EP0898774A1 - Reactive sound absorber - Google Patents

Reactive sound absorber

Info

Publication number
EP0898774A1
EP0898774A1 EP97923077A EP97923077A EP0898774A1 EP 0898774 A1 EP0898774 A1 EP 0898774A1 EP 97923077 A EP97923077 A EP 97923077A EP 97923077 A EP97923077 A EP 97923077A EP 0898774 A1 EP0898774 A1 EP 0898774A1
Authority
EP
European Patent Office
Prior art keywords
membrane
reactive
sensor
silencer according
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97923077A
Other languages
German (de)
French (fr)
Other versions
EP0898774B1 (en
Inventor
Jan Krüger
Philip Leistner
Helmut Fuchs
Roland Lippold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7794315&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0898774(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority to SI9730209T priority Critical patent/SI0898774T1/en
Publication of EP0898774A1 publication Critical patent/EP0898774A1/en
Application granted granted Critical
Publication of EP0898774B1 publication Critical patent/EP0898774B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17857Geometric disposition, e.g. placement of microphones
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17875General system configurations using an error signal without a reference signal, e.g. pure feedback
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/112Ducts
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3026Feedback
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/321Physical
    • G10K2210/3217Collocated sensor and cancelling actuator, e.g. "virtual earth" designs
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/321Physical
    • G10K2210/3227Resonators
    • G10K2210/32271Active resonators

Definitions

  • the invention relates to a reactive silencer according to the preamble of claim 1.
  • This cancellation can be monitored with a second microphone (10) in the direction of sound propagation, the signal of which can simultaneously serve to adapt the signal processing to any changes in the sound propagation in the relevant channel.
  • a second microphone 10
  • this procedure succeeds very precisely, at least under laboratory conditions.
  • their practical use is characterized by high sensitivity in the case of superimposed air flow or in the case of temperature fluctuations, and by high expenditure on electronics and signal processing.
  • Another approach proposes a hybrid silencer, Figure 6, in DE 40 27 51 1, in which an optimal acoustic impedance of the duct wall (1) is realized on the front of a known, passive subsystem (12) by means of an active subsystem that supplements the rear should.
  • the starting point is the acoustic properties of the passive subsystem, for example a layer made of porous absorber material.
  • the other elements of the hybrid silencer are used to generate a rear impedance of the passive subsystem.
  • the sound pressure behind the passive subsystem has to be measured with a microphone (13).
  • the microphone voltage is then fed back via a signal former (15) to a loudspeaker (14), on the membrane surface of which the calculated impedance is to be set.
  • This method presupposes that the signal former proposed in DE 40 27 51 1 firstly compensates for the behavior of all electromechanical components (microphone, loudspeaker, box, etc.) and secondly impresses the desired terminating impedance on the system.
  • the properties of the electromechanical components have been thoroughly examined and described. Thereafter, the adaptation is only possible through complex and only approximately realizable transfer functions of the signal former.
  • Active Helmholtz resonators according to DE 42 26 885 and Spannheimer, H., Freymann, R., Fastl, H .: Akti ⁇ ver He-Imholtz resonator for damping internal cavity vibrations represent a variant of the basic idea of hybrid silencers. Progress in acoustics - DAGA 1994, DPG-GmbH, Bad Honnef: 1994, pp. 525-528, -dar, Figure 7, preferably with the area of application in motor vehicles.
  • a conventional Helmholtz resonator represents the passive subsystem described in DE 40 27 51 1, which is actively influenced on its rear side.
  • the known Helmholtz resonator is defined in detail by a hollow body (16) and an opening (17).
  • the microphone (18) provided outside the Helmholtz resonator next to the opening provides information about the sound pressure prevailing there, so that a transmission system (20) with special (PDT) frequency and time behavior provides the required voltage for the loudspeaker (19). generated in the hollow body.
  • This loudspeaker determines or changes the transmission behavior (resonance frequency) of the original Helmholtz resonator.
  • the loudspeaker in the hollow body thus serves the practical enlargement (ailg. change) of the hollow body volume for improved sound absorption of the Helmholtz resonator at low frequencies.
  • the goal here is to actively reduce the resonance frequency and thus the sound absorption of the passive Helmholtz resonator.
  • the object of the invention is to increase the efficiency of the reactive silencer according to the preamble of claim 1 and to reduce the technical outlay. According to the invention this is solved by the reactive silencer according to claim 1.
  • Advantageous embodiments of the invention are characterized in the subclaims.
  • the invention relates to a reactive silencer in which both the detection and the active influencing of the sound field take place directly and directly on the duct wall (1), Figure 1.
  • the basic component is a closed, compact cassette (2) in which all components are combined. Its front is part of the duct wall and is covered by at least one vibratable membrane (3), e.g. a loudspeaker membrane, embodied. Due to its mass per unit area, this membrane (3) forms an acoustic resonance system with the cavity (4) of the cassette housing located behind it. The sound waves occurring in the channel stimulate this resonance system to vibrate at and near its natural frequency. The activation takes place with the help of a sensor (5), which is arranged in the immediate vicinity, in or on the membrane (3) and detects the membrane vibrations.
  • a sensor (5) which is arranged in the immediate vicinity, in or on the membrane (3) and detects the membrane vibrations.
  • This sensor function can e.g. Take over microphones, structure-borne sound sensors or optical motion sensors. After an inverting, linear amplification (6), the output signal of the sensor is used to control an electroacoustic transducer (7), e.g. the voice coil of a speaker.
  • an electroacoustic transducer (7) e.g. the voice coil of a speaker.
  • the membrane is forced to vibrate more, the sound pressure on the lined wall surface is further reduced and the sound wave is dampened more.
  • the shape of the housing (2) can be varied since only the volume of the cavity (4) influences the frequency characteristic.
  • absorbers can be provided in the interior of the housing (2) which is soundproof to the outside.
  • the area-related membrane mass can also be used, for example through different loudspeakers.
  • the principle-based linear amplifier (6) does not contain any frequency evaluation of the sensor signal in order to compare it with filters, signal formers or other transmissions. to avoid undesirable phase shifts associated with systems. This prevents disturbing acoustic interactions between adjacent cassettes and large-area, reactive silencers from many individual cassettes, for example in reactive silencers, Figure 2.
  • the operating voltages for the sensors (5) and amplifiers (6) are provided by conventional power supplies or batteries.
  • the measured insertion loss of an exemplary reactive silencer, Figure 3, consisting of 4 cassettes, is shown in Figure 4.
  • the reactive silencer works without passive subsystems (porous absorbers, Helmholtz resonators etc.). This fact as well as the spatial concentration of membrane (3) and sensor (5) in the channel wall enable the use of a simple amplifier (6). As a result, all components of the reactive silencer can be easily integrated in a compact housing (2).
  • the reactive silencer is connected to any sound field and to any sound field limitation, e.g. Channel redirection, adaptable.
  • the reactive silencer cassettes and thus all electroacoustic components can be protected against physical and chemical loads occurring in the duct with the aid of acoustically permeable covers.
  • the reactive silencer When the microphone is used as a sensor (5), the reactive silencer is designed to be positioned behind the membrane (3), ie in the cavity (4) of the cassette (2).
  • the principle of operation of the reactive silencer is not only applicable to flat waves in comparatively narrow channels, but also also effects a damping of modal sound fields in any channels or rooms. In these applications, the vibrating membranes of the reactive cassettes also reduce the surface area of the sound pressure on the lined wall surface and dampen the existing sound field.
  • Figure 1 Exemplary design of a reactive silencer cassette in a duct wall (1), consisting of the housing (2) with at least one membrane (3) in front of a cavity (4), a sensor (5), a linear amplifier (6) and one electroacoustic transducer (7).
  • Figure 2 Cascaded arrangement of reactive silencer cassettes in a silencer backdrop.
  • Figure 3 Embodiment of a reactive silencer consisting of 4 cassettes in one.
  • Figure 4 Measured insertion loss of the exemplary reactive silencer in Figure 3.

