EP0918205A1 - Projectile ayant une direction d'action radiale - Google Patents

Projectile ayant une direction d'action radiale Download PDF

Info

Publication number
EP0918205A1
EP0918205A1 EP98120293A EP98120293A EP0918205A1 EP 0918205 A1 EP0918205 A1 EP 0918205A1 EP 98120293 A EP98120293 A EP 98120293A EP 98120293 A EP98120293 A EP 98120293A EP 0918205 A1 EP0918205 A1 EP 0918205A1
Authority
EP
European Patent Office
Prior art keywords
projectile
target
payload
rotation
projectile according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98120293A
Other languages
German (de)
English (en)
Other versions
EP0918205B1 (fr
Inventor
Thierry Bredy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Giat Industries SA
Original Assignee
Giat Industries SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Giat Industries SA filed Critical Giat Industries SA
Publication of EP0918205A1 publication Critical patent/EP0918205A1/fr
Application granted granted Critical
Publication of EP0918205B1 publication Critical patent/EP0918205B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/04Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of armour-piercing type
    • F42B12/10Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of armour-piercing type with shaped or hollow charge
    • F42B12/14Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of armour-piercing type with shaped or hollow charge the symmetry axis of the hollow charge forming an angle with the longitudinal axis of the projectile
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/222Homing guidance systems for spin-stabilized missiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C13/00Proximity fuzes; Fuzes for remote detonation
    • F42C13/006Proximity fuzes; Fuzes for remote detonation for non-guided, spinning, braked or gravity-driven weapons, e.g. parachute-braked sub-munitions

