EP0895146A1 - Dispositif de commande du point de fonctionnement d'un générateur d'énergie électrique, notamment d'un générateur solaire - Google Patents

Dispositif de commande du point de fonctionnement d'un générateur d'énergie électrique, notamment d'un générateur solaire Download PDF

Info

Publication number
EP0895146A1
EP0895146A1 EP98401903A EP98401903A EP0895146A1 EP 0895146 A1 EP0895146 A1 EP 0895146A1 EP 98401903 A EP98401903 A EP 98401903A EP 98401903 A EP98401903 A EP 98401903A EP 0895146 A1 EP0895146 A1 EP 0895146A1
Authority
EP
European Patent Office
Prior art keywords
generator
signal
transformer
primary winding
operating point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98401903A
Other languages
German (de)
English (en)
Other versions
EP0895146B1 (fr
Inventor
Alphonse Barnaba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National dEtudes Spatiales CNES
Original Assignee
Centre National dEtudes Spatiales CNES
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National dEtudes Spatiales CNES filed Critical Centre National dEtudes Spatiales CNES
Publication of EP0895146A1 publication Critical patent/EP0895146A1/fr
Application granted granted Critical
Publication of EP0895146B1 publication Critical patent/EP0895146B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell

Definitions

  • the present invention relates to a device generator operating point control electrical energy, including a solar generator supplying a load and, more particularly, to such a device designed to operate the generator at its maximum power.
  • the device described includes a width modulation converter of pulses coupled to a current generator, means delivering signals representative of the voltage and of the current delivered by said generator to said converter, means supplied by said signals to signal the existence or not of a state of dropping out of the converter, a width regulation loop pulse itself comprising means for measuring the voltage delivered by the converter to a load, a differential amplifier, inverter, integrator and pulse width modulation means controlling said converter.
  • the device described makes it possible to eliminate the dropout phenomenon that is observed when the power called by the load becomes greater than the maximum power that the generator can provide. he also allows to regulate the operating point of feeding the load to a corresponding position at the maximum power that this supply can deliver as in any other point of the characteristic generator current / voltage. It is however relatively complex, including two sensors for current intensity and voltage delivered by the generator, and therefore expensive.
  • the present invention therefore aims to achieve a operating point control device of a solar generator which does not have the disadvantages mentioned above devices of the technique which is therefore simple and of little realization expensive, allowing flexible fixing and regulation the position of the generator operating point, any point of the current / voltage characteristic of this one, and in particular at the point corresponding to the supply of maximum electrical power by said generator.
  • This object of the invention is achieved, as well as other which will appear on reading the description which will track, with a point of control device operation of an electric power generator supplying a load, this device being remarkable in what it includes a) a storage transformer of energy, with primary and secondary sense windings reverse, the primary winding being supplied by the generator under the control of a switch, winding secondary being connected in series with a diode and with the load, b) a detector sensitive to the intensity of the average current flowing in the primary winding of the transformer to deliver a signal representative of this intensity, and c) means for controlling the switch switching, sensitive to said signal for establish a primary winding in the transformer average current corresponding to an operating point predetermined generator.
  • this device for simple structure, with a single detector, is therefore economical, and yet very flexible to operate.
  • this detector is constituted by a second energy storage transformer comprising primary and secondary windings in opposite directions, the primary winding being traversed by the current flowing in the primary winding of the first transformer, the secondary winding being placed in series with a diode and a load, the signal delivered by the detector being sampled at the terminals of said load.
  • control means thereof include a signal-powered microcontroller delivered by the detector and representative of the current means circulating in the primary winding of the first electric storage transformer and a amplitude-duration converter supplied by a signal setpoint developed by the microcontroller, to control switching the switch with a signal to pulse width modulation.
  • the graph of this characteristic has, as shown, a generally rectangular shape comprising a part substantially parallel to the axis of the voltages and another part substantially parallel to the axis of the intensities, these two parts being connected by a rounded part.
  • a solar generator ordinarily feeds into a storage battery and into various consumers of electrical energy constituted by satellite equipment. The generator operating point is then located at the intersection of its current / voltage characteristic with a load line passing the origin of the coordinates.
  • This point can thus be located on various parts of the characteristic, for example at its intersection with the load line D 1 , on the part of this characteristic where the current remains substantially constant, ie when the generator operates as a "current generator” . It could likewise be located on the part of the characteristic where the voltage is substantially constant, if we are looking for operation as a "voltage generator”.
  • This figure shows the generator solar GS discharging on a load represented by a storage battery 1 and a resistor 2 symbolizing various consumers of electrical energy on board a satellite for example.