Abstract

A reactive sound attenuator which includes a sensor for detecting a sound parameter in a space, e.g. a duct, consists of a signal amplifier that is used to amplify a detected signal, an electroacoustic transducer and a cavity with at least one membrane. The membrane, which is capable of moving in a vibratory manner, is part of a wall of a space, e.g. a duct wall. A sensor, which is disposed in the immediate vicinity of, in or on the membrane, detects the vibrations of the membrane. The sensor's signal, which is amplified and inverted by the amplifier, controls the membrane vibration via the electroacoustic transducer.

Description

Reaktiver SchalldämpferReactive silencer
Die Erfindung betrifft einen reaktiven Schalldämpfer nach dem Oberbegriff des An¬ spruchs 1 .The invention relates to a reactive silencer according to the preamble of claim 1.
Stand der TechnikState of the art
Die in der aktiven Lärmbekämpfung am meisten verfolgten und vielfach verfeinerten sogenannten Antischall-Systeme (Nelson, P.A., Elliott, S.J.: Active Control of Sound and Vibration. Academic Press Limited, London: 1 992) zur Schalldämpfung in Kanälen beruhen auf einer einfachen Konzeption, Bild 5. Eine ankommende, primäre Schall¬ welle wird von einem Mikrofon (8) erfaßt, das sich in Richtung der Lärmquelle deutlich abgesetzt vor den übrigen Komponenten im Kanal befindet. Das erfaßte Mikrofon¬ signal wird durch eine Signalverarbeitung ( 1 1 ) rechnerisch möglichst genau um 1 80° gedreht und dient zur Ansteuerung eines Lautsprechers (9), der schließlich die sekun¬ däre Schallwelle abstrahlt. In Schallausbreitungsrichtung überlagern sich beide Wellen im Idealfall bis zur Auslöschung. Die Überwachung dieser Auslöschung kann mit einem zweiten Mikrofon (10) in Schallausbreitungsrichtung erfolgen, dessen Signal gleichzeitig zur Anpassung der Signalverarbeitung an etwaige Veränderungen der Schallausbreitung im betreffenden Kanal dienen kann. Mit Hilfe moderner Signalpro¬ zessoren gelingt diese Prozedur zumindest unter Laborbedingungen sehr präzise. Ihr praktischer Einsatz ist jedoch durch hohe Empfindlichkeit bei überlagerter Luftströ¬ mung oder bei Temperaturschwankungen sowie durch hohen Aufwand an Elektronik und Signalverarbeitung gekennzeichnet. Mit einem anderen Ansatz wird in DE 40 27 51 1 ein hybrider Schalldämpfer, Bild 6, vorgeschlagen, bei dem an der Vorderseite eines bekannten, passiven Subsystems (12) durch ein rückseitig ergänzendes aktives Subsystem eine optimale akustische Impedanz der Kanalwand (1 ) realisiert werden soll. Den Ausgangspunkt bilden die akustischen Eigenschaften des passiven Subsystems, z.B. einer Schicht aus porösem Absorbermaterial. Die weiteren Elemente des hybriden Schalldämpfers dienen der Generierung einer rückseitigen Abschlußimpedanz des passiven Subsystems. Zur Erzwingung dieser Abschlußimpedanz ist der Schalldruck hinter dem passiven Subsy¬ stem mit einem Mikrofon (13) zu messen. Anschließend wird die Mikrofonspannung über einen Signalformer (1 5) an einen Lautsprecher (14) rückgekoppelt, an dessen Membranfläche sich die berechnete Impedanz einstellen soll. Dieses Verfahren setzt voraus, daß der in der DE 40 27 51 1 vorgeschlagene Signalformer erstens das Eigen¬ verhalten aller elektromechanischen Komponenten (Mikrofon, Lautsprecher, Box, etc.) kompensiert und zweitens dem System die gewünschte Abschlußimpedanz aufprägt. Die Eigenschaften der elektromechanischen Komponenten wurden gründlich unter¬ sucht und beschrieben. Danach ist die Anpassung lediglich durch komplexe und nur näherungsweise realisierbare Übertragungsfunktionen des Signalformers möglich.The so-called anti-noise systems (Nelson, PA, Elliott, SJ: Active Control of Sound and Vibration. Academic Press Limited, London: 1 992), which are most frequently pursued and often refined in active noise abatement, are based on a simple concept, Fig. 5. An incoming primary sound wave is picked up by a microphone (8), which is located clearly in the direction of the noise source in front of the other components in the duct. The recorded microphone signal is mathematically rotated as precisely as possible by 180 ° by signal processing (11) and is used to control a loudspeaker (9) which finally emits the secondary sound wave. Ideally, both waves overlap in the direction of sound propagation until extinction. This cancellation can be monitored with a second microphone (10) in the direction of sound propagation, the signal of which can simultaneously serve to adapt the signal processing to any changes in the sound propagation in the relevant channel. With the help of modern signal processors, this procedure succeeds very precisely, at least under laboratory conditions. However, their practical use is characterized by high sensitivity in the case of superimposed air flow or in the case of temperature fluctuations, and by high expenditure on electronics