EP0890719A1 - Stufenkolbenbrennkraftmaschine - Google Patents

Stufenkolbenbrennkraftmaschine Download PDF

Info

Publication number
EP0890719A1
EP0890719A1 EP97304984A EP97304984A EP0890719A1 EP 0890719 A1 EP0890719 A1 EP 0890719A1 EP 97304984 A EP97304984 A EP 97304984A EP 97304984 A EP97304984 A EP 97304984A EP 0890719 A1 EP0890719 A1 EP 0890719A1
Authority
EP
European Patent Office
Prior art keywords
cylinders
receiver
engine
cylinder
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97304984A
Other languages
English (en)
French (fr)
Inventor
Bernard Hooper
Peter Russell Hooper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hooper Peter Russell
Original Assignee
Hooper Bernard
Hooper Peter Russell
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to GBGB9602063.1A priority Critical patent/GB9602063D0/en
Priority claimed from GBGB9602063.1A external-priority patent/GB9602063D0/en
Priority to GBGB9610477.3A priority patent/GB9610477D0/en
Priority claimed from GBGB9610477.3A external-priority patent/GB9610477D0/en
Priority to GB9700769A priority patent/GB2309742B/en
Priority to US08/792,505 priority patent/US5870980A/en
Application filed by Hooper Bernard, Hooper Peter Russell filed Critical Hooper Bernard
Priority to EP97304984A priority patent/EP0890719A1/de
Publication of EP0890719A1 publication Critical patent/EP0890719A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/02Engines with reciprocating-piston pumps; Engines with crankcase pumps
    • F02B33/28Component parts, details or accessories of crankcase pumps, not provided for in, or of interest apart from, subgroups F02B33/02 - F02B33/26
    • F02B33/30Control of inlet or outlet ports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L7/00Rotary or oscillatory slide valve-gear or valve arrangements
    • F01L7/02Rotary or oscillatory slide valve-gear or valve arrangements with cylindrical, sleeve, or part-annularly shaped valves
    • F01L7/021Rotary or oscillatory slide valve-gear or valve arrangements with cylindrical, sleeve, or part-annularly shaped valves with one rotary valve
    • F01L7/025Cylindrical valves comprising radial inlet and side outlet or side inlet and radial outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/02Engines with reciprocating-piston pumps; Engines with crankcase pumps
    • F02B33/06Engines with reciprocating-piston pumps; Engines with crankcase pumps with reciprocating-piston pumps other than simple crankcase pumps
    • F02B33/10Engines with reciprocating-piston pumps; Engines with crankcase pumps with reciprocating-piston pumps other than simple crankcase pumps with the pumping cylinder situated between working cylinder and crankcase, or with the pumping cylinder surrounding working cylinder
    • F02B33/14Engines with reciprocating-piston pumps; Engines with crankcase pumps with reciprocating-piston pumps other than simple crankcase pumps with the pumping cylinder situated between working cylinder and crankcase, or with the pumping cylinder surrounding working cylinder working and pumping pistons forming stepped piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/44Passages conducting the charge from the pump to the engine inlet, e.g. reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1812Number of cylinders three
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/22Multi-cylinder engines with cylinders in V, fan, or star arrangement

