EP0890117B1 - Device and process for determining position - Google Patents

Device and process for determining position Download PDF

Info

Publication number
EP0890117B1
EP0890117B1 EP97908104A EP97908104A EP0890117B1 EP 0890117 B1 EP0890117 B1 EP 0890117B1 EP 97908104 A EP97908104 A EP 97908104A EP 97908104 A EP97908104 A EP 97908104A EP 0890117 B1 EP0890117 B1 EP 0890117B1
Authority
EP
European Patent Office
Prior art keywords
unit
units
transmitter
receiver
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97908104A
Other languages
German (de)
French (fr)
Other versions
EP0890117A1 (en
Inventor
Hans Ulrich Boksberger
Urs Greuter
Stefan Kirsch
Paul Gerhard Seiler
Christian Schilling
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northern Digital Inc
Original Assignee
Mednetix AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mednetix AG filed Critical Mednetix AG
Publication of EP0890117A1 publication Critical patent/EP0890117A1/en
Application granted granted Critical
Publication of EP0890117B1 publication Critical patent/EP0890117B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V15/00Tags attached to, or associated with, an object, in order to enable detection of the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/081Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices the magnetic field is produced by the objects or geological structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/10Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils
    • G01V3/104Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils using several coupled or uncoupled coils

Definitions

  • the present invention relates to a device according to the preamble of claims 1 and 2, use the same as well as a method according to the preamble of Claims 15 and 16.
  • Position detection for input into a computer system, for example for "Cyber Space” applications from general meaning. Such a position detection or. Position entry unit is used in these applications also referred to as a three-dimensional mouse.
  • US-4 737 794, US-4 945,305 and U.S. 5,453,686 are documents US-4 737 794, US-4 945,305 and U.S. 5,453,686.
  • a medical application is - as mentioned - in the treatment of tumors in the human body, wherein the tumor with photons or in special cases also with Proton rays is irradiated.
  • the goal is one such radiation treatment that only the tumor forming tissue part is irradiated.
  • the one surrounding the tumor Tissue should be damaged as little as possible become.
  • One tries to achieve this requirement by by the dose distribution of the applied radiation is adjusted as precisely as possible to the tumor volume the location of the tumor is limited.
  • tumors in the chest and abdomen are in the general not fixed. Your position will rather be through natural movements, such as through breathing, heart contractions, peristalsis, etc., constantly changing.
  • WO 94/04938 describes a device for determining the position known, with several transmitter units and one Receiving unit are provided. With the help of the transmitter units Dipole fields are generated - staggered in time, which are received with the receiving unit. Due to the received signals becomes the position of the receiving unit certainly.
  • the known teaching has the disadvantage that the Measuring accuracy especially with small dimensions for the receiving unit is insufficient.
  • the present invention is therefore based on the object based on specifying a device in which the position of objects can be determined more precisely.
  • the position of an object in the room is very precisely determined become.
  • the position can be determined without direct connection to the object.
  • the Position determination can also be made in that the receiving unit in or at the tumor and the transmitting unit or transmitter units are placed outside the body.
  • the latter arrangement also has the advantage that the body has a lower transmission power and therefore is exposed to less thermal stress than in the first method.
  • the Transfer of the object, i.e. the tumor Outward signals a lot with the latter arrangement easier, because for this transmission a lower one Transmission power must be made available as in the first method.
  • the near the Object i.e. of the tumor
  • the positioned unit if this is is necessary through surgery in the Body of the patient implanted.
  • the first Arrangement is used to send out signals through the Sending unit requires energy either over a outer field to the transmitter unit or via a Wire connection between a generator unit and the Transmit unit.
  • the transmitter unit has its own Energy storage, which is consequently implanted.
  • Fig. 1 shows a human body P one with the Device to be treated according to the invention.
  • the device according to the invention consists of a Transmitter unit SE, a generator unit GE, a hose SL, receiving units S11 to S22, one Signal processing unit SA, a computing unit RE and an irradiation unit BE.
  • the miniaturized transmitter unit SE as close as possible, preferably positioned directly next to the tumor so that the Sending unit SE, if possible, all movements related to exposed tissue part T experiences, also participates.
  • One way to send the transmitter unit SE at the desired location in Positioning bodies consists of using a Puncture hollow needle, with the help of the SL tube from the body surface is led to the tissue part T.
  • a Puncture hollow needle By this hose SL is the transmitter unit SE in the Tissue part T or brought in the vicinity of the tissue part T.
  • the tissue part T to be irradiated is located on the Body surface or near a natural one Body cavity, so is the transmitter unit SE of course to fix on the body surface or the If possible, the transmission unit is a natural one Body opening in the relevant body cavity introduce without having to penetrate tissue, such as for example when using a Puncture hollow needle is the case.
  • the computing unit RE is operatively connected to the radiation unit BE.
  • the irradiation unit BE can thus act precisely on the tissue part T based on the position information of the computing unit RE, two basic possibilities of the irradiation process being conceivable: On the one hand, it is conceivable that a target area, in which the rays develop their full effect, is tracked to the moving and irradiating tissue part T or, on the other hand, that the irradiation is only carried out when the tissue part T is in the predetermined target area.
  • Embodiment of the invention is the energy supply the transmitter unit SE via a through the hose SL guided connection cable VK, which to the generator unit GE on one side and to the transmitter unit SE on the other side is connected.
  • the transmitter unit SE has one Energy storage, for example in the form of a battery, or that the transmitter unit SE by one through the Generator unit GE generated electromagnetic field is excited.
  • These two embodiments have the Advantage that no connecting cable VK between the Generator unit GE and the transmitter unit SE are necessary, with which a field broadcast by the transmission unit SE, the is used to determine the position, is not disturbed.
  • the transmitter unit SE can between individual Treatments are left in the body. The disadvantage is however - especially in the embodiment with the in the transmitter unit SE integrated energy storage - the resulting larger transmission unit SE what particularly disruptive when implanted in the body can be.
  • the transmitter unit SE is used for a electromagnetic field, represented in FIG. 1 by to build individual field lines FL, that of the Receiving units S11 to S22, which are preferably outside of the body P are arranged, can be received.
  • a human body P in terms of Propagation properties of electromagnetic waves in the different tissues represent a very inhomogeneous medium, however, influencing one is the body P penetrating magnetic field negligible. For this This is because the preferred embodiment is in the body P placed transmitter unit SE from a miniaturized Coil, a magnetic field emanating from this coil corresponds to a magnetic dipole.
  • the magnetic moment of a dipole can be calculated or by suitable measurements are determined.