Definitions

  • the technical field of the invention is that of projectiles, in particular anti-shooters, acting radially from their target.
  • Known projectiles include a military head explosive, generally with a nucleating charge, of which initiation is triggered by the detection of a target at by means of a sensor.
  • the sensors usually used are of technology infrared or radar. Usually these projectiles have means for controlling their roll position so as to keep their load oriented in the direction desired.
  • Patent FR2406800 thus describes a projectile provided with a load formed with radial action.
  • the downside of such projectile is that it is necessary to provide means complex ensuring its roll control so that the charge can hit a target.
  • These means of control do can only be ordered after processing of target detection provided by a high-performance warhead sensor, sensor able to detect the target in particular before passing over it by the projectile.
  • the projectile according to the invention therefore has an area efficiency and can, in a simple way and without impair flight stability, ensure detection and destruction of a target placed on the ground or possibly at above him or laterally.
  • the subject of the invention is a projectile, in particular an anti-tank missile projectile and comprising at least one payload combining at least one explosive military head and at least one target sensor, military head having a direction of action inclined relative to the axis of the projectile and whose initiation is triggered as a result of detection of a target by the sensor, the latter having a direction of observation close to the direction of action, projectile characterized in that it comprises means for scanning to ensure for the payload at a instant on trajectory, a ratio of speed longitudinal V on the speed of rotation ⁇ which is less than or equal to a limit value so as to ensure a sweep of the ground by the direction of observation with a step sufficiently reduced to allow detection of the target.
  • the limit value will advantageously be chosen equal to 3 m.
  • the scanning means include a device for increase the speed of rotation of the payload to a instant on trajectory and / or a device ensuring the payload translational braking.
  • the device allowing to increase the load rotation speed useful comprises at least one pyrotechnic impeller whose direction of action is oriented so that it causes a rotation of the payload around its axis.
  • the device for translational braking comprises at least one impeller pyrotechnics, the direction of action for all impellers being substantially confused with the axis of the payload.
  • the device for translational braking includes a means of increasing the aerodynamic drag of the payload.
  • the payload is a submunition ejected from the projectile on its trajectory, under ammunition carrying a braking device and / or a device for rotating relative to the projectile.
  • the payload may be integral with the projectile which includes a braking device and / or a rotation.
  • the projectile may include a proximity rocket intended to trigger the scanning means on approach of a target.
  • the projectile may also include means for chronometry intended to trigger the scanning means a some time after firing the projectile.
  • the projectile may finally include a receiver of a remote control signal, signal intended to trigger the scanning means.
  • a projectile 1 according to a first embodiment comprises an envelope 2 containing a payload 3 and extended at its part rear with deployable tail 4.
  • the payload essentially comprises a head explosive military 5 and a target sensor 6.
  • the military head has an inclined direction of action 7 relative to the axis 8 of the projectile. This direction here is substantially perpendicular to the axis 8 of the projectile.
  • the military head is a nucleus-generating charge comprising in a known manner, an explosive charge 9 placed in a containment envelope 11, loading on which a coating 10 is applied.
  • Sensor 6 is an infrared sensor operating in the range of 3 to 5 micrometers for example it is arranged at neighborhood of a window 13, transparent to infrared and arranged in the envelope 2 of the projectile. Sensor 6 has a observation direction 12 which is parallel to the direction of action 7 of the load.
  • Envelope 2 of the projectile also contains a unit computer 14 which receives the signals supplied by a clock 15 and by the sensor 6.
  • This calculation unit is intended for control, on the one hand the triggering of a device pyrotechnic 16 allowing the speed of rotation of the projectile (and its payload) and other part of causing the initiation of the explosive charge 9.
  • the calculation unit is linked by a first connection 17 to an igniter 18 which ignites a gas pyrotechnic generator 19.
  • the pyrotechnic device 16 is also visible on the sectional view of Figure 1b.
  • the gas generator 19 is connected by radial pipes 22a, 22b to nozzles gas ejection 23a, 23b. These nozzles are oriented by relative to the shell 2 of the projectile so as to eject the gas in two directions 24a and 24b which are symmetrical relative to the axis 8 of the projectile and in a plane perpendicular to this one. The effect of the gases generated by the generator 19 will therefore rotate the projectile and its payload around its axis 8.
  • An infantryman 25 is equipped with a recoilless fire system 26 for launching a projectile 1 according to the invention.
  • This firing system will be conventionally equipped with a laser rangefinder (not shown) for determining the distance D1 separating the shooter from a target, such as a tank 27a or a helicopter 27b (here D1 is the average distance).
  • a laser rangefinder not shown for determining the distance D1 separating the shooter from a target, such as a tank 27a or a helicopter 27b (here D1 is the average distance).
  • the firing line secured to the launcher 26 contains in different memories or registers the characteristics ballistic of the projectile (initial speed, coefficient of ballistic train), characteristics introduced in the form firing tables. She deduces from these tables, depending on the distance D1 at which the target is located, an instant to which the gas generator 19 must be initiated so that the projectile is rotated at a distance D from the shooter.
  • D will be chosen less than D1 by a few meters (about 15 m) to ensure stabilization of the new rotation regime before approaching or overflying the target.
  • This instant of initiation is introduced into the unity of calculation 14 in the form of a flight time of the projectile.
  • a sensor not shown, for example an accelerometer
  • the calculation unit 14 takes into account the signals provided by the clock 15 to continuously determine the duration of flight of the projectile.
  • the projectile is animated at its exit from the launcher 26 of a moderate speed (around 10 t / s) which allows to ensure its stability on the trajectory. This rotation is obtained in a conventional manner by bending the fins of the tail 4.
  • the unit 14 calculates the ignition of the gas generator 19.
  • This is dimensioned so as to cause a increased speed of rotation of projectile 1 around of its axis 8.
  • the speed increase should be such that the ratio V / ⁇ of the longitudinal velocity V of the projectile on its rotation speed ⁇ is less than or equal to a value limit so as to ensure a sweep of the ground by the direction of observation with a step (P) sufficiently reduced to allow target detection.
  • the limit value (called scanning step) will be generally chosen equal to 3 m so as to ensure at least two scans of a land target such as a tank.
  • Figures 2a and 2b show traces 28 of observation direction 12 intersections with the ground or a target plan.
  • Traces 28 are substantially straight for a projectile whose direction of observation 12 is perpendicular to the axis of projectile 8 (as shown here). They would be hyperbolic if the direction of observation was tilted towards the front of the projectile.
  • the pitch P is sufficiently reduced to ensuring the detection of an appropriate target such as a tank.
  • sensor 6 When sensor 6 detects a target whose signature infrared corresponds to that stored in the unit computation 14, the latter causes the initiation of the primer 21 and the military head shot 5.
  • the projectile's rotational movement ensures scanning by the direction of observation 12 of all the space around the projectile.
  • the projectile can also detect and attack a aerial target such as a helicopter 27b.
  • the calculation unit 14 will advantageously contain in memory the characteristics infrared of the different targets that the projectile is likely to attack. It will then be possible to program before firing the type of target sought (tank or helicopter), in this case the calculation unit will not cause the firing of the charge only when a detected target will match actually to the desired target.
  • means will be provided ensuring the non taking into account the signals delivered by the sensor 6 during the flight time of the projectile up to distance D. This in order to avoid false target detection.