Definitions

  • This invention relates to stepped-piston, internal-combustion engines having one or more cylinders each containing a stepped piston having a pumping part of larger diameter and a working part of smaller diameter, the working part of the piston being slidable in a working part of the cylinder and the pumping part of the pistion being slidable in a pumping part of the cylinder.
  • Combustion of fuel and air mixture takes place in the working part of each cylinder.
  • Inlet ports hereinafter referred to as "working inlet ports" are provided in the wall of the working part of the or each cylinder.
  • At least one pump port is provided in the pumping part of the or each cylinder to enable a fresh charge to be induced into said pumping part and transferred from the pumping part to a receiver. The charge then passed from the receiver to the working inlet ports.
  • the or each piston is connected to a crankshaft by connecting rods or other means for converting reciprocating motion into rotary motion.
  • Such an engine is hereinafter referred to as "an engine of the kind specified”.
  • the charge introduced into the working part of the or each cylinder will be air only if the engine is a compression-ignition engine and a fuel-air mixture if the engine is a spark-ignition engine.
  • An example of such a proposal is that described in GB-A-190,757.
  • One embodiment described includes two cylinders in separate cylinder blocks having a common receiver which is provided in a member separate from the cylinder blocks and located between the two blocks and connected to the tops of the cylinders by pipes.
  • a single rotary valve is employed to control the inlet of charge into the pumping part of each of the two cylinders and also to control the transfer of the charge from each pumping part into the common receiver.
  • a sleeve valve which is reciprocated by a connecting rod connected to the rotary valve and which is arranged to open ports in the wall of the receiver at the appropriate times to permit charge which has been pumped into the receiver by the pumping parts of the cylinders to be discharged down the pipes from the receiver into the tops of the working parts of the cylinders.
  • a single cylinder version of the engine is also described.
  • GB-A-190,757 was applied for in 1921 and is a construction which is suitable for slow running two-stroke engines.
  • the receiver is completely separate from the cylinder blocks, is of comparatively small volume having to fit between and to one side of the two cylinder blocks and the charge from the receiver into the cylinders is controlled by the sleeve valve mentioned above which is expensive and complicated.
  • the arrangement described would not be suitable for high speed, two-stroke engines for modern automotive use.
  • the object of the invention is to provide an engine of the kind specified which is of simple construction and which enables the receiver to be made of an appropriate volume for high speed use.
  • a stepped-piston, internal-combustion engine comprising at least one cylinder, the or each cylinder having a working part defined by a cylindrical wall and a pumping part, said pumping part being of greater diameter than the working part, a piston in the or each cylinder and having a working part slidable in the working part of the cylinder and a pumping part slidable in the pumping part of the cylinder, a crankshaft, means connecting the or each piston to the crankshaft, a receiver which is partly delimited by said cylindrical wall of the working part of the or each of at least some of the cylinders and which extends at least partly around each said working part on both sides of the central plane of the engine, working inlet ports in the or each said cylindrical wall and extending between the working part of the or each of said some cylinders and the receiver, at least one valve control member mounted for rotation about an axis parallel to the crankshaft axis at a speed dependent on the rotational speed of the crankshaft, and valve
  • central plane of the engine is used to mean the plane containing the axis of rotation of the crankshaft and the longitudinal axis or axes of the cylinder(s) except for a engine of Vee-configuration wherein the "central plane of the engine” is used to mean either the plane containing the axis of rotation of the crankshaft and which bisects the planes containing the longitudinal axes of the cylinders of each bank if the engine has a single receiver or, if there is a receiver for each bank, each of the planes containing the axis of rotation of the crankshaft and the axes of the cylinders in one of the banks; in this latter case there are two "central planes".