  • the GS generator delivers on this load through a energy storage transformer 3, the primary 5 and secondary 6 windings are meaningless inverses as indicated by the points placed on these windings.
  • the primary winding 5 is supplied by the generator, under the control of a switch 7, advantageously electronic, placed in series with this winding between a terminal thereof and ground.
  • transformer 3 is associated with a diode 8 arranged in series with the winding 6 and a capacitor 9 mounted between the terminals of the winding, in parallel with the load 1.2.
  • Another capacitor 10 is mounted between the output of the GS generator and the mass. Seen from transformer 3, this capacitor shows up, in dynamic regime, the generator GS codes a voltage generator.
  • this one benefits from the galvanic isolation provided by the presence of this transformer between the generator and the charge. Furthermore, as will be seen later, this power supply gives the device according to the invention a great flexibility, allowing to fix the point of operation of the solar generator at any point in its current / voltage characteristic and in particular at the point corresponding to the provision of maximum power by this generator.
  • the device further comprises a detector 11 sensitive to the average current I p flowing in the primary winding of the transformer 3 to deliver a voltage signal V det representative of the intensity of this current.
  • This signal is delivered to control means constituted by a microcontroller 12, for example, this microcontroller being duly programmed to form, from the signal V det a reference signal V cons delivered to an amplitude-duration converter 13 controlling the switch 7.
  • the means 11, 12, 13 thus constitute a loop for regulating the average current passing through the primary winding 5 of the transformer 3, the regulation of this average current at a predetermined value making it possible to fix the operating point of the solar generator, as will be explained later.
  • the detector 11 is shown in more detail in Figure 3.
  • this detector is constituted by a second transformer 14 with energy accumulation, operating in "heavy" mode whose primary winding 15 is supplied by the current I p delivered by the generator to the primary winding of the first transformer 3, and whose secondary winding 16 is connected in series with a diode 17.
  • the voltage V det is taken between the terminals of a load constituted by a resistor 18 and a capacitor 19 mounted in parallel between the diode 7 and a terminal of the secondary winding 16.
  • this characteristic of the graph of V det as a function of V GS is used to extract from the solar generator its maximum power, and this using a single detector, the detector 11 of the mean current passing through the primary winding of the transformer 14, a particularly advantageous solution both from the economic point of view and from the reliability point of view.
  • adequate programming of the microcontroller 12 is used which is suitable for calculating the value of a reference signal V cons delivered to the amplitude-duration converter 13, shown in more detail in FIG. 5.
  • the output of comparator 20 switches one or the other of two transistors 23, 24 of opposite type, whose emitter / collector circuits are connected in series between a line at voltage V dd and ground so as to produce a signal S 2 of the same period as S 1 , and whose duty cycle t / T is a function of V cons .
  • This signal S 2 controls the switching of the electronic switch 7, as shown in FIG. 2.
  • This switch can be constituted by a transistor whose emitter circuit / collector is placed in series with the primary winding 5 of the transformer 3 and whose base is controlled by the signal S 2 .
  • the microcontroller 12 can be programmed to search, from knowledge of the graph of V det (see FIG. 4), the value of V cons to be delivered to the amplitude-duration converter 13 so that the generator solar works at its maximum power, taking into account the level of current illumination of the generator solar cells.
  • the microcontroller can, for example, control variations of the set value V cons , of excursion V ac , the changes in the measurements x 1 , x 2 , x 3 , ... of V det provided by the detector 11 during this excursion, and in particular the direction of the variations of these measurements, making it possible to locate the position x 2 of the vertex of the graph and therefore the value V cons corresponding to this vertex.
  • V cons controlled by the microcontroller conventionally operate in steps.
  • the pitch can easily be varied depending, for example, on the position of the operating point of the solar generator. If we consider that the dynamic operation of the device according to the invention is very different depending on whether it operates as a current generator or as a voltage generator, this possibility of variation of the pitch of the control is advantageous because it makes it possible to adapt this dynamic operation resulting from the selected operating point, for example to the right or left of the point corresponding to the supply of maximum power.
  • the invention allows achieve the set goals of providing a operating point control device of a solar generator of electrical energy, allowing operate this generator at maximum power as well as any other weaker power, which is particularly advantageous for adapting this power to changes in consumption by consumers fed, especially when these have a battery accumulators which reaches its maximum charge.
  • the device is also simple, and therefore of realization economical and flexible, thanks to the use of a microcontroller, which allows automatic management of the device, without maintenance or recalibration.
  • the invention is not limited to the mode described and depicted as an example. This is how the device according to the invention can be adapted to generators electric power other than cell type solar, especially when the characteristic current / voltage of this generator has a shape which is close to that of a solar generator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)
  • Control Of Eletrric Generators (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

