EP0908304B1 - Procédé pour la fabrication d'une plaque d'impression positive à partir d'un élément pour l'enregistrement de l'image thermosensible - Google Patents

Procédé pour la fabrication d'une plaque d'impression positive à partir d'un élément pour l'enregistrement de l'image thermosensible Download PDF

Info

Publication number
EP0908304B1
EP0908304B1 EP19980203119 EP98203119A EP0908304B1 EP 0908304 B1 EP0908304 B1 EP 0908304B1 EP 19980203119 EP19980203119 EP 19980203119 EP 98203119 A EP98203119 A EP 98203119A EP 0908304 B1 EP0908304 B1 EP 0908304B1
Authority
EP
European Patent Office
Prior art keywords
layer
printing plates
lithographic printing
imaging element
plates according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19980203119
Other languages
German (de)
English (en)
Other versions
EP0908304A1 (fr
Inventor
Marc Van Damme
Joan Vermeersch
Guy Hauquier
Eric Verschueren
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agfa Gevaert NV
Original Assignee
Agfa Gevaert NV
Agfa Gevaert AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agfa Gevaert NV, Agfa Gevaert AG filed Critical Agfa Gevaert NV
Priority to EP19980203119 priority Critical patent/EP0908304B1/fr
Publication of EP0908304A1 publication Critical patent/EP0908304A1/fr
Application granted granted Critical
Publication of EP0908304B1 publication Critical patent/EP0908304B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/10Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme
    • B41C1/1008Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by removal or destruction of lithographic material on the lithographic support, e.g. by laser or spark ablation; by the use of materials rendered soluble or insoluble by heat exposure, e.g. by heat produced from a light to heat transforming system; by on-the-press exposure or on-the-press development, e.g. by the fountain of photolithographic materials
    • B41C1/1016Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by removal or destruction of lithographic material on the lithographic support, e.g. by laser or spark ablation; by the use of materials rendered soluble or insoluble by heat exposure, e.g. by heat produced from a light to heat transforming system; by on-the-press exposure or on-the-press development, e.g. by the fountain of photolithographic materials characterised by structural details, e.g. protective layers, backcoat layers or several imaging layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2201/00Location, type or constituents of the non-imaging layers in lithographic printing formes
    • B41C2201/04Intermediate layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/02Positive working, i.e. the exposed (imaged) areas are removed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/06Developable by an alkaline solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/14Multiple imaging layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/22Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation characterised by organic non-macromolecular additives, e.g. dyes, UV-absorbers, plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/24Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation characterised by a macromolecular compound or binder obtained by reactions involving carbon-to-carbon unsaturated bonds, e.g. acrylics, vinyl polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/26Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation characterised by a macromolecular compound or binder obtained by reactions not involving carbon-to-carbon unsaturated bonds
    • B41C2210/262Phenolic condensation polymers, e.g. novolacs, resols