  • the inlet of the charge from the receiver into the working part of the or each cylinder through the working inlet ports is controlled by the working part of the piston in the working part of the cylinder, normally the top of the piston, uncovering said ports.
  • the sleeve valve which is required in the example of the prior art referred to above is dispensed with.
  • the receiver partly surrounds the working part of the or each cylinder so that it may be made of large volume and form part of the cylinder block casting of the engine.
  • the external walls of the receiver may be formed by said casting or by cover plates secured to the casting.
  • the working part of the or each cylinder shares a wall with the receiver, i.e. they have a common wall, and the working inlet ports pass through this wall so that the charge has only a very short distance to pass from the receiver into the working part of the or each cylinder.
  • valve control member is in the form of a shaft which carries balance weights to counteract any rocking couple of the engine.
  • the balance weights will normally be carried adjacent the ends of the shafts.
  • valve control member is a rotary shaft which drives the valve means which comprises, for the or each cylinder, an open-ended valve member defined by a cylindrical wall, the space within said valve member being divided into two parts by a diaphragm inclined to the longitudinal axis of the cylindrical wall there being a valve port in said cylindrical wall of the valve member in each of said parts, and wherein during rotation of the shaft one of the valve ports allows the flow of charge through one open end of the valve member into the pumping part of the cylinder and the other of said valve ports allows the flow of charge from the pumping part of the cylinder through the other open end of the cylinder into the receiver.
  • each of said valve members is preferably supported in a ported housing and the valve members are splined to the shaft.
  • the shaft therefore drives the valve members but does not support them, this function being taken by the housing.
  • the valve means may be in the form of poppet valves or flap valves.
  • the charge is delivered into the receiver on one side of the central plane of the engine, is caused to flow across the central plane and then to reverse its direction of flow before reaching the working inlet ports of the working part of the or each of the cylinders which is or are in communication with said receiver via said ports.
  • a baffle may be provided in the receiver which extends across the central plane of the engine from said one side and has a free end on the other side of said central plane around which the charge passes to reverse its direction of flow before reaching said inlet working ports.
  • the working inlet ports of all the cylinders communicating with the common receiver into which charge from the pumping parts of all said cylinders is delivered. This may also be the case with an engine having the cylinders in Vee configuration if the angle of the Vee is not too large.
  • Engines embodying the invention may have at least one exhaust port in the cylindrical wall of the working part of the or each cylinder, the exhaust port or ports being opened or closed by the working part of the piston.
  • the engine includes a cylinder block 1, crankcase 2, oil sump 3 and a crankshaft 4 running in bearings 5 mounted in the crankcase 2 and having a longitudinal axis 6.
  • Stepped pistons 7 are coupled to the crankshaft 4 by wrist pins 8 and connecting rods 9 supported by bearings 10 running on the crank-pins 11 of the crankshaft 4.
  • the cylinder block 1 contains three cylinders, each with a smaller diameter working part 12 and an associated larger diameter pumping part 13.
  • Each piston 7 has a working part 14 slidable in the working part 12 of a cylinder and a pumping part 15 slidable in the pumping part 13 of the cylinder.
  • Pistons 7 are provided with compression rings 16 and 17 and oil control rings 18.
  • each cylinder At the upper end of each cylinder is a combustion chamber 19 and a spark plug 20.
  • the working part of each cylinder 12 has a cylindrical wall 21 in which are provided an exhaust port 22 and working inlet ports 23. Water cooling spaces are provided in the cylinder block and some of these are shown at 24.
  • the engine includes a receiver indicated generally at 25.
  • the receiver 25 partially surrounds each of the working parts of the cylinders.
