EP0900407A1 - Optical regeneration for optical fibre transmission systems with soliton signals - Google Patents

Optical regeneration for optical fibre transmission systems with soliton signals

Info

Publication number
EP0900407A1
EP0900407A1 EP98914923A EP98914923A EP0900407A1 EP 0900407 A1 EP0900407 A1 EP 0900407A1 EP 98914923 A EP98914923 A EP 98914923A EP 98914923 A EP98914923 A EP 98914923A EP 0900407 A1 EP0900407 A1 EP 0900407A1
Authority
EP
European Patent Office
Prior art keywords
signal
modulator
laser
regenerated
soliton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98914923A
Other languages
German (de)
French (fr)
Inventor
Sébastien Bigo
Emmanuel Desurvire
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel CIT SA
Alcatel Lucent SAS
Original Assignee
Alcatel CIT SA
Alcatel SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel CIT SA, Alcatel SA filed Critical Alcatel CIT SA
Publication of EP0900407A1 publication Critical patent/EP0900407A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/25077Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion using soliton propagation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3515All-optical modulation, gating, switching, e.g. control of a light beam by another light beam
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3515All-optical modulation, gating, switching, e.g. control of a light beam by another light beam
    • G02F1/3517All-optical modulation, gating, switching, e.g. control of a light beam by another light beam using an interferometer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/027Speed or phase control by the received code signals, the signals containing no special synchronisation information extracting the synchronising or clock signal from the received signal spectrum, e.g. by using a resonant or bandpass circuit
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3515All-optical modulation, gating, switching, e.g. control of a light beam by another light beam
    • G02F1/3517All-optical modulation, gating, switching, e.g. control of a light beam by another light beam using an interferometer
    • G02F1/3519All-optical modulation, gating, switching, e.g. control of a light beam by another light beam using an interferometer of Sagnac type, i.e. nonlinear optical loop mirror [NOLM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/08Generation of pulses with special temporal shape or frequency spectrum
    • H01S2301/085Generation of pulses with special temporal shape or frequency spectrum solitons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06725Fibre characterized by a specific dispersion, e.g. for pulse shaping in soliton lasers or for dispersion compensating [DCF]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06791Fibre ring lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/083Ring lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1106Mode locking
    • H01S3/1112Passive mode locking

