry; ω is a purely operational variable with ω>; τ 0 depends on the material and is therefore conditionally variable with τ 0 >; The main variable is the wrap angle = 2 α 2 .

    Durch Variation von α2 allein gelingt es indes nicht, Pu =  und Mv,w =  gleichzeitig zu realisieren (statische und dynamische Auswuchtung). In der vorliegenden Patentanmeldung wird ohne äußere Zusatzmassen und ohne stirnseitige Auswuchtkavernen im Inneren der Schraube exzentrische Massenkonzentration gebildet.By varying α 2 alone, however, P u =  and M v, w =  cannot be achieved simultaneously (static and dynamic balancing). In the present patent application, eccentric mass concentration is formed inside the screw without external additional masses and without frontal balancing caverns.

    Bei dem hier beschriebenen Ausführungsbeispiel hat die Rotorachse keinen Einfluß auf die Unwucht; der Auswuchtraum wird im Inneren der Vollschraube gebildet und er allein liefert hier die Kompensation zu statischer und dynamischer Unwucht; somit reduziert sich hier das Problem auf reine Formgestaltung ohne Einfluß der Werkstoffdaten d.h. die statischen und dynamischen Werte von Vollschraube und Auswuchtraum müssen in Übereinstimmung gebracht werden, derart, daß folgende 4 Gleichungen erfüllt sind:

    Figure 00070001
    Figure 00070002
    Figure 00070003
    Figure 00070004
    In the embodiment described here, the rotor axis has no influence on the unbalance; the balancing chamber is formed inside the solid screw and it alone provides compensation for static and dynamic imbalance; thus the problem here is reduced to pure design without the influence of the material data, ie the static and dynamic values of the solid screw and the balancing chamber have to be matched in such a way that the following 4 equations are fulfilled:
    Figure 00070001
    Figure 00070002
    Figure 00070003
    Figure 00070004

    Hierbei zeigt der Index "3" jeweils die Zugehörigkeit zum Auswuchtraum an.The index " 3 " indicates the affiliation to the balancing room.

    In einer ersten Variante (Fig.3, 4) des Ausführungsbeispiels ist die geforderte Gangtiefe t (Fig.3) relativ groß, entsprechend einem relativ kleinen Kerndurchmesser c (Fig.3). Der wirksame Auswuchtraum 103 besteht hier aus drei axial fluchtend äquidistant angeordneten, kongruenten, gewundenen Flügeln 108 (Fig.4), die dem Verlauf des Schraubenganges abstandsparallel folgen. Fig.5 zeigt strichpunktiert 5 potentielle Flügelpositionen I-V; in der hier ausgeführen Variante wurden nur die mittleren Positionen II, III, IV, bestückt (Grobabstimmung).In a first variant (FIGS. 3, 4) of the exemplary embodiment, the required Pitch depth t (Fig. 3) is relatively large, corresponding to a relatively small core diameter c (Fig.3). The effective balancing space 103 here consists of three axially aligned equidistantly arranged, congruent, spiral wings 108 (Fig.4), which the Follow the course of the screw thread parallel to the distance. 5 shows dash-dotted lines 5 potential wing positions I-V; in the variant described here, only the middle positions II, III, IV, equipped (rough coordination).

    Bei einem solchermaßen gebildeten Auswuchtraum 103 wird durch Variation der Flügelgröße und - form der statische Wert stark, der dynamische Wert wenig verändert. Bei der ungewuchteten Schraube erreicht man durch Veränderung der Schraubenlänge (= 2 W2) in der Nähe ungeradzahlig Vielfacher der halben Steigung dagegen starke dynamische und schwache statische Veränderungen.In a balancing space 103 formed in this way, the static value becomes strong, the dynamic value changes little, by varying the wing size and shape. In the case of the unbalanced screw, changing the screw length (= 2 W 2 ) in the vicinity of odd multiples of half the pitch leads to strong dynamic and weak static changes.