  • the position of the dipole in space as in the present application is required, the inverse represents Problem, namely based on the measurements of the Field strengths of the field emitted by the dipole is the Position of the dipole determined.
  • a complete position determination requires that Knowledge of the magnetic moment of the transmitter unit SE or the transmitter coil contained in the transmitter unit SE and the Measurement of at least five linear independent Derivatives of their magnetic field.
  • each two of these receiving units namely S11 and S12 and S21 and S22, used to determine a field derivative become.
  • S11 and S12 and S21 and S22 are shown.
  • FIG four receiving units S11 to S22 are shown.
  • a total of ten receiving units are necessary for the five variables x, y, z, ⁇ and ⁇ can be clearly determined can.
  • to check the measured values also provided more than ten receiving units with which redundant information is obtained due to which the accuracy of the measurements can be assessed.
  • Induction coils As receiving unit S11 to S22 are preferred Induction coils used.
  • the induction coils integrate the magnetic flux within their Volume. This magnetic flux can then be used to Determine the mean magnetic field strength in the coil volume. However, one is at the position determination Field strength interested in a point in space.
  • the Signal processing unit SA Amplification units D1 and D2 with two inputs each provided, at each input a receiving unit S11 up to S22 or an induction coil is connected. It it is again pointed out that for a Position determination in the room a correspondingly larger one Number of amplification units must be available as this can be seen in Fig. 1, because in Fig. 1 only two for the sake of clarity Amplification units D1 and D2 or only four Receiving units S11 to S22 shown.
  • the induction coils must be very homogeneous and reproducible be wound so that of the induced in the coil Voltage with high accuracy on the magnetic field strength can be closed.
  • the homogeneity and Reproducibility are common with conventional windings Round copper wire is extremely difficult to reach. Out for this reason, two more options are below proposed for the realization of induction coils at which the disadvantages mentioned above are avoided.
  • This embodiment has the advantage that the outside of the body K lying higher lying units May have performance limits than the first mentioned variant.
  • the receiving unit achieved a significantly improved signal-to-noise ratio, with which the requirements for the measurement signals processing arithmetic unit are smaller and what the Measurement results become more accurate.
  • the receiving unit placed at the object much smaller Amounts of energy to transmit the measurement signals to the outside, which in most cases is battery-powered or receiving unit based on a transponder principle is sufficient.
  • Time division multiplexing sends only one transmission unit at a time - if a difference field is sent, the two corresponding transmission units S11 and S12 or S21 and S22 - in a defined period of time. At the Frequency division multiplexing, however, all send Sending units simultaneously, but with defined, different from other differing frequencies.
  • FIG. 1 Configuration started, with sending and receiving location were exchanged.
  • the receiving unit SE For example, two coils are provided with which either absolute values or field derivatives are measured.
  • FIG. 2 A first embodiment of the induction coil is shown in FIG. 2, with a foil F, which is coated with parallel copper strips KS, being used instead of a wire.
  • the film width corresponds to the desired winding length and thus the length of a bobbin SK to be wound.
  • FIG. 2A the film F is wound directly onto the coil former SK, the entire wire layer of a conventional induction coil corresponding to a film layer.
  • 2B shows how the parallel copper strips KS are connected to one another via an electrical connecting line EL.
  • the end of a copper strip KS located at the start of the winding WA must be connected to an end of a copper strip KS located at the winding end WE, which, however, requires a relatively complicated connection technique.
  • the present application namely measuring of field derivatives (field gradients), only that Difference signal from two induction coils of interest.
  • the winding can to be simplified by both Induction coils are made from the same film F. This is illustrated with reference to FIG. 2C, from which it can be seen is that the film F at the winding start WA twice is folded at right angles. Furthermore, both Induction coils in parallel on the same bobbin wound. This ensures that the same Copper strips once from the outside in and for them second induction coil is guided from the inside to the outside.
  • Induction coils As a major advantage of those explained with reference to FIG. 2C Induction coils compared to those explained with reference to FIG. 2A Induction coils is that no additional electrical Connection lines between the winding start WA and the winding end WE are necessary, because are now located all necessary connections at the winding end WE (Fig. 2C).
  • Induction coils are in Fig. 3 or in Figs. 3A and 3B shown, the in this embodiment Induction coils are constructed from foil disks FS preferably by means of a photolithographic Process either a left or a right turn Copper spiral KSPL or KSPR are applied (Fig. 3A). ever one of these left-handed copper spirals KSPL is included a clockwise rotating copper spiral KSPR each inside Spiral start via an electrical connection line EL connected. This ensures that the sense of rotation of the copper strip from the outer beginning of the left-turning Spiral to the outer end of the clockwise spiral does not change. This means that the induced Add signals.
  • the induction coil is now one Stack of such left and right rotating pairs of spirals corresponding to the arrangement shown in Fig. 3B built up, the spiral pairs only electrically on the outside need to be connected.
  • the induction coils explained with reference to FIGS. 2 and 3 can be used in any application in which Magnetic field components or their derivatives determined Need to become. Especially when high accuracy of sizes to be measured and a high sensitivity of the Unit of measurement is required, the specified ones are suitable Induction coils especially as gradiometers. Furthermore the induction coils designed in this way are crowding downright for the determination of small magnetic field components or their derivatives, because small values can with these induction coils can be measured very precisely. It also ensures simple manufacture such induction coils an extremely good one Reproducibility of the measured sizes with different Induction coils.
  • the trained as a transmitter unit SE Transmitter coil with a time-variable current signal from known shape and size.
  • S11 to S22 Sensors can be used as induction coils. Is conceivable in particular the use of SQUID ("Sensors", W. Göpel et al. Publisher VC Hauer, Weinheim, 1989).
  • the position determination of a transmitter unit SE by measurement of the modulated field it generates using Gradiometers is not limited to that Position determination of tumors to be irradiated. Much more the device according to the invention can be found anywhere there use successfully where a non-contact Positioning is needed.
  • the embodiment variant is of a receiving unit in or near the object is intended to be further developed such that further Receiving units in or near the object or on other places are provided.
  • Advantageous with this Embodiment is that the positions of the different receiving units can be determined simultaneously can, since neither a time division nor a Frequency division multiplexing is necessary.
  • the device according to the invention was based on a medical application explained in detail. This will however, the universality of the invention in no way limited. So the invention is suitable Device in particular as a so-called three-dimensional Mouse in "Cyber Space” applications or the like.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Geophysics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Human Computer Interaction (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Vehicle Body Suspensions (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Numerical Control (AREA)