Definitions

  • the subject of the present invention is an optical regenerator for a soliton pulse transmission system, and more particularly an optical regenerator in which the clock signal is obtained by mode locking of a cavity laser.
  • the invention also relates to a method for the optical regeneration of soliton pulses. Finally, it relates to a transmission system comprising such a regenerator.
  • soliton or soliton pulses are RZ pulses of temporal width (FWHM) small with respect to bit time, which have a determined relationship between power, spectral width and temporal width, and which generally propagate in the abnormally dispersed part of a optical fiber.
  • FWHM temporal width
  • the evolution of the envelope of such a soliton pulse in a single-mode fiber can be modeled by the nonlinear Schrodinger equation; propagation is based on a balance between the dispersion of the fiber and its non-linearity.
  • Such modulation involves clock recovery from the soliton signal received.
  • This clock recovery consists on the one hand of recovering a signal at a given frequency, and on the other hand of synchronizing the phase of this signal with the phase of the solitons received.
  • Various solutions have already been proposed to ensure this clock recovery.
  • This solution intrinsically limits the throughput of the solitons link, due to the upper limit of the bandwidth of the semiconductor devices used. This solution is also complicated and expensive for high bit rates.
  • Another known solution consists in recovering the clock by blocking the modes of a ring fiber laser, and in applying the clock thus recovered to a synchronous modulator.
  • An article by W. A. Pender et al., Electronics Letters, vol. 31 no. 18 (31.08.95) describes a device for recovering a clock by blocking the modes of a ring fiber laser.
  • This article proposes to send half of the incident signal in a fiber laser doped with erbium in a ring, so as to ensure a mode lock of the laser at the frequency of the incident signal.
  • the clock signal is extracted from the ring laser by a coupler, and is used in a Kerr gate acting as a modulator.
  • this article proposes to use a system of mechanical elongation of the fiber at the output of the ring laser.
  • the laser cavity undergoes a mode lock at the frequency of the solitons; a coupler extracts a clock signal from the cavity.
  • DM Patrick et al., Electronics Letters, vol. 30 No. 2 describes a clock recovery circuit of the same kind, in which the incident signal modulates the light of an erbium-doped fiber ring laser in a traveling wave semiconductor amplifier (TW- SCA).
  • TW- SCA traveling wave semiconductor amplifier
  • the clock signal is extracted from the cavity by a coupler.
  • the present invention provides an original and simple solution to the problem of clock recovery and synchronous modulation of solitons. It makes it possible to avoid the problem of synchronization of the phases of the clock and of the signal to be modulated, which arises in the prior art: in fact, the invention combines in a single device the synchronous modulator and the clock recovery . The invention also has the advantage of being very compact.
  • the invention proposes a regenerator for a soliton pulse transmission system, comprising a cavity laser in which a modulator is inserted, means for coupling the input signal to be regenerated to the input of the modulator so as to ensure blocking. mode of the laser, and means for coupling the regenerated signal at the output of the modulator.
  • the laser is advantageously a Fabry Perot cavity laser or a ring fiber laser.
  • Dispersive means can be provided in the laser, such as a section of dispersive fiber.
  • the modulator can be a phase modulator or an intensity modulator. It can for example include a non-linear loop mirror, or a semiconductor amplifier, preferably with traveling waves.
  • the modulator may include a section of dispersive fiber providing modulation by the Kerr effect.
  • the regenerator comprises an amplifier of the input signal to be regenerated, upstream of the modulator.
  • the regenerator has a filter filtering the regenerated signal.
  • the input mirror of the Fabry Perot cavity is preferably selective in wavelength, so as to separate the regenerated signal from the laser signal.
  • the invention also relates to an optical transmission system, comprising at least one such regenerator.
  • a method for regenerating a soliton signal comprising: - the creation of a clock by mode blocking of a cavity laser in which a modulator is inserted, by modulating the laser signal by the solitons signal to be regenerated;
  • the soliton signal can perform phase modulation of the laser signal in the modulator and / or intensity modulation of the laser signal.
  • the clock can perform in the modulator a phase modulation of the solitons signal, and / or an intensity modulation of the solitons signal.
  • the method comprises spreading the clock signal in the cavity laser.
  • FIG. 1 a schematic representation of the principle of a regenerator according to the invention
  • FIG. 3 a schematic representation of a regenerator according to a first embodiment of the invention
  • FIG. 4 a schematic representation of a regenerator according to a second embodiment of the invention
  • FIG. 5 a schematic representation of a regenerator according to a third embodiment of the invention
  • FIG. 6 a schematic representation of a regenerator according to a fourth embodiment of the invention.
  • FIG. 7 a schematic representation of a regenerator according to a fifth embodiment of the invention.
  • the invention proposes to associate in the same circuit the clock recovery function, by blocking modes of a laser, and the modulation function. To this end, it is based on the surprising observation that the modulator used to block the mode of the laser by the soliton signal to be regenerated at the same time modulates this soliton signal by the light of the laser.
  • the invention therefore proposes to provide, not means for extracting a clock signal constituted by the light of the laser, but means for extract, at the output of the modulator, the regenerated signal.
  • the soliton signal to be regenerated is coupled in the modulator inserted in the cavity laser, so as to ensure active blocking of the laser modes, at the rate of the bits of the received signal.
  • This makes it possible to generate in the ring laser a clock signal at the bit frequency of the soliton signal to be regenerated.
  • this clock signal circulates in the cavity of the laser, and therefore in the modulator which is inserted there, and interacts in the modulator with the incident soliton signal to modulate it at the rate of the clock. It is obvious that the synchronization of the clock signal and of the soliton signal to be modulated is ensured automatically by the very structure of the regenerator of the invention, without it being necessary to provide mechanisms such as delay lines or the like.
  • the length of the cavity is adjusted in a manner known per se to ensure that the free spectral interval of the cavity is an integer sub-multiple of the bit frequency of the soliton signal.
  • the invention therefore proposes to extract from the modulator the soliton signal used for blocking laser modes, which constitutes a regenerated signal.
  • FIG. 1 shows a schematic representation of the principle of a regenerator according to the invention, operating according to this principle.
  • the regenerator of FIG. 1 comprises a cavity laser, in this case a ring fiber laser, comprising a fiber 1, forming a ring; on the fiber are arranged an insulator 2, a filter 3, and means 4 for optical signal amplification.
  • the arrow of the modulator shows the direction of light circulation in the cavity.
  • a modulator 5 which receives as input not only the signal from the fiber 1, on an input 6, but also, on an input 7, the soliton signal to be regenerated.
  • the modulator is connected to the fiber 1, on an output 8, so as to allow an active mode blocking of the laser by the soliton signal.
  • the modulator also supplies on an output 9 the regenerated soliton signal.
  • Dispersive means 10 can be provided on the fiber 1, which make it possible to control the width of the pulses of the clock signal in the fiber, and in particular to widen the clock pulses. This improves the correction of the time jitter of the soliton signal by modulation by the clock signal.
  • dispersion means a fiber with a high dispersion coefficient, or a Bragg grating.
  • the modulator 5 of FIG. 1 can be a phase modulator, an intensity modulator, or a combined phase and intensity modulator, as explained in the various embodiments of FIGS. 3 to 6.
  • FIG. 2 shows, at the bottom, the shape of the soliton signals received on the input 7 of the modulator 5, and at the top the shape of the corresponding clock signal obtained when the modulator is a semiconductor amplifier as in the embodiment of Figure 5; this signal flows through the cavity laser. It is noted that the active mode blocking of the laser makes it possible to recover a quality clock signal.