    Aus vorgegebener Schraubenstirnschnittkontur (Fig.6) lassen sich zunächst nach einschlägig bekannten Methoden die Fläche f0 und die Schwerpunktposition r0, ϕs bestimmen. Man erhält

    Figure 00080001
    The area f 0 and the center of gravity position r 0 , ϕ s can first be determined from the given screw face contour (FIG. 6) using known methods. You get
    Figure 00080001

    Hieraus => g0 = f0 · r0 = 261,636 [ cm3 ].From this => g 0 = f 0 · r 0 = 261.636 [cm 3 ].

    Mit (ebenfalls vorgegebener) Steigung I = 6,936 [ cm ] erhält man für die Vollschraube bei Variation von α2 aus (1b) und (3b) direkt Zahlenwerte, die in Tabelle 1 gezeigt werden.With (also given) pitch I = 6.936 [cm], for the solid screw with variation of α 2 from (1b) and (3b), numerical values are obtained, which are shown in Table 1.

    Die Form des Auswuchtraumes kann aus den Bedingungen (2b), (4b), (1b), (3b) nicht zwangsläufig hergeleitet werden; es ist vielmehr notwendig, eine Geometrie zunächst festzulegen, hierfür die 4 Eckdaten zu bestimmen, danach die Geometrie zu korrigieren, die 4 Eckdaten neu bestimmen usw., solange bis (2b), (4b), (1b), (3b) mit genügender Genauigkeit erfüllt sind.The shape of the balancing space can be determined from the conditions (2b), (4b), (1b), (3b) are not necessarily derived; rather, it is necessary to have a geometry First of all, to determine the 4 key data, then the geometry to correct, redefine the 4 key data etc., until (2b), (4b), (1b), (3b) are met with sufficient accuracy.

    Grenze für die Ausdehnung des Auswuchtraums ist durch eine stabilitätsbedingte Mindestwandstärke gegeben. Wegen der variierenden räumlichen Krümmung der Schraubenoberfläche ist eine Ermittlung der Grenzlinie im Stirnschnitt nur rechnerisch möglich : Stirnschnittkontur und Steigung I liefern für jeden Punkt der Schraubenoberfläche einen Normalenvektor, dessen Betrag der Mindestwandstärke gleichgesetzt wird. Der Endpunkt des Vektors wird dann in eine fixe Ebene (w = konstant) verschraubt und liefert einen Punkt der Grenzlinie. Mit einem speziell hierfür entwickelten EDV-Programm, dessen Unterprogramme die profilspezifischen Formeln enthalten, wurden die Kurvendaten der in Fig.6 strichpunktiert dargestellten Grenzlinie für eine Wandstärke von 0,7 [ cm ] berechnet.The limit for the expansion of the balancing room is due to a stability-related Given minimum wall thickness. Because of the varying spatial curvature of the Screw surface is a determination of the boundary line in the face cut only Computationally possible: face cut contour and slope I deliver the for each point Screw surface a normal vector, the amount of the minimum wall thickness is equated. The end point of the vector is then in a fixed plane (w = constant) screwed and delivers a point of the boundary line. With one specifically IT program developed for this, the sub-programs of which are profile-specific Contained formulas, the curve data were shown in dash-dot lines in FIG Boundary line calculated for a wall thickness of 0.7 [cm].

    Wegen der komplexen gewundenen Form lassen sich realisierbare Funktionen g3 <w> und 3 <w> nur äußerst aufwendig mathematisch darstellen mit Zusatzproblemen in der nachfolgenden Integration ((1b)...(4b)); eine Näherungsmethode mit Aufsummation endlich vieler kleiner Teilbeträge per EDV-Programm führt hier schneller zum Ziel:Because of the complex tortuous form, functions g 3 <w> and  3 <w> that can be realized can only be represented mathematically in an extremely complex manner with additional problems in the subsequent integration ((1b) ... (4b)); an approximation method with the summation of finitely many small partial amounts via an EDP program leads to the goal more quickly:

    Hierzu wird der Auswuchtraum in N axial hintereinander, versetzt angeordnete Scheiben der gleichen Dicke ΔW aufgeteilt. Die Stirnkontur jeder Scheibe ist separat durch viele Einzelpunkte definiert und wird solchermaßen abgespeichert.For this purpose, the balancing space is arranged axially one after the other in staggered fashion Split slices of the same thickness ΔW. The front contour of each disc is separate defined by many individual points and saved in this way.