Le dispositif comprend a) un transformateur (3) à accumulation d'énergie, à enroulements primaire (5) et secondaire (6) de sens inverses, l'enroulement primaire (5) étant alimenté par le générateur (GS) sous la commande d'un interrupteur (7), l'enroulement secondaire (6) étant connecté en série avec une diode (8) et avec la charge (1,2), b) un détecteur (11) sensible à l'intensité du courant moyen (Ip) circulant dans l'enroulement primaire (5) du transformateur (3) pour délivrer un signal (Vdét) représentatif de cette intensitté, et c) des moyens de commande de la commutation de l'interrupteur (7), sensibles audit signal (Vdét) pour établir dans l'enroulement primaire (5) du transformateur (3) un courant moyen (Ip) correspondant à un point de fonctionnement prédéterminé du générateur GS. <IMAGE>

Description

La présente invention est relative à un dispositif de commande du point de fonctionnement d'un générateur d'énergie électrique, notamment d'un générateur solaire alimentant une charge et, plus particulièrement, à un tel dispositif conçu pour faire fonctionner le générateur à sa puissance maximale.
On connaít un tel dispositif du brevet français n° 2 626 689 au nom de la demanderesse. Le dispositif décrit comprend un convertisseur à modulation de largeur d'impulsions couplé à un générateur de courant, des moyens délivrant des signaux représentatifs de la tension et du courant délivré par ledit générateur audit convertisseur, des moyens alimentés par lesdits signaux pour signaler l'existence ou non d'un état de décrochage du convertisseur, une boucle de régulation de la largeur d'impulsions comprenant elle-même des moyens de mesure de la tension délivrée par le convertisseur à une charge, un amplificateur différentiel, un inverseur, un intégrateur et des moyens de modulation de largeur d'impulsions commandant ledit convertisseur.
Le dispositif décrit permet bien de supprimer le phénomène de décrochage que l'on observe quand la puissance appelée par la charge devient supérieure à la puissance maximale que peut fournir le générateur. Il permet aussi de réguler le point de fonctionnement de l'alimentation de la charge en une position correspondant à la puissance maximale que peut délivrer cette alimentation comme en tout autre point de la caractéristique courant/tension du générateur. Il est cependant relativement complexe, comprenant entre autres deux capteurs pour l'intensité et la tension du courant délivré par le générateur, et donc coûteux.
Or, il existe actuellement un besoin pour un système d'alimentation de divers consommateurs d'énergie électrique installés dans des véhicules spatiaux tels que des satellites voués à des missions dites "économiques", dispositifs capable de réguler le fonctionnement de l'alimentation à sa puissance maximale ou à d'autres niveaux de puissance, et ceci tout en étant de réalisation aussi peu coûteuse que possible.
A cet égard, on connaít de la publication intitulée "A minimum component photovoltaic array maximum power point tracker" par M.J. Case et J.J. Schoeman, présentée à la Conférence dite "European Space Power Conference" qui s'est tenue à Graz, en Autriche, du 23 au 27 août 1993, un dispositif de poursuite du point de puissance maximale d'un générateur solaire, relativement simple, constitué d'un générateur d'impulsions, d'un circuit échantillonneur/bloqueur, d'un modulateur de largeur d'impulsions, d'un transistor de puissance à effet de champ et d'une inductance. Cependant, ce dispositif exige la détermination et l'utilisation d'un rapport entre la tension délivrée à la puissance maximale et la tension délivrée en circuit ouvert, rapport qui peut être faussé en cas de mauvais fonctionnement de certaines cellules d'un générateur solaire, du fait de salissures ou de détériorations, par exemple. En outre, ce dispositif n'est utilisable que lorsque le générateur solaire fonctionne en générateur de courant, alors qu'un tel générateur peut aussi, du fait de la forme sensiblement rectangulaire de sa caractéristique IGS= f (VGS) représentée à la figure 1 du dessin annexé, fonctionner en générateur de tension.
La présente invention a donc pour but de réaliser un dispositif de commande du point de fonctionnement d'un générateur solaire qui ne présente pas les inconvénients évoqués ci-dessus des dispositifs de la technique antérieure et qui soit donc simple et de réalisation peu coûteuse, permettant de fixer et réguler avec souplesse la position du point de fonctionnement du générateur, en tout point de la caractéristique courant/tension de celui-ci, et notamment au point correspondant à la fourniture d'une puissance électrique maximale par ledit générateur.
On atteint ce but de l'invention, ainsi que d'autres qui apparaítront à la lecture de la description qui va suivre, avec un dispositif de commande du point de fonctionnement d'un générateur d'énergie électrique alimentant une charge, ce dispositif étant remarquable en ce qu'il comprend a) un transformateur à accumulation d'énergie, à enroulements primaire et secondaire de sens inverses, l'enroulement primaire étant alimenté par le générateur sous la commande d'un interrupteur, l'enroulement secondaire étant connecté en série avec une diode et avec la charge, b) un détecteur sensible à l'intensité du courant moyen circulant dans l'enroulement primaire du tranformateur pour délivrer un signal représentatif de cette intensité, et c) des moyens de commande de la commutation de l'interrupteur, sensible audit signal pour établir dans l'enroulement primaire du transformateur un courant moyen correspondant à un point de fonctionnement prédéterminé du générateur.
Comme on le verra plus loin, ce dispositif de structure simple, à un seul détecteur, est donc économique, et cependant de fonctionnement très souple.
Suivant une caractéristique du dispositif selon l'invention, ce détecteur est constitué par un deuxième transformateur à accumulation d'énergie comprenant des enroulements primaire et secondaire de sens inverses, l'enroulement primaire étant traversé par le courant circulant dans l'enroulement primaire du premier transformateur, l'enroulement secondaire étant placé en série avec une diode et une charge, le signal délivré par le détecteur étant prélevé aux bornes de ladite charge.