Definitions

  • the present invention relates to a method for preparing a lithographic printing plate using a heat mode imaging element comprising an IR sensitive top layer. More specifically the invention is related to a method for preparing a lithographic printing plate using a heat mode imaging element whereby the capacity of the top layer of being penetrated and/or solubilised by an aqueous developer is changed upon exposure.
  • Lithography is the process of printing from specially prepared surfaces, some areas of which are capable of accepting lithographic ink, whereas other areas, when moistened with water, will not accept the ink.
  • the areas which accept ink form the printing image areas and the ink-rejecting areas form the background areas.
  • a photographic material is made imagewise receptive to oily or greasy inks in the photo-exposed (negative-working) or in the non-exposed areas (positive-working) on a hydrophilic background.
  • lithographic printing plates also called surface litho plates or planographic printing plates
  • a support that has affinity to water or obtains such affinity by chemical treatment is coated with a thin layer of a photosensitive composition.
  • Coatings for that purpose include light-sensitive polymer layers containing diazo compounds, dichromate-sensitized hydrophilic colloids and a large variety of synthetic photopolymers. Particularly diazo-sensitized systems are widely used.
  • the exposed image areas become insoluble and the unexposed areas remain soluble.
  • the plate is then developed with a suitable liquid to remove the diazonium salt or diazo resin in the unexposed areas.
  • printing plates are known that include a photosensitive coating that upon image-wise exposure is rendered soluble at the exposed areas. Subsequent development then removes the exposed areas.
  • a typical example of such photosensitive coating is a quinone-diazide based coating.
  • the above described photographic materials from which the printing plates are made are camera-exposed through a photographic film that contains the image that is to be reproduced in a lithographic printing process.
  • Such method of working is cumbersome and labor intensive.
  • the printing plates thus obtained are of superior lithographic quality.
  • GB-1 492 070 discloses a method wherein a metal layer or a layer containing carbon black is provided on a photosensitive coating. This metal layer is then ablated by means of a laser so that an image mask on the photosensitive layer is obtained. The photosensitive layer is then overall exposed by UV-light through the image mask. After removal of the image mask, the photosensitive layer is developed to obtain a printing plate.
  • This method however still has the disadvantage that the image mask has to be removed prior to development of the photosensitive layer by a cumbersome processing.
  • thermoplastic polymer particles By image-wise exposure to an infrared laser, the thermoplastic polymer particles are image-wise coagulated thereby rendering the surface of the imaging element at these areas ink-acceptant without any further development.
  • a disadvantage of this method is that the printing plate obtained is easily damaged since the non-printing areas may become ink accepting when some pressure is applied thereto. Moreover, under critical conditions, the lithographic performance of such a printing plate may be poor and accordingly such printing plate has little lithographic printing latitude.
  • US-P- 4 708 925 discloses imaging elements including a photosensitive composition comprising an alkali-soluble novolac resin and an onium-salt. This composition can optionally contain an IR-sensitizer. After image-wise exposing said imaging element to UV - visible - or IR-radiation followed by a development step with an aqueous alkali liquid there is obtained a positive or negative working printing plate. The printing results of a lithographic plate obtained by irradiating and developing said imaging element are poor.
  • EP-A- 625 728 discloses an imaging element comprising a layer which is sensitive to UV- and IR-irradiation and which can be positive or negative working.
  • This layer comprises a resole resin, a novolac resin, a latent Bronsted acid and an IR-absorbing substance.
  • the printing results of a lithographic plate obtained by irradiating and developing said imaging element are poor.
  • US-P- 5 340 699 is almost identical with EP-A- 625 728 but discloses the method for obtaining a negative working IR-laser recording imaging element.
  • the IR-sensitive layer comprises a resole resin, a novolac resin, a latent Bronsted acid and an IR-absorbing substance.
  • the printing results of a lithographic plate obtained by irradiating and developing said imaging element are poor.
  • EP-A- 678 380 discloses a method wherein a protective layer is provided on a grained metal support underlying a laser-ablatable surface layer. Upon image-wise exposure the surface layer is fully ablated as well as some parts of the protective layer. The printing plate is then treated with a cleaning solution to remove the residu of the protective layer and thereby exposing the hydrophilic surface layer.