    Ein EDV-Teilprogramm berechnet hieraus zunächst für jede Scheibe die Werte gn und n und speichert diese in Felddatenspeichern ab.A computer program then calculates the values g n and  n for each slice and stores them in field data memories.

    Ein weiteres EDV-Programm ruft diese Werte wieder ab und bildet die Integralwerte durch Aufsummierungen:

    Figure 00090001
    Figure 00090002
    Figure 00090003
    Figure 00090004
    Another EDP program retrieves these values and forms the integral values by adding them up:
    Figure 00090001
    Figure 00090002
    Figure 00090003
    Figure 00090004

    Konstruktiv wird nun im Mittelbereich des Flügels die Scheiben-Stirnschnittkontur optimal bis zur Grenzlinie (strichpunktiert in Fig.6) ausgedehnt sowie die Schwerpunktwinkelpositionen von Vollschraube und Auswuchtraum zur Deckung gebracht 108 (Fig.4),The pane front cut contour is now being constructed in the middle area of the wing optimally extended to the limit line (dash-dotted in Fig. 6) and the Center of gravity positions of solid screw and balancing chamber to cover brought 108 (Fig.4),

    Der Mittelbereich erstreckt sich über eine (zunächst) variable Anzahl von m gleichen Scheiben, die Endbereiche weisen jeweils 5 Scheiben abnehmender Konturen auf (Fig.7). Bei ΔW = 0,108 [ cm ] und Variation von m erhält man für den 3-flügeligen Auswuchtraum die in Tabelle 2 gezeigten Werte.The middle area extends over a (initially) variable number of m of the same Disks, the end areas each have 5 disks of decreasing contours (Fig.7). At ΔW = 0.108 [cm] and variation of m one obtains for the 3-winged Balancing room the values shown in Table 2.

    Eine gute Annäherung bieten Werte α2 = 806,8...806,9 [<° ] und m = 10. Ein anschließender Feinabgleich erfolgt durch Korrekturen an den Scheibengeometrieen. Der rechnerisch ermittelte Wert der Relation Schraubenlänge/Steigung beträgt hier 2 W2/I = a = 4,4825 < 9/2.A good approximation is given by values α 2 = 806.8 ... 806.9 [<°] and m = 10. A subsequent fine adjustment is made by making corrections to the disc geometry. The calculated value of the screw length / pitch relation here is 2 W 2 / I = a = 4.4825 <9/2.

    In einer zweiten Variante (Fig.8, 9) des Ausführungsbeispiels ist die geforderte Gangteife t (Fig.8) relativ klein, entsprechend einem relativ großen Kemdurchmesser c (Fig.8). Der wirksame Auswuchtraum 203 (Fig.8) verläuft geradlinig, achsparallel mit konstantem Querschnitt (Fig.9) exzentrisch innerhalb des Schraubenkernbereichs, axial vermittelt (Fig.10).In a second variant (FIGS. 8, 9) of the exemplary embodiment, the required one Gait t (Fig. 8) relatively small, corresponding to a relatively large core diameter c (Fig.8). The effective balancing space 203 (FIG. 8) runs in a straight line, axially parallel with constant cross section (Fig. 9) eccentrically within the Screw core area, axially mediated (Fig. 10).