Abstract

A device for determining the position of objects (T) inside a space (P), in particular for locating a tumor inside a human body. At least one emitter unit (SE) and at least one receiver unit (S11, . . . S22) are provided and, in a first embodiment, the emitter unit(s) (SE) are located inside and/or as close as possible to the object (T) under observation and the receiver units(s) (S11, . . . S22) are located preferably outside the space (P). In a second embodiment, the receiver unit(s) (SE) are located inside and/or as close as possible to the object (T) under observation and the emitter unit(s) (S11, . . . S22) are located preferably outside the space (P).

Description

Die vorliegende Erfindung betrifft eine Vorrichtung nach dem Oberbegriff der Patentansprüche 1 und 2, eine Verwendung derselben sowie ein Verfahren nach dem Oberbegriff der Patentansprüche 15 und 16.The present invention relates to a device according to the preamble of claims 1 and 2, use the same as well as a method according to the preamble of Claims 15 and 16.

Bei zahlreichen technischen und medizinischen Verfahren sind Informationen über die Position eines Objektes von grösster Bedeutung. Währenddem in der Medizin die Position von einzelnen Gewebeteilen - beispielsweise eines Tumors, der zur Zerstörung oder zur Wachstumsbegrenzung bestrahlt werden soll - bestimmt werden muss, ist die Positionserfassung zur Eingabe in ein Computersystem, beispielsweise für "Cyber Space"- Anwendungen, von allgemeiner Bedeutung. Eine solche Positionserfassungs-bzw. Positionseingabeeinheit wird in diesen Anwendungen auch etwa als dreidimensionale Maus bezeichnet. In diesem Zusammenhang sei auf die Druckschriften US-4 737 794, US-4 945 305 und US-5 453 686 verwiesen.With numerous technical and medical processes are information about the position of an object from of greatest importance. Meanwhile in medicine the position of individual tissue parts - for example a tumor, irradiated to destroy or limit growth to be determined - must be determined Position detection for input into a computer system, for example for "Cyber Space" applications from general meaning. Such a position detection or. Position entry unit is used in these applications also referred to as a three-dimensional mouse. In this Reference is made to the documents US-4 737 794, US-4 945,305 and U.S. 5,453,686.

Eine medizinischen Anwendungen besteht - wie erwähnt - in der Behandlung von Tumoren im menschlichen Körper, wobei der Tumor mittels Photonen- oder in Spezialfällen auch mit Protonenstrahlen bestrahlt wird. Dabei ist das Ziel einer derartigen Strahlenbehandlung, dass lediglich der den Tumor bildende Gewebeteil bestrahlt wird. Das den Tumor umgebende Gewebe soll dabei so gering wie nur möglich geschädigt werden. Diese Forderung versucht man dadurch zu erreichen, indem die Dosisverteilung der applizierten Strahlung möglichst genau dem Tumorvolumen angepasst wird bzw. auf den Ort des Tumors begrenzt ist. A medical application is - as mentioned - in the treatment of tumors in the human body, wherein the tumor with photons or in special cases also with Proton rays is irradiated. The goal is one such radiation treatment that only the tumor forming tissue part is irradiated. The one surrounding the tumor Tissue should be damaged as little as possible become. One tries to achieve this requirement by by the dose distribution of the applied radiation is adjusted as precisely as possible to the tumor volume the location of the tumor is limited.