  • the receiver is defined in part by the cylindrical wall 21 of the working part of each cylinder and communicates directly with each such working part through the working inlet ports 23.
  • the receiver is also defined laterally by vertical walls 26 bounding the water spaces 24 and other vertical walls 27 bounding the ports of the pumping parts of the cylinders.
  • the receiver also extends into spaces 28 and 29 shown in Figures 2 to 4 as will herein after be described.
  • the receiver By making the receiver partially surround the working parts of the cylinders the receiver can be made comparatively large. It can either be formed as shown when the cylinder block is cast or the cylinder block may have plates, not shown, secured to its sides which will close the receiver at the exterior of the engine.
  • the receiver extends across the central plane P of the engine, i.e. the plane containing the longitudinal axes of the cylinders and the axis 6 of the crankshaft 4.
  • charge is pumped from the pumping parts 13 of the cylinders into the receiver 25 and then passes from the receiver through the working inlet ports 23 to the working part of each cylinder as these ports are uncovered by the top edge of the working part of the piston.
  • the control of the flow of charge into the pumping parts of the cylinders and from the pumping parts into the receiver is controlled by rotary valve members which will now be described.
  • a rotary valve control shaft 30 which extends parallel to the crankshaft and is mounted in bearings 31 adjacent the ends thereof.
  • the shaft carries balance weights 32 and 33 at its ends and is driven synchronously with the crankshaft 4 by a slip-free drive, e.g. by a toothed belt 34 connecting a toothed wheel 35 on the crankshaft 4 to a toothed wheel 36 on the shaft 30 and which incorporates the balance weight 33.
  • a slip-free drive e.g. by a toothed belt 34 connecting a toothed wheel 35 on the crankshaft 4 to a toothed wheel 36 on the shaft 30 and which incorporates the balance weight 33.
  • a slip-free drive e.g. by a toothed belt 34 connecting a toothed wheel 35 on the crankshaft 4 to a toothed wheel 36 on the shaft 30 and which incorporates the balance weight 33.
  • a slip-free drive e.g. by a toothed belt 34 connecting a toothed wheel 35 on
  • the balance weights 32, 33 are displaced about the rotary axis of the shaft 30 by 180° and produce a rocking couple which reduces the effect of the unbalanced forces of the pistons, crankshaft and connecting rods which produce a rocking couple.
  • the shaft 30 carries three rotary valve members 37,38 and 39, which are identical.
  • the valve member 39 is shown in detail in Figures 5 to 8.
  • the valve members are rotatably supported in ported housings 40 and 41 formed in the cylinder block casting.
  • the housing 40 supports the valve members 37 and 38 and the housing 41 supports the valve member 39.
  • the valve member 39 includes a cylindrical wall 42 mounted on the shaft 30 by a web 43 inclined to the rotary axis of the shaft 30 and a sleeve 44 which has internal splines 45 to engage the shaft 30.
  • Each rotary valve member is open at its ends and the cylindrical wall 42 is provided with two ports diametrically opposite one another, each of which communicates with one of the open ends of the valve member on each side of the web 43 so that the ports are separated by the web.
  • the rotary valve member 39 has two ports 46 and 47, the port 46 communicates with the open end 48 of the valve member and the port 47 communicates with the open end 49 of the valve member.
  • valve member 37 has a port 50 which communicates with the open end 51 of the valve member and a port 52 which communicates with the open end 53 of the valve member.
  • the valve member 38 has a port 54 which communicates with the open end 55 of the valve member and a port 56 which communicates with the open end 57 of the valve member.
  • the engine includes an induction manifold 59.
  • the open ends 51, 55 and 49 of the valve members 37, 38 and 39 communicate with the induction manifold 59 as do the ports 50, 54 and 46.
  • the open ends 53 ad 57 of the valve members 37 and 38 communicate with the part 28 of the receiver 25 and the open end 48 of the rotary valve 39 communicates with the part 29 of the receiver 25.
  • the ports 50, 54 and 46 communicate, during rotation of the valves by the shaft 30, with pump ports in the respective pumping parts of the cylinders as hereinafter described.