    Ein solchermaßen ausgebildeter Auswuchtraum 203 hat keinen Einfluß auf die dynamische Unwucht. Bei der rechnerischen Behandlung wird also zunächst mit Hilfe von (3a) der genaue Wert ao = Schraubenlänge/Steigung in der Nähe von 9/2 Umschlingungen ermittelt, für den die dynamische Unwucht der Schraube ebenfalls gleich "Null" ist. Dieser Wert ao ist profilunabhängig.Einige Werte für unterschiedliche Umschlingungen sind in Tab. 3 gezeigt. Hieraus folgt mit (1a) direkt der (profilabhängige) Wert der statischen Unwucht der Schraube :

    Pu2τ0 =
    g0·(I/π)·sinα2
    α2 = 14,0662   [ Rad ]
    I = 5,390   [ cm ]
    g0 = 150,374   [ cm3 ]
    Pu2τ0 =
    257,347   [ cm4 ]
    A balancing chamber 203 designed in this way has no influence on the dynamic unbalance. In the arithmetic treatment, the exact value a o = screw length / pitch near 9/2 loops is first determined with the aid of (3a), for which the dynamic unbalance of the screw is also "zero". This value a o is independent of the profile. Some values for different wraps are shown in Tab. 3. From this follows directly (1a) the (profile-dependent) value of the static imbalance of the screw:
    P u / ω 2 τ 0 =
    g 0 · (I / π) · sinα 2
    α 2 = 14.0662 [wheel]
    I = 5.390 [cm]
    g 0 = 150.374 [cm 3 ]
    P u / ω 2 τ 0 =
    257.347 [cm 4 ]

    Diesem Wert wird der Wert des Auswuchtraumes 203 durch Querschnitt - und Längenanpassung gleichgesetzt:
    e=2,85 [cm]   d = 1,6 [cm]   =>   j=20,3 [cm]
    The value of balancing space 203 is equated to this value by adjusting the cross-section and length:
    e = 2.85 [cm] d = 1.6 [cm] => j = 20.3 [cm]

    Bei einer Untervariante (Fig. 11) der zweiten Variante wird der Schraubenrotor 302 auf der einseitig am Schraubenkörper koaxial befestigten Rotorachse fliegend gelagert. Der exzentrische Auswuchtraum 303 ist von der achsenlosen Stirnseite des Schraubenrotors über eine grosse koaxiale Bohrung zugänglich und kann somit auf mehrere Arten gefertigt werden. Schraubenkörper und Rotorachse bilden vorzugsweise eine einstückige Einheit, die koaxiale Bohrung and der Rotorstimseite wird wahlweise durch einen Stopfen 309 verschlossen. Besondere Proportionen des Schraubenkörpers, u.a. bedingt durch die einseitige Lagerung, führen bei gleichem Rechengang zu abweichenden Proportionen e, d, j des Auswuchtraumes 303.In a sub-variant (FIG. 11) of the second variant, the screw rotor 302 flying on the rotor axis coaxially attached to the screw body on one side stored. The eccentric balancing chamber 303 is from the axisless end face of the Screw rotor accessible via a large coaxial bore and can therefore open several types can be manufactured. Form screw body and rotor axis preferably a one-piece unit, the coaxial bore on the rotor face side is optionally closed by a plug 309. Special proportions of the Screw body, i.a. due to the one-sided storage, lead to the same Calculation of deviating proportions e, d, j of balancing space 303.