  • EP-A- 864 420 discloses a heat mode imaging element for making lithographic printing plates comprising on a lithographic base having a hydrophilic surface an intermediate layer comprising a polymer, soluble in an aqueous alkaline solution and a top layer that is sensitive to IR-radiation wherein said top layer upon exposure to IR-radiation has a decreased or increased capacity for being penetrated and/or solubilised by an aqueous alkaline solution.
  • Said heat-mode imaging element has the disadvantage that on the lithographic surface having a hydrophilic surface two layers have to be coated from a solvent, which is a cumbersome operation. Furtheron said heat-mode imaging element has the disadvantage that some ablation occurs during the irradiation causing formation of some debris. Said debris can interfere with the transmission of the laser beam ( e.g. by depositing on a focusing lens or as an aerosol that partially blocks transmission) or with the transport of the imaging element during or after recording when this debris remains loosely adhered to the plate and deposition of said debris occurs on the transport rollers.
  • GB-A- 1 155 035 discloses a method of recording information, wherein a recording material is used comprising a layer of a polymeric material which when any given area of the layer is sufficiently heated undergoes in that area a modification resulting in a decrease in the solubility of that area of the layer in water or an aqueous medium, such layer also incorporating a substance or substances distributed over the whole area of the layer and being capable of being heated by exposing the layer to intense radiant energy which is absorbed by such substance or substances, and wherein the said material is exposed to intense radiant energy which is distributed over the material in a pattern determined by the information to be recorded and which is at least partly absorbed by said distributed substance or substances, so that a corresponding heat pattern is generated in the material, whereby such information is recorded in terms of a difference in the solubilities in water or an aqueous medium of different areas of said layer.
  • GB-A-1 245 924 discloses an information recording method wherein a recording material is used comprising a heat-sensitive recording layer of a composition such that the solubility of any given area of the layer in a given solvent can be increased by heating that area of the layer, wherein the said layer is information-wise heated to produce a record of the information in terms of a difference in the solubilities in the said solvent of different areas of the recording layer, and wherein the whole layer is then contacted with such solvent to cause the portions of the recording layer which are soluble or most soluble in such solvent to be removed or penetrated by such solvent.
  • US-P- 5 466 557 discloses a radiation-sensitive composition
  • a radiation-sensitive composition comprising (1) a resole resin, (2) a novolac resin, (3) a latent Bronsted acid, (4) an infrared absorber, and (5) terephthalaldehyde.
  • EP-A 894 622 which constitutes prior art under Art. 54(3)(4) EPC, discloses a method for making positive-working lithographic plates comprising imagewise IR-exposure of a radiation-sensitive composition containing a phenolic resin, an IR-absorbing pigment and optionally also a benzophenone, followed by development in an aqueous alkaline solution comprising sodium or potassium silicates.
  • GB-A- 1 154 568 discloses a method of recording a graphic original having contrasting light-absorbing and light-transmitting areas, wherein a recording material comprising a supported layer composed mainly of gelatin the water-solubility or water-absorptive capacity of which increases if the layer is sufficiently heated , such layer also having light absorbing substance(s) distributed therein, is placed with such gelatin layer in contact with the light-absorbing areas of the original and the said gelatin layer is exposed to light through the original, the intensity of the light and the duration of the exposure being such that the areas of the gelatin layer in contact with the light-absorbing areas of the original are substantially unaffected by heat conduction from such light-absorbing areas, but the water-solubility or water-absorptive capacity of the other areas of the gelatin layer is increases by heating thereof due to absorption of copying light by the light-absorbing substance(s) in those other areas of the gelatin layer.
  • a heat-sensitive imaging element according to the invention can be obtained in an easy way by one coating, which yields a lithographic printing plate of high quality in an ecologically acceptable way.
  • the IR-sensitive layer in accordance with the present invention comprises an IR-absorbing pigment and a polymer, soluble in an aqueous alkaline solution.
  • a mixture of IR-absorbing pigments may be used, but it is preferred to use only one IR-absorbing pigment.
  • Particularly useful IR-absorbing pigments are carbon black, metal carbides, borides, nitrides, carbonitrides, bronze-structured oxides and oxides structurally related to the bronze family but lacking the A component e.g. WO2.9.
  • conductive polymer dispersion such as polypyrrole or polyaniline-based conductive polymer dispersions.
  • the lithographic performance and in particular the print endurance obtained depends on the heat-sensitivity of the imaging element. In this respect it has been found that carbon black yields very good and favorable results.