  • FIG. 3 shows a schematic representation of the modulator of a regenerator according to a first embodiment of the invention.
  • FIG. 3 does not show the fiber ring 1, the insulator 2, the filter 3, the means 4 for optical amplification of the signal, nor the dispersive means 10.
  • the modulator 5 is formed of a nonlinear loop mirror (NOLM). This is formed from a length of highly dispersive fiber 20, for example a length of the order of 10 km.
  • the two ends of the fiber 20 are coupled through a 2/2 coupler 21, and are connected to the fiber 1 so as to form the inlet 6 and the outlet 8 of the modulator.
  • On the fiber loop 20 are provided two 2/2 couplers 22 and 23, arranged symmetrically with respect to the coupler 21, and in opposite directions.
  • NOLM nonlinear loop mirror
  • the coupler 22 couples in the NOLM the soliton signal to be regenerated, and constitutes the input 7 of the modulator.
  • the coupler 23 extracts from the modulator the regenerated soliton signal and the clock. Downstream of the coupler 23 is provided a low pass filter 24 which blocks the clock. The output of the filter 24 constitutes the output 9 of the modulator 5.
  • the soliton signal induces a mode blockage of the laser, by intensity and phase modulation on the signal circulating in the fiber of the NOLM.
  • the signal from fiber 1 is coupled in the NOLM by coupler 21, where it is separated into two signals propagating in opposite directions, as indicated by arrows 26 and 27. It is recombined at coupler 21, and is reflected at output 6.
  • the signal propagating in the direction of arrow 26 is intensity-modulated by the incident soliton signal introduced into the NOLM by the coupler 22.
  • the regenerated soliton signal and the signal are obtained. clock.
  • the filter 24 cuts the clock signal.
  • the clock signal provides modulation synchronous phase of the incident soliton signal, and thus ensures the correction of its temporal jitter.
  • an amplifier 25 can also be provided, upstream of the coupler 22, for the incident soliton signals.
  • the arrangement of FIG. 3 is particularly advantageous, in that the mode biocage is ensured by an intensity modulation, while the modulation of the soliton signal by the clock is ensured by a phase modulation. It is therefore possible to independently adjust the depth of modulation of the laser signal by the soliton signal, and the depth of modulation of the soliton signal by the laser signal.
  • the adjustment of the phase modulation depth can be carried out by varying the power of the clock signal in the cavity; the intensity modulation depth can be adjusted by adjusting the coupling rate of the input coupler, for a given power of the clock signal in the cavity.
  • the NOLM can be used in its conventional mirror configuration, with an asymmetrical coupler. You can also set the NOLM in "transmitter" mode, for example by using polarization controllers in the cavity, or by using a birefringent blade with correctly aligned axes. This makes the modulator non-blocking for the clock in the presence of zeros, so as to avoid any loss of the clock during the zeros of the soliton signal. In this case you can use a balanced input coupler. The power efficiency is then maximum.
  • FIG. 4 shows a schematic representation of a regenerator according to a second embodiment of the invention; as in FIG. 3, FIG. 4 shows only the modulator 5.
  • the modulation in the embodiment of FIG. 4, is a phase modulation by Kerr effect in a section of fiber with high dispersion.
  • the modulator 5 comprises a section of fiber 30 with high dispersion, a length which can be of the order of 10 km, and which is connected to the fiber 1 to form the ring of the laser, so forming input 6 and output 8 of the modulator.
  • one end of the fiber 30, a coupler 31 couples the soliton signal to be regenerated in the fiber; at the other end of the fiber 30, a coupler 32 couples the soliton signal and the clock to a filter 33.
  • the filter 33 blocks the clock signal, and the output of the filter 33 constitutes the output 9 of the modulator 5. Upstream of the coupler 31, one can provide, as in the case of FIG. 3, an amplifier whose input constitutes the input 7 of the modulator.
  • the assembly of Figure 4 operates as follows.
  • the soliton signal induces a mode blockage of the laser, by phase modulation by Kerr effect in the fiber 30.
  • the clock signal provides synchronous phase modulation of the incident soliton signal.
  • the filter 33 blocks the clock signal.
  • the modulation of the soliton signal like the blocking of mode are carried out by the same modulator.
  • the modulation depth is chosen to be large enough to guarantee that the modes of the ring laser are blocked; it is however maintained at a level such that the modulation by the light of the laser ensures correct regeneration, and does not degrade the solitons.
  • FIG. 5 shows a schematic representation of a regenerator according to a third embodiment of the invention; as in FIGS. 3 and 4, FIG. 5 shows only the modulator 5.
  • the modulation in the embodiment of FIG. 5, is an intensity and phase modulation in a semi-amplifier conductor, for example a traveling wave semiconductor amplifier (TW-SCA).
  • TW-SCA traveling wave semiconductor amplifier
  • the modulator of FIG. 5 therefore comprises a traveling wave semiconductor amplifier 40, the input and output of which are connected to the ends of the fiber 1.
  • a coupler 41 couples in the fiber 1 the incident soliton signal.
  • a coupler 42 supplies the modulated soliton signal and the clock signal.
  • the coupler 42 is connected to a filter 43 which blocks the clock signal.
  • the output of the filter 43 constitutes the output 9 of the modulator 5.
  • Upstream of the coupler 41 one can provide, as in the case of FIGS. 3 and 4, an amplifier 44 whose input constitutes the input 7 of the modulator.
  • the assembly of Figure 5 works as follows.
  • the soliton signal induces a mode lock of the laser, by phase and intensity modulation in the TW-SCA 40.
  • the clock signal provides synchronous phase and intensity modulation of the incident soliton signal.
  • the filter 43 blocks the clock signal. The modulation depth is adjusted as shown in Figure 4.
  • Figure 6 shows a schematic representation of a regenerator according to a fourth embodiment of the invention; as in the previous figures, only the modulator 5 is shown in FIG. 6.
  • the device of FIG. 6 corresponds to that of FIG. 3, and the same reference numbers are used.
  • the device of FIG. 6 further comprises in the NOLM a traveling wave semiconductor amplifier 50, between the couplers 22 and 23. This device makes it possible to limit the size of the NOLM, by replacing the propagation fiber by a semiconductor modulator.
  • the operation of the device in FIG. 6 is similar to that of the device in FIG. 3. In particular, the respective modulation depths of the clock and of the soliton signal can be independently adjusted.
  • Figure 7 shows a schematic representation of a regenerator according to a fifth embodiment of the invention.
  • a regenerator according to a fifth embodiment of the invention.
  • a modulator is inserted into the cavity, for example a semiconductor amplifier, such as a traveling wave semiconductor amplifier.
  • the device of FIG. 7 therefore comprises a circulator 55 with three terminals, which receives on an input on a first input terminal 56 the soliton signal to be regenerated.
  • This signal is output at a second output and input terminal 57 and is transmitted to a Fabry Perot cavity 58 formed by two mirrors 59, 60; the first mirror 59 is a selective wavelength mirror.
  • a modulator 61 typically a semiconductor amplifier, preferably with traveling waves.
  • the third terminal 62 of the circulator 55 is an output terminal which supplies the signal received as input on the second terminal 57.
  • the operation of the device of Figure 7 is as follows.
  • the soliton signal to be regenerated is received on the first terminal 56 of the selector 55, and is transmitted through the second terminal 57 to the cavity 58.
  • the soliton signal enters the cavity 58, and modulates in phase and in intensity in the modulator 61 laser light, so as to ensure a mode lock.
  • the clock signal modulates in the modulator 61 the soliton signal.
  • the wavelength selective mirror 59 blocks the clock signal and lets the modulated soliton signal pass. This signal then arrives at the input on the second terminal 57 of the circulator, and is transmitted at the output to the third terminal 58.
  • the embodiment of Figure 7 has the advantage of extreme compactness.
  • an amplifier can be provided upstream of the circulator 55.
  • the present invention is not limited to the examples and embodiments described and shown, but it is susceptible of numerous variants accessible to those skilled in the art. For example, it is clear that the assembly of FIGS. 3 and 4 is symmetrical, and that the position of the transmission fiber and the laser fiber could be reversed at the coupler 31 and 32, or 41 and 42.