    Schraubenrotoren mit Profilgeometrien beider Varianten des beschriebenen Ausführungsbeispiels gemäß den in Fig.3, 4, 6, 7; 8, 9 widergegeben Proportionen wurden theoretisch fundiert und EDV-gestützt berechnet und für 1 Längeneinheit (L.E) = 1cm realisiert und erfolgreich erprobt. α2
    [<°]
    Pu2 τ0
    [cm4]
    Mv,w2τ0
    [cm5]
    807,4 577,045 229,381 807,3 576,998 213,715 807,2 576,950 198,053 807,1 576,900 182,394 807,0 576,848 166,739 806,9 576,794 151,087 806,8 576,739 135,438 806,7 576,682 119,793 806,6 576,623 104,151
    m Pu2τ0
    [cm4]
    Mv,w2τ0
    [cm5]
    Pv2τ0
    [cm4]
    Mu,w2τ0
    [cm5]
    13 641,926 231,623 -3,902 3,970 12 619,980 199,530 -4,081 3,574 11 596,549 170,234 -4,251 3,192 10 571,692 143,681 -4,410 2,824 9 545,467 119,803 -4,559 2,473 8 517,937 98,519 -4,697 2,140 7 489,169 79,735 - 4,824 1,827
    Relationen Schraubenlänge/Steigung = ao = 2W2/I bei geradem Auswuchtraum mit konstantem Querschnitt. ao = 2W2/I = 2 α2 / 2π 2,459 3,471 4,477 5,481 6,484 7,486 ungeradzahlig Vielfache von ½ 5/2 7/2 9/2 11/2 13/2 15/2    etc ...
    Screw rotors with profile geometries of both variants of the described embodiment according to the in Fig.3, 4, 6, 7; 8, 9 reproduced proportions were theoretically founded and computer-aided calculated and realized for 1 length unit (LE) = 1cm and successfully tested. α 2
    [<°]
    P u / ω 2 τ 0
    [cm 4 ]
    M v, w / ω 2 τ 0
    [cm 5 ]
    807.4 577.045 229.381 807.3 576.998 213.715 807.2 576.950 198.053 807.1 576.900 182.394 807.0 576.848 166.739 806.9 576.794 151.087 806.8 576.739 135.438 806.7 576.682 119.793 806.6 576.623 104.151
    m P u / ω 2 τ 0
    [cm 4 ]
    M v, w / ω 2 τ 0
    [cm 5 ]
    P v / ω 2 τ 0
    [cm 4 ]
    M u, w / ω 2 τ 0
    [cm 5 ]
    13 641.926 231.623 -3.902 3,970 12 619.980 199.530 -4.081 3,574 11 596.549 170.234 -4.251 3,192 10 571.692 143.681 -4.410 2,824 9 545.467 119.803 -4.559 2.473 8th 517.937 98.519 -4.697 2,140 7 489.169 79.735 - 4,824 1.827
    Relationships screw length / pitch = a o = 2W 2 / I with a straight balancing chamber with a constant cross-section. a o = 2W 2 / I = 2 α 2 / 2π 2,459 3,471 4,477 5,481 6,484 7,486 odd multiples of ½ 2.5 2.7 2.9 2.11 2.13 2.15 Etc ...

    Claims (9)

    1. Screw rotor set for screw pumps in an axially parallel arrangement engaging in opposite directions in the external axes and with wrap angles of at least 720° in a single-thread construction, and with smooth plane-parallel rotor end faces, characterized in that each screw rotor (1, 2; 101, 102; 201, 202; 301, 302) consists of several individual parts fixed rigidly together with a common axis of rotation, optionally eccentric centre of gravity positions and optionally different material densities; the individual parts inside the rotor form an eccentric cavity separable from the pump chamber, the balancing cavity (3; 103; 203; 303); adjustment of the material densities and the geometry of the individual parts inside the rotor cause static balancing and affect dynamic unbalance, and dynamic balancing is achieved with little effect on static unbalance by calculated determination of the screw length/pitch ratio = a at values which are somewhat smaller than uneven multiples of ½.
    2. Screw rotor set as per claim 1, characterized in that each screw rotor (1, 2; 101, 102; 201, 202) consists of a cylindrical screw body (104; 204) and a coaxial rotor shaft (105; 205), which form an eccentric cavity, the balancing cavity (103; 203) inside the screw body.
    3. Screw rotor set as per claim 1, characterized in that each screw rotor (1, 2) consists of a cylindrical screw body and a coaxial rotor shaft with a cross-section bearing-mounted eccentrically inside the screw body and that the screw body and rotor shaft are made of materials of different densities.
    4. Screw rotor set as per claims 2 and 3, characterized in that each screw rotor (1, 2) consists of a cylindrical screw body and a coaxial rotor shaft with a cross-section mounted eccentrically inside the screw body and that the screw body and rotor shaft are made of materials of different densities and form an eccentric hollow cavity, the balancing cavity (3) inside the screw body.
    5. Screw rotor set as per claim 1, characterized in that each screw rotor (1, 2; 301, 302) consists of a cylindrical screw body (304) with a rotor shaft applied coaxially on one side and that the screw body has an eccentric hollow cavity, the balancing cavity (303) on the inside, whose access on the shaft-free end face of the rotor can be sealed optionally with a plug (309).
    6. Screw rotor set as per claim 2 or 4, characterized in that the balancing cavity (103) has several wing-type extensions on the side (108), which follow the screw thread with parallel centreline.
    7. Screw rotor set as per claim 2 or 4 or 5, as an alternative to claim 6, characterized in that the balancing cavity (203) runs axially in a straight line with constant cross-section, so that the effect on the dynamic unbalance is equal to «zero».
    8. Screw rotor set as per claim 2 or 4 or 6 or 7, characterized in that the balancing cavity (103; 203) is ventilated or cooled by means of a channel (107; 207) arranged in the rotor shaft.
    9. Screw pump with a screw rotor set as per one or more of claims 1 to 8.
    EP97930285A 1996-09-12 1997-07-21 Screw rotor set Expired - Lifetime EP0925452B9 (en)