  • the IR-absorbing pigments are present preferably in an amount between 1 and 60 parts, more preferably between 3 and 50 parts by weight of the total amount of said IR-sensitive top layer.
  • the alkali soluble polymers used in this layer are preferably hydrophobic and ink accepting polymers as used in conventional positive or negative working PS-plates e.g. carboxy substituted polymers etc. More preferably is a phenolic resin such as polyvinylphenol or a novolac polymer. Most preferred is a novolac polymer. Typical examples of these polymers are descibed in DE-A- 4 007 428, DE-A- 4 027 301 and DE-A- 4 445 820.
  • the hydrophobic polymer used in connection with the present invention is further characterised by insolubility in water and at least partial solubility/swellability in an alkaline solution and/or at least partial solubility in water when combined with a cosolvent.
  • this IR-sensitive layer is preferably a visible light- and UV-light desensitised layer. Still further said layer is preferably thermally hardenable.
  • This preferably visible light- or UV-light desensitised layer does not comprise photosensitive ingredients such as diazo compounds, photoacids, photoinitiators, quinone diazides, sensitisers etc. which absorb in the wavelength range of 250nm to 650nm. In this way a daylight stable printing plate can be obtained.
  • Said IR-sensitive layer also includes 3,4,5-trimethoxybenzoic acid or a benzophenone, more preferably trihydroxybenzophenone.
  • the ratio between the total amount of 3,4,5-trimethoxybenzoic acid or benzophenone and polymer in the IR-sensitive layer preferably ranges from 2:98 to 40:60, more preferably from 5:95 to 30:70.
  • the total amount of said IR-sensitive layer preferably ranges from 0.05 to 10 g/m 2 , more preferably from 0.1 to 2 g/m 2 .
  • a difference in the capacity of being penetrated and/or solubilised by the alkaline developer containing SiO 2 and M 2 O in a molar ratio of 0.5 to 1.5 and a concentration of SiO 2 of 0.5 to 5% by weight is generated upon image-wise exposure for an alkaline developer according to the invention.
  • the lithographic base can be an anodised aluminum.
  • a particularly preferred lithographic base is an electrochemically grained and anodised aluminum support.
  • the anodised aluminum support may be treated to improve the hydrophilic properties of its surface.
  • the aluminum support may be silicated by treating its surface with sodium silicate solution at elevated temperature, e.g. 95°C.
  • a phosphate treatment may be applied which involves treating the aluminum oxide surface with a phosphate solution that may further contain an inorganic fluoride.
  • the aluminum oxide surface may be rinsed with a citric acid or citrate solution. This treatment may be carried out at room temperature or can be carried out at a slightly elevated temperature of about 30 to 50°C.
  • a further interesting treatment involves rinsing the aluminum oxide surface with a bicarbonate solution.
  • the aluminum oxide surface may be treated with polyvinylphosphonic acid, polyvinylmethylphosphonic acid, phosphoric acid esters of polyvinyl alcohol, polyvinylsulphonic acid, polyvinylbenzenesulphonic acid, sulphuric acid esters of polyvinyl alcohol, and acetals of polyvinyl alcohols formed by reaction with a sulphonated aliphatic aldehyde It is further evident that one or more of these post treatments may be carried out alone or in combination.
  • the lithographic base having a hydrophilic surface comprises a flexible support, such as e.g. paper or plastic film, provided with a cross-linked hydrophilic layer.
  • a particularly suitable cross-linked hydrophilic layer may be obtained from a hydrophilic binder cross-linked with a cross-linking agent such as formaldehyde, glyoxal, polyisocyanate or a hydrolysed tetraalkylorthosilicate. The latter is particularly preferred.
  • hydrophilic binder there may be used hydrophilic (co)polymers such as for example, homopolymers and copolymers of vinyl alcohol, acrylamide, methylol acrylamide, methylol methacrylamide, acrylic acid, methacrylic acid, hydroxyethyl acrylate, hydroxyethyl methacrylate or maleic anhydride/vinylmethylether copolymers.
  • the hydrophilicity of the (co)polymer or (co)polymer mixture used is preferably the same as or higher than the hydrophilicity of polyvinyl acetate hydrolyzed to at least an extent of 60 percent by weight, preferably 80 percent by weight.
  • the amount of crosslinking agent, in particular of tetraalkyl orthosilicate, is preferably at least 0.2 parts by weight per part by weight of hydrophilic binder, more preferably between 0.5 and 5 parts by weight, most preferably between 1.0 parts by weight and 3 parts by weight.
  • a cross-linked hydrophilic layer in a lithographic base used in accordance with the present embodiment preferably also contains substances that increase the mechanical strength and the porosity of the layer.
  • colloidal silica may be used.
  • the colloidal silica employed may be in the form of any commercially available water-dispersion of colloidal silica for example having an average particle size up to 40 nm, e.g. 20 nm.
  • inert particles of larger size than the colloidal silica can be added e.g. silica prepared according to Stöber as described in J. Colloid and Interface Sci., Vol.