Suivant une autre caractéristique du dispositif suivant l'invention, les moyens de commande de celui-ci comprennent un microcontrôleur alimenté par le signal délivré par le détecteur et représentatif du courant moyen circulant dans l'enroulement primaire du premier transformateur à accumulation d'énergie électrique et un convertisseur amplitude-durée alimenté par un signal de consigne élaboré par le microcontrôleur, pour commander la commutation de l'interrupteur avec un signal à modulation de largeur d'impulsions.
D'autres caractéristiques et avantages de la présente invention apparaítront à la lecture de la description qui va suivre et à l'examen du dessin annexé dans lequel :
  • les figures 1 et 4 représentent des graphes utiles à la compréhension du fonctionnement du dispositif suivant l'invention,
  • la figure 2 est un schéma fonctionnel du dispositif suivant l'invention, et
  • les figures 3 et 5 sont des schémas fonctionnels du détecteur et du convertisseur amplitude-durée, respectivement, formant partie du dispositif suivant l'invention.
On se réfère à la figure 1 du dessin annexé où l'on a représenté en trait plein la caractéristique courant/tension IGS = f(VGS) d'un générateur solaire d'énergie électrique typique. Le graphe de cette caractéristique présente, comme représenté, une allure généralement rectangulaire comportant une partie sensiblement parallèle à l'axe des tensions et une autre partie sensiblement parallèle à l'axe des intensités, ces deux parties étant raccordées par une partie arrondie. Dans un satellite, par exemple, un générateur solaire débite ordinairement dans une batterie d'accumulateurs et dans divers consommateurs d'énergie électrique constitués par des équipements du satellite. Le point de fonctionnement du générateur est alors situé à l'intersection de sa caractéristique courant/tension avec une droite de charge passant l'origine des coordonnées. Ce point peut ainsi se situer sur diverses parties de la caractéristique, par exemple à son intersection avec la droite de charge D1, sur la partie de cette caractéristique où le courant reste sensiblement constant, soit quand le générateur fonctionne en "générateur de courant". Il pourrait de même se situer sur la partie de la caractéristique où la tension est sensiblement constante, si l'on recherche un fonctionnement en "générateur de tension".
Sur la figure 1, on a aussi représenté en trait interrompu le graphe de la puissance PGS délivrée par le générateur en fonction de la tension VGS qu'il délivre. Du fait que PGS = IGS x VGS , on comprend que PGS présente un maximum là où la surface du rectangle de diagonale OF à côtés parallèles aux coordonnées, est maximale, soit quand la droite de charge D coupe la caractéristique en Fm, dans la partie arrondie de la caractéristique courant/tension du générateur.
Pour utiliser au mieux l'énergie délivrée par le générateur solaire, notamment dans le cadre de missions "économiques" évoquées dans le préambule de la présente description, il convient de disposer de moyens permettant d'ajuster constamment le point de fonctionnement du générateur de manière que celui-ci corresponde aux conditions de fourniture de la puissance maximale de celui-ci. La caractéristique du générateur solaire étant fortement variable, tout en conservant la même allure générale, en fonction de l'éclairement et de l'état des panneaux solaires du générateur, il convient de disposer de moyens permettant de réguler en permanence la position de ce point de fonctionnement de manière à tirer du générateur solaire la puissance maximale disponible. Les principes exposés ci-dessus aident à comprendre le fonctionnement du dispositif de commande suivant l'invention, dont on va maintenant décrire la structure en liaison avec la figure 2.
Sur cette figure, on a représenté le générateur solaire GS débitant sur une charge représentée par une batterie d' accumulateurs 1 et une résistance 2 symbolisant divers consommateurs d'énergie électrique embarqués dans un satellite par exemple.
Suivant une caractéristique de la présente invention, le générateur GS débite sur cette charge à travers un transformateur 3 à accumulation d'énergie, dont les enroulements primaire 5 et secondaire 6 sont de sens inverses comme indiqué par les points placés sur ces enroulements. L'enroulement primaire 5 est alimenté par le générateur, sous la commande d'un interrupteur 7, avantageusement électronique, placé en série avec cet enroulement entre une borne de celui-ci et la masse.
Au secondaire, le transformateur 3 est associé à une diode 8 disposée en série avec l'enroulement 6 et un condensateur 9 monté entre les bornes de l'enroulement, en parallèle avec la charge 1,2.
Un autre condensateur 10 est monté entre la sortie du générateur GS et la masse. Vu du transformateur 3, ce condensateur fait apparaítre, en régime dynamique, le générateur GS code un générateur de tension.
On reconnaít dans le montage décrit ci-dessus une alimentation à découpage du type "fly-back". On sait que lorsque l'interrupteur 7 est fermé, l'enroulement 5 se charge alors que la diode 8 bloque toute décharge de l'enroulement 6. C'est alors la capacité 9 qui alimente la charge, avec la batterie d'accumulateurs 1. Quand l'interrupteur 7 s'ouvre, l'énergie accumulée dans l'enroulement 6 est débitée dans la charge et le condensateur 9.
Grâce à la présence d'une telle alimentation "à découpage" et à transformateur à accumulation d'énergie dans le dispositif suivant l'invention, celui-ci bénéficie de l'isolation galvanique apportée par la présence de ce transformateur entre le générateur et la charge. En outre, comme on le verra plus loin, cette alimentation donne au dispositif suivant l'invention une grande souplesse, permettant de fixer le point de fonctionnement du générateur solaire en tout point de sa caractéristique courant/tension et notamment au point correspondant à la fourniture d'une puissance maximale par ce générateur.
Pour assurer cette commande du point de fonctionnement du générateur solaire, le dispositif suivant l'invention comprend en outre un détecteur 11 sensible au courant moyen Ip circulant dans l'enroulement primaire du transformateur 3 pour délivrer un signal de tension Vdet représentatif de l'intensité de ce courant. Ce signal est délivré à des moyens de commande constitués par un microcontrôleur 12, par exemple, ce microcontrôleur étant dûment programmé pour former, à partir du signal Vdet un signal de consigne Vcons délivré à un convertisseur amplitude-durée 13 commandant l'interrupteur 7. Les moyens 11,12,13 constituent ainsi une boucle de régulation du courant moyen passant dans l'enroulement primaire 5 du transformateur 3, la régulation de ce courant moyen à une valeur prédéterminée permettant de fixer le point de fonctionnement du générateur solaire, comme on l'expliquera plus loin.