and signal processing. Another approach proposes a hybrid silencer, Figure 6, in DE 40 27 51 1, in which an optimal acoustic impedance of the duct wall (1) is realized on the front of a known, passive subsystem (12) by means of an active subsystem that supplements the rear should. The starting point is the acoustic properties of the passive subsystem, for example a layer made of porous absorber material. The other elements of the hybrid silencer are used to generate a rear impedance of the passive subsystem. To force this terminating impedance, the sound pressure behind the passive subsystem has to be measured with a microphone (13). The microphone voltage is then fed back via a signal former (15) to a loudspeaker (14), on the membrane surface of which the calculated impedance is to be set. This method presupposes that the signal former proposed in DE 40 27 51 1 firstly compensates for the behavior of all electromechanical components (microphone, loudspeaker, box, etc.) and secondly impresses the desired terminating impedance on the system. The properties of the electromechanical components have been thoroughly examined and described. Thereafter, the adaptation is only possible through complex and only approximately realizable transfer functions of the signal former.
Eine Spielart des Grundgedankens hybrider Schalldämpfer stellen aktive Helmholtz-Re- sonatoren nach - DE 42 26 885 und Spannheimer, H., Freymann, R., Fastl, H.: Akti¬ ver He-Imholtz-Resonator zur Dämpfung von Hohlraumeigenschwingungen. Fortschritte der Akustik - DAGA 1994, DPG-GmbH, Bad Honnef: 1994, S. 525-528, -dar, Bild 7, vorzugsweise mit dem Anwendungsbereich in Kraftfahrzeugen. Dabei repräsentiert ein herkömmlicher Helmholtz-Resonator das in der DE 40 27 51 1 beschriebene passive Subsystem, das auf seiner Rückseite aktiv beeinflußt wird. Im einzelnen ist der an sich bekannte Helmholtz-Resonator durch einen Hohlkörper (16) und eine Öffnung (17) definiert. Das außerhalb des Helmholtz-Resonators neben der Öffnung vorgese¬ hene Mikrofon (18) gibt die Information über den dort herrschenden Schalldruck, womit ein Übertragungssystem (20) mit speziellem (PDT-) Frequenz- und Zeitverhalten die erforderliche Spannung für den Lautsprecher (19) im Holhlkörper generiert. Dieser Lautsprecher bestimmt bzw. verändert das Übertragungsverhalten (Resonanzfrequenz) des ursprünglichen Helmholtz-Resonators. Der Lautsprecher im Hohlkörper dient damit der praktischen Vergrößerung (ailg. Veränderung) des Hohlkörpervolumens zur ver¬ besserten Schallabsorption des Helmholtz-Resonators bei tiefen Frequenzen. Das Ziel hier besteht demnach in der aktiven Verringerung der Resonanzfrequenz und damit der Schallabsorption des passiven Helmholtz-Resonators.Active Helmholtz resonators according to DE 42 26 885 and Spannheimer, H., Freymann, R., Fastl, H .: Akti¬ ver He-Imholtz resonator for damping internal cavity vibrations represent a variant of the basic idea of hybrid silencers. Progress in acoustics - DAGA 1994, DPG-GmbH, Bad Honnef: 1994, pp. 525-528, -dar, Figure 7, preferably with the area of application in motor vehicles. A conventional Helmholtz resonator represents the passive subsystem described in DE 40 27 51 1, which is actively influenced on its rear side. The known Helmholtz resonator is defined in detail by a hollow body (16) and an opening (17). The microphone (18) provided outside the Helmholtz resonator next to the opening provides information about the sound pressure prevailing there, so that a transmission system (20) with special (PDT) frequency and time behavior provides the required voltage for the loudspeaker (19). generated in the hollow body. This loudspeaker determines or changes the transmission behavior (resonance frequency) of the original Helmholtz resonator. The loudspeaker in the hollow body thus serves the practical enlargement (ailg. change) of the hollow body volume for improved sound absorption of the Helmholtz resonator at low frequencies. The goal here is to actively reduce the resonance frequency and thus the sound absorption of the passive Helmholtz resonator.
Aufgabe der Erfindung ist es, den Wirkungsgrad des reaktiven Schalldämpfers nach dem Oberbegriff des Anspruchs 1 zu erhöhen und den technischen Aufwand zu ver¬ ringern. Erfindungsgemäß wird dies durch den reaktiven Schalldämpfer nach Anspruch 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen ge¬ kennzeichnet.The object of the invention is to increase the efficiency of the reactive silencer according to the preamble of claim 1 and to reduce the technical outlay. According to the invention this is solved by the reactive silencer according to claim 1. Advantageous embodiments of the invention are characterized in the subclaims.