  • alumina particles or particles having an average diameter of at least 100 nm which are particles of titanium dioxide or other heavy metal oxides.
  • the thickness of a cross-linked hydrophilic layer in a lithographic base in accordance with this embodiment may vary in the range of 0.2 to 25 ⁇ m and is preferably 1 to 10 ⁇ m.
  • plastic film e.g. substrated polyethylene terephthalate film, cellulose acetate film, polystyrene film, polycarbonate film etc.
  • the plastic film support may be opaque or transparent.
  • the amount of silica in the adhesion improving layer is between 200 mg per m 2 and 750 mg per m 2 .
  • the ratio of silica to hydrophilic binder is preferably more than 1 and the surface area of the colloidal silica is preferably at least 300 m 2 per gram, more preferably at least 500 m 2 per gram.
  • Image-wise exposure in connection with the present invention is an image-wise scanning exposure involving the use of a laser that operates in the infrared or near-infrared, i.e. wavelength range of 700-1500 nm. Most preferred are laser diodes emitting in the near-infrared. Exposure of the imaging element can be performed with lasers with a short as well as with lasers with a long pixel dwell time. Preferred are lasers with a pixel dwell time between 0.005 ⁇ s and 20 ⁇ s.
  • the heat mode imaging element is developed by rinsing it with an aqueous alkaline solution.
  • aqueous alkaline solutions used in the present invention are those that are used for developing conventional positive working presensitised printing plates and have preferably a pH between 11.5 and 14.
  • the imaged parts of the top layer that were rendered more penetrable for the aqueous alkaline solution upon exposure are cleaned-out whereby a positive working printing plate is obtained.
  • the composition of the developer used is also very important.
  • the developers and replenishers for developer used in the invention are preferably aqueous solutions mainly composed of alkali metal silicates and alkali metal hydroxides represented by MOH or their oxyde, represented by M 2 O, wherein said developer comprises SiO 2 and M 2 O in a molar ratio of 0.5 to 1.5 and a concentration of SiO 2 of 0.5 to 5% by weight.
  • alkali metal silicates preferably used are, for instance, sodium silicate, potassium silicate, lithium silicate and sodium metasilicate.
  • alkali metal hydroxides preferred are sodium hydroxide, potassium hydroxide and lithium hydroxide.
  • the developers used in the invention may simultaneously contain other alkaline agents.
  • other alkaline agents include such inorganic alkaline agents as ammonium hydroxide, sodium tertiary phosphate, sodium secondary phosphate, potassium tertiary phosphate, potassium secondary phosphate, ammonium tertiary phosphate, ammonium secondary phosphate, sodium bicarbonate, sodium carbonate, potassium carbonate and ammonium carbonate; and such organic alkaline agents as mono-, di- or triethanolamine, mono-, di- or trimethylamine, mono-, di- or triethylamine, mono- or di- isopropylamine, n-butylamine, mono-, di- or triisopropanolamine, ethyleneimine, ethylenediimine and tetramethylammonium hydroxide.
  • the concentration of SiO 2 in the developer and replenisher preferably ranges from 1 to 4 % by weight. Such limitation of the concentration of SiO 2 makes it possible to stably provide lithographic printing plates having good finishing qualities even when a large amount of plates according to the invention are processed for a long time period.
  • an aqueous solution of an alkali metal silicate having a molar ratio [SiO 2 ] / [M 2 O], which ranges from 1.0 to 1.5 and a concentration of SiO 2 of 1 to 4 % by weight is used as a developer.
  • a replenisher having alkali strength equal to or more than that of the developer is employed.
  • a molar ratio, [SiO 2 ] / [M 2 O] of the replenisher is equal to or smaller than that of the developer, or that a concentration of SiO 2 is high if the molar ratio of the developer is equal to that of the replenisher.
  • organic solvents having solubility in water at 20 °C of not more than 10 % by weight according to need.
  • organic solvents are such carboxilic acid esters as ethyl acetate, propyl acetate, butyl acetate, amyl acetate, benzyl acetate, ethylene glycol monobutyl acetate, butyl lactate and butyl levulinate; such ketones as ethyl butyl ketone, methyl isobutyl ketone and cyclohexanone; such alcohols as ethylene glycol monobutyl ether, ethylene glycol benzyl ether, ethylene glycol monophenyl ether, benzyl alcohol, methylphenylcarbinol, n-amyl alcohol and methylamyl alcohol; such alkyl-substituted aromatic hydrocarbons as xylene; and such halogenated hydrocarbons
  • organic solvents may be used alone or in combination. Particularly preferred is benzyl alcohol in the invention. These organic solvents are added to the developer or replenisher therefor generally in an amount of not more than 5 % by weight and preferably not more than 4 % by weight.
  • the developers and replenishers used in the present invention may simultaneously contain a surfactant for the purpose of improving developing properties thereof.