Le détecteur 11 est représenté en plus de détails à la figure 3. Sur cette figure, il apparaít que ce détecteur est constitué par un deuxième transformateur 14 à accumulation d'énergie, fonctionnant en mode "lourd" dont l'enroulement primaire 15 est alimenté par le courant Ip délivré par le générateur à l'enroulement primaire du premier transformateur 3, et dont l'enroulement secondaire 16 est monté en série avec une diode 17. La tension Vdet est prélevée entre les bornes d'une charge constituée par une résistance 18 et un condensateur 19 montés en parallèle entre la diode 7 et une borne de l'enroulement secondaire 16.
On démontre par le calcul qu'en régime statique la tension Vdet mesurée aux bornes de l'enroulement secondaire 16 est proportionnelle au courant moyen passant dans l'enroulement primaire 4, ce courant moyen étant alors constitué par le courant IGS délivré par le générateur solaire. On démontre aussi qu'en tout point de fonctionnement du générateur solaire, le graphe de Vdet en fonction de VGS présente la même allure que celui de la puissance PGS en fonction de VGS. On a représenté ces deux graphes sur la figure 4 où il apparaít qu'ils présentent tous les deux un maximum pour la même valeur de VGS. Ceci peut se comprendre si l'on considère que le courant moyen Ip porte toute l'énergie délivrée par le générateur solaire et doit donc être maximal quand le générateur solaire délivre sa puissance maximale.
Suivant l'invention, on tire parti de cette caractéristique du graphe de Vdet en fonction de VGS pour extraire du générateur solaire sa puissance maximale, et ceci à l'aide d'un seul détecteur, le détecteur 11 du courant moyen passant dans l'enroulement primaire du transformateur 14, solution particulièrement avantageuse aussi bien du point de vue économique que du point de vue fiabilité. Pour ce faire, on utilise une programmation adéquate du microcontrôleur 12 propre à permettre le calcul de la valeur d'un signal de consigne Vcons délivré au convertisseur amplitude-durée 13, représenté en plus de détails à la figure 5.
Celui-ci comprend essentiellement un comparateur 20 dont une entrée 21 reçoit le signal Vcons (ou un signal proportionnel à celui-ci) et dont une autre entrée 22 est alimentée classiquement par un signal en dents de scie S1, de période fixe T. La sortie du comparateur 20 fait commuter l'un ou l'autre de deux transistors 23, 24 de type opposé, dont les circuits émetteur/collecteur sont montés en série entre une ligne à la tension Vdd et la masse de manière à produire un signal S2 de même période que S1, et dont le rapport cyclique t/T est fonction de Vcons.
Ce signal S2, à modulation de largeur d'impulsions ou signal "PWM", commande la commutation de l'interrupteur électronique 7, comme cela est représenté à la figure 2. Cet interrupteur peut être constitué par un transistor dont le circuit émetteur/collecteur est placé en série avec l'enroulement primaire 5 du transformateur 3 et dont la base est commandée par le signal S2.
On comprend qu'en commandant convenablement le microcontrôleur 12 pour qu'il délivre une valeur de Vcons correspondant à un point de fonctionnement prédéterminé du générateur solaire, on peut réguler la position de ce point de fonctionnement en tout point choisi de la caractéristique courant/tension du générateur solaire, de manière à commander la puissance électrique PGS délivrée par le générateur GS.
En particulier, c'est ainsi que le microcontrôleur 12 peut être programmé pour rechercher, à partir de la connaissance du graphe de Vdet (voir figure 4), la valeur de Vcons a délivrer au convertisseur amplitude-durée 13 pour que le générateur solaire fonctionne à sa puissance maximale, compte tenu du niveau de l'éclairement actuel des cellules solaires du générateur. Diverses stratégies connues de recherche du maximum d'une grandeur sont utilisables à cet effet. Le microcontrôleur peut, par exemple, commander des variations de la valeur de consigne Vcons, d'excursion Vac, les évolutions des mesures x1,x2,x3, ... de Vdet fournies par le détecteur 11 lors de cette excursion, et notamment le sens des variations de ces mesures, permettant de localiser la position x2 du sommet du graphe et donc la valeur Vcons correspondant à ce sommet.
Les variations de Vcons commandées par le microcontrôleur s'opèrent classiquement par pas. On peut facilement faire varier le pas en fonction, par exemple, de la position du point de fonctionnement du générateur solaire. Si l'on considère que le fonctionnement dynamique du dispositif suivant l'invention est très différent suivant qu'il fonctionne en générateur de courant ou en générateur de tension, cette possibilité de variation du pas de la commande est avantageuse car elle permet d'adapter celle-ci au fonctionnement dynamique qui résulte du point de fonctionnement choisi, par exemple à droite ou à gauche du point correspondant à la fourniture de la puissance maximale.
Il apparait maintenant que l'invention permet bien d'atteindre les buts fixes, à savoir fournir un dispositif de commande du point de fonctionnement d'un générateur solaire d'énergie électrique, permettant de faire fonctionner ce générateur à sa puissance maximale aussi bien qu'à toute autre puissance plus faible, ce qui est avantageux notamment pour adapter cette puissance aux variations de consommation des consommateurs alimentés, notamment lorsque ceux-ci comptent une batterie d'accumulateurs qui atteint sa charge maximale. Le dispositif est en outre simple, et donc de réalisation économique, et souple, grâce à l'utilisation d'un microcontrôleur, qui permet une gestion automatique du dispositif, sans entretien ou recalibrage.
Bien entendu, l'invention n'est pas limitée au mode de réalisation décrit et représenté qui n'a été donné qu'à titre d'exemple. C'est ainsi que le dispositif suivant l'invention peut s'adapter à des générateurs d'énergie électrique autres que du type à cellules solaires, en particulier quand la caractéristique courant/tension de ce générateur présente une allure qui se rapproche de celle d'un générateur solaire.