Die Erfindung bezieht sich auf einen reaktiven Schalldämpfer, bei dem sowohl die Er¬ fassung als auch die aktive Beeinflussung des Schallfeldes direkt und unmittelbar an der Kanalwand (1 ) erfolgt, Bild 1 . Den Grundbaustein stellt eine geschlossene, kom¬ pakte Kassette (2) dar, in der alle Komponenten zusammengefaßt sind. Ihre Frontseite ist Teil der Kanalwand und wird durch mindestens eine schwingfähige Membran (3), z.B. eine Lautsprechermembran, verkörpert. Diese Membran (3) bildet durch ihre flä¬ chenbezogene Masse mit dem dahinter befindlichen Hohlraum (4) des Kassettenge¬ häuses ein akustisches Resonanzsystem. Die auftretenden Schallwellen im Kanal re¬ gen dieses Resonanzsystem bei und in der Nähe seiner Eigenfrequenz zu Schwingun¬ gen an. Die Aktivierung erfolgt mit Hilfe eines Sensors (5), der in unmittelbarer Nähe, in oder an der Membran (3) angeordnet ist und die Membranschwingungen detektiert. Diese Sensorfunktion können z.B. Mikrofone, Körperschallaufnehmer oder optische Bewegungssensoren übernehmen. Das Ausgangssignal des Sensors dient nach einer invertierenden, linearen Verstärkung (6) der Ansteuerung eines elektroakustischen Wandlers (7), z.B. der Schwingspule eines Lautsprechers.The invention relates to a reactive silencer in which both the detection and the active influencing of the sound field take place directly and directly on the duct wall (1), Figure 1. The basic component is a closed, compact cassette (2) in which all components are combined. Its front is part of the duct wall and is covered by at least one vibratable membrane (3), e.g. a loudspeaker membrane, embodied. Due to its mass per unit area, this membrane (3) forms an acoustic resonance system with the cavity (4) of the cassette housing located behind it. The sound waves occurring in the channel stimulate this resonance system to vibrate at and near its natural frequency. The activation takes place with the help of a sensor (5), which is arranged in the immediate vicinity, in or on the membrane (3) and detects the membrane vibrations. This sensor function can e.g. Take over microphones, structure-borne sound sensors or optical motion sensors. After an inverting, linear amplification (6), the output signal of the sensor is used to control an electroacoustic transducer (7), e.g. the voice coil of a speaker.
Im Ergebnis wird die Membran zu stärkeren Schwingungen gezwungen, der Schall¬ druck an der ausgekleideten Wandfläche damit weiter reduziert und die Schallwelle stärker gedämpft.As a result, the membrane is forced to vibrate more, the sound pressure on the lined wall surface is further reduced and the sound wave is dampened more.
Die Form des Gehäuses (2) ist variierbar, da lediglich das Volumen des Hohlraumes (4) die Frequenzcharakteristik beeinflußt. Um Hohlraumresonanzen zu unterdrücken, können Absorber im Innern des nach außen schallundurchlässigen Gehäuses (2) vor¬ gesehen sein. Zur spektralen Anpassung des Resonanzsystems kann weiterhin die flä¬ chenbezogene Membranmasse, z.B. durch unterschiedliche Lautsprecher, verwendet werden. Der prinzipbedingte lineare Verstärker (6) enthält keinerlei Frequenzbewer¬ tung des Sensorsignals, um die mit Filtern, Signalformern oder anderen Übertra- gungssystemen verbundenen unerwünschten Phasenverschiebungen zu vermeiden. Dadurch unterbleiben störende akustische Wechselwirkungen zwischen benachbarten Kassetten und großflächige, reaktive Schalldämpfer aus vielen Einzelkassetten z.B. in reaktiven Schalldämpferkulissen, Bild 2, werden möglich. Die Bereitstellung der Be¬ triebsspannungen für die Sensoren (5) und Verstärker (6) erfolgt durch konventionelle Stromversorgungen oder Batterien. Die gemessene Einfügungsdämpfung eines bei¬ spielhaften reaktiven Schalldämpfers, Bild 3, bestehend aus 4 Kassetten, ist im Bild 4 dargestellt.The shape of the housing (2) can be varied since only the volume of the cavity (4) influences the frequency characteristic. In order to suppress cavity resonances, absorbers can be provided in the interior of the housing (2) which is soundproof to the outside. For the spectral adaptation of the resonance system, the area-related membrane mass can also be used, for example through different loudspeakers. The principle-based linear amplifier (6) does not contain any frequency evaluation of the sensor signal in order to compare it with filters, signal formers or other transmissions. to avoid undesirable phase shifts associated with systems. This prevents disturbing acoustic interactions between adjacent cassettes and large-area, reactive silencers from many individual cassettes, for example in reactive silencers, Figure 2. The operating voltages for the sensors (5) and amplifiers (6) are provided by conventional power supplies or batteries. The measured insertion loss of an exemplary reactive silencer, Figure 3, consisting of 4 cassettes, is shown in Figure 4.