Abstract

The invention concerns a regenerator for transmission systems with solitons pulses, comprising a cavity laser, for instance a ring fibre laser, wherein is inserted a modulator (5), means for coupling the input signal to be regenerated in the modulator input (7), to ensure laser mode-locking, and means for coupling the regenerated signal in the modulator output (9). The soliton signal to be regenerated ensures the cavity laser locking-mode; moreover, the signal circulating in the cavity ensures a soliton signal modulation, which is thereby regenerated. Phase or intensity modulations, or both, can be used. The invention is characterised in that a ring cavity laser fibre, or a Fabry Perot cavity laser is used. The dispersion fibre non-linear loop mirror can be used as modulator, or an amplifier with semiconductor.

Description

REGENERATION OPTIQUE POUR DES SYSTEMES DE TRANSMISSION A FIBRE OPTIQUE A SIGNAUX SOLITONS OPTICAL REGENERATION FOR SOLITON SIGNAL FIBER OPTIC TRANSMISSION SYSTEMS
La présente invention a pour objet un régénérateur optique pour un système de transmission à impulsions solitons, et plus particulièrement un régénérateur optique dans lequel le signal d'horloge est obtenu par verrouillage de mode d'un laser à cavité.The subject of the present invention is an optical regenerator for a soliton pulse transmission system, and more particularly an optical regenerator in which the clock signal is obtained by mode locking of a cavity laser.
L'invention concerne aussi un procédé de régénération optique d'impulsions solitons. Enfin, elle concerne un système de transmission comprenant un tel régénérateur.The invention also relates to a method for the optical regeneration of soliton pulses. Finally, it relates to a transmission system comprising such a regenerator.
La transmission d'impulsions solitons ou solitons est un phénomène connu. Ces impulsions sont des impulsions RZ de largeur temporelle (FWHM) faible par rapport au temps bit, qui présentent une relation déterminée entre la puissance, la largeur spectrale et la largeur temporelle, et qui se propagent généralement dans la partie à dispersion anormale d'une fibre optique. L'évolution de l'enveloppe d'une telle impulsion soliton dans une fibre monomode peut être modélisée par l'équation de Schrôdinger non linéaire; la propagation repose sur un équilibre entre la dispersion de la fibre et sa non-linéarité.The transmission of soliton or soliton pulses is a known phenomenon. These pulses are RZ pulses of temporal width (FWHM) small with respect to bit time, which have a determined relationship between power, spectral width and temporal width, and which generally propagate in the abnormally dispersed part of a optical fiber. The evolution of the envelope of such a soliton pulse in a single-mode fiber can be modeled by the nonlinear Schrodinger equation; propagation is based on a balance between the dispersion of the fiber and its non-linearity.
Divers effets limitent la transmission de telles impulsions, comme la gigue induite par l'interaction des solitons avec le bruit présent dans le système de transmission, décrite par exemple dans l'article de J. P. Gordon et H. A. Haus, Optical Letters, vol. 11 n° 10 pages 665-667. Cet effet, appelé effet Gordon- Haus, impose une limite théorique à la qualité ou au débit des transmissions par solitons. Pour arriver à dépasser cette limite, il est possible d'utiliser une modulation synchrone des signaux solitons, par un signal d'horloge ou horloge, pour corriger leur gigue temporelle, comme expliqué par exemple dans un article de H. Kubota, IEEE Journal of Quantum Electronics, vol. 29 n° 7 (1994), p. 2189 et s., pour ce qui est de la modulation d'intensité, et dans un article de N. J. Smith et N. J. Doran, Optical Fiber Technology, 1 , p. 218 (1995), pour ce qui est de la modulation de phase.Various effects limit the transmission of such pulses, such as the jitter induced by the interaction of solitons with the noise present in the transmission system, described for example in the article by J. P. Gordon and H. A. Haus, Optical Letters, vol. 11 n ° 10 pages 665-667. This effect, called the Gordon-Haus effect, imposes a theoretical limit on the quality or bit rate of transmissions by solitons. In order to exceed this limit, it is possible to use synchronous modulation of the soliton signals, by a clock or clock signal, to correct their temporal jitter, as explained for example in an article by H. Kubota, IEEE Journal of Quantum Electronics, vol. 29 no 7 (1994), p. 2189 et s., With regard to intensity modulation, and in an article by N. J. Smith and N. J. Doran, Optical Fiber Technology, 1, p. 218 (1995), with regard to phase modulation.
Un telle modulation implique une récupération d'horloge, à partir du signal solitons reçu. Cette récupération d'horloge consiste d'une part à récupérer un signal à une fréquence donnée, et d'autre part à synchroniser la phase de ce signal avec la phase des solitons reçu. Diverses solutions ont déjà été proposées pour assurer cette récupération d'horloge. On peut notamment effectuer une conversion optoélectronique, une récupération de phase par des moyens électronique, par exemple à l'aide d'une boucle à verrouillage de phase, puis effectuer une reconversion électronique-optique du signal obtenu pour moduler les solitons. Cette solution limite intrinsèquement le débit de la liaison solitons, du fait de la limite supérieure de la bande passante des dispositifs semi- conducteurs utilisés. Cette solution est en outre compliquée et coûteuse pour des débits élevés.Such modulation involves clock recovery from the soliton signal received. This clock recovery consists on the one hand of recovering a signal at a given frequency, and on the other hand of synchronizing the phase of this signal with the phase of the solitons received. Various solutions have already been proposed to ensure this clock recovery. One can in particular carry out an optoelectronic conversion, a phase recovery by electronic means, for example using a phase locked loop, then carry out an electronic-optical reconversion of the signal obtained to modulate the solitons. This solution intrinsically limits the throughput of the solitons link, due to the upper limit of the bandwidth of the semiconductor devices used. This solution is also complicated and expensive for high bit rates.
Une autre solution connue consiste à récupérer l'horloge par blocage de modes d'un laser à fibre en anneau, et d'appliquer l'horloge ainsi récupérée à un modulateur synchrone. Un article de W. A. Pender et al., Electronics Letters, vol. 31 n° 18 (31.08.95) décrit un dispositif de récupération d'horloge par blocage de modes d'un laser à fibres en anneau. Cet article propose d'envoyer la moitié du signal incident dans un laser à fibre dopée à l'erbium en anneau, de sorte à assurer un verrouillage de mode du laser à la fréquence du signal incident. Le signal d'horloge est extrait du laser en anneau par un coupleur, et est utilisé dans une porte Kerr faisant fonction de modulateur. Pour assurer la synchronisation des phases de l'horloge et du signal à régénérer, cet article propose d'utiliser un système d'élongation mécanique de la fibre en sortie du laser en anneau.Another known solution consists in recovering the clock by blocking the modes of a ring fiber laser, and in applying the clock thus recovered to a synchronous modulator. An article by W. A. Pender et al., Electronics Letters, vol. 31 no. 18 (31.08.95) describes a device for recovering a clock by blocking the modes of a ring fiber laser. This article proposes to send half of the incident signal in a fiber laser doped with erbium in a ring, so as to ensure a mode lock of the laser at the frequency of the incident signal. The clock signal is extracted from the ring laser by a coupler, and is used in a Kerr gate acting as a modulator. To ensure the synchronization of the phases of the clock and of the signal to be regenerated, this article proposes to use a system of mechanical elongation of the fiber at the output of the ring laser.
T. Ono et al., OFC '94 Technical Digest, ThM3, p. 233 et s. propose un circuit de récupération d'horloge utilisant une diode laser Fabry-Perot, qui est verrouillée en mode latéral par le signal incident pour fournir une horloge. Ce dispositif implique une fréquence bit correspondant exactement à la fréquence du mode latéral du laser.T. Ono et al., OFC '94 Technical Digest, ThM3, p. 233 and s. proposes a clock recovery circuit using a Fabry-Perot laser diode, which is locked in lateral mode by the incident signal to supply a clock. This device involves a bit frequency corresponding exactly to the frequency of the lateral mode of the laser.
K. Smith et al., Electronics Letters, vol. 28 n° 19, p. 1814 et s., propose un autre circuit de récupération d'horloge, dans lequel la fibre de transmission et un laser à cavité partagent un modulateur optique non-linéaire, de sorte que le signal de la fibre de transmission module la lumière de la cavité laser, par transmodulation de phase (XPM ou "cross phase modulation"). La cavité laser subit un verrouillage de mode à la fréquence des solitons; un coupleur extrait de la cavité un signal d'horloge.K. Smith et al., Electronics Letters, vol. 28 n ° 19, p. 1814 and following, proposes another clock recovery circuit, in which the transmission fiber and a cavity laser share a non-linear optical modulator, so that the signal of the transmission fiber modulates the light of the cavity laser, by phase transmodulation (XPM or "cross phase modulation"). The laser cavity undergoes a mode lock at the frequency of the solitons; a coupler extracts a clock signal from the cavity.
D. M. Patrick et al., Electronics Letters, vol. 30 n° 2 décrit un circuit de récupération d'horloge du même genre, dans lequel le signal incident module la lumière d'un laser en anneau à fibre dopée à l'erbium dans un amplificateur à semi-conducteur à ondes progressives (TW-SCA). Le signal d'horloge est extrait de la cavité par un coupleur. Ces trois articles ne mentionnent pas de méthode particulière pour assurer la modulation du signal par l'horloge récupérée.DM Patrick et al., Electronics Letters, vol. 30 No. 2 describes a clock recovery circuit of the same kind, in which the incident signal modulates the light of an erbium-doped fiber ring laser in a traveling wave semiconductor amplifier (TW- SCA). The clock signal is extracted from the cavity by a coupler. These three articles do not mention any particular method for ensuring the modulation of the signal by the recovered clock.
Le problème de ces différents circuits tout-optiques de récupération d'horloge est que la synchronisation des phases de l'horloge et des solitons en ligne est difficile à réaliser en tout-optique autrement que par des lignes à retard mécaniques, comme dans le montage de W . A. Pender et al.The problem with these different all-optical clock recovery circuits is that synchronization of the phases of the clock and of the solitons in line is difficult to achieve in all-optics other than by mechanical delay lines, as in the assembly. from W. A. Pender et al.