Verschiedene Methoden sind sowohl für die Photonen- als auch für die Protonenbestrahlung bekannt, wobei zum Teil erhebliche Qualitätsunterschiede zwischen den verschiedenen Methoden bestehen. Bei all diesen bekannten Methoden wird-unter Vermeidung einer Schädigung von gesundem Gewebe - vorausgesetzt, dass eine einmal diagnostizierte Tumorposition über den Behandlungszeitraum konstant bleibt.Different methods are available for both photons also known for proton radiation, some of which significant quality differences between the different Methods exist. With all of these known methods, under- Avoid damage to healthy tissue - provided that once diagnosed Tumor position remains constant over the treatment period.

Bei der Behandlung von ortsfesten Tumoren wurden teilweise beachtliche Erfolge erzielt. So hat sich insbesondere die Behandlung von Augenhintergrundmelanomen mit Protonenstrahlen als äusserst erfolgreich erwiesen.In the treatment of stationary tumors have been partial achieved considerable success. So in particular Treatment of fundus melanoma with Proton beams have proven to be extremely successful.

Demgegenüber sind Tumore im Brust- und Bauchbereich im allgemeinen nicht ortsfest. Ihre Position wird vielmehr durch natürliche Bewegungsabläufe, wie beispielsweise durch die Atmung, die Herzkontraktionen, die Peristaltik, usw., dauernd verändert.In contrast, tumors in the chest and abdomen are in the general not fixed. Your position will rather be through natural movements, such as through breathing, heart contractions, peristalsis, etc., constantly changing.

Sollen ähnliche Behandlungserfolge wie bei ortsfesten Tumoren erreicht werden, so muss die Position des Tumors während der Bestrahlung genau bekannt sein.Treatment success similar to that of fixed should be Tumors are reached, so the position of the tumor be known exactly during the irradiation.

In einem Aufsatz von K. Ohara et al. mit dem Titel "Irradiation Synchronized with Respiration Gate" (International Journal on Radiation Oncology Biology Physics, 1989, Vol. 17, Seiten 853 bis 857) wurde aus diesem Grund eine Echtzeitsimulation der Tumorposition vorgeschlagen, wobei als Grundlage der Simulation die Verformung der Körperoberfläche, insbesondere die Verformung durch die Atembewegung, verwendet wurde. Die Methode weist jedoch Ungenauigkeiten auf, da es sich einerseits nicht um eine direkte Messung der Tumorposition sondern lediglich um eine indirekte Messung handelt, und da anderseits die weiteren positionsbestimmenden Faktoren-wie Herzkontraktion und Darmbewegung - nicht berücksichtigt werden.In an article by K. Ohara et al. with the title "Irradiation Synchronized with Respiration Gate" (International Journal on Radiation Oncology Biology Physics, 1989, vol. 17, pages 853 to 857) therefore a real-time simulation of the tumor position proposed, the basis of the simulation being the Deformation of the body surface, especially the Deformation due to breathing movement was used. The However, method has inaccuracies because it is on the one hand, not a direct measurement of the tumor position it's just an indirect measurement, and there on the other hand, the other position-determining factors such as Heart contraction and bowel movement - not taken into account become.

Aus der WO 94/04938 ist eine Vorrichtung zur Positionsbestimmung bekannt, wobei mehrere Sendeeinheiten und eine Empfangseinheit vorgesehen sind. Mit Hilfe der Sendeeinheiten werden - zeitlich gestaffelt - Dipolfelder erzeugt, die mit der Empfangseinheit empfangen werden. Aufgrund der empfangenen Signale wird die Position der Empfangseinheit bestimmt.WO 94/04938 describes a device for determining the position known, with several transmitter units and one Receiving unit are provided. With the help of the transmitter units Dipole fields are generated - staggered in time, which are received with the receiving unit. Due to the received signals becomes the position of the receiving unit certainly.

Die bekannte Lehre weist den Nachteil auf, dass die Messgenauigkeit insbesondere bei kleinen Abmessungen für die Empfangseinheit ungenügend ist.The known teaching has the disadvantage that the Measuring accuracy especially with small dimensions for the receiving unit is insufficient.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, eine Vorrichtung anzugeben, bei der die Position von Objekten genauer bestimmt werden kann.The present invention is therefore based on the object based on specifying a device in which the position of objects can be determined more precisely.

Diese Aufgabe wird durch die im kennzeichnenden Teil der Patentansprüche 1 und 2 angegebenen Massnahmen und die in dem Patentansprüchen 15 und 16 angegebenen Verfahren gelöst. Vorteilhafte Ausgestaltungen der Erfindung und eine Verwendung derselben sind in weiteren Ansprüchen angegeben.This task is carried out in the characterizing part of the Claims 1 and 2 specified measures and the method specified in claims 15 and 16 solved. Advantageous embodiments of the invention and a use the same are specified in further claims.

Mit Hilfe der erfindungsgemässen Vorrichtung kann die Position eines Objektes im Raum äusserst genau bestimmt werden. Darüber hinaus kann die Positionsbestimmung ohne direkte Verbindung zum Objekt erfolgen.With the help of the device according to the invention, the The position of an object in the room is very precisely determined become. In addition, the position can be determined without direct connection to the object.