Vorteile reaktiver Schalldämpfer gegenüber dem Stand der Technik Aus dem Grundprinzip des reaktiven Schalldämpfers, d.h. der Ausnutzung bzw. Ver¬ stärkung der Membranschwingungen als Schallfeld-Abbildung direkt in der Kanal¬ wand, ergeben sich folgende Vorteile gegenüber bestehenden aktiven Schalldämpfern.Advantages of reactive silencers over the prior art From the basic principle of reactive silencers, i.e. the utilization or amplification of the membrane vibrations as a sound field image directly in the duct wall results in the following advantages over existing active silencers.
Der reaktive Schalldämpfer kommt ohne passive Subsysteme (poröse Absorber, Helmholtz-Resonatoren etc.) aus. Diese Tatsache sowie die räumliche Konzentration von Membran (3) und Sensor (5) in der Kanalwand ermöglichen die Verwendung eines einfachen Verstärkers (6). Dadurch können alle Komponenten des reaktiven Schall¬ dämpfers problemlos in einem kompakten Gehäuse (2) integriert werden.The reactive silencer works without passive subsystems (porous absorbers, Helmholtz resonators etc.). This fact as well as the spatial concentration of membrane (3) and sensor (5) in the channel wall enable the use of a simple amplifier (6). As a result, all components of the reactive silencer can be easily integrated in a compact housing (2).
Die räumliche Kaskadierung mehrerer, benachbarter reaktiver Schalldämpfer in der Kanalwand oder in Schalldämpferkulissen ist möglich und führt zu entsprechend höhe¬ rer Schalldämpfung. Die Dämpfungswirkung kaskadierter, reaktiver Schalldämpfer im Kanal ist praktisch nur durch Schallnebenwege (analog zu passiven Schalldämpfern) begrenzt.The spatial cascading of several adjacent reactive silencers in the duct wall or in silencer backdrops is possible and leads to a correspondingly higher level of sound absorption. The damping effect of cascaded, reactive silencers in the duct is practically only limited by secondary sound paths (analogous to passive silencers).
Der reaktive Schalldämpfer ist an beliebige Schallfelder und an beliebige Schallfeldbe¬ grenzungen, z.B. Kanalumlenkungen, adaptierbar. Die reaktiven Schalldämpferkasset¬ ten und damit alle elektroakustischen Komponenten können mit Hilfe akustisch durchlässiger Abdeckungen gegen im Kanal auftretende physikalische und chemische Belastungen geschützt werden.The reactive silencer is connected to any sound field and to any sound field limitation, e.g. Channel redirection, adaptable. The reactive silencer cassettes and thus all electroacoustic components can be protected against physical and chemical loads occurring in the duct with the aid of acoustically permeable covers.
Eine Ausgestaltung des reaktiven Schalldämpfers sieht bei der Verwendung eines Mikrofons als Sensor (5) dessen Positionierung hinter der Membran (3), d.h. im Hohl¬ raum (4) der Kassette (2) vor. Das Funktionsprinzip des reaktiven Schalldämpfers ist nicht nur bei ebenen Wellen in vergleichsweise engen Kanälen anwendbar, sondern bewirkt auch eine Dämpfung modaler Schallfelder in beliebigen Kanälen oder Räumen. In diesen Anwendungsfällen verringern die schwingenden Membranen der reaktiven Kassetten ebenfalls flächenhaft den Schalldruck an der ausgekleideten Wandfläche und dämpfen das vorhandene Schallfeld.When the microphone is used as a sensor (5), the reactive silencer is designed to be positioned behind the membrane (3), ie in the cavity (4) of the cassette (2). The principle of operation of the reactive silencer is not only applicable to flat waves in comparatively narrow channels, but also also effects a damping of modal sound fields in any channels or rooms. In these applications, the vibrating membranes of the reactive cassettes also reduce the surface area of the sound pressure on the lined wall surface and dampen the existing sound field.
Beschreibungen der BilderDescriptions of the pictures
Bild 1 : Beispielhafte Ausführung einer reaktiven Schalldämpferkassette in einer Kanalwand ( 1 ), bestehend aus dem Gehäuse (2) mit mindestens einer Membran (3) vor einem Hohlraum (4), einem Sensor (5), einem linearen Verstärker (6) und einem elektroakustischen Wandler (7).Figure 1: Exemplary design of a reactive silencer cassette in a duct wall (1), consisting of the housing (2) with at least one membrane (3) in front of a cavity (4), a sensor (5), a linear amplifier (6) and one electroacoustic transducer (7).
Bild 2 : Kaskadierte Anordnung reaktiver Schalldämpferkassetten in einer Schalldämp¬ ferkulisse.Figure 2: Cascaded arrangement of reactive silencer cassettes in a silencer backdrop.
Bild 3 : Ausführungsbeispiel eines reaktiven Schalldämpfers bestehend aus 4 Kasset¬ ten in eine. Kanalwand ( 1 ) bei einem Kanalquerschnitt von 0,25 m x 0,25 m Bild 4 : Gemessene Einfügungsdämpfuπg des beispielhaften reaktiven Schall-dämpfers in Bild 3. Figure 3: Embodiment of a reactive silencer consisting of 4 cassettes in one. Duct wall (1) with a duct cross section of 0.25 m x 0.25 m Figure 4: Measured insertion loss of the exemplary reactive silencer in Figure 3.

