EP0918088A1 - Verwendung eines Kristallwachstumsinhibitors zur Verminderung der Abreigung von Geweben - Google Patents

Verwendung eines Kristallwachstumsinhibitors zur Verminderung der Abreigung von Geweben Download PDF

Info

Publication number
EP0918088A1
EP0918088A1 EP97870188A EP97870188A EP0918088A1 EP 0918088 A1 EP0918088 A1 EP 0918088A1 EP 97870188 A EP97870188 A EP 97870188A EP 97870188 A EP97870188 A EP 97870188A EP 0918088 A1 EP0918088 A1 EP 0918088A1
Authority
EP
European Patent Office
Prior art keywords
compositions
fabric
acid
crystal growth
autoclave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97870188A
Other languages
English (en)
French (fr)
Inventor
Axel Masschelein
Christiaan Arthur Jacques Thoen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to EP97870188A priority Critical patent/EP0918088A1/de
Priority to DE69830298T priority patent/DE69830298T2/de
Priority to EP98202165A priority patent/EP0924292B1/de
Priority to AT98202165T priority patent/ATE296345T1/de
Priority to ES98202165T priority patent/ES2244032T3/es
Priority to EP98958665A priority patent/EP1034243A1/de
Priority to US09/554,700 priority patent/US6692536B1/en
Priority to BR9814998-9A priority patent/BR9814998A/pt
Priority to CA002310373A priority patent/CA2310373C/en
Priority to PCT/US1998/024817 priority patent/WO1999027052A1/en
Publication of EP0918088A1 publication Critical patent/EP0918088A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • C11D3/2086Hydroxy carboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/36Organic compounds containing phosphorus
    • C11D3/361Phosphonates, phosphinates or phosphonites
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/36Organic compounds containing phosphorus
    • C11D3/365Organic compounds containing phosphorus containing carboxyl groups