Wird am Tumor oder an einem sich in der Nähe des Tumors befindenden Gewebeteils eine miniaturisierte, Signale ausstrahlende Sendeeinheit befestigt, so dann durch den Empfang dieser Signale ausserhalb des Körpers mit Hilfe von Empfangseinheiten die Position des Tumors jederzeit genau berechnet werden. In analoger Weise kann die Positionbestimmung auch dadurch vorgenommen werden, dass die Empfangseinheit im bzw. beim Tumor und die Sendeeinheit bzw. Sendeeinheiten ausserhalb des Körpers plaziert werden. Die letztgenannte Anordnung hat darüber hinaus den Vorteil, dass der Körper einer geringeren Sendeleistung und damit einer geringeren thermischen Belastung ausgesetzt wird als bei der erst genannten Methode. Zudem gestaltet sich die Übertragung der beim Objekt, d.h. dem Tumor, gemessenen Signale nach aussen bei der letztgenannten Anordnung viel einfacher, da für diese Übertragung eine geringere Übertragungsleistung zur Verfügung gestellt werden muss als bei der erst genannten Methode.Will be on the tumor or on a near the tumor located tissue part a miniaturized, signals emitting transmission unit attached, then by the Receive these signals outside the body with the help of Receiving units precisely the position of the tumor at all times be calculated. Analogously, the Position determination can also be made in that the receiving unit in or at the tumor and the transmitting unit or transmitter units are placed outside the body. The latter arrangement also has the advantage that the body has a lower transmission power and therefore is exposed to less thermal stress than in the first method. In addition, the Transfer of the object, i.e. the tumor Outward signals a lot with the latter arrangement easier, because for this transmission a lower one Transmission power must be made available as in the first method.

Bei der medizinischen Anwendung wird die in der Nähe des Objektes, d.h. des Tumor, positionierte Einheit, falls dies notwendig ist, durch einen chirurgischen Eingriff in den Körper des Patienten implantiert. Bei der erst genannten Anordnung wird zum Aussenden von Signalen durch die Sendeeinheit Energie benötigt, die entweder über ein äusseres Feld an die Sendeeinheit oder über eine Drahtverbindung zwischen einer Generatoreinheit und der Sendeeinheit übertragen. In einer weiteren Ausführungsform der Erfindung weist die Sendeeinheit einen eigenen Energiespeicher auf, der demzufolge mitimplantiert wird.In the medical application, the near the Object, i.e. of the tumor, positioned unit if this is is necessary through surgery in the Body of the patient implanted. With the first Arrangement is used to send out signals through the Sending unit requires energy either over a outer field to the transmitter unit or via a Wire connection between a generator unit and the Transmit unit. In another embodiment the transmitter unit has its own Energy storage, which is consequently implanted.

Bei der zweitgenannten Anordnung gelten die obigen Aussagen sinngemäss, d.h., dass die durch die Empfangseinheit bzw. Empfangseinheiten empfangenen Signale über Drahtverbindungen nach aussen übertragen werden. Allerdings wird - wie erwähnt - bei dieser Realisierungsform für die Übertragung der Messsignale weniger Energie benötigt.The above statements apply to the second arrangement mutatis mutandis, i.e. that the Receiving units received signals over Wire connections are transmitted to the outside. Indeed - as mentioned - this implementation form for the Transmission of the measurement signals requires less energy.

Die Erfindung wird nachfolgend anhand von Zeichnungen beispielsweise näher erläutert. Dabei zeigt

Fig. 1
ein vereinfachtes Funktionsblockschaltbild der erfindungsgemässen Vorrichtung,
Fig. 2
einen Aufbau einer als Empfangseinheit in der erfindungsgemässen Vorrichtung verwendeten Induktionsspule und
Fig. 3
eine weitere Ausführungsform der Induktionsspule gemäss Fig. 2.
The invention is explained in more detail below with reference to drawings, for example. It shows
Fig. 1
a simplified functional block diagram of the device according to the invention,
Fig. 2
a structure of an induction coil used as a receiving unit in the device according to the invention and
Fig. 3
a further embodiment of the induction coil according to FIG. 2.

Fig. 1 zeigt einen menschlichen Körper P eines mit der erfindungsgemässen Vorrichtung zu behandelnden Patienten. Dabei besteht die erfindungsgemässe Vorrichtung aus einer Sendeeinheit SE, einer Generatoreinheit GE, einem Schlauch SL, Empfangseinheiten S11 bis S22, einer Signalaufbereitungseinheit SA, einer Recheneinheit RE und einer Bestrahlungseinheit BE.Fig. 1 shows a human body P one with the Device to be treated according to the invention. The device according to the invention consists of a Transmitter unit SE, a generator unit GE, a hose SL, receiving units S11 to S22, one Signal processing unit SA, a computing unit RE and an irradiation unit BE.

Wie eingangs erwähnt ist die Kenntnis der genauen Position eines zu bestrahlenden Gewebeteils T, beispielsweise eines Tumors, unabdingbare Voraussetzung für eine maximale Schonung des an den Tumor angrenzenden gesunden Gewebes. Für diese Positionsbestimmung wird erfindungsgemäss die miniaturisierte Sendeeinheit SE möglichst nahe, vorzugsweise unmittelbar beim Tumor positioniert, damit die Sendeeinheit SE möglichst alle Bewegungen, die der zu bestrahlende Gewebeteil T erfährt, ebenfalls mitmacht.As mentioned at the beginning is knowledge of the exact position of a tissue part T to be irradiated, for example one Tumor, an essential requirement for a maximum Protection of the healthy tissue adjacent to the tumor. For this position determination, the miniaturized transmitter unit SE as close as possible, preferably positioned directly next to the tumor so that the Sending unit SE, if possible, all movements related to exposed tissue part T experiences, also participates.