Claims

Neue PatentansprücheNew claims
Reaktiver Schalldampfer mit einem Sensor (5) zur Aufnahme einer Schallgroße in einem Raum, z B Luftungskanal, bestehend aus einem Signalverstarker (6) zur Ver¬ stärkung des aufgenommenen Signals, einem elektroakustischen Wandler (7) sowie einem Hohlraum (4) mit mindestens einer Membran (3),Reactive muffler with a sensor (5) for recording a sound quantity in a room, e.g. ventilation duct, consisting of a signal amplifier (6) for amplifying the recorded signal, an electroacoustic transducer (7) and a cavity (4) with at least one Membrane (3),
dadurch gekennzeichnet,characterized,
daß die schwingfahige Membran (3) Teil einer Wand des Raumes, z B derthat the vibratable membrane (3) is part of a wall of the room, for example the
Kanalwand (1), ist, der Sensor (5) in unmittelbarer Nahe oder in oder an der Membran (3) angeordnet ist und die Schwingungen der Membran detektiert, und das mittels des Verstärkers (6) verstärkte und invertierte Sensorsignal über den elektroakustischen Wandler (7) die Membranschwingung steuertChannel wall (1), the sensor (5) is arranged in the immediate vicinity or in or on the membrane (3) and detects the vibrations of the membrane, and the sensor signal amplified and inverted by means of the amplifier (6) via the electroacoustic transducer ( 7) controls the membrane vibration
Reaktiver Schalldampfer nach Anspruch 1,A reactive silencer according to claim 1,
dadurch gekennzeichnet,characterized,
daß die Membranmasse und/oder das Volumen des Hohlraums (4) an das zu damp¬ fende Schallfeld angepaßt wird.that the membrane mass and / or the volume of the cavity (4) is adapted to the sound field to be steamed.
Reaktiver Schalldampfer nach Anspruch 1,A reactive silencer according to claim 1,
dadurch gekennzeichnet,characterized,
daß der Sensor (5) ein akustischer oder optischer Sensor ist und den Druck, die Schnelle oder die Bewegung der Membran (3) detektiert Reaktiver Schalldampfer nach Anspruch 1 ,that the sensor (5) is an acoustic or optical sensor and detects the pressure, the speed or the movement of the membrane (3) A reactive silencer according to claim 1,
dadurch gekennzeichnet,characterized,
daß der Verstarker (6) ein einfacher linearer Verstarker istthat the amplifier (6) is a simple linear amplifier
Reaktiver Schalldampfer nach Anspruch 1 ,A reactive silencer according to claim 1,
dadurch gekennzeichnet,characterized,
daß der elektroakustische Wandler (7) ein einfacher linearer Lautsprecher istthat the electroacoustic transducer (7) is a simple linear speaker
Reaktiver Schalldampfer nach Anspruch 1 ,A reactive silencer according to claim 1,
dadurch gekennzeichnet,characterized,
daß der Hohlraum (4) von einem schallundurchlassigen Gehäuse umgeben istthat the cavity (4) is surrounded by a soundproof housing
Reaktiver Schalldampfer nach Anspruch 1 ,A reactive silencer according to claim 1,
dadurch gekennzeichnet,characterized,
daß eine akustisch durchlassige Abdeckung vor oder auf der Membran (3) vorgese¬ hen istthat an acoustically permeable cover is provided in front of or on the membrane (3)
Reaktiver Schalldampfer nach Anspruch 1 ,A reactive silencer according to claim 1,
dadurch gekennzeichnet,characterized,
daß mehrere Schalldampfer nebeneinander flachig in einer Kanalwand (1), einem Stromungskanal oder in Schalldampferkulissen, angeordnet sind that several silencers are arranged side by side flat in a channel wall (1), a flow channel or in silencer backdrops
EP97923077A 1996-05-14 1997-05-14 Reactive sound absorber Expired - Lifetime EP0898774B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI9730209T SI0898774T1 (en) 1996-05-14 1997-05-14 Reactive sound absorber