Definitions

  • the present invention relates to the use of a crystal growth inhibitor for reducing the abrasion of fabrics arising upon laundering treatment.
  • CGI crystal growth inhibitor
  • Crystal growth inhibitors in particular of the organic diphosphonic type have long been known in the art of detergent to reduce limescale build up to washing machine parts (e.g. heating resistance).
  • a typical disclosure can be found in WO 97/05226 wherein the CGI ameliorates the white deposits problem caused by carbonate salts. Their use as a fabric abrasion reduction agent is not disclosed.
  • crystal growth inhibitor it is meant a compound that reduces the rate of formation of inorganic microcrystals, thereby reducing the size and/or the amount of such micro-crystals at the fabric surface.
  • the present invention relates to the use of a crystal growth inhibitor for reducing fabric abrasion, in particular fabric abrasion which arises upon the domestic laundering process of fabrics.
  • a crystal growth inhibitor is the essential component of the invention.
  • the suitable CGI for use herein can be defined by the following test procedure, so called crystal growth inhibition test measurement.
  • the observed t-lag value defines the efficiency of a compound to inhibit the growth of calcium phosphate crystals; wherein the higher the t-lag, the better the CGI.
  • the hydroxyapatite slurry is prepared as follows:
  • T-lag for a particular crystal growth inhibitor is determined graphically as described in the figure above.
  • the crystal growth inhibitors to be used for the purpose of this invention have a t-lag of at least 10 minutes at a concentration of 1.10 - M, preferably at least 20 minutes, most preferably at least 50 minutes.
  • the crystal growth inhibitors differentiate themselves from the chelating agents by their low binding affinity for copper defined by its Log K, i.e. the ML/M.L Log K at 25C, 0.1 ionic strength, of the CGI is of less than 15, preferably less than 12.
  • the CGI for use in the present invention are selected from carboxylic compounds, organic diphosphonic acids, and mixtures thereof.
  • carboxylic compound for use herein are the carboxylic compounds selected from glycolic acid, phytic acid, monomeric polycarboxylic acids, homo or copolymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxylic radicals separated from each other by not more than two carbon atoms.
  • alkali metals such as sodium, potassium and lithium, or alkanolammonium salts are preferred.
  • Organic detergent CGIs suitable for the purposes of the present invention include, but are not restricted to, a wide variety of polycarboxylate compounds.
  • polycarboxylate refers to compounds having a plurality of carboxylate groups, preferably at least 3 carboxylates.
  • Polycarboxylate CGI can generally be added to the composition in acid form, but can also be added in the form of a neutralised salt. When utilized in salt form, alkali metals, such as sodium, potassium, and lithium, or alkanolammonium salts are preferred.
  • polycarboxylate CGIs include a variety of categories of useful materials.
  • One important category of polycarboxylate CGIs encompasses the ether polycarboxylates, including oxydisuccinate, as disclosed in U.S. Patent 3,128,287 and U.S. Patent 3,635,830. See also "TMS/TDS" CGIs of U.S. Patent 4,663,071.
  • Suitable ether polycarboxylates also include cyclic compounds, particularly alicyclic compounds, such as those described in U.S. Patents 3,923,679; 3,835,163; 4,158,635; 4,120,874 and 4,102,903.
  • CGI useful CGI
  • polyacetic acids such as ethylenediamine tetraacetic acid and nitrilotriacetic acid
  • polycarboxylates such as mellitic acid, succinic acid, oxydisuccinic acid, polymaleic acid, benzene 1,3,5-tricarboxylic acid, carboxymethyloxysuccinic acid, and soluble salts thereof.
  • the molecular weight for these polymers and copolymers is preferably below 100,000, most preferably between 500 and 50,000.
  • polymers suitable for use herein, which prevent the precipitation of the salts of the buffering component upon dilution of the composition in water are the polyacrylate polymers sold under the tradename Good-Rite® from BF Goodrich, Acrysol® from Rohm & Haas, Sokalan® from BASF, Norasol® from Norso Haas.
  • Preferred commercially available polymers are the polyacrylate polymers, especially the Norasol® polyacrylate polymers and more preferred are the polyacrylate polymer Norasol® 410N (MW 10,000) and the polyacrylate polymer modified with aminophosphonic groups Norasol® 440N (MW 4000) and its corresponding acid form Norasol® QR 784 (MW 4000) from Norso-Haas.
  • Citrates e.g., citric acid and soluble salts thereof (particularly sodium salt), are polycarboxylate CGI suitable for use herein.
  • compositions containing the present invention are the 3,3-dicarboxy-4-oxa-1,6-hexanedioates and the related compounds disclosed in U.S. Patent 4,566,984.
  • Useful succinic acid CGI include the C 5 -C 20 alkyl and alkenyl succinic acids and salts thereof.
  • a particularly preferred compound of this type is dodecenylsuccinic acid.
  • Specific examples of succinate CGIs include: laurylsuccinate, myristylsuccinate, palmitylsuccinate, 2-dodecenylsuccinate (preferred), 2-pentadecenylsuccinate, and the like.
  • Laurylsuccinates are the preferred CGIs of this group, and are described in EP 0,200,263.
  • Other suitable polycarboxylates are disclosed in U.S. Patent 4,144,226 and in U.S. Patent 3,308,067. See also U.S. Pat. 3,723,322.
  • Organo diphosphonic acid or one of its salts or complexes is also suitable for use herein as a CGI.
  • organo diphosphonic acid it is meant herein an organo diphosphonic acid which does not contain nitrogen as part of its chemical structure. This definition therefore excludes the organo aminophosphonates, which however may be included in compositions of the invention as heavy metal ion sequestrants.
  • the organo diphosphonic acid component may be present in its acid form or in the form of one of its salts or complexes with a suitable counter cation.
  • any salts/complexes are water soluble, with the alkali metal and alkaline earth metal salts/complexes being especially preferred.
  • the organo diphosphonic acid is preferably a C 1 -C 4 diphosphonic acid and more preferably a C 2 diphosphonic acid selected from ethylene diphosphonic acid, ⁇ -hydroxy-2 phenyl ethyl diphosphonic acid, methylene diphosphonic acid , vinylidene 1,1 diphosphonic acid , 1,2 dihydroxyethane 1,1 diphosphonic acid and hydroxy-ethane 1,1 diphosphonic acid and any salts thereof and mixtures thereof.
  • a most preferred organo diphosphonic acid is hydroxy-ethane 1,1 diphosphonic acid (HEDP).
  • the CGI can be employed in stand alone product including pre-or post-wash additives. It can also be employed It can also be used in fully-formulated compositions including laundry compositions as well as rinse added fabric softener compositions and dryer added compositions (e.g. sheets) which provide softening and/or antistatic benefits, and rinse added compositions.
  • Typical levels of incorporation of the CGI within the compositions is preferably of less than 1%, preferably from 0.005% to 0.5%, more preferably from 0.05% to 0.25%, most preferably from 0.1% to 0.2% by weight of the composition.