  • surfactants include salts of higher alcohol (C 8 ⁇ C 22 ) sulfuric acid esters such as sodium salt of lauryl alcohol sulfate, sodium salt of octyl alcohol sulfate, ammonium salt of lauryl alcohol sulfate, Teepol B-81 (trade mark, available from Shell Chemicals Co., Ltd.) and disodium alkyl sulfates; salts of aliphatic alcohol phosphoric acid esters such as sodium salt of cetyl alcohol phosphate; alkyl aryl sulfonic acid salts such as sodium salt of dodecylbenzene sulfonate, sodium salt of isopropylnaphthalene sulfonate,sodium salt of dinaphthalene disulfonate and sodium salt of metanitrobenzene sulfonate; sulfonic acid salts of alky
  • Examples of such compounds are neutral salts such as NaCl, KCl and KBr as disclosed in JP-A- 58- 75 152; chelating agents such as EDTA and NTA as disclosed in JP-A- 58- 190 952 (U.S-A- 4 469 776), complexes such as [Co(NH 3 ) 6 ]Cl 3 as disclosed in JP-A- 59- 121 336 (US-A- 4 606 995); ionizable compounds of elements of the group IIa, IIIa or IIIb of the Periodic Table such as those disclosed in JP-A- 55- 25 100; anionic or amphoteric surfactants such as sodium alkyl naphthalene sulfonate and N-tetradecyl-N,N-dihydroxythyl betaine as disclosed in JP-A- 50- 51 324; tetramethyldecyne diol as disclosed in US-A- 4 374 920; non-ionic sur
  • any known means of supplementing a replenisher for developer may be employed.
  • Examples of such methods preferably used are a method for intermittently or continuously supplementing a replenisher as a function of the amount of PS plates processed and time as disclosed in JP-A- 55- 115 039 (GB-A- 2 046 931), a method comprising disposing a sensor for detecting the degree of light-sensitive layer dissolved out in the middle portion of a developing zone and supplementing the replenisher in proportion to the detected degree of the light-sensitive layer dissolved out as disclosed in JP-A- 58- 95 349 (US-A- 4 537 496); a method comprising determining the impedance value of a developer and processing the detected impedance value by a computer to perform supplementation of a replenisher as disclosed in GB-A- 2 208 249 .
  • the printing plate of the present invention can also be used in the printing process as a seamless sleeve printing plate.
  • the printing plate is soldered in a cylindrical form by means of a laser.
  • This cylindrical printing plate which has as diameter the diameter of the print cylinder is slided on the print cylinder instead of applying in a classical way a classically formed printing plate. More details on sleeves are given in "Grafisch Nieuws" ed. Keesing, 15, 1995, page 4 to 6.
  • the obtained plate After the development of an image-wise exposed imaging element with an aqueous alkaline solution and drying, the obtained plate can be used as a printing plate as such. However, to improve durability it is still possible to bake said plate at a temperature between 200°C and 300°C for a period of 30 seconds to 5 minutes. Also the imaging element can be subjected to an overall post-exposure to UV-radiation to harden the image in order to increase the run lenght of the printing plate.
  • EXAMPLE 1 Positive working thermal plate based on an alkali-soluble binder.
  • a 0.20 mm thick aluminum foil was degreased by immersing the foil in an aqueous solution containing 5 g/l of sodium hydroxide at 50°C and rinsed with demineralized water.
  • the foil was then electrochemically grained using an alternating current in an aqueous solution containing 4 g/l of hydrochloric acid, 4 g/l of hydroboric acid and 5 g/l of aluminum ions at a temperature of 35°C and a current density of 1200 A/m 2 to form a surface topography with an average center-line roughness Ra of 0.5 mm.
  • the aluminum foil was then etched with an aqueous solution containing 300 g/l of sulfuric acid at 60°C for 180 seconds and rinsed with demineralized water at 25°C for 30 seconds.
  • the foil was subsequently subjected to anodic oxidation in an aqueous solution containing 200 g/l of sulfuric acid at a temperature of 45°C, a voltage of about 10 V and a current density of 150 A/m 2 for about 300 seconds to form an anodic oxidation film of 3.00 g/m 2 of Al 2 O 3 then washed with demineralized water, posttreated with a solution containing polyvinylphosphonic acid and then with a solution containing aluminum trichloride, subsequently rinsed with demineralized water at 20°C during 120 seconds and dried.
  • the IR-sensitive layer was coated from a 6.65 % wt solution in tetrahydrofuran/methoxypropanol 60/40 at a wet thickness of 21 ⁇ m.
  • the resulting IR-sensitive layer contained 8.9 % of Special Schwarz 250, 10.1 % of 3,4,5-trimethoxybenzoic acid, 76.9 % of Alnovol PN 430, 0.2% Solsperse 5000, 0.9 % Solsperse 28000, 0.9 % Nitrocellulose E950 and 2.1 % Fluorad FC431.
  • This material was imaged with a GERBER C42T TM internal drum platesetter at 12,000 rpm and 2540 dpi.
  • the power level of the laser in the image plane was 4 W.
  • the material was developed in an alkaline developing solution (90 % EP 26 developer commercially available from Agfa), dissolving very rapidly the IR-exposed areas, resulting in a positive working plate.
  • the plate was printed on a Heidelberg GTO46 printing machine with a conventional ink (K+E) and fountain solution (Rotamatic), resulting in good prints, i.e. no scumming in IR-exposed areas and good ink-uptake in the non-exposed areas.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Claims (8)