La présente invention propose une solution originale et simple au problème de la récupération d'horloge et de la modulation synchrone des solitons. Elle permet d'éviter le problème de synchronisation des phases de l'horloge et du signal à moduler, qui se pose dans l'art antérieur: de fait, l'invention combine en un dispositif unique le modulateur synchrone et la récupération d'horloge. L'invention présente en outre l'avantage d'une grande compacité.The present invention provides an original and simple solution to the problem of clock recovery and synchronous modulation of solitons. It makes it possible to avoid the problem of synchronization of the phases of the clock and of the signal to be modulated, which arises in the prior art: in fact, the invention combines in a single device the synchronous modulator and the clock recovery . The invention also has the advantage of being very compact.
Plus précisément, l'invention propose un régénérateur pour système de transmissions à impulsions solitons, comprenant un laser à cavité dans lequel est inséré un modulateur, des moyens pour coupler le signal d'entrée à régénérer en entrée du modulateur de sorte à assurer un blocage de mode du laser, et des moyens pour coupler en sortie du modulateur le signal régénéré.More specifically, the invention proposes a regenerator for a soliton pulse transmission system, comprising a cavity laser in which a modulator is inserted, means for coupling the input signal to be regenerated to the input of the modulator so as to ensure blocking. mode of the laser, and means for coupling the regenerated signal at the output of the modulator.
Le laser est avantageusement un laser à cavité Fabry Perot ou un laser à fibre en anneau. On peut prévoir dans le laser des moyens dispersifs, tels un tronçon de fibre dispersive.The laser is advantageously a Fabry Perot cavity laser or a ring fiber laser. Dispersive means can be provided in the laser, such as a section of dispersive fiber.
Le modulateur peut être un modulateur de phase ou un modulateur d'intensité. Il peut par exemple comprendre un miroir non linéaire en boucle, ou un amplificateur à semi-conducteur, de préférence à ondes progressives.The modulator can be a phase modulator or an intensity modulator. It can for example include a non-linear loop mirror, or a semiconductor amplifier, preferably with traveling waves.
Le modulateur peut comprendre un tronçon de fibre dispersive assurant une modulation par effet Kerr.The modulator may include a section of dispersive fiber providing modulation by the Kerr effect.
Dans un mode de réalisation, le régénérateur comprend un amplificateur du signal d'entrée à régénérer, en amont du modulateur.In one embodiment, the regenerator comprises an amplifier of the input signal to be regenerated, upstream of the modulator.
Avantageusement, le régénérateur présente un filtre filtrant le signal régénéré. Dans le cas d'un laser à cavité, le miroir d'entrée de la cavité Fabry Perot est de préférence sélectif en longueur d'onde, de sorte à séparer le signal régénéré du signal laser.Advantageously, the regenerator has a filter filtering the regenerated signal. In the case of a cavity laser, the input mirror of the Fabry Perot cavity is preferably selective in wavelength, so as to separate the regenerated signal from the laser signal.
L'invention a aussi pour objet un système optique de transmission, comprenant au moins un tel régénérateur. Elle concerne enfin un procédé de régénération d'un signal solitons, comprenant: - la création d'une horioge par blocage de mode d'un laser à cavité dans lequel est inséré un modulateur, en modulant le signal laser par le signal solitons à régénérer;The invention also relates to an optical transmission system, comprising at least one such regenerator. Finally, it relates to a method for regenerating a soliton signal, comprising: - the creation of a clock by mode blocking of a cavity laser in which a modulator is inserted, by modulating the laser signal by the solitons signal to be regenerated;
- l'extraction en sortie de ce modulateur du signal solitons régénéré par modulation par l'horloge.- the extraction at the output of this modulator of the solitons signal regenerated by clock modulation.
Le signal solitons peut effectuer dans le modulateur une modulation de phase du signal laser, et/ou une modulation d'intensité du signal laser.The soliton signal can perform phase modulation of the laser signal in the modulator and / or intensity modulation of the laser signal.
L'horloge peut effectuer dans le modulateur une modulation de phase du signal solitons, et/ou une modulation d'intensité du signal solitons. Dans un mode de mise en oeuvre, le procédé comprend l'étalement du signal d'horloge dans le laser à cavité.The clock can perform in the modulator a phase modulation of the solitons signal, and / or an intensity modulation of the solitons signal. In one embodiment, the method comprises spreading the clock signal in the cavity laser.
On peut aussi prévoir un filtrage du signal extrait en sortie du modulateur, de sorte à séparer le signal régénéré de l'horloge.It is also possible to provide a filtering of the signal extracted at the output of the modulator, so as to separate the regenerated signal from the clock.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description qui suit de modes de réalisation de l'invention, donnée à titre d'exemple et en référence aux dessins annexés qui montrent :Other characteristics and advantages of the invention will appear on reading the following description of embodiments of the invention, given by way of example and with reference to the appended drawings which show:
- figure 1 une représentation schématique de principe d'un régénérateur selon l'invention;- Figure 1 a schematic representation of the principle of a regenerator according to the invention;
- figure 2, en bas l'allure du signal soliton à régénérer, et en haut, l'allure du signal d'horloge dans le laser à cavité;- Figure 2, below the shape of the soliton signal to be regenerated, and above, the shape of the clock signal in the cavity laser;
- figure 3 une représentation schématique d'un régénérateur selon un premier mode de réalisation de l'invention;- Figure 3 a schematic representation of a regenerator according to a first embodiment of the invention;
- figure 4 une représentation schématique d'un régénérateur selon un deuxième mode de réalisation de l'invention; - figure 5 une représentation schématique d'un régénérateur selon un troisième mode de réalisation de l'invention;- Figure 4 a schematic representation of a regenerator according to a second embodiment of the invention; - Figure 5 a schematic representation of a regenerator according to a third embodiment of the invention;
- figure 6 une représentation schématique d'un régénérateur selon un quatrième mode de réalisation de l'invention;- Figure 6 a schematic representation of a regenerator according to a fourth embodiment of the invention;
- figure 7 une représentation schématique d'un régénérateur selon un cinquième mode de réalisation de l'invention.- Figure 7 a schematic representation of a regenerator according to a fifth embodiment of the invention.
L'invention propose d'associer dans un même circuit la fonction de récupération d'horloge, par blocage de modes d'un laser, et la fonction de modulation. A cet effet, elle repose sur la constatation surprenante que le modulateur utilisé pour assurer le blocage de mode du laser par le signal soliton à régénérer effectue en même temps la modulation de ce signal soliton par la lumière du laser. Dans un circuit formé d'un laser à cavité dans lequel est inséré un modulateur, et de moyens pour coupler le signal d'entrée à régénérer en entrée du modulateur, l'invention propose donc de prévoir, non pas des moyens pour extraire un signal d'horloge constitué par la lumière du laser, mais des moyens pour extraire, en sortie du modulateur, le signal régénéré. Comme dans les dispositifs connus de l'art antérieur, le signal soliton à régénérer est couplé dans le modulateur inséré dans le laser à cavité, de sorte à assurer un blocage actif des modes du laser, au rythme des bits du signal reçu. Ceci permet de générer dans le laser en anneau un signal d'horloge à la fréquence bit du signal soliton à régénérer. Mais ce signal d'horloge circule dans la cavité du laser, et donc dans le modulateur qui y est inséré, et interagit dans le modulateur avec le signal soliton incident pour le moduler au rythme de l'horloge. Il est manifeste que la synchronisation du signal d'horloge et du signal soliton à moduler est assurée automatiquement par la structure même du régénérateur de l'invention, sans qu'il soit nécessaire de prévoir des mécanismes tels des lignes à retard ou autres.The invention proposes to associate in the same circuit the clock recovery function, by blocking modes of a laser, and the modulation function. To this end, it is based on the surprising observation that the modulator used to block the mode of the laser by the soliton signal to be regenerated at the same time modulates this soliton signal by the light of the laser. In a circuit formed by a cavity laser in which is inserted a modulator, and means for coupling the input signal to be regenerated at the input of the modulator, the invention therefore proposes to provide, not means for extracting a clock signal constituted by the light of the laser, but means for extract, at the output of the modulator, the regenerated signal. As in the known devices of the prior art, the soliton signal to be regenerated is coupled in the modulator inserted in the cavity laser, so as to ensure active blocking of the laser modes, at the rate of the bits of the received signal. This makes it possible to generate in the ring laser a clock signal at the bit frequency of the soliton signal to be regenerated. But this clock signal circulates in the cavity of the laser, and therefore in the modulator which is inserted there, and interacts in the modulator with the incident soliton signal to modulate it at the rate of the clock. It is obvious that the synchronization of the clock signal and of the soliton signal to be modulated is ensured automatically by the very structure of the regenerator of the invention, without it being necessary to provide mechanisms such as delay lines or the like.
On règle de façon connue en soi la longueur la longueur de la cavité pour assurer que l'intervalle spectral libre de la cavité est un sous-multiple entier de la fréquence bit du signal soliton. L'invention propose donc d'extraire en sortie du modulateur le signal soliton ayant servi au blocage de modes du laser, qui constitue un signal régénéré.The length of the cavity is adjusted in a manner known per se to ensure that the free spectral interval of the cavity is an integer sub-multiple of the bit frequency of the soliton signal. The invention therefore proposes to extract from the modulator the soliton signal used for blocking laser modes, which constitutes a regenerated signal.