  • Typical levels of incorporation of the softening compound in the softening composition are of from 1% to 80% by weight, preferably from 5% to 75%, more preferably from 15% to 70%, and even more preferably from 19% to 65%, by weight of the composition.
  • the fabric softener compound is preferably selected from a cationic, nonionic, amphoteric or anionic fabric softening component.
  • Typical of the cationic softening components are the quaternary ammonium compounds or amine precursors thereof as defined hereinafter.
  • Preferred quaternary ammonium fabric softening active compound have the formula or the formula: wherein Q is a carbonyl unit having the formula: each R unit is independently hydrogen, C 1 -C 6 alkyl, C 1 -C 6 hydroxyalkyl, and mixtures thereof, preferably methyl or hydroxy alkyl; each R 1 unit is independently linear or branched C 11 -C 22 alkyl, linear or branched C 11 -C 22 alkenyl, and mixtures thereof, R 2 is hydrogen, C 1 -C 4 alkyl, C 1 -C 4 hydroxyalkyl, and mixtures thereof; X is an anion which is compatible with fabric softener actives and adjunct ingredients; the index m is from 1 to 4, preferably 2; the index n is from 1 to 4, preferably 2.
  • An example of a preferred fabric softener active is a mixture of quaternized amines having the formula: wherein R is preferably methyl; R 1 is a linear or branched alkyl or alkenyl chain comprising at least 11 atoms, preferably at least 15 atoms.
  • the unit -O 2 CR 1 represents a fatty acyl unit which is typically derived from a triglyceride source.
  • the triglyceride source is preferably derived from tallow, partially hydrogenated tallow, lard, partially hydrogenated lard, vegetable oils and/or partially hydrogenated vegetable oils, such as, canola oil, safflower oil, peanut oil, sunflower oil, corn oil, soybean oil, tall oil, rice bran oil, etc. and mixtures of these oils.
  • the preferred fabric softening actives of the present invention are the Diester and/or Diamide Quaternary Ammonium (DEQA) compounds, the diesters and diamides having the formula: wherein R, R 1 , X, and n are the same as defined herein above for formulas (1) and (2), and Q has the formula:
  • DEQA Diester and/or Diamide Quaternary Ammonium
  • These preferred fabric softening actives are formed from the reaction of an amine with a fatty acyl unit to form an amine intermediate having the formula: wherein R is preferably methyl, Q and R are as defined herein before; followed by quaternization to the final softener active.
  • Non-limiting examples of preferred amines which are used to form the DEQA fabric softening actives according to the present invention include methyl bis(2-hydroxyethyl)amine having the formula: methyl bis(2-hydroxypropyl)amine having the formula: methyl (3-aminopropyl) (2-hydroxyethyl)amine having the formula: methyl bis(2-aminoethyl)amine having the formula: triethanol amine having the formula: di(2-aminoethyl) ethanolamine having the formula:
  • the counterion, X (-) above can be any softener-compatible anion, preferably the anion of a strong acid, for example, chloride, bromide, methylsulfate, ethylsulfate, sulfate, nitrate and the like, more preferably chloride or methyl sulfate.
  • the anion can also, but less preferably, carry a double charge in which case X (-) represents half a group.
  • Tallow and canola oil are convenient and inexpensive sources of fatty acyl units which are suitable for use in the present invention as R 1 units.
  • R 1 units The following are non-limiting examples of quaternary ammonium compounds suitable for use in the compositions of the present invention.
  • tallowyl indicates the R 1 unit is derived from a tallow triglyceride source and is a mixture of fatty acyl units.
  • canolyl refers to a mixture of fatty acyl units derived from canola oil.
  • Fabric Softener Actives N,N-di(tallowyl-oxy-ethyl)-N,N-dimethyl ammonium chloride; N,N-di(canolyl-oxy-ethyl)-N,N-dimethyl ammonium chloride; N,N-di(tallowyl-oxy-ethyl)-N-methyl, N-(2-hydroxyethyl) ammonium chloride; N,N-di(canolyl-oxy-ethyl)-N-methyl, N-(2-hydroxyethyl) ammonium chloride; N,N-di(2-tallowyloxy-2-oxo-ethyl)-N,N-dimethyl ammonium chloride; N,N-di(2-canolyloxy-2-oxo-ethyl)-N,N-dimethyl ammonium chloride N,N-di(2-tallowyloxyethylcarbonyloxyethyl)-
  • quaternary ammonium softening compounds are methylbis(tallowamidoethyl)(2-hydroxyethyl)ammonium methylsulfate and methylbis(hydrogenated tallowamidoethyl)(2-hydroxyethyl)ammonium methylsulfate; these materials are available from Witco Chemical Company under the trade names Varisoft® 222 and Varisoft® 110, respectively.
  • N,N-di(tallowoyl-oxy-ethyl)-N,N-dimethyl ammonium chloride where the tallow chains are at least partially unsaturated.
  • the level of unsaturation contained within the tallow, canola, or other fatty acyl unit chain can be measured by the Iodine Value (IV) of the corresponding fatty acid, which in the present case should preferably be in the range of from 5 to 100 with two categories of compounds being distinguished, having a IV below or above 25.
  • IV Iodine Value
  • fabric softener actives are derived from fatty acyl groups wherein the terms “tallowyl” and canolyl” in the above examples are replaced by the terms “cocoyl, palmyl, lauryl, oleyl, ricinoleyl, stearyl, palmityl,” which correspond to the triglyceride source from which the fatty acyl units are derived.
  • These alternative fatty acyl sources can comprise either fully saturated, or preferably at least partly unsaturated chains.
  • R units are preferably methyl, however, suitable fabric softener actives are described by replacing the term "methyl” in the above examples in Table II with the units "ethyl, ethoxy, propyl, propoxy, isopropyl, butyl, isobutyl and t-butyl.
  • the counter ion, X in the examples of Table II can be suitably replaced by bromide, methylsulfate, formate, sulfate, nitrate, and mixtures thereof.
  • the anion, X is merely present as a counterion of the positively charged quaternary ammonium compounds. The scope of this invention is not considered limited to any particular anion.
  • the pH of the compositions herein is an important parameter of the present invention. Indeed, it influences the stability of the quaternary ammonium or amine precursors compounds, especially in prolonged storage conditions.
  • the pH as defined in the present context, is measured in the neat compositions at 20 °C. While these compositions are operable at pH of less than about 6.0, for optimum hydrolytic stability of these compositions, the neat pH, measured in the above-mentioned conditions, must preferably be in the range of from about 2.0 to about 5, preferably in the range of 2.5 to 4.5, preferably about 2.5 to about 3.5.
  • the pH of these compositions herein can be regulated by the addition of a Bronsted acid.
  • Suitable acids include the inorganic mineral acids, carboxylic acids, in particular the low molecular weight (C 1 -C 5 ) carboxylic acids, and alkylsulfonic acids.
  • Suitable inorganic acids include HCl, H 2 SO 4 , HNO 3 and H 3 PO 4 .
  • Suitable organic acids include formic, acetic, citric, methylsulfonic and ethylsulfonic acid.
  • Preferred acids are citric, hydrochloric, phosphoric, formic, methylsulfonic acid, and benzoic acids. The use of the ethoxylated amino-functional-polymers in this context is particularly beneficial.
  • the softening compositions are preferably used in the pH ranges above mentioned, that is acidic conditions.