  • the invention therefore makes it possible, with a relatively structure simple to define a multi-purpose projectile (anti-tank or anti helicopter).
  • a proximity detector will be provided, for example of radar, infrared, acoustic or magnetometric, arranged in the projectile warhead (instead of and place of the clock marked 15 in FIG. 1a) and capable of detect the approach of a target at a distance of the order of 15 m.
  • the calculation unit will use the signal supplied by this detector to initiate the initiation of the gas generator 19.
  • a signal transmitter (of laser or radio optical technology) on the firing system and an appropriate receiver will be placed in the projectile.
  • the fire control will then determine the optimal moment of triggering by measuring the distance from the target and the target at which the projectile is located.
  • the projectile is provided with scanning means which allow to ensure for the payload, at a given time on trajectory, a ratio of the longitudinal speed V to the rotation speed ⁇ which is less than or equal to one limit value.
  • These scanning means are constituted by a device pyrotechnic 16 for rotation which includes a gas generator 19 allowing, for a speed longitudinal V given, to increase the speed of rotation ⁇ of the projectile.
  • a gas generator 19 allowing, for a speed longitudinal V given, to increase the speed of rotation ⁇ of the projectile.
  • the scanning means will be constituted by a braking device.
  • FIG. 3 describes such an embodiment of the projectile according to the invention.
  • This projectile differs from that previously described in this that it has at its rear part in place of the pyrotechnic device for rotating a device 39 in translational braking.
  • This device comprises a pyrotechnic composition gas generator 37 initiated by an igniter 38 connected to the calculation unit 14 by a connection 33.
  • the rest of the internal projectile payload 3 is identical to that of the projectile previously described.
  • the projectile therefore contains an explosive military head 5, a target sensor 6, a computing unit 14 and a clock 15.
  • the gases generated by composition 37 are directed by pipes 40 to ejection nozzles 41 regularly distributed radially and arranged in the envelope 2 of the projectile. These nozzles have axes which materialize directions of ejection 42, inclined relative to the axis 8 of the projectile, and oriented towards the front of the latter.
  • the calculation unit 14 will cause at the desired time ignition of the gas generator 37 which will have the effect of braking the longitudinal speed V of the projectile.
  • Projectile 1 is again fired by a firing system without recoil 26 implemented by an infantryman.
  • the calculation unit is programmed by the infantryman to from data supplied by the fire control (not shown).
  • Projectile 1 is then fired, it is animated during firing with a longitudinal speed of the order of 200 m / s and with a rotation speed of the order of 35 t / s.
  • the calculation unit causes the initiation of the gas generator 37.
  • the axial speed of the projectile decreases about 50% and approaches 100 m / s. This results in a V / ⁇ ratio which becomes lower than the limit P allowing sweep the ground by the observation direction with a sufficiently small pitch to allow detection of the target.
  • the advantage of this embodiment is that the translational braking device does not use any moving part and therefore has excellent reliability.
  • Figures 5a and 5b show a projectile in a third embodiment.
  • This mode differs from the previous ones in that the payload 3 consists of an ejectable submunition outside the envelope 2 of the projectile 1 at a given time on path.
  • the casing 2 of the projectile 1 thus comprises a part rear cylindrical 2a and a front ogivated part 2b which contains a chronometric rocket 43 connected to a charge of unloading 44.
  • the stripping charge is isolated from the submunition 3 by a piston 45.
  • the submunition is made integral by rotation of the casing by pins (not shown) which will be sheared when ejected.
  • the rear part of the envelope 2a is closed by a bottom 46 bearing the tail 4.
  • the submunition 3 comprises a case 47 closed by two covers 48 and 49.
  • Case 47 contains a military head explosive 5 as well as a target sensor 6.
  • head military and sensor respectively have directions of action and detection substantially perpendicular to axis 8 of the projectile which coincides with the axis of the sub ammunition.
  • the submunition 3 also contains a calculation unit 14 which receives the signals supplied by the sensor 6 and which commands the initiation of the detonator 21 of the military head 5 and the igniter 18 of a pyrotechnic gas generator 19.
  • the calculation unit is also connected to a sensor acceleration 50 which is intended to detect the instant ejecting the submunition from the envelope 2.
  • the gas generator 19 is also visible in section at Figure 5b. It is structurally analogous to that described previously with reference to Figures 1a, 1b.
  • radial tubes 22a, 22b connecting the pyrotechnic composition 19 to gas ejection nozzles 23a, 23b.
  • These nozzles are oriented relative to the envelope 47 of submunition 3 so as to eject the following gases two directions 24a and 24b which are symmetrical with respect to axis 8 of the projectile and submunition and in a plane perpendicular to this one.
  • the effect of the gases generated by the generator 19 will therefore rotate the submunition around its axis 8.
  • FIGS 6a and 6b show two successive phases of the operation of this particular embodiment.
  • the projectile is fired by a non-weapon system shown and rocket 43 received (as for the modes of previous productions) a program such as the initiation of the decanting composition 44 takes place at a distance D from the shooter less than the distance D1 shooter / target.
  • the gas pressure of the stripping composition is exerted on the piston 45 which pushes the submunition 3 in the direction of what causes the shearing of pins for retaining the bottom 46 of the projectile.
  • the submunition 3 therefore separates from the envelope 2 of the projectile (fig 6a). It continues its trajectory longitudinal with a speed V in the same direction as that that she previously had inside the projectile and substantially the same value (the mass of the submunition being much higher than that of the envelope 2 carrying the rocket 43).
  • Acceleration sensor 50 detects acceleration ejecting the submunition which has the effect to initialize the operation of the computing unit 14 which, after a fixed delay that it has in memory, will cause ignition of the gas generator 19 (fig 6b).
  • the submunition is then animated with a speed of upper rotation.
  • the speed increase will again be chosen such that the V / ⁇ ratio of the longitudinal speed V of the sub ammunition on its rotation speed ⁇ is less than or equal at a limit value P so as to ensure a sweep of the ground by the direction of observation 12 with a step (P) sufficiently small to allow detection of the target 27a.
  • This embodiment can, like the previous ones, ensure detection of aerial targets such as helicopters.
  • the advantage of using one or more submunitions is that the roll damping of the submunition (s) is weaker than that of the complete projectile. It results in maintaining a high ⁇ for the payload.
  • Another advantage of such an embodiment is that it allows by the use of several submunitions to increase the area of effectiveness of the projectile.
  • Figure 7 shows the implementation of a submunition 3 according to such an alternative embodiment.
  • This submunition differs from the previous one in that it comprises at its rear part a housing 51 to the interior of which is disposed a deployable parachute 52.
  • the submunition 3 is rotated and in translation by the projectile thanks to pins shearable (not shown).
  • Parachute 52 is automatically deployed when ejection as a result of aerodynamic forces. We will be able to possibly to promote and accelerate the extraction of parachute have a tearable link between it. and the bottom 46 which closes the projectile.
  • This link (not shown) will be chosen sufficiently fragile to break as soon as the bottom begins to exert a pull on him. This avoids any interference between the bottom and the parachute deployed.
  • the parachute 52 is connected to the submunition by a means link 53 which leaves the submunition free to rotate, for example a fixed axis relative to the submunition and on which turns a ring secured to the parachute.
  • the unit of calculation does not control the deployment of the braking means aerodynamic.
  • This braking means is deployed automatically after the deposition of the submunition, itself triggered at the appropriate time by the rocket chronometric of the projectile.
  • the submunition always contains a sensor acceleration 50 which detects the unloading instant and which initializes the calculation unit which is then operational.
  • a projectile comprising several military heads and several sensors target or projectile whose military head is a charge generating bursts in a direction of action particular.