Claims (9)

  1. Dispositif de commande du point de fonctionnement d'un générateur d'énergie électrique (GS) alimentant une charge comprenant a) un transformateur (3) à accumulation d'énergie, à enroulements primaire (5) et secondaire (6) de sens inverses, l'enroulement primaire (5) étant alimenté par le générateur (GS) sous la commande d'un interrupteur (7), l'enroulement secondaire (6) étant connecté en série avec une diode (8) et avec la charge (1,2), caractérisé en ce qu'il comprend b) un détecteur (11) sensible à l'intensité du courant moyen (Ip) circulant dans l'enroulement primaire (5) du transformateur (3) pour délivrer un signal (Vdét) représentatif de cette intensité, et c) des moyens de commande (12,13) de la commutation de l'interrupteur (7), sensibles audit signal (Vdét) pour établir dans l'enroulement primaire (5) du transformateur (3) un courant moyen (Ip) correspondant à un point de fonctionnement prédéterminé du générateur (GS).
  2. Dispositif conforme à la revendication 1, caractérisé en ce que lesdits moyens de commande (12,13) sont conçus pour établir ledit courant moyen (Ip) à une valeur correspondant au maximum (Pmax) de la puissance délivrée par ledit générateur (GS).
  3. Dispositif conforme à l'une quelconque des revendications 1 et 2, caractérisé en ce que ledit détecteur (11) comprend un transformateur (14) à accumulation d'énergie comprenant des enroulements primaire (15) et secondaire (16) de sens inverses, l'enroulement primaire (15) étant traversé par le courant (Ip) circulant dans l'enroulement primaire (5) du transformateur (3), l'enroulement secondaire étant placé en série avec une diode (8) et une charge (18,19), le signal (Vdet) étant prélevé aux bornes de la charge (18,19).
  4. Dispositif conforme à l'une quelconque des revendications 1 à 3, caractérisé en ce que lesdits moyens de commande comprennent un microcontrôleur (12) alimenté par ledit signal (Vdet) représentatif du courant moyen (Ip) circulant dans l'enroulement primaire (5) du transformateur (3) à accumulation d'énergie électrique, et un convertisseur amplitude-durée (13) alimenté par un signal de consigne (Vcons) élaboré par le microcontrôleur, pour commander la commutation de l'interrupteur (7) avec un signal (S2) à modulation de largeur d'impulsions.
  5. Dispositif conforme à la revendication 4, caractérisé en ce que ledit microcontrôleur est programmé pour délivrer un signal de consigne (Vcons) propre à réguler la position du point de fonctionnement du générateur (GS) de manière à assurer la fourniture par celui-ci d'une puissance électrique prédéterminée.
  6. Dispositif conforme à la revendication 5, caractérisé en ce que le pas des variations du signal de consigne (Vcons) est fonction de la position du point de fonctionnement choisi.
  7. Dispositif conforme à l'une quelconque des revendications 5 et 6, caractérisé en ce que le microcontrôleur (12) est programmé pour rechercher le point de fonctionnement correspondant à la puissance maximale du générateur (GS) par l'observation des sens de variations du signal (Vdet) délivré par le détecteur (11) lors d'une excursion (Vac) du signal de consigne (Vcons).
  8. Dispositif conforme à l'une quelconque des revendications précédentes, caractérisé en ce qu'il est associé à un générateur solaire d'énergie électrique.
  9. Véhicule spatial équipé d'un dispositif conforme à l'une quelconque des revendications 1 à 8.
EP98401903A 1997-07-28 1998-07-27 Dispositif de commande du point de fonctionnement d'un générateur d'énergie électrique, notamment d'un générateur solaire Expired - Lifetime EP0895146B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9709583 1997-07-28
FR9709583A FR2766589B1 (fr) 1997-07-28 1997-07-28 Dispositif de commande du point de fonctionnement d'un generateur d'energie electrique, notamment d'un generateur solaire

Publications (2)

Publication Number Publication Date
EP0895146A1 true EP0895146A1 (fr) 1999-02-03
EP0895146B1 EP0895146B1 (fr) 2003-01-15

Family

ID=9509715

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98401903A Expired - Lifetime EP0895146B1 (fr) 1997-07-28 1998-07-27 Dispositif de commande du point de fonctionnement d'un générateur d'énergie électrique, notamment d'un générateur solaire

Country Status (4)

Country Link
EP (1) EP0895146B1 (fr)
AT (1) ATE231252T1 (fr)
DE (1) DE69810716T2 (fr)
FR (1) FR2766589B1 (fr)

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006081038A3 (fr) * 2005-01-24 2006-09-21 Linear Techn Inc Systeme et procede de suivi d'une caracteristique variable sur une plage de fonctionnement
WO2010079517A1 (fr) * 2009-01-07 2010-07-15 Power-One Italy S.P.A. Procédé et système d'extraction d'énergie électrique d'une source d'énergie renouvelable
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US9438035B2 (en) 2003-05-28 2016-09-06 Solaredge Technologies Ltd. Power converter for a solar panel
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US12057807B2 (en) 2016-04-05 2024-08-06 Solaredge Technologies Ltd. Chain of power devices
US12136890B2 (en) 2023-11-14 2024-11-05 Solaredge Technologies Ltd. Multi-level inverter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004037330B4 (de) * 2004-07-28 2007-06-14 Solarc Innovative Solarprodukte Gmbh Autarke Stromversorgungseinrichtung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4343822C1 (de) * 1993-12-22 1994-12-22 Ant Nachrichtentech Einrichtung zur selbsttätigen Einstellung eines optimalen Arbeitspunktes für den Betrieb eines Verbrauchers an einer Spannungsquelle
US5530335A (en) * 1993-05-11 1996-06-25 Trw Inc. Battery regulated bus spacecraft power control system
US5594325A (en) * 1995-08-10 1997-01-14 David B. Manner Spacecraft power system architecture to mitigate spacecraft charging effects
EP0780750A2 (fr) * 1995-12-20 1997-06-25 Sharp Kabushiki Kaisha Procédé de commande pour onduleur et dispositif onduleur utilisant le procédé

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2626689B1 (fr) * 1988-01-29 1990-07-13 Centre Nat Etd Spatiales Systeme de regulation du point de fonctionnement d'une alimentation a courant continu

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5530335A (en) * 1993-05-11 1996-06-25 Trw Inc. Battery regulated bus spacecraft power control system
DE4343822C1 (de) * 1993-12-22 1994-12-22 Ant Nachrichtentech Einrichtung zur selbsttätigen Einstellung eines optimalen Arbeitspunktes für den Betrieb eines Verbrauchers an einer Spannungsquelle
US5594325A (en) * 1995-08-10 1997-01-14 David B. Manner Spacecraft power system architecture to mitigate spacecraft charging effects
EP0780750A2 (fr) * 1995-12-20 1997-06-25 Sharp Kabushiki Kaisha Procédé de commande pour onduleur et dispositif onduleur utilisant le procédé

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NIEBAUER M ET AL: "SOLARENERGIE OPTIMAL NUTZEN INTELLIGENTES MPP-TRACKING MIT EINEM ST62-MIKROCONTROLLER", ELEKTRONIK, vol. 45, no. 16, 6 August 1996 (1996-08-06), pages 86 - 89, XP000622027 *