  • this shows the transfer of charge from an induction manifold 59 into the pumping part 13 of one of the cylinders. It is assumed in this figure and in Figure 4 that the cylinder is the left-hand cylinder of the three cylinders shown in Figures 1 and 2 and that the rotary valve member 39 is shown. In the position of the rotary valve member shown, the charge indicated by the arrow 60 enters the open end 49 of the rotary valve member and passes through the port 46 into the pumping part of the cylinder 13 through a pump port 61 as the pumping part 15 of the piston descends.
  • the port 47 in the rotary valve member 39 communicates with the pump port 61 so that as the pumping part 15 of the piston rises the charge indicated by the arrow 62 passes through the ports 61 and 47 and out through the open end 48 of the valve member 39 into the receiver part 29 and thus into the main part of the receiver 25.
  • Each of the rotary valve members 37 and 38 associated with the other two cylinders operates in a simiar manner.
  • Figure 2 shows that the receiver 25 is common to all three cylinders and extends across the central plane P of the engine.
  • Figures 1, 3 and 4 show that the receiver is bounded by an upper wall 63 and a lower wall 64 formed as parts of the cylinder block casting.
  • the flow of charge on entering the receiver follows the arrows 62 and 65 and in that figure flows from left to right across the central plane P and around the free end 66 of a baffle 67 in the receiver and then changes its direction to flow from right to left and thus through the working inlet ports 23 into the working parts of the cylinders as these ports are uncovered by the working parts of the pistons in the respective cylinders.
  • Charge is thus passed from the induction manifold 59 through the rotary valve members 37, 38 and 39 and the pump ports 61 into the respective pumping parts of the cylinders and then transferred from the pumping parts through the rotary valve members into the receiver parts 28 and 29 of the common receiver 25 and then flows around the baffle 67 to change its direction of flow into the working parts of the cylinders through the working inlet ports 23.
  • the rotary valve members 37, 38 and 39 are so arranged as to allow charge to be induced into the pumping parts of the cylinders and transferred to the receiver and the working parts thereof in accordance with the requirements of the engine.
  • the engine thus far described uses loop scavenging, i.e. the inlet of the charge is in the direction of the arrows 68 shown in Figure 2 for the right hand cylinder and then the charge loops round to expel the burnt gasses through the exhaust port 22.
  • the exhaust ports 22 are opened and closed by the upper edge of the working parts of the pistons.
  • rotary, poppet or other exhaust valves may be provided in the cylinder instead of the exhaust port.
  • Figures 9, 10 and 11 show a three cylinder engine using uniflow scavenging and having exhaust valves in the cylinder head but which is otherwise identical to the engine shown in Figures 1 and 2.
  • each cylinder head there are two exhaust valves 69 of poppet type each urged closed by a valve spring 70 acting on a tappet 71.
  • the tappets of the valves are operated by cams 72 on a camshaft 73 which is driven from the crankshaft 114 by an internally toothed timing belt 74 engaging toothed wheels 75 and 76 on the crankshaft and the camshaft respectively.
  • the timing belt 74 also drives the rotary valve control shaft 130 via the pulley 136.
  • camshaft runs in bearings 77 on the cylinder head and as shown in Figure 11, exhaust passages 78 in the cylinder head communicate with the valves 69.
  • valve control shaft 130 which drives rotary valve members 137, 138 and 139. These control flow of the charge into the pumping part of each of the cylinders and, as shown in Figure 11, the flow of the charge from the pumping parts into the receiver 125.
  • the receiver 125 can extend around a major proportion of the circumference of the working part of each cylinder since it is not interrupted as in Figures 1 to 3 by the exhaust port 22.
  • the parts of the receiver which are "extra" in Figure 10 are indicated at 79.
  • exhaust is controlled by the exhaust valves 69 which are driven from the crankshaft 124 so that the flow of charge is from the bottom of the working part of each cylinder upwardly and through the exhaust valves 69 and exhaust passages 78.
  • Figure 11 shows the baffle 167 around which the charge flows before entering the working inlet ports 123. Where exhaust valves are provided as in this embodiment it may be possible to dispense with or at least modify the shape of the baffle.
  • FIG 12 shows a multiple-cylinder engine with the cylinders arranged in Vee-configuration but having a single receiver.
  • the engine includes a cylinder block 200 and crank case 201.