    Applications Claiming Priority (5)

    Application Number Priority Date Filing Date Title
    CH223396 1996-09-12
    CH223396 1996-09-12
    CH241796 1996-10-04
    CH241796 1996-10-04
    PCT/CH1997/000279 WO1998011351A1 (en) 1996-09-12 1997-07-21 Screw rotor set

    Publications (3)

    Publication Number Publication Date
    EP0925452A1 EP0925452A1 (en) 1999-06-30
    EP0925452B1 EP0925452B1 (en) 2002-08-21
    EP0925452B9 true EP0925452B9 (en) 2003-02-26

    Family

    ID=25689859

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP97930285A Expired - Lifetime EP0925452B9 (en) 1996-09-12 1997-07-21 Screw rotor set

    Country Status (16)

    Country Link
    US (1) US6158996A (en)
    EP (1) EP0925452B9 (en)
    JP (1) JP4307559B2 (en)
    KR (1) KR100509640B1 (en)
    CN (1) CN1093228C (en)
    AT (1) ATE222641T1 (en)
    AU (1) AU714936B2 (en)
    CA (1) CA2262898C (en)
    CZ (1) CZ292634B6 (en)
    DE (1) DE59708019D1 (en)
    DK (1) DK0925452T3 (en)
    ES (1) ES2180061T3 (en)
    NO (1) NO991212L (en)
    PT (1) PT925452E (en)
    SK (1) SK28999A3 (en)
    WO (1) WO1998011351A1 (en)

    Families Citing this family (21)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1026399A1 (en) * 1999-02-08 2000-08-09 Ateliers Busch S.A. Twin feed screw
    KR100392405B1 (en) * 2000-06-13 2003-07-31 남기일 Screw type Vacuum pump having variable lead
    CH694339A9 (en) * 2000-07-25 2005-03-15 Busch Sa Atel Twin screw rotors and those containing Ve rdraengermaschinen.
    US7833250B2 (en) 2004-11-10 2010-11-16 Jackson Roger P Polyaxial bone screw with helically wound capture connection
    US8377100B2 (en) 2000-12-08 2013-02-19 Roger P. Jackson Closure for open-headed medical implant
    KR20030034804A (en) * 2001-10-27 2003-05-09 엘지전선 주식회사 A strucrure of deflected rotor bore center line for screw compressor
    US11224464B2 (en) 2002-05-09 2022-01-18 Roger P. Jackson Threaded closure with inwardly-facing tool engaging concave radiused structures and axial through-aperture
    GB0226529D0 (en) * 2002-11-14 2002-12-18 Dana Automotive Ltd Pump
    US7232297B2 (en) * 2003-05-08 2007-06-19 Automotive Motion Technology Limited Screw pump
    GB2401400A (en) * 2003-05-08 2004-11-10 Automotive Motion Tech Ltd Pump with screw pitch less than 1.6 times the diameter
    GB2419920B (en) * 2004-11-08 2009-04-29 Automotive Motion Tech Ltd Pump
    WO2013106217A1 (en) 2012-01-10 2013-07-18 Jackson, Roger, P. Multi-start closures for open implants
    US8911478B2 (en) 2012-11-21 2014-12-16 Roger P. Jackson Splay control closure for open bone anchor
    CN103203599B (en) * 2013-04-03 2017-07-28 威海智德真空科技有限公司 A kind of manufacture method of stainless steel hollow screw
    CN105811647A (en) * 2014-12-31 2016-07-27 博世汽车部件(长沙)有限公司 Motor
    CN105952636B (en) * 2016-05-05 2017-11-24 扬州大学 The capacity new-type double screw pump of self-lubricating supporting
    WO2020044715A1 (en) * 2018-08-29 2020-03-05 株式会社日立産機システム Screw rotor and screw-type fluid machine main body
    CN114593049B (en) * 2020-12-04 2023-04-07 东北大学 Integrated internal spiral hollow screw rotor
    US12129848B2 (en) 2021-05-12 2024-10-29 Johnson & Johnson Surgical Vision, Inc. Disposable pump cartridge
    GB2608379A (en) * 2021-06-29 2023-01-04 Edwards Ltd Screw-type vacuum pump
    CN117514806B (en) * 2023-12-18 2024-06-04 坚固工业设备(杭州)有限公司 Rotor structure of vertical claw type dry vacuum pump, vertical vacuum pump and use method