  • acidic conditions ethoxylated amino-functional polymers which have not been treated so as to eliminate the aldehydes and/or ketones present within the raw material will produce these undesirable byproduct thus producing a malodour and discoloration.
  • the amino-functional polymer of the invention this is not so, the polymer are stable upon acidic conditions and so is their resulting odor and color.
  • the diester when specified, it will include the monoester that is normally present in manufacture. For softening, under no/low detergent carry-over laundry conditions the percentage of monoester should be as low as possible, preferably no more than about 2.5%. However, under high detergent carry-over conditions, some monoester is preferred.
  • the overall ratios of diester to monoester are from about 100:1 to about 2:1, preferably from about 50:1 to about 5:1, more preferably from about 13:1 to about 8:1. Under high detergent carry-over conditions, the di/monoester ratio is preferably about 11:1.
  • the level of monoester present can be controlled in the manufacturing of the softener compound.
  • Mixtures of actives of formula (1) and (2) may also be prepared.
  • quaternary ammonium fabric softening compounds for use herein are cationic nitrogenous salts having two or more long chain acyclic aliphatic C 8 -C 22 hydrocarbon groups or one said group and an arylalkyl group which can be used either alone or as part of a mixture are selected from the group consisting of:
  • Examples of the above class cationic nitrogenous salts are the well-known dialkyldi methylammonium salts such as ditallowdimethylammonium chloride, ditallowdimethylammonium methylsulfate, di(hydrogenatedtallow)dimethylammonium chloride, distearyldimethylammonium chloride, dibehenyldimethylammonium chloride. Di(hydrogenatedtallow)di methylammonium chloride and ditallowdimethylammonium chloride are preferred.
  • dialkyldimethyl ammonium salts examples include di(hydrogenatedtallow)dimethylammonium chloride (trade name Adogen® 442), ditallowdimethylammonium chloride (trade name Adogen® 470, Praepagen® 3445), distearyl dimethylammonium chloride (trade name Arosurf® TA-100), all available from Witco Chemical Company.
  • Dibehenyldimethylammonium chloride is sold under the trade name Kemamine Q-2802C by Humko Chemical Division of Witco Chemical Corporation.
  • Dimethylstearylbenzyl ammonium chloride is sold under the trade names Varisoft® SDC by Witco Chemical Company and Ammonyx® 490 by Onyx Chemical Company.
  • Suitable amine fabric softening compounds for use herein, which may be in amine form or cationic form are selected from:
  • Compound (iii) is the compound having the formula: wherein R 1 is derived from oleic acid.
  • softening active can also encompass mixed softening active agents.
  • Preferred among the classes of softener compounds disclosed herein before are the diester or diamido quaternary ammonium fabric softening active compound (DEQA).
  • the invention composition may contain, in addition or alternatively to the herein before described components, one or more of the following ingredients.
  • An optional, but preferred, ingredient is a liquid carrier.
  • the liquid carrier employed in the instant compositions is preferably at least primarily water due to its low cost, relative availability, safety, and environmental compatibility.
  • the level of water in the liquid carrier is preferably at least about 50%, most preferably at least about 60%, by weight of the carrier.
  • Mixtures of water and low molecular weight, e.g., ⁇ about 200, organic solvent, e.g., lower alcohols such as ethanol, propanol, isopropanol or butanol are useful as the carrier liquid.
  • Low molecular weight alcohols include monohydric, dihydric (glycol, etc.) trihydric (glycerol, etc.), and higher polyhydric (polyols) alcohols.
  • compositions of the present invention may comprise one or more solvents which provide increased ease of formulation.
  • ease of formulation solvents are all disclosed in WO 97/03169. This is particularly the case when formulating liquid, clear fabric softening compositions.
  • the ease of formulation solvent system preferably comprises less than about 40%, preferably from about 10% to about 35%, more preferably from about 12% to about 25%, and even more preferably from about 14% to about 20%, by weight of the composition.
  • the ease of formulation solvent is selected to minimize solvent odor impact in the composition and to provide a low viscosity to the final composition.
  • isopropyl alcohol is not very effective and has a strong odor.
  • n-Propyl alcohol is more effective, but also has a distinct odor.
  • butyl alcohols also have odors but can be used for effective clarity/stability, especially when used as part of a ease of formulation solvent system to minimize their odor.
  • the alcohols are also selected for optimum low temperature stability, that is they are able to form compositions that are liquid with acceptable low viscosities and translucent, preferably clear, down to about 40°F (about 4.4°C) and are able to recover after storage down to about 20°F (about minus 6.7°C).
  • Suitable solvents can be selected based upon their octanol/water partition coefficient (P) as defined in WO 97/03169.
  • the ease of formulation solvents herein are selected from those having a ClogP of from about 0.15 to about 0.64, preferably from about 0.25 to about 0.62, and more preferably from about 0.40 to about 0.60, said ease of formulation solvent preferably being at least somewhat asymmetric, and preferably having a melting, or solidification, point that allows it to be liquid at, or near room temperature. Solvents that have a low molecular weight and are biodegradable are also desirable for some purposes.
  • the most preferred ease of formulation solvents can be identified by the appearance of the softener vesicles, as observed via cryogenic electron microscopy of the compositions that have been diluted to the concentration used in the rinse. These dilute compositions appear to have dispersions of fabric softener that exhibit a more uni-lamellar appearance than conventional fabric softener compositions. The closer to uni-lamellar the appearance, the better the compositions seem to perform. These compositions provide surprisingly good fabric softening as compared to similar compositions prepared in the conventional way with the same fabric softener active.
  • Particularly preferred ease of formulation solvents include hexanediols such as 1,2-Hexanediol and 2-Ethyl-1,3-hexanediol and pentanediols such as 2,2,4-Trimethyl-1,3-pentanediol.
  • compositions containing both saturated and unsaturated diester quaternary ammonium compounds can be prepared that are stable without the addition of concentration aids.
  • the compositions of the present invention may require organic and/or inorganic concentration aids to go to even higher concentrations and/or to meet higher stability standards depending on the other ingredients.
  • concentration aids which typically can be viscosity modifiers may be needed, or preferred, for ensuring stability under extreme conditions when particular softener active levels are used.
  • the surfactant concentration aids are typically selected from the group consisting of (1) single long chain alkyl cationic surfactants; (2) nonionic surfactants; (3) amine oxides; (4) fatty acids; and (5) mixtures thereof.