Abstract

Le secteur technique de l'invention est celui des projectiles qui comprennent au moins une charge utile associant au moins une tête militaire explosive (5) et au moins un senseur de cible (6), tête militaire ayant une direction d'action (7) inclinée relativement à l'axe (8) du projectile et dont l'initiation est déclenchée comme suite à la détection d'une cible par un senseur dont la direction d'observation (12) est proche de la direction d'action. Le projectile (1) est caractérisé en ce qu'il comporte des moyens de balayage permettant d'assurer pour la charge utile (3), à un instant donné sur trajectoire, un rapport de la vitesse longitudinale V sur la vitesse de rotation Ω qui soit inférieur ou égal à une valeur limite de façon à assurer un balayage du sol par la direction d'observation avec un pas suffisamment réduit pour permettre une détection de la cible. <IMAGE> <IMAGE>

Description

Le domaine technique de l'invention est celui des projectiles, notamment antichars à tir tendu, agissant radialement par rapport à leur objectif.
Les projectiles connus comprennent une tête militaire explosive, généralement à charge génératrice de noyau, dont l'initiation est déclenchée par la détection d'une cible au moyen d'un senseur.
Les senseurs utilisés habituellement sont de technologie infra rouge ou radar. Généralement ces projectiles sont dotés de moyens permettant de contrôler leur position en roulis de façon à maintenir leur charge orientée suivant la direction souhaitée.
Le brevet FR2406800 décrit ainsi un projectile doté d'une charge formée à action radiale. L'inconvénient d'un tel projectile est qu'il est nécessaire de prévoir des moyens complexes assurant le contrôle de son roulis pour que la charge puisse atteindre une cible. Ces moyens de contrôle ne pourront être commandés qu'après exploitation de signaux de détection de cible fournis par un capteur d'ogive performant, capteur pouvant notamment détecter la cible avant son survol par le projectile.
Il serait possible également de définir un projectile dans lequel la tête militaire se trouverait stabilisée en roulis de façon à être toujours orientée suivant une direction verticale.
Outre la complexité d'un tel contrôle d'orientation, une stabilisation en roulis de la tête militaire entraínera également une diminution de la zone d'efficacité du projectile, qui devra alors pratiquement survoler sa cible pour pouvoir l'agresser.
Il n'est notamment pas possible avec de tels projectiles d'attaquer une cible disposée suivant une orientation différente, par exemple un hélicoptère en vol rasant situé au dessus ou latéralement au projectile.
C'est le but de l'invention que de proposer un projectile permettant de pallier de tels inconvénients.
Le projectile selon l'invention a donc une zone d'efficacité élargie et peut, d'une façon simple et sans nuire à la stabilité du vol, assurer la détection et la destruction d'une cible disposée au sol ou éventuellement au dessus de lui ou latéralement.
Ainsi l'invention a pour objet un projectile, notamment un projectile antichar à tir tendu et comprenant au moins une charge utile associant au moins une tête militaire explosive et au moins un senseur de cible, tête militaire ayant une direction d'action inclinée relativement à l'axe du projectile et dont l'initiation est déclenchée comme suite à la détection d'une cible par le senseur, ce dernier ayant une direction d'observation proche de la direction d'action, projectile caractérisé en ce qu' il comporte des moyens de balayage permettant d'assurer pour la charge utile, à un instant donné sur trajectoire, un rapport de la vitesse longitudinale V sur la vitesse de rotation Ω qui soit inférieur ou égal à une valeur limite de façon à assurer un balayage du sol par la direction d'observation avec un pas suffisamment réduit pour permettre une détection de la cible.
La valeur limite sera avantageusement choisie égale à 3 m.
Selon une caractéristique essentielle de l'invention, les moyens de balayage comprennent un dispositif permettant d'accroítre la vitesse de rotation de la charge utile à un instant donné sur trajectoire et/ou un dispositif assurant le freinage en translation de la charge utile.
Selon un premier mode de réalisation, le dispositif permettant d'accroítre la vitesse de rotation de la charge utile comprend au moins un impulseur pyrotechnique dont la direction d'action est orientée de telle sorte qu'il provoque une rotation de la charge utile autour de son axe.
Selon un deuxième mode de réalisation, le dispositif de freinage en translation comprend au moins un impulseur pyrotechnique, la direction d'action de l'ensemble des impulseurs étant sensiblement confondue avec l'axe de la charge utile.
Selon un autre mode de réalisation, le dispositif de freinage en translation comprend un moyen d'accroissement de la traínée aérodynamique de la charge utile.
Selon un troisième mode de réalisation, la charge utile est une sous-munition éjectée du projectile sur trajectoire, sous munition portant un dispositif de freinage et/ou un dispositif de mise en rotation par rapport au projectile.
La charge utile pourra être solidaire du projectile qui comporte un dispositif de freinage et/ou un dispositif de mise en rotation.
Le projectile pourra comporter une fusée de proximité destinée à déclencher les moyens de balayage à l'approche d'une cible.
Le projectile pourra également comporter des moyens de chronométrie destinés à déclencher les moyens de balayage un certain temps après le tir du projectile.
Le projectile pourra enfin comporter un récepteur d'un signal de télécommande, signal destiné à déclencher les moyens de balayage.
L'invention sera mieux comprise à la lecture de la description qui va suivre de plusieurs modes de réalisation, description faite en référence aux dessins annexés et dans lesquels :
  • la figure 1a représente schématiquement en coupe longitudinale un projectile suivant un premier mode de réalisation de l'invention,
  • la figure 1b est une coupe transversale de ce projectile suivant le plan repéré AA sur la figure 1a,
  • la figure 2a montre la mise en oeuvre du projectile suivant ce premier mode de réalisation,
  • la figure 2b est une représentation de la trace au sol de la direction d'observation,
  • la figure 3 est une coupe longitudinale schématique d'un projectile suivant un deuxième mode de réalisation de l'invention,
  • la figure 4 montre la mise en oeuvre du projectile suivant ce deuxième mode de réalisation,
  • la figure 5a est une coupe longitudinale schématique d'un projectile suivant un troisième mode de réalisation de l'invention,
  • la figure 5b est une coupe transversale de ce projectile suivant le plan repéré BB sur la figure 5a,
  • les figures 6a et 6b montrent deux étapes successives de la mise en oeuvre du projectile suivant ce troisième mode de réalisation,
  • la figure 7 représente une sous munition suivant une variante de ce troisième mode de réalisation.
En se reportant aux figures 1a et 1b, un projectile 1 selon un premier mode de réalisation comporte une enveloppe 2 renfermant une charge utile 3 et prolongée à sa partie arrière par un empennage déployable 4.
La charge utile comprend essentiellement une tête militaire explosive 5 et un senseur de cible 6.
La tête militaire a une direction d'action 7 inclinée relativement à l'axe 8 du projectile. Cette direction d'action est ici sensiblement perpendiculaire à l'axe 8 du projectile.
La tête militaire est une charge génératrice de noyau comprenant d'une façon connue, un chargement explosif 9 placé dans une enveloppe de confinement 11, chargement sur lequel est appliqué un revêtement 10.
Le senseur 6 est un senseur infra rouge fonctionnant dans la gamme de 3 à 5 micromètres par exemple, il est disposé au voisinage d'une fenêtre 13, transparente aux Infra rouges et aménagée dans l'enveloppe 2 du projectile. Le senseur 6 a une direction d'observation 12 qui est parallèle à la direction d'action 7 de la charge.
L'enveloppe 2 du projectile renferme également une unité de calcul 14 qui reçoit les signaux fournis par une horloge 15 et par le senseur 6. Cette unité de calcul est destinée à commander, d'une part le déclenchement d'un dispositif pyrotechnique 16 permettant d'accroítre la vitesse de rotation du projectile (et de sa charge utile) et d'autre part de provoquer l'initiation de la charge explosive 9.
A cet effet, l'unité de calcul est reliée par une première connexion 17 à un inflammateur 18 qui allume un générateur pyrotechnique de gaz 19.
Elle est également reliée par une deuxième connexion 20 à une amorce 21 destinée à initier la charge explosive 9.
Le dispositif pyrotechnique 16 est visible également sur la vue en coupe de la figure 1b. Le générateur de gaz 19 est relié par des tubulures radiales 22a, 22b à des buses d'éjection de gaz 23a, 23b. Ces buses sont orientées par rapport à l'enveloppe 2 du projectile de façon à éjecter les gaz suivant deux directions 24a et 24b qui sont symétriques par rapport à l'axe 8 du projectile et dans un plan perpendiculaire à celui ci. L'effet des gaz engendrés par le générateur 19 sera donc de faire tourner le projectile et sa charge utile autour de son axe 8.
Le fonctionnement de ce projectile va être maintenant décrit en référence aux figures 2a et 2b.
Un fantassin 25 est équipé d'un système de tir sans recul 26 permettant de lancer un projectile 1 selon l'invention.