    Family Cites Families (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CA487588A (en) * 1952-10-28 Dresser Industries Screw pump
    US2266820A (en) * 1938-07-13 1941-12-23 Frank E Smith Engine
    US2441771A (en) * 1941-05-31 1948-05-18 Jarvis C Marble Yieldable drive for rotors
    GB670395A (en) * 1950-01-16 1952-04-16 Roots Connersville Blower Corp Improvements in or relating to rotary screw-pumps and motors
    JPS62291400A (en) * 1986-06-10 1987-12-18 三井建設株式会社 Covering construction apparatus
    JPS62291486A (en) * 1986-06-12 1987-12-18 Taiko Kikai Kogyo Kk Screw compressor
    JPH01130084A (en) * 1987-11-13 1989-05-23 Hitachi Ltd Dynamic balance correction device
    JPH02305393A (en) * 1989-05-19 1990-12-18 Hitachi Ltd Screw rotor and screw vacuum pump
    CA2058325A1 (en) * 1990-12-24 1992-06-25 Mark E. Baran Positive displacement pumps
    US5348453A (en) * 1990-12-24 1994-09-20 James River Corporation Of Virginia Positive displacement screw pump having pressure feedback control
    US5662463A (en) * 1993-07-13 1997-09-02 Thomassen International B.V. Rotary screw compressor having a pressure bearing arrangement

    Also Published As

    Publication number Publication date
    KR100509640B1 (en) 2005-08-23
    KR20000035974A (en) 2000-06-26
    PT925452E (en) 2002-12-31
    CZ9900755A3 (en) 2001-02-14
    ES2180061T3 (en) 2003-02-01
    WO1998011351A1 (en) 1998-03-19
    CZ292634B6 (en) 2003-11-12
    CN1093228C (en) 2002-10-23
    DE59708019D1 (en) 2002-09-26
    SK28999A3 (en) 1999-12-10
    JP4307559B2 (en) 2009-08-05
    AU714936B2 (en) 2000-01-13
    ATE222641T1 (en) 2002-09-15
    CA2262898C (en) 2007-10-02
    DK0925452T3 (en) 2002-12-30
    EP0925452B1 (en) 2002-08-21
    US6158996A (en) 2000-12-12
    NO991212L (en) 1999-05-11
    CA2262898A1 (en) 1998-03-19
    EP0925452A1 (en) 1999-06-30
    CN1230242A (en) 1999-09-29
    NO991212D0 (en) 1999-03-11
    AU3432297A (en) 1998-04-02
    JP2001503119A (en) 2001-03-06