  • the total level is from 2% to 25%, preferably from 3% to 17%, more preferably from 4% to 15%, and even more preferably from 5% to 13% by weight of the composition.
  • These materials can either be added as part of the active softener raw material, (I), e.g., the mono-long chain alkyl cationic surfactant and/or the fatty acid which are reactants used to form the biodegradable fabric softener active as discussed hereinbefore, or added as a separate component.
  • the total level of dispersibility aid includes any amount that may be present as part of component (I).
  • Inorganic viscosity/dispersibility control agents which can also act like or augment the effect of the surfactant concentration aids, include water-soluble, ionizable salts which can also optionally be incorporated into the compositions of the present invention.
  • ionizable salts can be used. Examples of suitable salts are the halides of the Group IA and IIA metals of the Periodic Table of the Elements, e.g., calcium chloride, magnesium chloride, sodium chloride, potassium bromide, and lithium chloride.
  • the ionizable salts are particularly useful during the process of mixing the ingredients to make the compositions herein, and later to obtain the desired viscosity.
  • the amount of ionizable salts used depends on the amount of active ingredients used in the compositions and can be adjusted according to the desires of the formulator. Typical levels of salts used to control the composition viscosity are from about 20 to about 20,000 parts per million (ppm), preferably from about 20 to about 11,000 ppm, by weight of the composition.
  • Alkylene polyammonium salts can be incorporated into the composition to give viscosity control in addition to or in place of the water-soluble, ionizable salts above.
  • these agents can act as scavengers, forming ion pairs with anionic detergent carried over from the main wash, in the rinse, and on the fabrics, and may improve softness performance.
  • alkylene polyammonium salts include l-lysine monohydrochloride and 1,5-diammonium 2-methyl pentane dihydrochloride.
  • composition of the invention may optionally comprise a dye fixing agent.
  • Dye fixing agents or "fixatives”, are well-known, commercially available materials which are designed to improve the appearance of dyed fabrics by minimizing the loss of dye from fabrics due to washing. Not included within this definition are components which are fabric softeners or those described hereinbefore as amino-functional polymers.
  • Cationic fixatives are available under various trade names from several suppliers. Representative examples include: CROSCOLOR PMF (July 1981, Code No. 7894) and CROSCOLOR NOFF (January 1988, Code No. 8544) from Crosfield; INDOSOL E-50 (February 27, 1984, Ref. No.
  • Dye fixing agents suitable for use in the present invention are ammonium compounds such as fatty acid - diamine condensates e.g.
  • a typical amount of the dye fixing agent to be employed in the composition of the invention is preferably up 90% by weight, preferably up to 50% by weight, more preferably from 0.001% to 10% by weight, most preferably from 0.5% to 5% active by weight of the composition.
  • Stabilizers can be present in the compositions of the present invention.
  • the term "stabilizer,” as used herein, includes antioxidants and reductive agents. These agents are present at a level of from 0% to about 2%, preferably from about 0.01% to about 0.2%, more preferably from about 0.035% to about 0.1% for antioxidants, and more preferably from about 0.01% to about 0.2% for reductive agents. These assure good odor stability under long term storage conditions for the compositions and compounds stored in molten form.
  • the use of antioxidants and reductive agent stabilizers is especially critical for low scent products (low perfume).
  • antioxidants examples include a mixture of ascorbic acid, ascorbic palmitate, propyl gallate, available from Eastman Chemical Products, Inc., under the trade names Tenox® PG and Tenox S-1; a mixture of BHT (butylated hydroxytoluene), BHA (butylated hydroxyanisole), propyl gallate, and citric acid, available from Eastman Chemical Products, Inc., under the trade name Tenox-6; butylated hydroxytoluene, available from UOP Process Division under the trade name Sustane® BHT; tertiary butylhydroquinone, Eastman Chemical Products, Inc., as Tenox TBHQ; natural tocopherols, Eastman Chemical Products, Inc., as Tenox GT-1/GT-2; and butylated hydroxyanisole, Eastman Chemical Products, Inc., as BHA; long chain esters (C 8 -C 22 ) of gallic acid, e.g., dodecyl
  • reductive agents examples include sodium borohydride, hypophosphorous acid, Irgafos® 168, and mixtures thereof.
  • Polymeric soil release agents are characterized by having both hydrophilic segments, to hydrophilize the surface of hydrophobic fibers, such as polyester and nylon, and hydrophobic segments, to deposit upon hydrophobic fibers and remain adhered thereto through completion of washing and rinsing cycles and, thus, serve as an anchor for the hydrophilic segments. This can enable stains occurring subsequent to treatment with the soil release agent to be more easily cleaned in later washing procedures.
  • soil release agents will generally comprise from about 0.01% to about 10.0%, by weight, of the detergent compositions herein, typically from about 0.1% to about 5%, preferably from about 0.2% to about 3.0%.
  • soil release agents include the METOLOSE SM100, METOLOSE SM200 manufactured by Shin-etsu Kagaku Kogyo K.K., SOKALAN type of material, e.g., SOKALAN HP-22, available from BASF (Germany), ZELCON 5126 (from Dupont) and MILEASE T (from ICI).
  • bactericides used in the compositions of this invention include glutaraldehyde, formaldehyde, 2-bromo-2-nitro-propane-1,3-diol sold by Inolex Chemicals, located in Philadelphia, Pennsylvania, under the trade name Bronopol®, and a mixture of 5-chloro-2-methyl-4-isothiazoline-3-one and 2-methyl-4-isothiazoline-3-one sold by Rohm and Haas Company under the trade name Kathon 1 to 1,000 ppm by weight of the agent.
  • the present invention can contain a perfume.
  • perfumes are disclosed in U.S. Pat. 5,500,138, said patent being incorporated herein by reference.
  • perfume includes fragrant substance or mixture of substances including natural (i.e., obtained by extraction of flowers, herbs, leaves, roots, barks, wood, blossoms or plants), artificial (i.e., a mixture of different nature oils or oil constituents) and synthetic (i.e., synthetically produced) odoriferous substances.
  • natural i.e., obtained by extraction of flowers, herbs, leaves, roots, barks, wood, blossoms or plants
  • artificial i.e., a mixture of different nature oils or oil constituents
  • synthetic i.e., synthetically produced
  • Such materials are often accompanied by auxiliary materials, such as fixatives, extenders, stabilizers and solvents. These auxiliaries are also included within the meaning of "perfume", as used herein.
  • perfumes are complex mixtures of a plurality of organic compounds.