  • the cylinder block has six cylinders cast therein arranged in two banks 202 and 203 of three cylinders each. It will be appreciated that there could be more or less cylinders in each bank.
  • Each cylinder is of stepped configuration as described in relation to the previous drawings having a larger diameter pumping part 204 and a smaller diameter working part 205 in which a stepped piston operates connected to a crankshaft 206.
  • the engine shown works on the loop scavenge principle as described in relation to Figures 1 to 4.
  • the engine includes a single valve control shaft driven by a pulley 207 which in turn is driven from the crankshaft by a toothed belt 208.
  • the valve control shaft carries valve members as described above and is associated with a single receiver 210 which extends along the length of the engine and which communicates with the pumping parts of all the cylinders through ports such as 61 referred to in Figures 1 to 4.
  • the receiver 210 also communicates with the receiver space around the working parts 205 of the cylinders, i.e. the receiver space such as 25 shown in Figures 1 to 4.
  • the total receiver volume consists of the receiver 210 and the space such as 25 around the working parts of the cylinders.
  • valve members driven by the pulley 207 via the valve control shaft controls flow of charge into the pumping parts of the cylinders and transfer of the charge from the pumping parts into the receiver and thus through the inlet ports such as 23 into the working parts of the cylinders.
  • valve members would be arranged as described in relation to Figure 2 but would communicate with the receiver 210 which in turn would communicate with the receiver space such as 25 around the cylinders as described above.
  • the cylinders of the engine are provided with exhaust ports 209 which are controlled by the tops of the working parts of the pistons as described in relation to Figures 1 to 4.
  • Figure 13 shows another version of a Vee-configuration engine which uses uniflow scavenging as described in relation to Figures 9 to 11.
  • the banks of cylinders are indicated at 214 and 215 and each may, for example, contain three cylinders although more or less may be provided.
  • each cylinder has a larger diameter pumping part 216 and a smaller diameter working part 217 and in this case there are exhaust valves 218 in the working parts and driven by camshafts 219 all as described in relation to Figures 9 to 11.
  • Each of the banks of cylinders is arranged in a manner similar to the three cylinders shown in Figures 9 to 11 and there are two valve control shafts driven from pulleys 220 and 221.
  • the valve control shaft driven by the pulley 220 operates valve members to control the charge introduced into the pumping parts of the cylinders in the bank 215 and the transfer of the charge into the working parts of the cylinders in that bank.
  • the valve control shaft driven by the pulley 221 operates valve members which control the introduction of charge into the pumping parts of the cylinders in the bank 214 and the transfer of the charge from those cylinders into the working parts of the cylinders.
  • the engine of Figure 13 is substantially two of the engines of Figures 9 to 11 with the pistons connected to a common crankshaft.
  • the camshafts and valve control shafts are driven by a toothed belt 224 which goes round the pulleys 220 and 221 and also pulleys 225 and 226 which drive the camshafts.
  • the operation of the engine is substantially as described in relation to Figures 9 to 11.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
EP97304984A 1996-02-01 1997-07-08 Stufenkolbenbrennkraftmaschine Withdrawn EP0890719A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
GBGB9602063.1A GB9602063D0 (en) 1996-02-01 1996-02-01 Stepped piston internal combustion engine
GBGB9610477.3A GB9610477D0 (en) 1996-05-18 1996-05-18 Stepped piston internal combuston engine
GB9700769A GB2309742B (en) 1996-02-01 1997-01-15 Stepped piston internal combustion engine
US08/792,505 US5870980A (en) 1996-02-01 1997-01-31 Stepped piston internal combustion engine
EP97304984A EP0890719A1 (de) 1996-02-01 1997-07-08 Stufenkolbenbrennkraftmaschine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GBGB9602063.1A GB9602063D0 (en) 1996-02-01 1996-02-01 Stepped piston internal combustion engine
GBGB9610477.3A GB9610477D0 (en) 1996-05-18 1996-05-18 Stepped piston internal combuston engine
GB9700769A GB2309742B (en) 1996-02-01 1997-01-15 Stepped piston internal combustion engine
EP97304984A EP0890719A1 (de) 1996-02-01 1997-07-08 Stufenkolbenbrennkraftmaschine