    Similar Documents

    Publication Publication Date Title
    EP0925452B9 (en) Screw rotor set
    Carolus Ventilatoren
    DE2810563C2 (en) Gear machine (pump or motor)
    DE69224000T2 (en) Gearbox design based on the cycloid principle
    EP0854987B1 (en) Gearbox and bearing therefor
    DE2037513C3 (en) Drive for a rotating work system with a compensation system
    DE69702082T2 (en) Homokinetic universal joint
    DE202012004029U1 (en) Component for a planetary gear
    DE3530244A1 (en) DIFFERENTIAL
    EP0865575B2 (en) Double worm system
    CH693832A5 (en) Whirlwind pocket watch for telling the time has pivot mounting with rotary bearing near outer radial boundary and toothing near outer radial boundary for driving pivot mounting
    EP0754859A2 (en) Gear wheel with bore
    DE102015120240B3 (en) Coupling element for cycloidal gear
    DE102020124392A1 (en) CLEARANCE ADJUSTMENT FOR TWIN SCREW PUMPS
    DE19834187A1 (en) Screw rotor for screw compressors with oil injection
    EP3519229B1 (en) Final drive for a motor vehicle
    DE69221676T4 (en) Drive joint with four drive connections
    DE19849804C2 (en) Series for gear pumps with different delivery rates and processes for the production of the individual gear pumps of the series
    DE10352775A1 (en) Compensating shaft for reciprocating piston internal combustion engine has high mass inserts fitting in cylindrical bores in weight
    DE102005044576A1 (en) Internal gear pump
    DE102015007340B4 (en) Method for measuring a bearing bore of a bearing bush and a shaft of a fluid dynamic bearing system
    DE10320290B3 (en) Multi-stage drive gearing for use with miniature electric motor, has housing provided by opposing plates supporting rotary shafts for gear wheels and opening housing mantle
    WO2005071498A1 (en) Tourbillon
    DE2817710C2 (en) Corner bearing for tilt and turn windows or doors
    DE202015003534U1 (en) Exchange arrangement for receiving an application device for use in an assembly line for motor vehicles

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19990122

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE DK ES FI FR GB IE IT LI LU NL PT SE

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 20011025

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE DK ES FI FR GB IE IT LI LU NL PT SE

    REF Corresponds to:

    Ref document number: 222641

    Country of ref document: AT

    Date of ref document: 20020915

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: ABREMA AGENCE BREVETS ET MARQUES GANGUILLET & HUMP

    REF Corresponds to:

    Ref document number: 59708019

    Country of ref document: DE

    Date of ref document: 20020926

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20020930

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: T3

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: SC4A

    Free format text: AVAILABILITY OF NATIONAL TRANSLATION

    Effective date: 20021111

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2180061

    Country of ref document: ES

    Kind code of ref document: T3

    ET Fr: translation filed
    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20030610

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: PT

    Payment date: 20030616

    Year of fee payment: 7

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20030707

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: LU

    Payment date: 20030708

    Year of fee payment: 7

    26N No opposition filed

    Effective date: 20030522

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FI

    Payment date: 20040701

    Year of fee payment: 8

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040721

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040722

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040722

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050121

    EUG Se: european patent has lapsed
    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: MM4A

    Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

    Effective date: 20050121

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050710

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20040722

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20160720

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20160721

    Year of fee payment: 20

    Ref country code: DE

    Payment date: 20160722

    Year of fee payment: 20

    Ref country code: CH

    Payment date: 20160803

    Year of fee payment: 20

    Ref country code: DK

    Payment date: 20160720

    Year of fee payment: 20

    Ref country code: IT

    Payment date: 20160725

    Year of fee payment: 20

    Ref country code: IE

    Payment date: 20160722

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20160721

    Year of fee payment: 20

    Ref country code: AT

    Payment date: 20160721

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20160720

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 59708019

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: EUP

    Effective date: 20170721

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: MK

    Effective date: 20170720

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20170720

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: MK9A

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MK07

    Ref document number: 222641

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20170721

    REG Reference to a national code

    Ref country code: BE

    Ref legal event code: MK

    Effective date: 20170721

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20170720

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20170721