Ce système de tir sera équipé d'une façon classique d'un télémètre laser (non représenté) permettant de déterminer la distance D1 séparant le tireur d'une cible, telle un char 27a ou un hélicoptère 27b (ici D1 est la distance moyenne).
La mesure de distance permet d'introduire dans l'unité de calcul 14 une programmation de l'instant de déclenchement du générateur de gaz 19.
La conduite de tir solidaire du lanceur 26 contient dans différentes mémoires ou registres les caractéristiques balistiques du projectile (vitesse initiale, coefficient de traínée balistique), caractéristiques introduites sous forme de tables de tir. Elle déduit de ces tables, en fonction de la distance D1 à laquelle se trouve la cible, un instant auquel doit être initié le générateur de gaz 19 pour que le projectile soit mis en rotation à une distance D du tireur.
D sera choisie inférieure à D1 de quelques mètres (environ 15 m) pour assurer une stabilisation du nouveau régime de rotation avant l'approche ou le survol de la cible.
Cet instant d'initiation est introduit dans l'unité de calcul 14 sous la forme d'une durée de vol du projectile.
Lorsque le tir du projectile est déclenché, un capteur (non représenté, par exemple un accéléromètre) détecte le tir. L'unité de calcul 14 prend alors en compte les signaux fournis par l'horloge 15 pour déterminer de façon continue la durée de vol du projectile.
Le projectile est animé a sa sortie du lanceur 26 d'une vitesse de rotation modérée (de l'ordre de 10 t/s) qui permet d'assurer sa stabilité sur trajectoire. Cette rotation est obtenue d'une façon classique par un cambrage des ailettes de l'empennage 4.
Lorsque la durée de vol programmée est écoulée, l'unité de calcul 14 commande l'allumage du générateur de gaz 19.
Celui-ci est dimensionné de façon à provoquer une augmentation de la vitesse de rotation du projectile 1 autour de son axe 8.
L'accroissement de vitesse doit être tel que le rapport V/Ω de la vitesse longitudinale V du projectile sur sa vitesse de rotation Ω soit inférieur ou égal à une valeur limite de façon à assurer un balayage du sol par la direction d'observation avec un pas (P) suffisamment réduit pour permettre une détection de la cible.
La valeur limite (appelée pas de balayage) sera généralement choisie égale à 3 m de façon à assurer au moins deux balayages d'une cible terrestre telle un char.
L'Homme du Métier dimensionnera aisément le générateur de gaz permettant de communiquer à un projectile ayant une vitesse V donnée au voisinage de sa portée efficace une vitesse de rotation Ω qui assurera le pas de balayage souhaité.
Les figures 2a et 2b montrent les traces 28 des intersections de la direction d'observation 12 avec le sol ou un plan de la cible.
La combinaison de la vitesse de rotation Ω et de la vitesse axiale V du projectile donne à la direction d'observation 12 une trajectoire hélicoïdale.
Les traces 28 sont sensiblement rectilignes pour un projectile dont la direction d'observation 12 est perpendiculaire à l'axe du projectile 8 (comme figuré ici). Elles seraient hyperboliques si la direction d'observation était inclinée vers l'avant du projectile.
Grâce à l'invention le pas P est suffisamment réduit pour assurer la détection d'une cible appropriée telle un char.
Lorsque le senseur 6 détecte une cible dont la signature infra rouge correspond à celle mise en mémoire dans l'unité de calcul 14, cette dernière provoque l'initiation de l'amorce 21 et le tir de la tête militaire 5.
La direction de tir 7 de cette dernière étant sensiblement parallèle à la direction d'observation, le noyau engendré par la charge sera projeté vers la cible détectée.
Le mouvement de rotation du projectile assure un balayage par la direction d'observation 12 de tout l'espace autour du projectile.
Il est donc possible de détecter non seulement une cible terrestre 27a survolée par le projectile suivant une direction XX' (fig 2b), mais aussi une cible 27a qui serait située latéralement par rapport à une direction de vol YY' pour le projectile (fig 2b).
Il en résulte, par rapport aux projectiles connus dont la direction d'observation est fixe, une augmentation de la zone d'efficacité du projectile qui pourra détecter et agresser des cibles qu'il ne survole pas exactement.
Le projectile pourra également détecter et attaquer une cible aérienne telle un hélicoptère 27b. L'unité de calcul 14 contiendra avantageusement en mémoire les caractéristiques infra rouge des différentes cibles que le projectile est susceptible d'attaquer. Il sera alors possible de programmer avant le tir le type de cible recherché (char ou hélicoptère), dans ce cas l'unité de calcul ne provoquera le tir de la charge que lorsqu'une cible détectée correspondra effectivement à la cible souhaitée.
On prévoira avantageusement des moyens assurant la non prise en compte des signaux délivrés par le senseur 6 pendant le temps de vol du projectile jusqu'à la distance D. Cela afin d'éviter les fausses détections de cibles.
Il suffira pour cela de donner à l'unité de calcul 14 une programmation appropriée interdisant tout traitement des signaux pendant une durée donnée, celle calculée par la conduite de tir et correspondant au parcours de la distance D par le projectile.
L'invention permet donc avec une structure relativement simple de définir un projectile à emploi polyvalent (antichar ou anti hélicoptère).
A titre de variante, il est possible de provoquer la mise en rotation du projectile, non pas suite à l'écoulement d'une durée de vol programmée, mais par suite de la détection de l'approche d'une cible de caractéristiques données.
Dans ce cas on prévoira un détecteur de proximité, par exemple de technologie radar, infra rouge, acoustique ou magnétométrique, disposé dans l'ogive du projectile (en lieu et place de l'horloge repérée 15 sur la figure 1a) et pouvant détecter l'approche d'une cible à une distance de l'ordre de 15 m.
L'unité de calcul exploitera le signal fourni par ce détecteur pour provoquer l'initiation du générateur de gaz 19.
Il est également possible de prévoir un moyen de télécommande à partir du système de tir 25 du déclenchement du générateur de gaz 19.
Dans ce cas on prévoira un émetteur de signal (de technologie optique laser ou radio) sur le système de tir et on disposera un récepteur approprié dans le projectile.
La conduite de tir déterminera alors l'instant optimal de déclenchement au moyen d'une mesure de la distance de la cible et de celle à laquelle se trouve le projectile.
Elle enverra au projectile un ordre de déclenchement du générateur de gaz lorsque la distance entre projectile et cible aura la valeur souhaitée.
Il est également possible d'utiliser comme moyen de balayage un impulseur pyrotechnique qui ne comporte pas un générateur de gaz mais des explosifs. De tels impulseurs à explosifs sont bien connus de l'homme du métier et sont décrits par exemple par les brevets FR2552871 et FR2590973, dont le contenu relatif à la description des impulseurs à explosifs est inclus ici par référence.
Dans les modes de réalisations décrits précédemment, le projectile est doté de moyens de balayage qui permettent d'assurer pour la charge utile, à un instant donné sur trajectoire, un rapport de la vitesse longitudinale V sur la vitesse de rotation Ω qui soit inférieur ou égal à une valeur limite.
Ces moyens de balayage sont constitués par un dispositif pyrotechnique 16 de mise en rotation qui comporte un générateur de gaz 19 permettant, pour une vitesse longitudinale V donnée, d'accroítre la vitesse de rotation Ω du projectile. On obtient ainsi un rapport V/Ω qui est inférieur à la valeur de pas de balayage limite P choisie.
Il est possible de concevoir un projectile pour lequel on ne modifiera pas la vitesse de rotation Ω mais on réduira la vitesse longitudinale V pour assurer un rapport V/Ω inférieur à la valeur limite.
Dans ce cas les moyens de balayage seront constitués par un dispositif de freinage.
La figure 3 décrit un tel mode de réalisation du projectile selon l'invention.
Ce projectile diffère de celui précédemment décrit en ce qu'il comporte à sa partie arrière en lieu et place du dispositif pyrotechnique de mise en rotation un dispositif 39 de freinage en translation.
Ce dispositif comporte une composition pyrotechnique génératrice de gaz 37 initiée par un inflammateur 38 relié à l'unité de calcul 14 par une connexion 33.
Le reste de la charge utile 3 interne au projectile est identique à celle du projectile précédemment décrit. Le projectile renferme donc une tête militaire explosive 5, un senseur de cible 6, une unité de calcul 14 et une horloge 15.
Les gaz engendrés par la composition 37 sont dirigés par des tubulures 40 vers des buses d'éjection 41 régulièrement réparties radialement et aménagées dans l'enveloppe 2 du projectile. Ces buses ont des axes qui matérialisent des directions d'éjection 42, inclinées par rapport à l'axe 8 du projectile, et orientées vers l'avant de ce dernier.
La résultante des efforts de freinage engendrés par chacune des buses est confondue avec l'axe 8 du projectile.
L'unité de calcul 14 provoquera à l'instant souhaité l'allumage du générateur de gaz 37 qui aura pour effet de provoquer le freinage de la vitesse longitudinale V du projectile.
Le fonctionnement de ce projectile va être maintenant décrit en référence à la figure 4.