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19619466 1996-05-14
DE19619466 1996-05-14
PCT/EP1997/002471 WO1997043754A1 (en) 1996-05-14 1997-05-14 Reactive sound absorber

Publications (2)

Publication Number Publication Date
EP0898774A1 true EP0898774A1 (en) 1999-03-03
EP0898774B1 EP0898774B1 (en) 2001-08-01

Family

ID=7794315

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97923077A Expired - Lifetime EP0898774B1 (en) 1996-05-14 1997-05-14 Reactive sound absorber

Country Status (9)

Country Link
US (1) US6385321B1 (en)
EP (1) EP0898774B1 (en)
AT (1) ATE203849T1 (en)
DE (1) DE59704196D1 (en)
DK (1) DK0898774T3 (en)
ES (1) ES2162292T3 (en)
GR (1) GR3037001T3 (en)
PT (1) PT898774E (en)
WO (1) WO1997043754A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013210709A1 (en) 2013-06-07 2014-12-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Schallstrahler arrangement for active silencers
WO2017077233A1 (en) 2015-11-02 2017-05-11 Technofirst Apparatus for natural ventilation of a room having a ventilation passage combined with a noise absorber
WO2017077231A1 (en) 2015-11-02 2017-05-11 Technofirst Apparatus for natural ventilation of a room
WO2017077235A1 (en) 2015-11-02 2017-05-11 Technofirst Unit for the natural ventilation of a room, provided with a sound absorber

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6778673B1 (en) * 1998-10-28 2004-08-17 Maximilian Hans Hobelsberger Tunable active sound absorbers
DE19861018C2 (en) 1998-12-15 2001-06-13 Fraunhofer Ges Forschung Controlled acoustic waveguide for sound absorption
GB9920883D0 (en) * 1999-09-03 1999-11-10 Titon Hardware Ventilation assemblies
DE10019543C2 (en) * 2000-04-20 2002-03-07 Fraunhofer Ges Forschung Supply air
US6940983B2 (en) * 2000-05-19 2005-09-06 Siemens Vdo Automotive Inc. Resonator for active noise attenuation system
DE102005048905B3 (en) * 2005-10-10 2006-08-31 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Active channel noise attenuator having several acoustic sensors to detect the noise field parameters at the loud speaker
DE102006010558A1 (en) * 2006-03-06 2007-09-13 J. Eberspächer GmbH & Co. KG Active silencer for an exhaust system
DE102006042224B3 (en) * 2006-09-06 2008-01-17 J. Eberspächer GmbH & Co. KG Active sound absorber for exhaust-gas system of internal-combustion engine particularly in motor vehicle, has anti sound generator comprises membrane drive, with which anti sound generator is coupled with external wall of sound absorber
US7789194B2 (en) * 2007-04-20 2010-09-07 Cardinal Health 212, Inc. Acoustic attenuation chamber
DE102007032600A1 (en) * 2007-07-11 2009-01-15 Deutsches Zentrum für Luft- und Raumfahrt e.V. Apparatus and method for improving the attenuation of acoustic waves
DE102009041890A1 (en) 2009-09-18 2011-06-01 Benteler Automobiltechnik Gmbh Silencer i.e. exhaust silencer, for damping fluid- or acoustic waves in exhaust gas of exhaust system of motor vehicle, has actuating element provided with electric oscillator circuit and electroacoustic converter
AT510851B1 (en) * 2011-03-16 2012-07-15 Schertler Sa VIBRATION DETECTION DEVICE FOR FREQUENCIES IN THE HEARING AREA
EP2901711B1 (en) * 2012-09-24 2021-04-07 Cirrus Logic International Semiconductor Limited Control and protection of loudspeakers

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2632474B1 (en) * 1988-06-01 1991-04-26 Saint Louis Inst DEVICE FOR ACTIVE MITIGATION OF VIBRATION AND IN PARTICULAR NOISE WITHOUT ACOUSTIC DELAY
US5233137A (en) * 1990-04-25 1993-08-03 Ford Motor Company Protective anc loudspeaker membrane
DE4027511C1 (en) * 1990-08-30 1991-10-02 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V., 8000 Muenchen, De
US6160892A (en) * 1993-12-30 2000-12-12 Bbn Corporation Active muffler
DE4419933A1 (en) * 1994-06-08 1995-12-14 Gerhard Dr Lindner Piezoelectric polymer film acoustic generator for active cancellation
US6078671A (en) * 1996-09-05 2000-06-20 Ebara Corporation Silencer for attenuating a sound or noise transmitted through an air passage of a duct