  • the range of the natural raw substances can embrace not only readily-volatile, but also moderately-volatile and slightly-volatile components and that of the synthetics can include representatives from practically all classes of fragrant substances, as will be evident from the following illustrative compilation: natural products, such as tree moss absolute, basil oil, citrus fruit oils (such as bergamot oil, mandarin oil, etc.), mastix absolute, myrtle oil, palmarosa oil, patchouli oil, petitgrain oil Paraguay, wormwood oil, alcohols, such as farnesol, geraniol, linalool, nerol, phenylethyl alcohol, rhodinol, cinnamic alcohol, aldehydes, such as citral, HelionalTM, alpha-hexyl-cinnamaldehyde, hydroxycitronellal, LilialTM (p-tert-butyl-alpha -methyldihydrocinnamaldehyde
  • any conventional fragrant acetal or ketal known in the art can be added to the present composition as an optional component of the conventionally formulated perfume (c).
  • Such conventional fragrant acetals and ketals include the well-known methyl and ethyl acetals and ketals, as well as acetals or ketals based on benzaldehyde, those comprising phenylethyl moieties, or more recently developed specialties such as those described in a United States Patent entitled "Acetals and Ketals of Oxo-Tetralins and Oxo-Indanes, see U.S. Pat. No. 5 ,084,440, issued January 28, 1992, assigned to Givaudan Corp.
  • perfume compositions for fully-formulated fabric softening compositions include the enol ethers of alkyl-substituted oxo-tetralins and oxo-indanes as described in U.S. Pat. 5,332,725, July 26, 1994, assigned to Givaudan; or Schiff Bases as described in U.S. Pat. 5,264,615, December 9, 1991, assigned to Givaudan.
  • the perfumes useful in the present invention compositions are substantially free of halogenated materials and nitromusks.
  • Perfume can be present at a level of from 0% to 10%, preferably from 0.1% to 5%, and more preferably from 0.2% to 3%, by weight of the finished composition.
  • Fabric softener compositions of the present invention provide improved fabric perfume deposition.
  • compositions and processes herein can optionally employ one or more enzymes such as lipases, proteases, cellulase, amylases and peroxidases.
  • a preferred enzyme for use herein is a cellulase enzyme. Indeed, this type of enzyme will further provide a color care benefit to the treated fabric.
  • Cellulases usable herein include both bacterial and fungal types, preferably having a pH optimum between 5 and 9.5. U.S.
  • 4,435,307 discloses suitable fungal cellulases from Humicola insolens or Humicola strain DSM1800 or a cellulase 212-producing fungus belonging to the genus Aeromonas, and cellulase extracted from the hepatopancreas of a marine mollusk, Dolabella Auricula Solander. Suitable cellulases are also disclosed in GB-A-2.075.028; GB-A-2.095.275 and DE-OS-2.247.832. CAREZYME® and CELLUZYME® (Novo) are especially useful.
  • compositions herein will typically comprise from 0.001% to 5%, preferably 0.01%-1 % by weight of a commercial enzyme preparation.
  • activity units are preferred (e.g. CEVU or cellulase Equivalent Viscosity Units).
  • compositions of the present invention can contain cellulase enzymes at a level equivalent to an activity from 0.5 to 1000 CEVU/gram of composition.
  • Cellulase enzyme preparations used for the purpose of formulating the compositions of this invention typically have an activity comprised between 1,000 and 10,000 CEVU/gram in liquid form, around 1,000 CEVU/gram in solid form.
  • the present invention composition can include optional components conventionally used in fully formulated laundry detergent compositions such as described in WO 97/05226, for example builders, bleaches, brighteners, colorants; surfactants; anti-shrinkage agents; fabric crisping agents; spotting agents; germicides; fungicides; anti-oxidants such as butylated hydroxy toluene, anti-corrosion agents, antifoam agents, polyamino functional polymer such as disclosed in co-pending application EP 97201488.0, dispersible polyolefin such as Velustrol® as disclosed in co-pending application PCT/US 97/01644, and the like.
  • the present invention can also contain optional chelating agents.
  • a typical amount of such optional components will be from 0% to 15% by weight.
  • the present invention can also include other compatible ingredients, including those as disclosed in WO96/02625, WO96/21714, and WO96/21715.
  • the fabric abrasion which arises on fabrics, upon a laundering process is reduced, e.g. it is meant that laundered fabrics which are in contact with a CGI or composition thereof exhibit a reduced fabric abrasion versus fabrics which are in contact with no CGI or no CGI containing- composition but still laundered.
  • the mechanism for producing the benefit of the invention is due to the abrasive effect of inorganic micro-crystals growing at the fabric surface upon laundering in the absence of CGI.
  • the source of inorganic compounds is believed to be the feed water of the laundering process as well as the soil present on the laundered garments.
  • compositions according to the present invention may be measured for fabric reduction by laundering a cotton terry over repeated cycles (e.g. 20 cycles) respectively with and without CGI.
  • the method is comparative and thus only one fabric's abrasion respective to another may be tested at any one time.
  • the fabric abrasion is evaluated using the following scale:
  • a method for reducing the fabric abrasion, in particular upon domestic laundering processes which comprises the steps of contacting the fabrics with a CGI or a composition thereof as defined hereinbefore.
  • the application of the CGI to the fabric surface is made upon the rinsing step of a laundry process.
  • the CGI is incorporated in fabric softening compositions.
  • Step A)-The ethoxylation is conducted in a 2 gallon stirred stainless steel autoclave equipped for temperature measurement and control, pressure measurement, vacuum and inert gas purging, sampling, and for introduction of ethylene oxide as a liquid.
  • a ⁇ 20 lb. net cylinder of ethylene oxide (ARC) is set up to deliver ethylene oxide as a liquid by a pump to the autoclave with the cylinder placed on a scale so that the weight change of the cylinder could be monitored.
  • PEI polyethyleneimine
  • the autoclave is then sealed and purged of air (by applying vacuum to minus 28'' Hg followed by pressurization with nitrogen to 250 psia, then venting to atmospheric pressure).
  • the autoclave contents are heated to 130 °C while applying vacuum.
  • the autoclave is charged with nitrogen to about 250 psia while cooling the autoclave to about 105 °C.
  • Ethylene oxide is then added to the autoclave incrementally over time while closely monitoring the autoclave pressure, temperature, and ethylene oxide flow rate.
  • the ethylene oxide pump is turned off and cooling is applied to limit any temperature increase resulting from any reaction exotherm.
  • the temperature is maintained between 100 and 110 °C while the total pressure is allowed to gradually increase during the course of the reaction.
  • the temperature is increased to 110 °C and the autoclave is allowed to stir for an additional hour. At this point, vacuum is applied to remove any residual unreacted ethylene oxide.
  • Step B)- The reaction mixture is then deodorized by passing about 100 cu. ft. of inert gas (argon or nitrogen) through a gas dispersion frit and through the reaction mixture while agitating and heating the mixture to 130 °C.
  • inert gas argon or nitrogen
  • the final reaction product is cooled slightly and collected in glass containers purged with nitrogen. In other preparations the neutralization and deodorization is accomplished in the reactor before discharging the product.