Eine Möglichkeit, die Sendeeinheit SE am gewünschten Ort im Körper zu positionieren, besteht in der Verwendung einer Punktationshohlnadel, mit deren Hilfe der Schlauch SL von der Körperoberfläche zum Gewebeteil T geführt wird. Durch diesen Schlauch SL wird die Sendeeinheit SE in den Gewebeteil T bzw. in der Nähe des Gewebeteils T gebracht. One way to send the transmitter unit SE at the desired location in Positioning bodies consists of using a Puncture hollow needle, with the help of the SL tube from the body surface is led to the tissue part T. By this hose SL is the transmitter unit SE in the Tissue part T or brought in the vicinity of the tissue part T.

Befindet sich der zu bestrahlende Gewebeteil T an der Körperoberfläche oder in der Nähe eines natürlichen Körperhohlraumes, so ist die Sendeeinheit SE selbstverständlich an der Körperfläche zu fixieren bzw. die Sendeeinheit ist, wenn möglich, durch eine natürliche Körperöffnung in den betreffenden Körperhohlraum einzuführen, ohne dass Gewebe durchdrungen werden muss, wie dies beispielsweise bei der Verwendung einer Punktationshohlnadel der Fall ist.The tissue part T to be irradiated is located on the Body surface or near a natural one Body cavity, so is the transmitter unit SE of course to fix on the body surface or the If possible, the transmission unit is a natural one Body opening in the relevant body cavity introduce without having to penetrate tissue, such as for example when using a Puncture hollow needle is the case.

Falls die erfindungsgemässe Positionsbestimmung dazu verwendet wird, um eine Bestrahlung eines Gewebeteils T, beispielsweise eines Tumors, vornehmen zu können, so ist die Recheneinheit RE mit der Bestrahlungseinheit BE wirkverbunden. Damit kann die Bestrahlungseinheit BE aufgrund der Positionsangaben der Recheneinheit RE präzise auf den Gewebeteil T einwirken, wobei zwei grundsätzliche Möglichkeiten des Bestrahlungsvorganges denkbar sind:
Einerseits ist denkbar, dass ein Zielbereich, in dem die Strahlen ihre volle Wirkung entfalten, dem sich bewegenden und bestrahlenden Gewebeteil T nachgeführt wird oder, anderseits, dass die Bestrahlung lediglich dann vorgenommen wird, wenn sich der Gewebeteil T im fix vorgegebenen Zielbereich befindet.
If the position determination according to the invention is used in order to be able to irradiate a tissue part T, for example a tumor, the computing unit RE is operatively connected to the radiation unit BE. The irradiation unit BE can thus act precisely on the tissue part T based on the position information of the computing unit RE, two basic possibilities of the irradiation process being conceivable:
On the one hand, it is conceivable that a target area, in which the rays develop their full effect, is tracked to the moving and irradiating tissue part T or, on the other hand, that the irradiation is only carried out when the tissue part T is in the predetermined target area.

In der bereits erwähnten und in Fig. 1 dargestellten Ausführungsform der Erfindung erfolgt die Energieversorgung der Sendeeinheit SE über ein durch den Schlauch SL geführtes Verbindungskabel VK, das an die Generatoreinheit GE auf der einen Seite und an die Sendeeinheit SE auf der anderen Seite angeschlossen ist. In the already mentioned and shown in Fig. 1 Embodiment of the invention is the energy supply the transmitter unit SE via a through the hose SL guided connection cable VK, which to the generator unit GE on one side and to the transmitter unit SE on the other side is connected.

Denkbar ist jedoch auch, dass die Sendeeinheit SE einen Energiespeicher, beispielsweise in Form einer Batterie, aufweist oder dass die Sendeeinheit SE von einem durch die Generatoreinheit GE erzeugten elektromagnetischen Feld erregt wird. Diese beiden Ausführungsformen haben den Vorteil, dass keine Verbindungskabel VK zwischen der Generatoreinheit GE und der Sendeeinheit SE notwendig sind, womit ein von der Sendeeinheit SE ausgestrahltes Feld, das zur Positionsbestimmung verwendet wird, nicht gestört wird. Zudem kann die Sendeeinheit SE zwischen einzelnen Behandlungen im Körper belassen werden. Nachteilig ist jedoch - insbesondere bei der Ausführungsform mit dem in der Sendeeinheit SE integrierten Energiespeicher - die daraus resultierende, grössere Sendeeinheit SE, was insbesondere bei einer Implantation in den Körper störend sein kann.However, it is also conceivable that the transmitter unit SE has one Energy storage, for example in the form of a battery, or that the transmitter unit SE by one through the Generator unit GE generated electromagnetic field is excited. These two embodiments have the Advantage that no connecting cable VK between the Generator unit GE and the transmitter unit SE are necessary, with which a field broadcast by the transmission unit SE, the is used to determine the position, is not disturbed. In addition, the transmitter unit SE can between individual Treatments are left in the body. The disadvantage is however - especially in the embodiment with the in the transmitter unit SE integrated energy storage - the resulting larger transmission unit SE what particularly disruptive when implanted in the body can be.