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9743754A1 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013210709A1 (en) 2013-06-07 2014-12-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Schallstrahler arrangement for active silencers
WO2017077233A1 (en) 2015-11-02 2017-05-11 Technofirst Apparatus for natural ventilation of a room having a ventilation passage combined with a noise absorber
WO2017077231A1 (en) 2015-11-02 2017-05-11 Technofirst Apparatus for natural ventilation of a room
WO2017077235A1 (en) 2015-11-02 2017-05-11 Technofirst Unit for the natural ventilation of a room, provided with a sound absorber

Also Published As

Publication number Publication date
GR3037001T3 (en) 2002-01-31
DE59704196D1 (en) 2001-09-06
US6385321B1 (en) 2002-05-07
ES2162292T3 (en) 2001-12-16
PT898774E (en) 2002-01-30
EP0898774B1 (en) 2001-08-01
WO1997043754A1 (en) 1997-11-20
DK0898774T3 (en) 2001-10-22
ATE203849T1 (en) 2001-08-15

Similar Documents

Publication Publication Date Title
EP0898774A1 (en) Reactive sound absorber
EP1141936B1 (en) Controlled acoustic waveguide for soundproofing
US4837834A (en) Active acoustic attenuation system with differential filtering
AU665565B2 (en) Noise reduction system
DE102005037034B4 (en) Method and system for controlling the energy density using a two-dimensional energy density sensor
US9558732B2 (en) Active noise control system
EP0481450B1 (en) Silencer arrangement for internal combustion engines
US5848169A (en) Feedback acoustic energy dissipating device with compensator
JPH0692728B2 (en) Active acoustic control system
JP2008219933A (en) Acoustic element and method for sound processing
EP1717433A2 (en) Active intake silencer
Cuesta et al. Active control of the exhaust noise radiated by an enclosed generator
Kim et al. Active vibration isolation using an electrical damper or an electrical dynamic absorber
EP1329876A2 (en) Resonator for damping sound in a sound conducting tube
EP3225038B1 (en) Low frequency active acoustic absorber by acoustic velocity control through porous resistive layers
US5974155A (en) System and method for actively damping boom noise
WO1997003536A1 (en) Loudspeaker circuit with means for monitoring the pressure at the speaker diaphragm, means for monitoring the velocity of the speaker diaphragm and a feedback circuit
Bai et al. Robust control of a sensorless bass-enhanced moving-coil loudspeaker system
US6711267B1 (en) Method and apparatus for processing sound
US4653101A (en) Audio reverberator
Boz et al. Analog velocity feedback controller for vibration suppression and sound attenuation
Blondel et al. Electropneumatic transducers as secondary actuators for active noise control part III: Experimental control in ducts with the subsonic source
Elliott Active control of structural vibration
WO2007042223A1 (en) Active channel silencer
Shoureshi et al. Applications of Active Noise and Vibration Control in Automotive Vehicles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19981022

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: RO PAYMENT 981022;SI PAYMENT 981022

17Q First examination report despatched

Effective date: 19990908

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: RO PAYMENT 19981022;SI PAYMENT 19981022

REF Corresponds to:

Ref document number: 203849

Country of ref document: AT

Date of ref document: 20010815

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PA ALDO ROEMPLER

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59704196

Country of ref document: DE

Date of ref document: 20010906

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2162292

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20011217

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20011026

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20010401874

Country of ref document: GR

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: SI

Ref legal event code: IF

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: ALDO ROEMPLER PATENTANWALT;BRENDENWEG 11 POSTFACH 154;9424 RHEINECK (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: CL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20130522

Year of fee payment: 17

Ref country code: LU

Payment date: 20130528

Year of fee payment: 17

Ref country code: MC

Payment date: 20130521

Year of fee payment: 17

Ref country code: IE

Payment date: 20130521

Year of fee payment: 17

Ref country code: SE

Payment date: 20130521

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20130520

Year of fee payment: 17

Ref country code: FI

Payment date: 20130520

Year of fee payment: 17

Ref country code: PT

Payment date: 20130513

Year of fee payment: 17

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20141114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140514

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20140531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140602

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140514

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141203

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140515

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141114

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20010401874

Country of ref document: GR

Effective date: 20141203

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20150106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140514

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20160523

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160526

Year of fee payment: 20

Ref country code: DE

Payment date: 20160525

Year of fee payment: 20

Ref country code: ES

Payment date: 20160523

Year of fee payment: 20

Ref country code: GB

Payment date: 20160523

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160524

Year of fee payment: 20

Ref country code: AT

Payment date: 20160519

Year of fee payment: 20

Ref country code: FR

Payment date: 20160523

Year of fee payment: 20

Ref country code: BE

Payment date: 20160523

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59704196

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20170513

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20170513

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 203849

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170513

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170515