Le projectile 1 est là encore tiré par un système de tir sans recul 26 mis en oeuvre par un fantassin.
L'unité de calcul est programmée par le fantassin à partir des données fournies par la conduite de tir (non représentée).
Le projectile 1 est ensuite tiré, il est animé lors du tir d'une vitesse longitudinale de l'ordre de 200 m/s et d'une vitesse de rotation de l'ordre de 35 t/s.
Lorsque le projectile se trouve à la distance D programmée, l'unité de calcul provoque l'initiation du générateur de gaz 37. La vitesse axiale du projectile diminue environ de 50% et approche les 100 m/s. Il en résulte un rapport V/Ω qui devient inférieur à la limite P permettant d'assurer un balayage du sol par la direction d'observation avec un pas suffisamment réduit pour permettre une détection de la cible.
L'avantage de ce mode de réalisation est que le dispositif de freinage en translation ne met en oeuvre aucune pièce mobile et a donc une fiabilité excellente.
A titre de variante il est bien entendu là encore possible de disposer dans l'ogive du projectile un détecteur de proximité qui déclenchera automatiquement le freinage du projectile à l'approche d'une cible.
Il est également possible de prévoir une télécommande du dispositif de freinage à partir du système de tir 26.
Il est possible de prévoir d'autres types de moyens de freinage en translation, par exemple des moyens assurant un accroissement de la traínée aérodynamique du projectile. On pourra par exemple prévoir un parachute qui sera libéré à un instant donné sur trajectoire. Le parachute sera fixé libre en rotation par rapport au projectile de façon à ne pas freiner la rotation de celui ci.
Les figures 5a et 5b montrent un projectile suivant un troisième mode de réalisation.
Ce mode diffère des précédents en ce que la charge utile 3 est constituée par une sous-munition pouvant être éjectée hors de l'enveloppe 2 du projectile 1 à un instant donné sur trajectoire.
L'enveloppe 2 du projectile 1 comprend ainsi une partie cylindrique arrière 2a et une partie ogivée avant 2b qui renferme une fusée chronométrique 43 reliée à une charge de dépotage 44.
La charge de dépotage est isolée de la sous munition 3 par un piston 45. La sous munition est rendue solidaire en rotation de l'enveloppe par des goupilles (non représentées) qui seront cisaillées lors de son éjection.
La partie arrière de l'enveloppe 2a est fermée par un fond 46 portant l'empennage 4.
La sous-munition 3 comprend un étui 47 fermé par deux couvercles 48 et 49. L'étui 47 renferme une tête militaire explosive 5 ainsi qu'un senseur de cible 6. Là encore, tête militaire et senseur ont respectivement des directions d'action et de détection sensiblement perpendiculaires à l'axe 8 du projectile qui est confondu avec l'axe de la sous munition.
La sous munition 3 contient aussi une unité de calcul 14 qui reçoit les signaux fournis par le senseur 6 et qui commande l'initiation du détonateur 21 de la tête militaire 5 et de l'inflammateur 18 d'un générateur pyrotechnique de gaz 19.
L'unité de calcul est également reliée à un capteur d'accélération 50 qui est destiné à détecter l'instant d'éjection de la sous munition hors de l'enveloppe 2.
Le générateur de gaz 19 est également visible en coupe à la figure 5b. Il est analogue structurellement à celui décrit précédemment en référence aux figures 1a,1b.
Ainsi il comporte des tubulures radiales 22a, 22b reliant la composition pyrotechnique 19 à des buses d'éjection de gaz 23a, 23b. Ces buses sont orientées par rapport à l'enveloppe 47 de la sous munition 3 de façon à éjecter les gaz suivant deux directions 24a et 24b qui sont symétriques par rapport à l'axe 8 du projectile et de la sous munition et dans un plan perpendiculaire à celui ci. L'effet des gaz engendrés par le générateur 19 sera donc de faire tourner la sous munition autour de son axe 8.
Les figures 6a et 6b montrent deux phases successives du fonctionnement de ce mode particulier de réalisation.
Le projectile est tiré par un système d'arme non représenté et la fusée 43 a reçu (comme pour les modes de réalisation précédents) une programmation telle que l'initiation de la composition de dépotage 44 intervienne à une distance D du tireur inférieure à la distance D1 tireur/cible.
La pression des gaz de la composition de dépotage s'exerce sur le piston 45 qui pousse la sous munition 3 suivant la direction d ce qui provoque le cisaillement des goupilles de maintien du fond 46 du projectile.
La sous-munition 3 se sépare donc de l'enveloppe 2 du projectile (fig 6a). Elle poursuit sa trajectoire longitudinale avec une vitesse V de même sens que celle qu'elle avait auparavant à l'intérieur du projectile et sensiblement de même valeur (la masse de la sous munition étant bien supérieure à celle de l'enveloppe 2 portant la fusée 43).
Le capteur d'accélération 50 détecte l'accélération d'éjection de la sous-munition ce qui a pour effet d'initialiser le fonctionnement de l'unité de calcul 14 qui, à l'issue d'un retard fixe qu'elle a en mémoire, va provoquer l'allumage du générateur de gaz 19 (fig 6b).
La sous munition se trouve alors animée d'une vitesse de rotation supérieure.
L'accroissement de vitesse sera là encore choisi tel que le rapport V/Ω de la vitesse longitudinale V de la sous munition sur sa vitesse de rotation Ω soit inférieur ou égal à une valeur limite P de façon à assurer un balayage du sol par la direction d'observation 12 avec un pas (P) suffisamment réduit pour permettre une détection de la cible 27a.
Ce mode de réalisation peut comme les précédents assurer la détection de cibles aériennes comme les hélicoptères.
L'avantage du recours à une ou plusieurs sous-munition est que l'amortissement en roulis de la ou des sous-munitions est plus faible que celui du projectile complet. Il en résulte le maintien pour la charge utile d'un Ω élevé.
Un autre avantage d'un tel mode de réalisation est qu'il permet par l'emploi de plusieurs sous-munitions d'accroítre la zone d'efficacité du projectile.
Là encore, à titre de variante, il est possible de remplacer la fusée chronométrique 43 par une fusée de proximité qui détectera l'approche d'une cible de caractéristiques données et qui provoquera l'éjection de la sous munition à l'approche de cette cible.
Il est également possible de prévoir des moyens permettant de télécommander l'éjection de la sous munition à un instant souhaité par le tireur.
Enfin il est possible de faire varier le rapport V/Ω en jouant non pas sur la vitesse de rotation de la sous munition mais sur sa vitesse longitudinale V.
La figure 7 montre la mise en oeuvre d'une sous munition 3 suivant une telle variante de réalisation.
Cette sous munition (représentée ici après son éjection hors de l'enveloppe du projectile) diffère de la précédente en ce qu'elle comporte à sa partie arrière un boítier 51 à l'intérieur duquel est disposé un parachute déployable 52.
La sous munition 3 se trouve entraínée en rotation et en translation par le projectile grâce à des goupilles cisaillables (non représentées).
Après son éjection elle se trouve donc encore animée d'une vitesse de rotation sensiblement égale à celle du projectile.
Le parachute 52 se trouve automatiquement déployé lors de l'éjection par suite des efforts aérodynamiques. On pourra éventuellement pour favoriser et accélérer l'extraction du parachute disposer un lien déchirable entre celui ci. et le fond 46 qui ferme le projectile.
Ce lien (non représenté) sera choisi suffisamment fragile pour se rompre dès que le fond commence à exercer une traction sur lui. On évite ainsi toute interférence entre le fond et le parachute déployé.
Le parachute 52 est relié à la sous munition par un moyen de liaison 53 qui laisse la sous munition libre en rotation, par exemple un axe fixe par rapport à la sous munition et sur lequel tourne une bague solidaire du parachute.
Avec ce mode particulier de réalisation, l'unité de calcul ne commande pas le déploiement du moyen de freinage aérodynamique. Ce moyen de freinage se déploie automatiquement à l'issue du dépotage de la sous munition, lui même déclenché au moment approprié par la fusée chronométrique du projectile.
La sous munition renferme toujours un capteur d'accélération 50 qui détecte l'instant de dépotage et qui initialise l'unité de calcul qui se trouve alors opérationnelle.
Avec ce mode de réalisation la vitesse V se trouve ralentie ce qui permet d'assurer un rapport V/Ω inférieur ou égal à la valeur limite souhaitée.
Il est bien entendu possible de combiner les différents modes de réalisation précédemment décrits et de définir un projectile comportant à la fois des moyens de freinage axial (du projectile ou de la sous munition) et des moyens permettant l'accroissement de la vitesse de rotation (du projectile ou de la sous munition).
Tous les modes de réalisation de projectiles décrits dans la présente demande l'ont été en référence à un tir par un système d'arme sans recul.
Il est bien entendu possible de définir un projectile selon l'invention qui soit tirable à partir d'un autre type de système d'arme notamment un canon de char.
Il est possible également de définir un projectile comportant plusieurs têtes militaires et plusieurs senseurs de cible ou un projectile dont la tête militaire est une charge générant des éclats suivant une direction d'action particulière.