Publications (1)

Publication Number Publication Date
EP0890719A1 true EP0890719A1 (de) 1999-01-13

Family

ID=27443548

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97304984A Withdrawn EP0890719A1 (de) 1996-02-01 1997-07-08 Stufenkolbenbrennkraftmaschine

Country Status (2)

Country Link
EP (1) EP0890719A1 (de)
GB (1) GB2309742B (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2309742B (en) * 1996-02-01 1999-05-12 Bernard Hooper Stepped piston internal combustion engine
GB2576903B (en) * 2018-09-06 2022-10-05 Rcv Engines Ltd A rotary valve internal combustion engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2440726A (en) * 1945-10-15 1948-05-04 Karl K Probst Internal-combustion engine
US2609802A (en) * 1948-10-01 1952-09-09 Schnurle Two-stroke cycle internal-combustion engine
GB790508A (en) * 1955-08-15 1958-02-12 Hedges Motor Company Inc Improvements in two-stroke internal combustion engines
US4781153A (en) * 1985-10-19 1988-11-01 Bernard Hooper Internal combustion engine
US5365899A (en) * 1992-05-06 1994-11-22 Aktiebolaget Electrolux Valve arrangement for an internal combustion engine
GB2309742A (en) * 1996-02-01 1997-08-06 Bernard Hooper Stepped piston internal-combustion engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB190757A (en) * 1921-08-27 1922-12-29 John Thomas Booth Improvements in internal combustion engines

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2440726A (en) * 1945-10-15 1948-05-04 Karl K Probst Internal-combustion engine
US2609802A (en) * 1948-10-01 1952-09-09 Schnurle Two-stroke cycle internal-combustion engine
GB790508A (en) * 1955-08-15 1958-02-12 Hedges Motor Company Inc Improvements in two-stroke internal combustion engines
US4781153A (en) * 1985-10-19 1988-11-01 Bernard Hooper Internal combustion engine
US5365899A (en) * 1992-05-06 1994-11-22 Aktiebolaget Electrolux Valve arrangement for an internal combustion engine
GB2309742A (en) * 1996-02-01 1997-08-06 Bernard Hooper Stepped piston internal-combustion engine

Also Published As

Publication number Publication date
GB2309742B (en) 1999-05-12
GB2309742A (en) 1997-08-06
GB9700769D0 (en) 1997-03-05

Similar Documents

Publication Publication Date Title
US6257178B1 (en) Internal combustion engine for a motorcycle
US2639699A (en) Two-cycle engine and improved crankcase induction means therefor
EP1057982A2 (de) Viertakt-Brennkraftmaschine
US4708107A (en) Compact pressure-boosted internal combustion engine
KR920701624A (ko) 다중 실린더 내연 기관
JP3084262U (ja) 船舶を駆動するための4サイクル船外内燃機関
US4696267A (en) Cylinder block structure for internal combustion engine
US2347444A (en) Compressor for internal combustion engines
EP0476010B1 (de) Kolbenmaschine mit pumpenzylindern und kraftzylindern
US4987864A (en) Two cycle engine with valved pressure scavenging
JP2003519314A (ja) バルブ制御を有する内燃機関
US5870980A (en) Stepped piston internal combustion engine
US5027753A (en) Intake system of multi-cylinder internal combustion engine
US6035821A (en) Cam shaft for engine
JP2820793B2 (ja) ポンプシリンダと動力シリンダを備えたレシプロエンジン
EP1148217A2 (de) Einlasssteuervorrichtung für eine Brennkraftmaschine
EP0890719A1 (de) Stufenkolbenbrennkraftmaschine
US1616137A (en) Internal-combustion engine
IT9019920A1 (it) Motore a combustione interna con luce di scarico sul cilindro
CA1158179A (en) Engine camshaft and piston lubrication
US5603291A (en) Internal combustion engine with valve built into piston head
WO2007047494A9 (en) Engine having axiallyy opposed cylinders
GB2130641A (en) Crankcase charged four-stroke I.C. engine
JPH0148390B2 (de)
US1528002A (en) Internal-combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;RO;SI

17P Request for examination filed

Effective date: 19990706

AKX Designation fees paid

Free format text: DE FR IT

17Q First examination report despatched

Effective date: 20010312

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HOOPER, PETER RUSSELL

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HOOPER, PETER RUSSELL

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RIN1 Information on inventor provided before grant (corrected)

Inventor name: THE OTHER INVENTOR HAS AGREED TO WAIVE HIS ENTITL

Inventor name: HOOPER, PETER RUSSELL

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HOOPER, BERNARD

Inventor name: HOOPER, PETER RUSSELL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20020625