Die Sendeeinheit SE wird dazu verwendet, ein elektromagnetisches Feld, in Fig. 1 dargestellt durch einzelne Feldlinien FL, aufzubauen, das von den Empfangseinheiten S11 bis S22, die vorzugsweise ausserhalb des Körpers P angeordnet sind, empfangen werden kann. Zwar stellt ein menschlicher Körper P hinsichtlich der Ausbreitungseigenschaften von elektromagnetischen Wellen in den verschiedenen Geweben ein sehr inhomogenes Medium dar, jedoch ist die Beeinflussung eines den Körper P durchdringenden Magnetfeldes vernachlässigbar. Aus diesem Grund besteht die bevorzugte Ausführungsform der im Körper P plazierten Sendeeinheit SE aus einer miniaturisierten Spule, wobei ein von dieser Spule ausgehendes Magnetfeld einem magnetischen Dipol entspricht. Kennt man das magnetische Moment und die Lage eines Dipols im Raum, so ist die Stärke des Magnetfeldes in jedem Punkt im Raum berechenbar, wobei die Werte für die Magnetfeldstärke durch die drei kartesischen Koordinaten x, y, z, den Polarwinkel  und das Azimut  des Dipols eindeutig bestimmt sind. Das magnetische Moment eines Dipols kann berechnet oder durch geeignete Messungen bestimmt werden.The transmitter unit SE is used for a electromagnetic field, represented in FIG. 1 by to build individual field lines FL, that of the Receiving units S11 to S22, which are preferably outside of the body P are arranged, can be received. Though represents a human body P in terms of Propagation properties of electromagnetic waves in the different tissues represent a very inhomogeneous medium, however, influencing one is the body P penetrating magnetic field negligible. For this This is because the preferred embodiment is in the body P placed transmitter unit SE from a miniaturized Coil, a magnetic field emanating from this coil corresponds to a magnetic dipole. Do you know that magnetic moment and the location of a dipole in space, so is the strength of the magnetic field at every point in space calculable, whereby the values for the magnetic field strength by the three Cartesian coordinates x, y, z, the polar angle  and the azimuth  of the dipole are clearly determined. The magnetic moment of a dipole can be calculated or by suitable measurements are determined.

Die Position des Dipols im Raum, wie sie in der vorliegenden Anwendung benötigt wird, stellt das inverse Problem dar, nämlich ausgehend von den Messungen der Feldstärken des vom Dipol ausgestrahlten Feldes wird die Position des Dipols ermittelt.The position of the dipole in space, as in the present application is required, the inverse represents Problem, namely based on the measurements of the Field strengths of the field emitted by the dipole is the Position of the dipole determined.

Eine vollständige Positionsbestimmung erfordert die Kenntnis des magnetischen Moments der Sendeeinheit SE bzw. der in der Sendeeinheit SE enthaltenen Sendespule und die Messung von mindestens fünf linearen unabhängigen Ableitungen ihres Magnetfeldes.A complete position determination requires that Knowledge of the magnetic moment of the transmitter unit SE or the transmitter coil contained in the transmitter unit SE and the Measurement of at least five linear independent Derivatives of their magnetic field.

Eine mögliche Methode zur Bestimmung der Position eines magnetischen Dipols im Raum ist im Aufsatz von W. M Wynn et al. mit dem Titel "Advanced Superconducting Gradiometer/Magnetometer Arrays and a Novel Signal Processing Technique" (IEEE Transactions of Magnetics, Vol. MAG-11, No. 2, März 1975, Seiten 701 bis 707) beschrieben. Allerdings wird bei dieser bekannten Methode zur Positionsbestimmung von einem Dipol ausgegangen, bei dem das magnetische Moment unbekannt ist. Aus diesem Grund muss zusätzlich zu den Feldableitungen noch eine Komponente des Magnetfeldes gemessen werden.A possible method for determining the position of a magnetic dipoles in space is described in the article by W. M Wynn et al. entitled "Advanced Superconducting Gradiometer / Magnetometer Arrays and a Novel Signal Processing Technique "(IEEE Transactions of Magnetics, Vol. MAG-11, No. 2, March 1975, pages 701 to 707). However, with this known method Position determination based on a dipole in which the magnetic moment is unknown. For this reason in addition to the field derivatives, a component of the Magnetic field can be measured.

Bei der Anwendung dieser Methode auf die erfindungsgemässe Lehre kann das magnetische Moment jedoch in einer von den Messungen zur Positionsbestimmung unabhängigen Messung erhalten werden, d.h. auf die Messung der Feldkomponente während der Positionsbestimmung kann verzichtet werden.When using this method on the inventive However, the magnetic moment can be taught in one of them Measurements to determine position independent measurement be obtained, i.e. on the measurement of the field component there is no need for positioning.

Zur Messung der Feldableitungen (Feldgradienten) sind die Empfangseinheiten S11 bis S22 vorgesehen, wobei jeweils zwei dieser Empfangseinheiten, nämlich S11 und S12 bzw. S21 und S22, zur Bestimmung einer Feldableitung verwendet werden. Der Einfachheit halber sind in Fig. 1 lediglich die vier Empfangseinheiten S11 bis S22 dargestellt. Tatsächlich sind insgesamt zehn Empfangseinheiten notwendig, damit die fünf Variablen x, y, z,  und  eindeutig bestimmt werden können. Zur Überprüfung der gemessenen Werte ist jedoch auch vorgesehen, mehr als zehn Empfangseinheiten einzusetzen, womit redundante Informationen erhalten werden, aufgrund deren die Genauigkeit der Messungen eingeschätzt werden kann.To measure the field derivatives (field gradients) are the Receiving units S11 to S22 are provided, each two of these receiving units, namely S11 and S12 and S21 and S22, used to determine a field derivative become. For the sake of simplicity, only those are shown in FIG four receiving units S11 to S22 are shown. Indeed a total of ten receiving units are necessary for the five variables x, y, z,  and  can be clearly determined can. However, to check the measured values also provided more than ten receiving units with which redundant information is obtained due to which the accuracy of the measurements can be assessed.