Cited By (146)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9438035B2 (en) 2003-05-28 2016-09-06 Solaredge Technologies Ltd. Power converter for a solar panel
US11824398B2 (en) 2003-05-28 2023-11-21 Solaredge Technologies Ltd. Power converter for a solar panel
US11817699B2 (en) 2003-05-28 2023-11-14 Solaredge Technologies Ltd. Power converter for a solar panel
US11658508B2 (en) 2003-05-28 2023-05-23 Solaredge Technologies Ltd. Power converter for a solar panel
US11476663B2 (en) 2003-05-28 2022-10-18 Solaredge Technologies Ltd. Power converter for a solar panel
US11075518B2 (en) 2003-05-28 2021-07-27 Solaredge Technologies Ltd. Power converter for a solar panel
US10910834B2 (en) 2003-05-28 2021-02-02 Solaredge Technologies Ltd. Power converter for a solar panel
US10135241B2 (en) 2003-05-28 2018-11-20 Solaredge Technologies, Ltd. Power converter for a solar panel
EP2144133A1 (fr) * 2005-01-24 2010-01-13 Linear Technology Corporation Système et méthode pour tracer une caractéristique variable dans un intervalle donné
US7714550B2 (en) 2005-01-24 2010-05-11 Linear Technology Corporation System and method for tracking a variable characteristic through a range of operation
WO2006081038A3 (fr) * 2005-01-24 2006-09-21 Linear Techn Inc Systeme et procede de suivi d'une caracteristique variable sur une plage de fonctionnement
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11043820B2 (en) 2006-12-06 2021-06-22 Solaredge Technologies Ltd. Battery power delivery module
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US12107417B2 (en) 2006-12-06 2024-10-01 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US12068599B2 (en) 2006-12-06 2024-08-20 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US12046940B2 (en) 2006-12-06 2024-07-23 Solaredge Technologies Ltd. Battery power control
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US12032080B2 (en) 2006-12-06 2024-07-09 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US12027970B2 (en) 2006-12-06 2024-07-02 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US12027849B2 (en) 2006-12-06 2024-07-02 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11961922B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11962243B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9853490B2 (en) 2006-12-06 2017-12-26 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11682918B2 (en) 2006-12-06 2023-06-20 Solaredge Technologies Ltd. Battery power delivery module
US11658482B2 (en) 2006-12-06 2023-05-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9948233B2 (en) 2006-12-06 2018-04-17 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594881B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9960731B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US11594882B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594880B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11575260B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11575261B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10230245B2 (en) 2006-12-06 2019-03-12 Solaredge Technologies Ltd Battery power delivery module
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10447150B2 (en) 2006-12-06 2019-10-15 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11183922B2 (en) 2006-12-06 2021-11-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10637393B2 (en) 2006-12-06 2020-04-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11073543B2 (en) 2006-12-06 2021-07-27 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11063440B2 (en) 2006-12-06 2021-07-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11002774B2 (en) 2006-12-06 2021-05-11 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US10673253B2 (en) 2006-12-06 2020-06-02 Solaredge Technologies Ltd. Battery power delivery module
US10116217B2 (en) 2007-08-06 2018-10-30 Solaredge Technologies Ltd. Digital average input current control in power converter
US10516336B2 (en) 2007-08-06 2019-12-24 Solaredge Technologies Ltd. Digital average input current control in power converter
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9979280B2 (en) 2007-12-05 2018-05-22 Solaredge Technologies Ltd. Parallel connected inverters
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11894806B2 (en) 2007-12-05 2024-02-06 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11183969B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11693080B2 (en) 2007-12-05 2023-07-04 Solaredge Technologies Ltd. Parallel connected inverters
US12055647B2 (en) 2007-12-05 2024-08-06 Solaredge Technologies Ltd. Parallel connected inverters
US11183923B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Parallel connected inverters
US10644589B2 (en) 2007-12-05 2020-05-05 Solaredge Technologies Ltd. Parallel connected inverters
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10461687B2 (en) 2008-12-04 2019-10-29 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US8937827B2 (en) 2009-01-07 2015-01-20 Power-One Italy S.P.A. Method and system for extracting electric power from a renewable power source
WO2010079517A1 (fr) * 2009-01-07 2010-07-15 Power-One Italy S.P.A. Procédé et système d'extraction d'énergie électrique d'une source d'énergie renouvelable
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11867729B2 (en) 2009-05-26 2024-01-09 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11349432B2 (en) 2010-11-09 2022-05-31 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11070051B2 (en) 2010-11-09 2021-07-20 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US11489330B2 (en) 2010-11-09 2022-11-01 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US12003215B2 (en) 2010-11-09 2024-06-04 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11996488B2 (en) 2010-12-09 2024-05-28 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9935458B2 (en) 2010-12-09 2018-04-03 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US11271394B2 (en) 2010-12-09 2022-03-08 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US11205946B2 (en) 2011-01-12 2021-12-21 Solaredge Technologies Ltd. Serially connected inverters
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US11979037B2 (en) 2012-01-11 2024-05-07 Solaredge Technologies Ltd. Photovoltaic module
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11183968B2 (en) 2012-01-30 2021-11-23 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US11620885B2 (en) 2012-01-30 2023-04-04 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US12094306B2 (en) 2012-01-30 2024-09-17 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10608553B2 (en) 2012-01-30 2020-03-31 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11929620B2 (en) 2012-01-30 2024-03-12 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10007288B2 (en) 2012-03-05 2018-06-26 Solaredge Technologies Ltd. Direct current link circuit
US9639106B2 (en) 2012-03-05 2017-05-02 Solaredge Technologies Ltd. Direct current link circuit
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US11177768B2 (en) 2012-06-04 2021-11-16 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US10778025B2 (en) 2013-03-14 2020-09-15 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US12119758B2 (en) 2013-03-14 2024-10-15 Solaredge Technologies Ltd. High frequency multi-level inverter
US11742777B2 (en) 2013-03-14 2023-08-29 Solaredge Technologies Ltd. High frequency multi-level inverter
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US11545912B2 (en) 2013-03-14 2023-01-03 Solaredge Technologies Ltd. High frequency multi-level inverter
US12003107B2 (en) 2013-03-14 2024-06-04 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US12132125B2 (en) 2013-03-15 2024-10-29 Solaredge Technologies Ltd. Bypass mechanism
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US11424617B2 (en) 2013-03-15 2022-08-23 Solaredge Technologies Ltd. Bypass mechanism
US10651647B2 (en) 2013-03-15 2020-05-12 Solaredge Technologies Ltd. Bypass mechanism
US10886832B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US11855552B2 (en) 2014-03-26 2023-12-26 Solaredge Technologies Ltd. Multi-level inverter
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US11296590B2 (en) 2014-03-26 2022-04-05 Solaredge Technologies Ltd. Multi-level inverter
US11632058B2 (en) 2014-03-26 2023-04-18 Solaredge Technologies Ltd. Multi-level inverter
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US12057807B2 (en) 2016-04-05 2024-08-06 Solaredge Technologies Ltd. Chain of power devices
US11201476B2 (en) 2016-04-05 2021-12-14 Solaredge Technologies Ltd. Photovoltaic power device and wiring
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11870250B2 (en) 2016-04-05 2024-01-09 Solaredge Technologies Ltd. Chain of power devices
US12136890B2 (en) 2023-11-14 2024-11-05 Solaredge Technologies Ltd. Multi-level inverter