  • Step A If a PEI 1800 E 7 is desired, the following step of catalyst addition will be included between Step A and B.
  • Vacuum is continuously applied while the autoclave is cooled to about 50 °C while introducing 376 g of a 25% sodium methoxide in methanol solution (1.74 moles, to achieve a 10% catalyst loading based upon PEI nitrogen functions).
  • the methoxide solution is sucked into the autoclave under vacuum and then the autoclave temperature controller setpoint is increased to 130 °C.
  • a device is used to monitor the power consumed by the agitator.
  • the agitator power is monitored along with the temperature and pressure. Agitator power and temperature values gradually increase as methanol is removed from the autoclave and the viscosity of the mixture increases and stabilizes in about 1 hour indicating that most of the methanol has been removed.
  • the mixture is further heated and agitated under vacuum for an additional 30 minutes. Vacuum is removed and the autoclave is cooled to 105 °C while it is being charged with nitrogen to 250 psia and then vented to ambient pressure. The autoclave is charged to 200 psia with nitrogen. Ethylene oxide is again added to the autoclave incrementally as before while closely monitoring the autoclave pressure, temperature, and ethylene oxide flow rate while maintaining the temperature between 100 and 110 °C and limiting any temperature increases due to reaction exotherm. After the addition of 4500 g of ethylene oxide (resulting in a total of 7 moles of ethylene oxide per mole of PEI nitrogen function) is achieved over several hours, the temperature is increased to 110 °C and the mixture stirred for an additional hour.
  • reaction mixture is then collected in nitrogen purged containers and eventually transferred into a 22 L three neck round bottomed flask equipped with heating and agitation.
  • the strong alkali catalyst is neutralized by adding 167 g methanesulfonic acid (1.74 moles).
  • PEI 1800 E2 PEI 1800 E4, PEI 1800 E15 and PEI 1800 E20 can be prepared by the above method by adjusting the reaction time and the relative amount of ethylene oxide used in the reaction.
  • Step A)-The ethoxylation is conducted in a 2 gallon stirred stainless steel autoclave equipped for temperature measurement and control, pressure measurement, vacuum and inert gas purging, sampling, and for introduction of ethylene oxide as a liquid.
  • a ⁇ 20 lb. net cylinder of ethylene oxide (ARC) is set up to deliver ethylene oxide as a liquid by a pump to the autoclave with the cylinder placed on a scale so that the weight change of the cylinder could be monitored.
  • a 750 g portion of polyethyleneimine (PEI) (having a listed average molecular weight of 1200 equating to about 0.625 moles of polymer and 17.4 moles of nitrogen functions) is added to the autoclave.
  • the autoclave is then sealed and purged of air (by applying vacuum to minus 28'' Hg followed by pressurization with nitrogen to 250 psia, then venting to atmospheric pressure).
  • the autoclave contents are heated to 130 °C while applying vacuum.
  • the autoclave is charged with nitrogen to about 250 psia while cooling the autoclave to about 105 °C.
  • Ethylene oxide is then added to the autoclave incrementally over time while closely monitoring the autoclave pressure, temperature, and ethylene oxide flow rate.
  • the ethylene oxide pump is turned off and cooling is applied to limit any temperature increase resulting from any reaction exotherm.
  • the temperature is maintained between 100 and 110 °C while the total pressure is allowed to gradually increase during the course of the reaction.
  • Step B)- The reaction mixture is then deodorized by passing about 100 cu. ft. of inert gas (argon or nitrogen) through a gas dispersion frit and through the reaction mixture while agitating and heating the mixture to 130 °C.
  • inert gas argon or nitrogen
  • the final reaction product is cooled slightly and collected in glass containers purged with nitrogen. In other preparations the neutralization and deodorization is accomplished in the reactor before discharging the product.
  • Step A and B Vacuum is continuously applied while the autoclave is cooled to about 50 °C while introducing 376 g of a 25% sodium methoxide in methanol solution (1.74 moles, to achieve a 10% catalyst loading based upon PEI nitrogen functions).
  • the methoxide solution is sucked into the autoclave under vacuum and then the autoclave temperature controller setpoint is increased to 130 °C.
  • a device is used to monitor the power consumed by the agitator. The agitator power is monitored along with the temperature and pressure.
  • Agitator power and temperature values gradually increase as methanol is removed from the autoclave and the viscosity of the mixture increases and stabilizes in about 1 hour indicating that most of the methanol has been removed.
  • the mixture is further heated and agitated under vacuum for an additional 30 minutes. Vacuum is removed and the autoclave is cooled to 105 °C while it is being charged with nitrogen to 250 psia and then vented to ambient pressure. The autoclave is charged to 200 psia with nitrogen. Ethylene oxide is again added to the autoclave incrementally as before while closely monitoring the autoclave pressure, temperature, and ethylene oxide flow rate while maintaining the temperature between 100 and 110 °C and limiting any temperature increases due to reaction exotherm.
  • PEI 1200 E2, PEI 1200 E3, PEI 1200 E15 and PEI 1200 E20 can be prepared by the above method by adjusting the reaction time and the relative amount of ethylene oxide used in the reaction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
EP97870188A 1997-11-24 1997-11-24 Verwendung eines Kristallwachstumsinhibitors zur Verminderung der Abreigung von Geweben Withdrawn EP0918088A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP97870188A EP0918088A1 (de) 1997-11-24 1997-11-24 Verwendung eines Kristallwachstumsinhibitors zur Verminderung der Abreigung von Geweben
DE69830298T DE69830298T2 (de) 1997-11-24 1998-06-27 Verwendung eines Kristallwachstumsinhibitors zur Verminderung der Abreibung von Geweben
EP98202165A EP0924292B1 (de) 1997-11-24 1998-06-27 Verwendung eines Kristallwachstumsinhibitors zur Verminderung der Abreibung von Geweben
AT98202165T ATE296345T1 (de) 1997-11-24 1998-06-27 Verwendung eines kristallwachstumsinhibitors zur verminderung der abreibung von geweben
ES98202165T ES2244032T3 (es) 1997-11-24 1998-06-27 Uso de un inhibidor del crecimiento cristalino para reducir la abrasion de los tejidos.
EP98958665A EP1034243A1 (de) 1997-11-24 1998-11-20 Verwendung eines kristallwachstumsinhibitors zur verminderung der abreibung von geweben
US09/554,700 US6692536B1 (en) 1997-11-24 1998-11-20 Use of a crystal growth inhibitor to reduce fabric abrasion
BR9814998-9A BR9814998A (pt) 1997-11-24 1998-11-20 Uso de um inibidor de crescimento de cristal para reduzir abrasão de tecido.
CA002310373A CA2310373C (en) 1997-11-24 1998-11-20 Use of a crystal growth inhibitor to reduce fabric abrasion
PCT/US1998/024817 WO1999027052A1 (en) 1997-11-24 1998-11-20 Use of a crystal growth inhibitor to reduce fabric abrasion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP97870188A EP0918088A1 (de) 1997-11-24 1997-11-24 Verwendung eines Kristallwachstumsinhibitors zur Verminderung der Abreigung von Geweben