Claims (10)

  1. Projectile (1), notamment projectile antichar à tir tendu et comprenant au moins une charge utile (3) associant au moins une tête militaire explosive (5) et au moins un senseur de cible (6), tête militaire ayant une direction d'action (7) inclinée relativement à l'axe (8) du projectile et dont l'initiation est déclenchée comme suite à la détection d'une cible par le senseur (6), ce dernier ayant une direction d'observation (12) proche de la direction d'action, projectile caractérisé en ce qu' il comporte des moyens de balayage (16,39,52) permettant d'assurer pour la charge utile, à un instant donné sur trajectoire, un rapport de la vitesse longitudinale V sur la vitesse de rotation Ω qui soit inférieur ou égal à une valeur limite de façon à assurer un balayage du sol par la direction d'observation (12) avec un pas suffisamment réduit pour permettre une détection de la cible.
  2. Projectile selon la revendication 1, caractérisé en ce que les moyens de balayage comprennent un dispositif (16) permettant d'accroítre la vitesse de rotation de la charge utile à un instant donné sur trajectoire et/ou un dispositif (39,52) assurant le freinage en translation de la charge utile.
  3. Projectile selon la revendication 2, caractérisé en ce que le dispositif permettant d'accroítre la vitesse de rotation de la charge utile comprend au moins un impulseur pyrotechnique (19) dont la direction d'action (24a,24b) est orientée de telle sorte qu'il provoque une rotation de la charge utile autour de son axe (8).
  4. Projectile selon une des revendications 2 ou 3, caractérisé en ce que le dispositif de freinage en translation comprend un moyen (52) d'accroissement de la traínée aérodynamique de la charge utile.
  5. Projectile selon une des revendications 2 ou 3, caractérisé en ce que le dispositif de freinage en translation comprend au moins un impulseur pyrotechnique (37), la direction d'action de l'ensemble des impulseurs étant sensiblement confondue avec l'axe (8) de la charge utile.
  6. Projectile selon une des revendications 2 à 5, caractérisé en ce que la charge utile (3) est une sous-munition éjectée du projectile sur trajectoire, sous munition portant un dispositif de freinage et/ou un dispositif de mise en rotation par rapport au projectile.
  7. Projectile selon une des revendications 2 à 5, caractérisé en ce que la charge utile (3) est solidaire du projectile qui comporte un dispositif de freinage et/ou un dispositif de mise en rotation.
  8. Projectile selon une des revendications 1 à 7, caractérisé en ce qu'il comporte une fusée (15) de proximité destinée à déclencher les moyens de balayage à l'approche d'une cible.
  9. Projectile selon une des revendications 1 à 7, caractérisé en ce qu'il comporte des moyens de chronométrie destinés à déclencher les moyens de balayage un certain temps après le tir du projectile.
  10. Projectile selon une des revendications 1 à 7, caractérisé en ce qu'il comporte un récepteur d'un signal de télécommande, signal destiné à déclencher les moyens de balayage.
EP98120293A 1997-11-20 1998-10-27 Projectile ayant une direction d'action radiale Expired - Lifetime EP0918205B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9714549 1997-11-20
FR9714549A FR2771166B1 (fr) 1997-11-20 1997-11-20 Projectile ayant une direction d'action radiale

Publications (2)

Publication Number Publication Date
EP0918205A1 true EP0918205A1 (fr) 1999-05-26
EP0918205B1 EP0918205B1 (fr) 2003-01-22

Family

ID=9513573

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98120293A Expired - Lifetime EP0918205B1 (fr) 1997-11-20 1998-10-27 Projectile ayant une direction d'action radiale

Country Status (6)

Country Link
US (1) US6216597B1 (fr)
EP (1) EP0918205B1 (fr)
DE (1) DE69810879T2 (fr)
ES (1) ES2187874T3 (fr)
FR (1) FR2771166B1 (fr)
IL (1) IL127136A (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2914054A1 (fr) * 2007-03-19 2008-09-26 Nexter Systems Sa Dispositif de protection rapprochee