Also Published As

Publication number Publication date
DE69810716T2 (de) 2003-10-23
FR2766589B1 (fr) 1999-09-24
DE69810716D1 (de) 2003-02-20
FR2766589A1 (fr) 1999-01-29
EP0895146B1 (fr) 2003-01-15
ATE231252T1 (de) 2003-02-15

Similar Documents

Publication Publication Date Title
EP0895146B1 (fr) Dispositif de commande du point de fonctionnement d&#39;un générateur d&#39;énergie électrique, notamment d&#39;un générateur solaire
EP0190961B1 (fr) Alimentation en courant continu à point de fonctionnement ajustable
FR2476929A1 (fr) Circuit de charge d&#39;une pile et d&#39;alimentation en energie electrique a partir de l&#39;energie solaire
FR2910141A1 (fr) Systeme de generation d&#39;energie electrique avec maximisation de la puissance
FR2961039A1 (fr) Circuit convertisseur et systeme electronique comportant un tel circuit
EP1400886A1 (fr) Circuit de conditionnement pour une source de puissance au point de puissance maximum, générateur solaire et procédé de conditionnement
FR2777715A1 (fr) Module convertisseur d&#39;alimentation electrique et systeme le comprenant
FR2936110A1 (fr) Systeme autonome comportant une batterie et une supercapacite et procede de charge.
WO2007083046A2 (fr) Dispositif de gestion electrique pour alimentation electrique de vehicule
EP0772287B1 (fr) Alimentation à découpage à correction de facteur de puissance
WO2006067350A1 (fr) Procede et systeme d&#39;alimentation electrique autonome par energie renouvelable
EP1274106A1 (fr) Procédé et dispositif d&#39;équilibrage de supercapacité
FR2901431A1 (fr) Circuit de conversion de courant.
FR2824203A1 (fr) Convertisseur d&#39;alimentation electrique
EP2430738B1 (fr) Circuit convertisseur et systeme electronique comportant un tel circuit
EP1383222B1 (fr) Chargeur pour batterie
FR2936193A1 (fr) Appareil de commande d&#39;une installation d&#39;eclairage d&#39;un vehicule automobile et systeme d&#39;eclairage de vehicule
EP0265328B1 (fr) Système autonome d&#39;alimentation électrique
FR3006512A1 (fr) Circuit de gestion d&#39;energie d&#39;un capteur autonome
EP1139361B1 (fr) Circuit électrique pour la transmission d&#39;une information d&#39;état, notamment d&#39;un organe de matériel ferroviaire roulant, et système électrique incorporant un tel circuit
EP3017480B1 (fr) Circuit de simulation d&#39;un réseau électrique alternatif et son procédé de commande
FR2631753A1 (fr) Regulateur de charge de batterie d&#39;accumulateurs pour generateur photovoltaique
CH707569A2 (fr) Dispositif portable de conversion DC/DC incluant un algorithme MPPT pour le chargement optimal d&#39;une batterie à partir d&#39;un panneau photovoltaïque.
FR2492182A1 (fr) Circuit de commande de la charge d&#39;un accumulateur par une source telle qu&#39;un panneau solaire et generateur comportant un tel circuit
FR2712747A1 (fr) Dispositif d&#39;alimentation d&#39;une charge résistive à partir d&#39;une batterie de stockage d&#39;énergie d&#39;un véhicule.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19990215

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20001020

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030115

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030115

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030115

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030115

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030115

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 69810716

Country of ref document: DE

Date of ref document: 20030220

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030415

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030415

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030415

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030514

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030727

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 0895146E

Country of ref document: IE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031016

BERE Be: lapsed

Owner name: CENTRE NATIONAL D'ETUDES *SPATIALES

Effective date: 20030731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170713

Year of fee payment: 20

Ref country code: IT

Payment date: 20170712

Year of fee payment: 20

Ref country code: GB

Payment date: 20170721

Year of fee payment: 20

Ref country code: FR

Payment date: 20170731

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69810716

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20180726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20180726