La figure 1 montre une représentation schématique de principe d'un régénérateur selon l'invention, fonctionnant selon ce principe. Le régénérateur de la figure 1 comprend un laser à cavité, en l'espèce un laser à fibre en anneau, comprenant une fibre 1 , formant un anneau; sur la fibre sont disposés un isolateur 2, un filtre 3, et des moyens 4 d'amplification optique du signal. La flèche du modulateur montre le sens de circulation de la lumière dans la cavité. Dans la cavité est inséré un modulateur 5, qui reçoit en entrée non seulement le signal provenant de la fibre 1 , sur une entrée 6, mais aussi, sur une entrée 7, le signal soliton à régénérer. En sortie, le modulateur est relié à la fibre 1 , sur une sortie 8, de sorte à permettre un blocage de mode actif du laser par le signal soliton. Le modulateur fournit en outre sur une sortie 9 le signal soliton régénéré.Figure 1 shows a schematic representation of the principle of a regenerator according to the invention, operating according to this principle. The regenerator of FIG. 1 comprises a cavity laser, in this case a ring fiber laser, comprising a fiber 1, forming a ring; on the fiber are arranged an insulator 2, a filter 3, and means 4 for optical signal amplification. The arrow of the modulator shows the direction of light circulation in the cavity. In the cavity is inserted a modulator 5, which receives as input not only the signal from the fiber 1, on an input 6, but also, on an input 7, the soliton signal to be regenerated. At the output, the modulator is connected to the fiber 1, on an output 8, so as to allow an active mode blocking of the laser by the soliton signal. The modulator also supplies on an output 9 the regenerated soliton signal.
On peut prévoir sur la fibre 1 des moyens dispersifs 10, qui permettent de contrôler la largeur des impuisions du signal d'horloge dans la fibre, et notamment d'élargir les impulsions d'horloge. On améliore ainsi la correction de la gigue temporelle du signal soliton par la modulation par le signal d'horloge. On peut utiliser comme moyens de dispersion une fibre à fort coefficient de dispersion, ou encore un réseau de Bragg.Dispersive means 10 can be provided on the fiber 1, which make it possible to control the width of the pulses of the clock signal in the fiber, and in particular to widen the clock pulses. This improves the correction of the time jitter of the soliton signal by modulation by the clock signal. We can use as dispersion means a fiber with a high dispersion coefficient, or a Bragg grating.
Le modulateur 5 de la figure 1 peut être un modulateur de phase, un modulateur d'intensité, ou un modulateur de phase et d'intensité combinées, comme expliqué dans les divers modes de réalisation des figures 3 à 6.The modulator 5 of FIG. 1 can be a phase modulator, an intensity modulator, or a combined phase and intensity modulator, as explained in the various embodiments of FIGS. 3 to 6.
La figure 2 montre, en bas, l'allure des signaux solitons reçus sur l'entrée 7 du modulateur 5, et en haut l'allure du signal d'horloge correspondant obtenu lorsque le modulateur est un amplificateur à semi-conducteur comme dans le mode de réalisation de la figure 5; ce signal circule dans le laser à cavité. On constate que le blocage de mode actif du laser permet de récupérer un signal d'horloge de qualité.FIG. 2 shows, at the bottom, the shape of the soliton signals received on the input 7 of the modulator 5, and at the top the shape of the corresponding clock signal obtained when the modulator is a semiconductor amplifier as in the embodiment of Figure 5; this signal flows through the cavity laser. It is noted that the active mode blocking of the laser makes it possible to recover a quality clock signal.
La figure 3 montre une représentation schématique du modulateur d'un régénérateur selon un premier mode de réalisation de l'invention. On n'a pas représenté sur la figure 3, l'anneau de fibre 1 , l'isolateur 2, le filtre 3, les moyens 4 d'amplification optique du signal, ni les moyens dispersifs 10. Dans le mode de réalisation de la figure 3, le modulateur 5 est formé d'un miroir non linéaire en boucle (NOLM). Celui-ci est formé d'une longueur de fibre fortement dispersive 20, par exemple une longueur de l'ordre de 10km. Les deux extrémités de la fibre 20 sont couplées à travers un coupleur 2/2 21 , et sont reliés à la fibre 1 de sorte à former l'entrée 6 et la sortie 8 du modulateur. Sur la boucle de fibre 20 sont prévus deux coupleurs 2/2 22 et 23, disposés symétriquement par rapport au coupleur 21 , et dans des sens opposés. Le coupleur 22 couple dans le NOLM le signal soliton à régénérer, et constitue l'entrée 7 du modulateur. Le coupleur 23 extrait du modulateur le signal soliton régénéré et l'horloge. En aval du coupleur 23 est prévu un filtre 24 passe bas qui bloque l'horloge. La sortie du filtre 24 constitue la sortie 9 du modulateur 5.FIG. 3 shows a schematic representation of the modulator of a regenerator according to a first embodiment of the invention. FIG. 3 does not show the fiber ring 1, the insulator 2, the filter 3, the means 4 for optical amplification of the signal, nor the dispersive means 10. In the embodiment of the Figure 3, the modulator 5 is formed of a nonlinear loop mirror (NOLM). This is formed from a length of highly dispersive fiber 20, for example a length of the order of 10 km. The two ends of the fiber 20 are coupled through a 2/2 coupler 21, and are connected to the fiber 1 so as to form the inlet 6 and the outlet 8 of the modulator. On the fiber loop 20 are provided two 2/2 couplers 22 and 23, arranged symmetrically with respect to the coupler 21, and in opposite directions. The coupler 22 couples in the NOLM the soliton signal to be regenerated, and constitutes the input 7 of the modulator. The coupler 23 extracts from the modulator the regenerated soliton signal and the clock. Downstream of the coupler 23 is provided a low pass filter 24 which blocks the clock. The output of the filter 24 constitutes the output 9 of the modulator 5.
Le fonctionnement du NOLM de la figure 3 est le suivant. Le signal soliton induit un blocage de mode du laser, par modulation d'intensité et de phase sur le signal circulant dans la fibre du NOLM. Le signal provenant de la fibre 1 est couplé dans le NOLM par le coupleur 21 , où il est séparé en deux signaux se propageant en sens inverse, comme indiqué par les flèches 26 et 27. Il est recombiné au niveau du coupleur 21 , et est réfléchi en sortie 6. Le signal se propageant dans le sens de la flèche 26 est modulé en intensité par le signal soliton incident introduit dans le NOLM par le coupleur 22. On obtient en sortie du coupleur 23 le signal soliton régénéré et le signal d'horloge. Le filtre 24 coupe le signal d'horloge. Par ailleurs, le signal d'horloge assure une modulation synchrone de phase du signal soliton incident, et assure ainsi la correction de sa gigue temporelle. Pour plus de précisions sur le fonctionnement du NOLM comme modulateur, on pourra se reporter à l'article de S. Bigo et al., Electronics Letters, vol. 31 n° 21 (1995). Dans le montage de la figure 3 peut en outre être prévu, en amont du coupleur 22, un amplificateur 25 pour les signaux solitons incidents.The operation of the NOLM in FIG. 3 is as follows. The soliton signal induces a mode blockage of the laser, by intensity and phase modulation on the signal circulating in the fiber of the NOLM. The signal from fiber 1 is coupled in the NOLM by coupler 21, where it is separated into two signals propagating in opposite directions, as indicated by arrows 26 and 27. It is recombined at coupler 21, and is reflected at output 6. The signal propagating in the direction of arrow 26 is intensity-modulated by the incident soliton signal introduced into the NOLM by the coupler 22. At the output of the coupler 23, the regenerated soliton signal and the signal are obtained. clock. The filter 24 cuts the clock signal. Furthermore, the clock signal provides modulation synchronous phase of the incident soliton signal, and thus ensures the correction of its temporal jitter. For more details on the operation of the NOLM as a modulator, reference may be made to the article by S. Bigo et al., Electronics Letters, vol. 31 no.21 (1995). In the assembly of FIG. 3, an amplifier 25 can also be provided, upstream of the coupler 22, for the incident soliton signals.
Le montage de la figure 3 est particulièrement avantageux, en ce que le biocage de mode est assuré par une modulation d'intensité, tandis que la modulation du signal soliton par l'horloge est assurée par une modulation de phase. On peut de ce fait régler de façon indépendante la profondeur de modulation du signal laser par le signal soliton, et la profondeur de modulation du signal soliton par le signal laser. Le réglage de la profondeur de modulation de phase peut être effectué en jouant sur la puissance du signal d'horloge dans la cavité; le réglage de la profondeur de modulation d'intensité peut être effectué en jouant sur le taux de couplage du coupleur d'entrée, pour une puissance donnée du signal d'horloge dans la cavité.The arrangement of FIG. 3 is particularly advantageous, in that the mode biocage is ensured by an intensity modulation, while the modulation of the soliton signal by the clock is ensured by a phase modulation. It is therefore possible to independently adjust the depth of modulation of the laser signal by the soliton signal, and the depth of modulation of the soliton signal by the laser signal. The adjustment of the phase modulation depth can be carried out by varying the power of the clock signal in the cavity; the intensity modulation depth can be adjusted by adjusting the coupling rate of the input coupler, for a given power of the clock signal in the cavity.
Ainsi, on assure le blocage de mode du laser et une bonne régénération qui ne dégrade pas les solitons.Thus, it ensures the mode blocking of the laser and a good regeneration which does not degrade the solitons.
Dans le mode de réalisation de la figure 3, on peut utiliser le NOLM dans sa configuration classique en miroir, avec un coupleur dissymétrique. On peut aussi régler le NOLM en mode "transmetteur", par exemple en utilisant des contrôleurs de polarisation dans la cavité, ou en utilisant une lame biréfringente aux axes correctement alignés. Ceci permet de rendre le modulateur non bloquant pour l'horloge en présence de zéros, de sorte à éviter toute perte de l'horloge lors des zéros du signal soliton. Dans ce cas on peut utiliser un coupleur d'entrée symétrique. L'efficacité en puissance est alors maximale.In the embodiment of FIG. 3, the NOLM can be used in its conventional mirror configuration, with an asymmetrical coupler. You can also set the NOLM in "transmitter" mode, for example by using polarization controllers in the cavity, or by using a birefringent blade with correctly aligned axes. This makes the modulator non-blocking for the clock in the presence of zeros, so as to avoid any loss of the clock during the zeros of the soliton signal. In this case you can use a balanced input coupler. The power efficiency is then maximum.