  1. Procédé pour préparer des clichés d'impression lithographique englobant les étapes consistant à :
    a) procurer un élément de formation d'image thermosensible constitué par une base lithographique comprenant une surface hydrophile et par une couche supérieure,
    dans lequel la couche supérieure est sensible au rayonnement infrarouge et comprend un polymère soluble dans une solution alcaline aqueuse et un pigment absorbant dans le domaine infrarouge du spectre ;
    et dans lequel la couche supérieur comprend en outre de l'acide 3,4,5-triméthoxybenzoique ou une benzophénone ;
    et dans lequel la couche supérieure est impénétrable pour un révélateur alcalin contenant des silicates de métaux alcalins représentés sous la forme de SiO2 et des oxydes de métaux alcalins représentés sous la forme de M2O dans un rapport molaire [SiO2]/[M2O] de 0,5 à 1,5 et dans lequel la concentration du SiO2 dans le révélateur se situant entre 0,5 et 5 % en poids ;
    b) exposer en forme d'image ledit élément de formation d'image thermosensible à un rayonnement infrarouge ;
    c) développer ledit élément de formation d'image thermosensible exposé en forme d'image avec ledit révélateur alcalin, de telle sorte que les zones exposées de la couche supérieure sont dissoutes et que les zones non exposées de la couche supérieure restent non dissoutes.
  2. Procédé pour préparer des clichés d'impression lithographique selon la revendication 1, dans lequel ledit polymère inclus dans la couche sensible au rayonnement infrarouge est un polymère hydrophobe.
  3. Procédé pour préparer des clichés d'impression lithographique selon la revendication 2, dans lequel ledit polymère est une novolaque ou un polymère contenant des unités d'hydroxystyrène.
  4. Procédé pour préparer des clichés d'impression lithographique selon l'une quelconque des revendications 1 à 3, dans lequel ladite couche sensible au rayonnement infrarouge est une couche désensibilisée vis-à-vis de lumière visible et vis-à-vis de la lumière ultraviolette.
  5. Procédé pour préparer des clichés d'impression lithographique selon l'une quelconque des revendications 1 à 4, dans lequel ladite couche sensible au rayonnement infrarouge est une couche thermodurcissable.
  6. Procédé pour préparer des clichés d'impression lithographique selon l'une quelconque des revendications 1 à 5, dans lequel ladite base lithographique possédant une surface hydrophile est un support en aluminium soumis à un grainage électrochimique et à une anodisation.
  7. Procédé pour préparer des clichés d'impression lithographique selon la revendication 6, dans lequel ledit support en aluminium est traité avec de l'acide polyvinylphosphonique.
  8. Procédé pour préparer des clichés d'impression lithographique selon l'une quelconque des revendications 1 à 7, dans lequel ledit pigment absorbant dans le domaine infrarouge du spectre est du noir de carbone.
EP19980203119 1997-10-08 1998-09-16 Procédé pour la fabrication d'une plaque d'impression positive à partir d'un élément pour l'enregistrement de l'image thermosensible Expired - Lifetime EP0908304B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19980203119 EP0908304B1 (fr) 1997-10-08 1998-09-16 Procédé pour la fabrication d'une plaque d'impression positive à partir d'un élément pour l'enregistrement de l'image thermosensible