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6980958B1 (en) * 2000-01-11 2005-12-27 Zycare, Inc. Apparatus and methods for monitoring and modifying anticoagulation therapy of remotely located patients
SE519758C2 (sv) * 2000-07-03 2003-04-08 Bofors Weapon Sys Ab Arrangemang för att bekämpa mål med eller utav RSV- effektuerande verkan
FR2848657B1 (fr) 2002-12-13 2005-01-28 Tda Armements Sas Charge generatrice de noyau
DE102005043078B4 (de) * 2005-09-10 2007-06-14 Diehl Bgt Defence Gmbh & Co. Kg Suchzündermunition
US8563910B2 (en) * 2009-06-05 2013-10-22 The Charles Stark Draper Laboratory, Inc. Systems and methods for targeting a projectile payload
US20170307334A1 (en) * 2016-04-26 2017-10-26 Martin William Greenwood Apparatus and System to Counter Drones Using a Shoulder-Launched Aerodynamically Guided Missile
US10539403B2 (en) * 2017-06-09 2020-01-21 Kaman Precision Products, Inc. Laser guided bomb with proximity sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2406800A1 (fr) 1977-10-18 1979-05-18 Aerospatiale Missile d'attaque en survol
US4160415A (en) * 1978-05-05 1979-07-10 The United States Of America As Represented By The Secretary Of The Army Target activated projectile
FR2552871A1 (fr) 1981-04-28 1985-04-05 France Etat Armement Projectile antichar agissant en vitesse defilante
FR2590973A1 (fr) 1985-11-29 1987-06-05 France Etat Armement Dispositif de basculement de projectile sur trajectoire
DE3216142C1 (en) * 1982-04-30 1988-06-30 Messerschmitt Boelkow Blohm Fast-flying projectile with direction-forming charges
US5669581A (en) * 1994-04-11 1997-09-23 Aerojet-General Corporation Spin-stabilized guided projectile

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3000007A1 (de) * 1979-01-02 1980-09-18 Raytheon Co Kampffahrzeug-abwehrsystem
DE2741984C2 (de) * 1977-09-17 1984-01-26 Franz Rudolf Prof.Dr.Dipl.-Ing. West Vancouver Thomanek Gefechtskopf für einen Panzerabwehrflugkörper mit mindestens einer stachelbildenden Hohlladung
US4245560A (en) * 1979-01-02 1981-01-20 Raytheon Company Antitank weapon system and elements therefor
GB8417706D0 (en) * 1984-07-11 1994-01-26 British Aerospace Spin rate variation of spinning bodies
US4614317A (en) * 1985-06-07 1986-09-30 The Singer Company Sensor for anti-tank projectile
FR2736424B1 (fr) * 1995-07-07 1997-08-08 Giat Ind Sa Tete militaire a charge formee
US5932833A (en) * 1997-03-03 1999-08-03 The United States Of America As Represented By The Secretary Of The Army Fly over homing guidance for fire and forget missile systems

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2406800A1 (fr) 1977-10-18 1979-05-18 Aerospatiale Missile d'attaque en survol
US4160415A (en) * 1978-05-05 1979-07-10 The United States Of America As Represented By The Secretary Of The Army Target activated projectile
FR2552871A1 (fr) 1981-04-28 1985-04-05 France Etat Armement Projectile antichar agissant en vitesse defilante
DE3216142C1 (en) * 1982-04-30 1988-06-30 Messerschmitt Boelkow Blohm Fast-flying projectile with direction-forming charges
FR2590973A1 (fr) 1985-11-29 1987-06-05 France Etat Armement Dispositif de basculement de projectile sur trajectoire
US5669581A (en) * 1994-04-11 1997-09-23 Aerojet-General Corporation Spin-stabilized guided projectile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2914054A1 (fr) * 2007-03-19 2008-09-26 Nexter Systems Sa Dispositif de protection rapprochee

Also Published As

Publication number Publication date
DE69810879T2 (de) 2003-08-21
FR2771166B1 (fr) 1999-12-17
FR2771166A1 (fr) 1999-05-21
US6216597B1 (en) 2001-04-17
DE69810879D1 (de) 2003-02-27
ES2187874T3 (es) 2003-06-16
IL127136A (en) 2001-10-31
IL127136A0 (en) 1999-09-22
EP0918205B1 (fr) 2003-01-22

Similar Documents

Publication Publication Date Title
FR2526149A1 (fr) Systeme d&#39;arme et munition de survol
FR2768500A1 (fr) Procede de guidage autonome d&#39;un projectile d&#39;artillerie stabilise par rotation et projectile d&#39;artillerie guide de facon autonome pour la mise en oeuvre du procede
EP0273787B1 (fr) Mine à tir indirect d&#39;attaque de véhicule blindé
FR2761767A1 (fr) Procede de programmation en vol d&#39;un instant de declenchement d&#39;un element de projectile, conduite de tir et fusee mettant en oeuvre un tel procede
EP0439392B1 (fr) Projectile et son procédé d&#39;utilisation
EP0800054B1 (fr) Projectile dont la charge explosive est déclenchée au moyen d&#39;un désignateur de cible
FR2581175A1 (fr) Mine antichar
EP0918205B1 (fr) Projectile ayant une direction d&#39;action radiale
EP0161962B1 (fr) Système d&#39;arme et missile pour la destruction structurale d&#39;une cible aérienne au moyen d&#39;une charge focalisée
FR2545923A1 (fr) Projectile assurant le percage des blindages
FR2695992A1 (fr) Sous munition à effet dirigé.
FR2679023A1 (fr) Procede et dispositif pour combattre un objectif immerge.
FR2518734A1 (fr) Systeme de defense de zone a effet de saturation
EP0913662B1 (fr) Projectile à charge formée et système d&#39;arme tirant un tel projectile
FR2643143A1 (fr) Mine de defense contre des objets en mouvement
FR2583868A1 (fr) Sous-munition a tete d&#39;allumage chercheuse.
FR2865537A1 (fr) Fusee pour munitions
FR2947046A1 (fr) Tete militaire comportant des moyens de marquage de cible
FR2673463A1 (fr) Procede pour attaquer des cibles au moyen d&#39;un projectile pouvant etre accelere dans l&#39;eau, et dispositif pour mettre en óoeuvre ce procede.
FR2682468A1 (fr) Projectile pour une arme antichar pour attaquer un char en haut.
EP0338879B1 (fr) Dispositif de stabilisation pour un projectile à tirer à partir d&#39;un tube rayé
FR2937123A1 (fr) Munition de controle des foules a effet non letal
FR2747185A1 (fr) Projectile generateur d&#39;eclats dont la charge explosive est declenchee au moyen d&#39;un designateur de cible
FR2523717A1 (fr) Systeme d&#39;arme, notamment antichar
FR2590663A1 (fr) Tete militaire a detection infra-rouge, notamment pour roquettes d&#39;artillerie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19991021

AKX Designation fees paid

Free format text: DE ES GB SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20011219

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030122

REF Corresponds to:

Ref document number: 69810879

Country of ref document: DE

Date of ref document: 20030227

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2187874

Country of ref document: ES

Kind code of ref document: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20031010

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041028

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20041028

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081030

Year of fee payment: 11

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20090625 AND 20090701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20090924

Year of fee payment: 12

Ref country code: GB

Payment date: 20090928

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101028