La figure 4 montre une représentation schématique d'un régénérateur selon un deuxième mode de réalisation de l'invention; comme pour la figure 3, on n'a représenté à la figure 4 que le modulateur 5. La modulation, dans le mode de réalisation de la figure 4, est une modulation de phase par effet Kerr dans une section de fibre à forte dispersion. _ cet effet, le modulateur 5 comprend une section de fibre 30 à forte dispersion, d'une longueur qui peut être de l'ordre de 10 km, et qui est reliée à la fibre 1 pour former l'anneau du laser, de sorte à former l'entrée 6 et la sortie 8 du modulateur. _ une extrémité de la fibre 30, un coupleur 31 couple le signal soliton à régénérer dans la fibre; à l'autre extrémité de la fibre 30, un coupleur 32 couple le signal soliton et l'horloge vers un filtre 33. Le filtre 33 bloque le signal d'horloge, et la sortie du filtre 33 constitue la sortie 9 du modulateur 5. En amont du coupleur 31 , on peut prévoir comme dans le cas de la figure 3, un amplificateur dont l'entrée constitue l'entrée 7 du modulateur. Le montage de la figure 4 fonctionne de la façon suivante. Le signal soliton induit un blocage de mode du laser, par modulation de phase par effet Kerr dans la fibre 30. Le signal d'horloge assure une modulation synchrone de phase du signal soliton incident. Le filtre 33 bloque le signal d'horioge.Figure 4 shows a schematic representation of a regenerator according to a second embodiment of the invention; as in FIG. 3, FIG. 4 shows only the modulator 5. The modulation, in the embodiment of FIG. 4, is a phase modulation by Kerr effect in a section of fiber with high dispersion. _ For this purpose, the modulator 5 comprises a section of fiber 30 with high dispersion, a length which can be of the order of 10 km, and which is connected to the fiber 1 to form the ring of the laser, so forming input 6 and output 8 of the modulator. _ one end of the fiber 30, a coupler 31 couples the soliton signal to be regenerated in the fiber; at the other end of the fiber 30, a coupler 32 couples the soliton signal and the clock to a filter 33. The filter 33 blocks the clock signal, and the output of the filter 33 constitutes the output 9 of the modulator 5. Upstream of the coupler 31, one can provide, as in the case of FIG. 3, an amplifier whose input constitutes the input 7 of the modulator. The assembly of Figure 4 operates as follows. The soliton signal induces a mode blockage of the laser, by phase modulation by Kerr effect in the fiber 30. The clock signal provides synchronous phase modulation of the incident soliton signal. The filter 33 blocks the clock signal.
Dans le montage de la figure 4, la modulation du signal soliton, comme le blocage de mode sont effectuées par le même modulateur. La profondeur de modulation est choisie suffisamment importante pour garantir le blocage de modes du laser en anneau; elle est toutefois maintenue à un niveau tel que la modulation par la lumière du laser assure une régénération correcte, et ne dégrade pas les solitons.In the assembly of FIG. 4, the modulation of the soliton signal, like the blocking of mode are carried out by the same modulator. The modulation depth is chosen to be large enough to guarantee that the modes of the ring laser are blocked; it is however maintained at a level such that the modulation by the light of the laser ensures correct regeneration, and does not degrade the solitons.
La figure 5 montre une représentation schématique d'un régénérateur selon un troisième mode de réalisation de l'invention; comme pour les figure 3 et 4, on n'a représenté à la figure 5 que le modulateur 5. La modulation, dans le mode de réalisation de la figure 5, est une modulation d'intensité et de phase dans un amplificateur à semi-conducteur, par exemple un amplificateur à semiconducteur à ondes progressives (TW-SCA). Le modulateur de la figure 5 comprend donc un amplificateur à semi-conducteur à ondes progressives 40, dont l'entrée et la sortie sont reliées aux extrémités de la fibre 1. En amont du TW-SCA 40, un coupleur 41 couple dans la fibre 1 le signal solitons incident. En aval du TW-SCA 40, un coupleur 42 fournit le signal soliton modulé et le signal d'horloge. Le coupleur 42 est relié à un filtre 43 qui bloque le signal d'horloge. La sortie du filtre 43 constitue la sortie 9 du modulateur 5. En amont du coupleur 41 , on peut prévoir comme dans le cas des figures 3 et 4, un amplificateur 44 dont l'entrée constitue l'entrée 7 du modulateur.Figure 5 shows a schematic representation of a regenerator according to a third embodiment of the invention; as in FIGS. 3 and 4, FIG. 5 shows only the modulator 5. The modulation, in the embodiment of FIG. 5, is an intensity and phase modulation in a semi-amplifier conductor, for example a traveling wave semiconductor amplifier (TW-SCA). The modulator of FIG. 5 therefore comprises a traveling wave semiconductor amplifier 40, the input and output of which are connected to the ends of the fiber 1. Upstream of the TW-SCA 40, a coupler 41 couples in the fiber 1 the incident soliton signal. Downstream of the TW-SCA 40, a coupler 42 supplies the modulated soliton signal and the clock signal. The coupler 42 is connected to a filter 43 which blocks the clock signal. The output of the filter 43 constitutes the output 9 of the modulator 5. Upstream of the coupler 41, one can provide, as in the case of FIGS. 3 and 4, an amplifier 44 whose input constitutes the input 7 of the modulator.
Le montage de la figure 5 fonctionne de la façon suivante. Le signal soliton induit un blocage de mode du laser, par modulation de phase et d'intensité dans le TW-SCA 40. Le signal d'horloge assure quant à lui une modulation synchrone de phase et d'intensité du signal soliton incident. Le filtre 43 bloque le signal d'horloge. On règle la profondeur de modulation comme indiqué à la figure 4.The assembly of Figure 5 works as follows. The soliton signal induces a mode lock of the laser, by phase and intensity modulation in the TW-SCA 40. The clock signal provides synchronous phase and intensity modulation of the incident soliton signal. The filter 43 blocks the clock signal. The modulation depth is adjusted as shown in Figure 4.
La figure 6 montre une représentation schématique d'un régénérateur selon un quatrième mode de réalisation de l'invention; comme pour les figures précédentes, on n'a représenté à la figure 6 que le modulateur 5. Le dispositif de la figure 6 correspond à celui de la figure 3, et les mêmes numéros de référence sont utilisés. Toutefois, le dispositif de la figure 6 comprend en outre dans le NOLM un amplificateur à semi-conducteur à ondes progressives 50, entre les coupleurs 22 et 23. Ce dispositif permet de limiter l'encombrement du NOLM, en remplaçant la fibre de propagation par un modulateur à semi-conducteurs. Le fonctionnement du dispositif de la figure 6 est analogue à celui du dispositif de la figure 3. On peut notamment régler indépendamment les profondeurs de modulation respectives de l'horloge et du signal soliton.Figure 6 shows a schematic representation of a regenerator according to a fourth embodiment of the invention; as in the previous figures, only the modulator 5 is shown in FIG. 6. The device of FIG. 6 corresponds to that of FIG. 3, and the same reference numbers are used. However, the device of FIG. 6 further comprises in the NOLM a traveling wave semiconductor amplifier 50, between the couplers 22 and 23. This device makes it possible to limit the size of the NOLM, by replacing the propagation fiber by a semiconductor modulator. The operation of the device in FIG. 6 is similar to that of the device in FIG. 3. In particular, the respective modulation depths of the clock and of the soliton signal can be independently adjusted.
La figure 7 montre une représentation schématique d'un régénérateur selon un cinquième mode de réalisation de l'invention. Dans le mode de réalisation de la figure 7, on utilise comme cavité non par un anneau, mais une cavité Fabry Perot. On insère dans la cavité un modulateur, par exemple un amplificateur à semi-conducteur, tel qu'un amplificateur à semi-conducteur à ondes progressives.Figure 7 shows a schematic representation of a regenerator according to a fifth embodiment of the invention. In the embodiment of Figure 7, is used as a cavity not by a ring, but a Fabry Perot cavity. A modulator is inserted into the cavity, for example a semiconductor amplifier, such as a traveling wave semiconductor amplifier.
Le dispositif de la figure 7 comprend donc un circulateur 55 à trois bornes, qui reçoit sur une entrée sur une première borne d'entrée 56 le signal soliton à régénérer. Ce signal est fourni en sortie sur une deuxième borne de sortie et d'entrée 57 et est transmis à une cavité Fabry Perot 58 formée de deux miroirs 59, 60; le premier miroir 59 est un miroir sélectif en longueur d'onde. Dans la cavité 58 est disposé un modulateur 61 , typiquement un amplificateur à semi- conducteur, de préférence à ondes progressives. La troisième borne 62 du circulateur 55 est une borne de sortie qui fournit le signal reçu en entrée sur la deuxième borne 57.The device of FIG. 7 therefore comprises a circulator 55 with three terminals, which receives on an input on a first input terminal 56 the soliton signal to be regenerated. This signal is output at a second output and input terminal 57 and is transmitted to a Fabry Perot cavity 58 formed by two mirrors 59, 60; the first mirror 59 is a selective wavelength mirror. In the cavity 58 is arranged a modulator 61, typically a semiconductor amplifier, preferably with traveling waves. The third terminal 62 of the circulator 55 is an output terminal which supplies the signal received as input on the second terminal 57.
Le fonctionnement du dispositif de la figure 7 est le suivant. Le signal soliton à régénérer est reçue sur la première borne 56 du sélecteur 55, et est transmis à travers la deuxième borne 57 à la cavité 58. Le signal soliton pénètre dans la cavité 58, et module en phase et en intensité dans le modulateur 61 la lumière laser, de sorte à assure un blocage de mode. Le signal d'horloge module dans le modulateur 61 le signal soliton. Le miroir sélectif en longueur d'onde 59 bloque le signal d'horloge et laisse passer le signal soliton modulé. Ce signal arrive ensuite en entrée sur la deuxième borne 57 du circulateur, et est transmis en sortie à la troisième borne 58.The operation of the device of Figure 7 is as follows. The soliton signal to be regenerated is received on the first terminal 56 of the selector 55, and is transmitted through the second terminal 57 to the cavity 58. The soliton signal enters the cavity 58, and modulates in phase and in intensity in the modulator 61 laser light, so as to ensure a mode lock. The clock signal modulates in the modulator 61 the soliton signal. The wavelength selective mirror 59 blocks the clock signal and lets the modulated soliton signal pass. This signal then arrives at the input on the second terminal 57 of the circulator, and is transmitted at the output to the third terminal 58.
Le mode de réalisation de la figure 7 présente l'avantage d'une extrême compacité. Comme dans les autres modes de réalisation, on peut prévoir un amplificateur en amont du circulateur 55. On pourrait aussi, au lieu du circulateur 55, utiliser un coupleur. On pourrait encore dans le mode de réalisation de la figure 7 prévoir dans la cavité des moyens dispersifs. Bien entendu, la présente invention n'est pas limitée aux exemples et modes de réalisation décrits et représentés, mais elle est susceptible de nombreuses variantes accessibles à l'homme de l'art. Par exemple, il est clair que le montage des figures 3 et 4 est symétrique, et que l'on pourrait inverser la position de la fibre de transmission et de la fibre du laser au niveau des coupleur 31 et 32, ou 41 et 42. The embodiment of Figure 7 has the advantage of extreme compactness. As in the other embodiments, an amplifier can be provided upstream of the circulator 55. One could also, instead of the circulator 55, use a coupler. One could also in the embodiment of Figure 7 provide in the cavity of the dispersive means. Of course, the present invention is not limited to the examples and embodiments described and shown, but it is susceptible of numerous variants accessible to those skilled in the art. For example, it is clear that the assembly of FIGS. 3 and 4 is symmetrical, and that the position of the transmission fiber and the laser fiber could be reversed at the coupler 31 and 32, or 41 and 42.