Publications (1)

Publication Number Publication Date
EP0918088A1 true EP0918088A1 (de) 1999-05-26

Family

ID=8231070

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97870188A Withdrawn EP0918088A1 (de) 1997-11-24 1997-11-24 Verwendung eines Kristallwachstumsinhibitors zur Verminderung der Abreigung von Geweben

Country Status (4)

Country Link
EP (1) EP0918088A1 (de)
AT (1) ATE296345T1 (de)
DE (1) DE69830298T2 (de)
ES (1) ES2244032T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170362547A1 (en) * 2016-06-17 2017-12-21 The Procter & Gamble Company Detergent composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0506246A1 (de) * 1991-03-27 1992-09-30 Rohm And Haas Company Herstellung von Polymeren aus Itaconsäure
WO1995029980A1 (en) * 1994-04-29 1995-11-09 The Procter & Gamble Company Cellulase fabric-conditioning compositions
WO1996026999A1 (en) * 1995-02-28 1996-09-06 The Procter & Gamble Company Laundry pretreatment with peroxide bleaches containing chelators for iron, copper or manganese for reduced fabric damage
EP0753565A2 (de) * 1995-07-08 1997-01-15 The Procter & Gamble Company Waschmittelzusammensetzungen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0506246A1 (de) * 1991-03-27 1992-09-30 Rohm And Haas Company Herstellung von Polymeren aus Itaconsäure
WO1995029980A1 (en) * 1994-04-29 1995-11-09 The Procter & Gamble Company Cellulase fabric-conditioning compositions
WO1996026999A1 (en) * 1995-02-28 1996-09-06 The Procter & Gamble Company Laundry pretreatment with peroxide bleaches containing chelators for iron, copper or manganese for reduced fabric damage
EP0753565A2 (de) * 1995-07-08 1997-01-15 The Procter & Gamble Company Waschmittelzusammensetzungen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170362547A1 (en) * 2016-06-17 2017-12-21 The Procter & Gamble Company Detergent composition

Also Published As

Publication number Publication date
ATE296345T1 (de) 2005-06-15
DE69830298D1 (de) 2005-06-30
DE69830298T2 (de) 2006-02-02
ES2244032T3 (es) 2005-12-01

Similar Documents

Publication Publication Date Title
US5998359A (en) Rinse added laundry additive compositions having color care agents
CA2310613A1 (en) Low solvent rinse-added fabric softeners having increased softness benefits
US6531438B1 (en) Rinse-added fabric care compositions comprising low molecular weight linear and cyclic polyamines
CA2304797A1 (en) Ethoxylated amino-functional polymers
US6500796B1 (en) Stabilized fabric softening compositions
EP0924293B2 (de) Verwendung eines Kristallwachstumsinhibitors zur Verminderung der Abreibung von Geweben
EP0918089A1 (de) Gewebebehandlungsmittel
JP4049996B2 (ja) 透明液体布地柔軟化組成物
US6692536B1 (en) Use of a crystal growth inhibitor to reduce fabric abrasion
EP0924292B1 (de) Verwendung eines Kristallwachstumsinhibitors zur Verminderung der Abreibung von Geweben
EP0918088A1 (de) Verwendung eines Kristallwachstumsinhibitors zur Verminderung der Abreigung von Geweben
EP1100857B1 (de) vERWENDUNG VON OBERFLÄCHENAKTIVEN SUBSTANZEN ZUR SCUM-REDUZIERUNG IN GEWEBEPFLEGEMITTEL
US6410503B1 (en) Fabric care compositions
MXPA00005059A (en) Use of a crystal growth inhibitor to reduce fabric abrasion
MXPA00005061A (en) Stabilised fabric softening compositions
EP0919608A1 (de) Verwendung einer Polyhydroyfettsäureamidverbindung als Weichmacherverbindung
DE69831850T3 (de) Verwendung eines Kristallwachstumsinhibitors zur Verminderung der Abreibung von Geweben
MXPA01001149A (en) Fabric care compositions

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19991127