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP97203132 1997-10-08
EP97203132 1997-10-08
EP19980203119 EP0908304B1 (fr) 1997-10-08 1998-09-16 Procédé pour la fabrication d'une plaque d'impression positive à partir d'un élément pour l'enregistrement de l'image thermosensible

Publications (2)

Publication Number Publication Date
EP0908304A1 EP0908304A1 (fr) 1999-04-14
EP0908304B1 true EP0908304B1 (fr) 2003-04-02

Family

ID=26146947

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19980203119 Expired - Lifetime EP0908304B1 (fr) 1997-10-08 1998-09-16 Procédé pour la fabrication d'une plaque d'impression positive à partir d'un élément pour l'enregistrement de l'image thermosensible

Country Status (1)

Country Link
EP (1) EP0908304B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7670983B2 (en) 2002-10-08 2010-03-02 Exxonmobil Research And Engineering Company Oxygenate treatment of dewaxing catalyst for greater yield of dewaxed product

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1023994B1 (fr) * 1999-01-26 2004-04-28 Agfa-Gevaert Un élément pour l'enregistrement de l'image thermosensible pour la fabrication de plaques lithographiques positives
US6472119B1 (en) 1999-01-26 2002-10-29 Agfa-Gavaert Heat mode sensitive imaging element for making positive working printing plates
DE19952126C2 (de) * 1999-10-29 2001-12-06 Bosch Gmbh Robert Infrarotabsorberschicht, damit hergestellter thermischer Sensor und Verfahren zu dessen Herstellung
US6649324B1 (en) 2000-08-14 2003-11-18 Kodak Polychrome Graphics Llc Aqueous developer for lithographic printing plates
US7297465B2 (en) 2003-12-18 2007-11-20 Agfa Graphics Nv Heat-sensitive lithographic printing plate precursor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1160221A (en) * 1965-05-17 1969-08-06 Agfa Gevaert Nv Photothermographic Materials and Processes
GB1154568A (en) * 1965-11-26 1969-06-11 Agfa Gevaert Nv Improvements relating to Thermographic Copying.
NL6608712A (fr) * 1966-06-23 1966-11-25
GB1245924A (en) * 1967-09-27 1971-09-15 Agfa Gevaert Improvements relating to thermo-recording
JP2639693B2 (ja) * 1988-06-17 1997-08-13 富士写真フイルム株式会社 感光性平版印刷版の現像処理方法
US5493971A (en) * 1994-04-13 1996-02-27 Presstek, Inc. Laser-imageable printing members and methods for wet lithographic printing
US5466557A (en) * 1994-08-29 1995-11-14 Eastman Kodak Company Radiation-sensitive composition containing a resole resin, a novolac resin, a latent bronsted acid, an infrared absorber and terephthalaldehyde and use thereof in lithographic printing plates
EP0732628A1 (fr) * 1995-03-07 1996-09-18 Minnesota Mining And Manufacturing Company Solution alkaline aqueuse pour le développement des plaques offset
JP3779444B2 (ja) * 1997-07-28 2006-05-31 富士写真フイルム株式会社 赤外線レーザ用ポジ型感光性組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7670983B2 (en) 2002-10-08 2010-03-02 Exxonmobil Research And Engineering Company Oxygenate treatment of dewaxing catalyst for greater yield of dewaxed product

Also Published As

Publication number Publication date
EP0908304A1 (fr) 1999-04-14

Similar Documents

Publication Publication Date Title
EP0950517B1 (fr) Matériau d'enregistrement thermosensible pour la fabrication de plaques d'impression positives
US6153353A (en) Method for making positive working printing plates from a heat mode sensitive imaging element
EP0950518B1 (fr) Matériau d'enregistrement thermosensible pour la fabrication de plaques d'impression positives
US6004728A (en) Method for making positive working printing plates from a heat mode sensitive image element
US6083663A (en) Method for making positive working printing plates from a heat mode sensitive image element
EP0908307B1 (fr) Procédé pour la fabrication d'une plaque d'impression positive à partir d'un élément pour l'enregistrement de l'image thermosensible
EP0908305B1 (fr) Procédé pour la fabrication d'une plaque d'impression positive à partir d'un élément pour l'enregistrement de l'image thermosensible
EP0940266B1 (fr) Elément thermosensible pour l'enregistrement de l'image pour la fabrication de plaques lithographiques positives
EP0908779B1 (fr) Méthode pour la production de plaques d'impression positives à partir d'un élément thermosensible
US6060218A (en) Method for making positive working printing plates from a heat mode sensitive image element
EP1023994B1 (fr) Un élément pour l'enregistrement de l'image thermosensible pour la fabrication de plaques lithographiques positives
US6235451B1 (en) Method for making positive working printing plates from a heat mode sensitive image element
EP0943451B1 (fr) Elément pour l'enregistrement de l'image thermosensible et le procédé pour la fabrication d'une plaque d'impression positive à partir de cet élément
US6251563B1 (en) Method for making positive working printing plates from a heat mode sensitive image element
US6340815B1 (en) Heat mode sensitive imaging element for making positive working printing plates
US6192799B1 (en) Heat mode sensitive imaging element for making positive working printing plates
US6472119B1 (en) Heat mode sensitive imaging element for making positive working printing plates
EP0950514B1 (fr) Matériau d'enregistrement thermosensible pour la fabrication de plaques d'impression positives
US6342336B2 (en) Heat mode sensitive imaging element for making positive working printing plates
EP0950513B1 (fr) Matériau d'enregistrement thermosensible pour la fabrication de plaques d'impression positives
US6569594B2 (en) Heat mode sensitive imaging element for making positive working printing plates
EP0908306B1 (fr) Procédé pour la fabrication d'une plaque d'impression positive à partir d'un élément pour l'enregistrement de l'image thermosensible
EP0908304B1 (fr) Procédé pour la fabrication d'une plaque d'impression positive à partir d'un élément pour l'enregistrement de l'image thermosensible
US6458510B1 (en) Method for making positive working printing plates
EP1025991B1 (fr) Procédé de fabrication de plaques d'impression travaillant en positif

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19991014

AKX Designation fees paid

Free format text: BE DE FR GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AGFA-GEVAERT

17Q First examination report despatched

Effective date: 20020514

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR GB

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030402

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69812827

Country of ref document: DE

Date of ref document: 20030508

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: D3

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090821

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090824

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090825

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100916

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69812827

Country of ref document: DE

Effective date: 20110401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930