Claims

REVENDICATIONS
1. Un régénérateur pour système de transmissions à impuisions solitons, comprenant un laser à cavité dans lequel est inséré un modulateur (5, 61), des moyens pour coupler le signai d'entrée à régénérer en entrée du modulateur de sorte à assurer un blocage de mode du laser, et des moyens pour coupler en sortie du modulateur le signal régénéré.1. A regenerator for soliton impulse transmission system, comprising a cavity laser in which a modulator (5, 61) is inserted, means for coupling the input signal to be regenerated at the input of the modulator so as to ensure blocking mode of the laser, and means for coupling the regenerated signal at the output of the modulator.
2.- Un régénérateur selon la revendication 1 , caractérisé en ce que le laser est un laser à cavité Fabry Perot (58).2. A regenerator according to claim 1, characterized in that the laser is a Fabry Perot cavity laser (58).
3.- Un régénérateur selon la revendication 1 , caractérisé en ce que le laser est un laser à fibre en anneau.3. A regenerator according to claim 1, characterized in that the laser is a ring fiber laser.
4.- Un régénérateur selon la revendication 2 ou 3, caractérisé en ce que le laser comprend des moyens dispersifs (10), tels un tronçon de fibre dispersive.4. A regenerator according to claim 2 or 3, characterized in that the laser comprises dispersive means (10), such as a section of dispersive fiber.
5.- Un régénérateur selon l'une des revendications 1 à 4, caractérisé en ce que le modulateur est un modulateur de phase.5.- A regenerator according to one of claims 1 to 4, characterized in that the modulator is a phase modulator.
6.- Un régénérateur selon l'une des revendications 1 à 5, caractérisé en ce que le modulateur est un modulateur d'intensité.6. A regenerator according to one of claims 1 to 5, characterized in that the modulator is an intensity modulator.
7.- Un régénérateur selon l'une des revendications 1 à 6, caractérisé en ce que le modulateur comprend un miroir non linéaire en boucle (20).7. A regenerator according to one of claims 1 to 6, characterized in that the modulator comprises a non-linear loop mirror (20).
8.- Un régénérateur selon l'une des revendications 1 à 7, caractérisé en ce que le modulateur comprend un amplificateur à semi-conducteur (40, 50, 61), de préférence à ondes progressives.8.- A regenerator according to one of claims 1 to 7, characterized in that the modulator comprises a semiconductor amplifier (40, 50, 61), preferably with traveling waves.
9.- Un régénérateur selon l'une des revendications 1 à 5, caractérisé en ce que le modulateur comprend un tronçon de fibre dispersive (30) assurant une modulation par effet Kerr. 9. A regenerator according to one of claims 1 to 5, characterized in that the modulator comprises a section of dispersive fiber (30) providing modulation by the Kerr effect.
10.- Un régénérateur selon l'une des revendications 1 à 9, caractérisé par un amplificateur (25, 34, 44) du signal d'entrée à régénérer, en amont du modulateur (5).10.- A regenerator according to one of claims 1 to 9, characterized by an amplifier (25, 34, 44) of the input signal to be regenerated, upstream of the modulator (5).
11.- Un régénérateur selon l'une des revendications 1 à 10, caractérisé par un filtre (24, 33, 43) filtrant le signal régénéré.11. A regenerator according to one of claims 1 to 10, characterized by a filter (24, 33, 43) filtering the regenerated signal.
12.- Un régénérateur selon l'une des revendications 2 à 11 , caractérisé en ce que le miroir d'entrée de la cavité Fabry Perot est sélectif en longueur d'onde, de sorte à séparer le signal régénéré du signal laser.12. A regenerator according to one of claims 2 to 11, characterized in that the input mirror of the Fabry Perot cavity is selective in wavelength, so as to separate the regenerated signal from the laser signal.
13. Système optique de transmission, comprenant au moins un régénérateur selon l'une des revendications 1 à 12.13. Optical transmission system, comprising at least one regenerator according to one of claims 1 to 12.
14.- Un procédé de régénération d'un signal solitons, comprenant :14.- A process for regenerating a soliton signal, comprising:
- la création d'une horloge par blocage de mode d'un laser à cavité dans lequel est inséré un modulateur (5), en modulant le signal laser par le signal solitons à régénérer;- the creation of a clock by mode blocking of a cavity laser in which a modulator (5) is inserted, by modulating the laser signal by the solitons signal to be regenerated;
- l'extraction en sortie de ce modulateur (5) du signai solitons régénéré par modulation par l'horloge.- the extraction at the output of this modulator (5) of the solitons signal regenerated by modulation by the clock.
15.- Un procédé selon la revendication 14, caractérisé en ce que le signal solitons effectue dans le modulateur (5) une modulation de phase du signal laser.15.- A method according to claim 14, characterized in that the soliton signal performs in the modulator (5) a phase modulation of the laser signal.
16.- Un procédé selon la revendication 14 ou 15, caractérisé en ce que le signal solitons effectue dans le modulateur (5) une modulation d'intensité du signal laser.16.- A method according to claim 14 or 15, characterized in that the soliton signal performs in the modulator (5) an intensity modulation of the laser signal.
17.- Un procédé selon l'une des revendications 14 à 16, caractérisé en ce que l'horloge effectue dans le modulateur (5) une modulation de phase du signal solitons.17.- A method according to one of claims 14 to 16, characterized in that the clock performs in the modulator (5) a phase modulation of the soliton signal.
18.- Un procédé selon l'une des revendications 14 à 17, caractérisé en ce que l'horloge effectue dans le modulateur (5) une modulation d'intensité du signal solitons. 18.- A method according to one of claims 14 to 17, characterized in that the clock performs in the modulator (5) an intensity modulation of the solitons signal.
19.- Un procédé selon l'une des revendications 14 à 18, caractérisé par un étalement du signal d'horloge dans le laser à cavité.19.- A method according to one of claims 14 to 18, characterized by spreading the clock signal in the cavity laser.
20.- Un procédé selon l'une des revendications 14 à 19, caractérisé par un filtrage du signal extrait en sortie du modulateur, de sorte à séparer le signal régénéré de l'horloge. 20.- A method according to one of claims 14 to 19, characterized by filtering the signal extracted at the output of the modulator, so as to separate the regenerated signal from the clock.
EP98914923A 1997-03-17 1998-03-16 Optical regeneration for optical fibre transmission systems with soliton signals Withdrawn EP0900407A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9703180 1997-03-17
FR9703180A FR2760855B1 (en) 1997-03-17 1997-03-17 OPTICAL REGENERATION FOR SOLITON SIGNAL FIBER OPTIC TRANSMISSION SYSTEMS
PCT/FR1998/000523 WO1998041900A1 (en) 1997-03-17 1998-03-16 Optical regeneration for optical fibre transmission systems with soliton signals

Publications (1)

Publication Number Publication Date
EP0900407A1 true EP0900407A1 (en) 1999-03-10

Family

ID=9504840

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98914923A Withdrawn EP0900407A1 (en) 1997-03-17 1998-03-16 Optical regeneration for optical fibre transmission systems with soliton signals

Country Status (5)

Country Link
EP (1) EP0900407A1 (en)
JP (1) JP2001506016A (en)
CA (1) CA2255595A1 (en)
FR (1) FR2760855B1 (en)
WO (1) WO1998041900A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2800946B1 (en) * 1999-11-10 2002-01-25 Cit Alcatel DISPERSIVE FIBER CHANNEL SYNCHRONIZATION IN A WAVELENGTH MULTIPLEXED TRANSMISSION SYSTEM

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9841900A1 *

Also Published As

Publication number Publication date
FR2760855B1 (en) 1999-04-16
FR2760855A1 (en) 1998-09-18
CA2255595A1 (en) 1998-09-24
JP2001506016A (en) 2001-05-08
WO1998041900A1 (en) 1998-09-24

Similar Documents

Publication Publication Date Title
EP0718992B1 (en) Inline regenerator device of a soliton signal via synchronous solitory modulation using a non-linear optical mirror
FR2715524A1 (en) Long-distance optical communication system e.g. for undersea link
EP0862286B1 (en) Optical regeneration for optical fibre transmission systems with non-soliton signals
EP0780723B1 (en) Controllable phase/amplitude modulator and soliton regenerator comprising such a modulator
FR2685835A1 (en) VERY LONG DISTANCE TRANSMISSION SYSTEM ON OPTICAL FIBER COMPENSATED FOR DISTORTIONS AT RECEPTION.
EP0971494A1 (en) Quasi-distributed amplification in a soliton WDM transmission
EP0763912B1 (en) All-optical doubler and soliton regenerator using the doubler
EP0788016A1 (en) Polarization independent Kerr modulator, and all-optical clock regenerator device having the same
Johnson et al. Multiwavelength all-optical clock recovery
Cai et al. Long-haul 40 Gb/s DWDM transmission with aggregate capacities exceeding 1 Tb/s
EP0553193A1 (en) Quasi-soliton communication system
WO2002071653A2 (en) Method and apparatus for generating optical signals
EP0883256A1 (en) Soliton WDM optical fibre transmission system with saturable absorbers
EP0900407A1 (en) Optical regeneration for optical fibre transmission systems with soliton signals
EP0975106B1 (en) Device for on-line regeneration of an optical soliton signal by synchronous modulation of these solitons and transmission system comprising such a device
EP1137208B1 (en) Synchonous optical regenerator using intensity modulation and phase modulation with cross-Kerr effect
EP0866358B1 (en) Regenerator with optical modulation for fiber optic soliton transmission systems
EP0859482B1 (en) Optical regeneration for soliton wdm fiberoptic transmission systems
FR2754963A1 (en) OPTICAL SIGNAL FOR A SOLITON OPTICAL TRANSMISSION SYSTEM
WO2001047153A2 (en) Optical fibre transmission with noise reduction by non-linear hop of signals
EP1224756B1 (en) Alternate phase modulation for non-soliton optical rz transmission
FR2784826A1 (en) REPEATER FOR WAVELENGTH MULTIPLEXED LONG-RANGE FIBER OPTIC TRANSMISSION SYSTEM
FR2757719A1 (en) REPEATER FOR FIBER OPTICAL TRANSMISSION SYSTEM WITH SOLITON SIGNALS
Banchi et al. Effective all-optical RZ-to-NRZ conversion for transparent network gateways
FR2769443A1 (en) COMPENSATION METHOD FOR OPTICAL TRANSMISSION LINK BY FIBER AND LINK TERMINALS APPLYING THIS PROCESS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT SE

17P Request for examination filed

Effective date: 19990324

17Q First examination report despatched

Effective date: 20040318

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040729