Als Empfangseinheit S11 bis S22 werden vorzugsweise Induktionsspulen verwendet. Die Induktionsspulen integrieren den magnetischen Fluss innerhalb ihres Volumens. Aus diesem magnetischen Fluss lässt sich dann die mittlere magnetische Feldstärke im Spulenvolumen bestimmen. Für die Positionsbestimmung ist man jedoch an der Feldstärke in einem Punkt im Raum interessiert.As receiving unit S11 to S22 are preferred Induction coils used. The induction coils integrate the magnetic flux within their Volume. This magnetic flux can then be used to Determine the mean magnetic field strength in the coil volume. However, one is at the position determination Field strength interested in a point in space.

Aus der Druckschrift mit dem Titel "Experimental Methods in Magnetism" von E. P. Wohlfarth (Band 2, Kapitel 1, Seiten 2 bis 7) ist bekannt, dass, wenn die Spulendimensionen geeignet gewählt werden, der Messwert, den die Spule liefert, mit nur geringen Abweichungen dem Wert der magnetischen Feldstärke, und zwar im Zentrum der Spule, entspricht. Dies kann insbesondere dann erwartet werden, wenn das Verhältnis von Länge zu Durchmesser der verwendeten Induktionsspule nach folgender Formel berechnet wird: ζρ2 = 3 20 · 1 - γ5 1 - γ3 wobei γ = ρ1 ρ2 und ρ1, ρ2 der innere bzw. der äussere Durchmesser der Induktionsspule ist. Es wurde unlängst gezeigt, dass - wenn γ < 0.3 ist - ein Anteil vierter Ordnung kleiner als 2 x 10-3 ist und somit einen kleineren Einfluss ausübt als die magnetische Induktion Bz entlang der Symmetrieachse der Induktionsspule.From the publication entitled "Experimental Methods in Magnetism" by EP Wohlfarth (Volume 2, Chapter 1, pages 2 to 7) it is known that, if the coil dimensions are chosen appropriately, the measured value that the coil delivers can be achieved with only a small amount Deviations corresponds to the value of the magnetic field strength, namely in the center of the coil. This can be expected in particular if the ratio of length to diameter of the induction coil used is calculated using the following formula: ζ ρ 2 = 3 20 · 1 - γ 5 1 - γ 3 in which γ = ρ 1 ρ 2 and ρ 1 , ρ 2 is the inner and outer diameter of the induction coil. It has recently been shown that - if γ <0.3 - a fourth-order component is smaller than 2 x 10 -3 and thus exerts a smaller influence than the magnetic induction B z along the axis of symmetry of the induction coil.

Wie bereits erwähnt wurde, werden jeweils zwei der Empfangseinheiten S11 bis S22 zur Bestimmung der Ableitungen (Gradienten) des Magnetfeldes zusammen geschaltet. Dazu sind in der Signalaufbereitungseinheit SA Verstärkungseinheiten D1 und D2 mit je zwei Eingängen vorgesehen, wobei an jedem Eingang eine Empfangseinheit S11 bis S22 bzw. eine Induktionsspule angeschlossen wird. Es wird erneut darauf hingewiesen, dass für eine Positionsbestimmung im Raum eine entsprechend grössere Anzahl an Verstärkungseinheiten vorhanden sein müssen, als dies Fig. 1 entnommen werden kann, denn in Fig. 1 wurden der Übersichtlichkeit halber lediglich zwei Verstärkungseinheiten D1 und D2 bzw. lediglich vier Empfangseinheiten S11 bis S22 dargestellt. As already mentioned, two of the Receiving units S11 to S22 for determining the Derivatives (gradients) of the magnetic field together connected. For this purpose, the signal processing unit SA Amplification units D1 and D2 with two inputs each provided, at each input a receiving unit S11 up to S22 or an induction coil is connected. It it is again pointed out that for a Position determination in the room a correspondingly larger one Number of amplification units must be available as this can be seen in Fig. 1, because in Fig. 1 only two for the sake of clarity Amplification units D1 and D2 or only four Receiving units S11 to S22 shown.

In den Verstärkungseinheiten D1 und D2 wird die Magnetfelddifferenz zwischen den beiden an den Eingängen anstehenden Signalwerten gebildet. Diese Magnetfelddifferenz wird der Ableitung des Magnetfeldes näherungsweise gleichgesetzt.In the amplification units D1 and D2 the Magnetic field difference between the two at the inputs pending signal values are formed. This Magnetic field difference becomes the derivative of the magnetic field approximately equated.

Aufgrund der Miniaturisierung, insbesondere einer als Spule ausgebildeten Sendeeinheit SE, ist die erzeugte Magnetfeldstärke sehr klein. Damit stellen andere Magnetfeldquellen, wie sie in nicht speziell abgeschirmten Räumen vorkommen können, ein Problem dar. Aus diesem Grund wird in der Signalaufbereitungseinheit SA eine schmalbandige Filterung und/oder eine phasenempfindliche Verstärkung der in den Verstärkungseinheiten D1 und D2 erhaltenen Signalwerte vorgenommen. Damit kann ein grosser Teil der unerwünschten Signalanteile, inklusive Rauschen, eliminiert werden. Ferner tragen auch die zur Bestimmung der Ableitungen des Magnetfeldes (Gradienten) benötigten Differenzbildungen in den Verstärkungseinheiten D1 und D2 zur Reduktion von Störeinflüssen bei.Because of the miniaturization, especially one as a coil trained transmitter unit SE, is the generated Magnetic field strength very small. With that, others pose Magnetic field sources, such as those not specifically shielded Spaces can be a problem. For this reason becomes a in the signal processing unit SA narrow band filtering and / or phase sensitive Reinforcement in the amplification units D1 and D2 received signal values made. So a big one Part of the unwanted signal components, including noise, be eliminated. They also contribute to the determination the derivatives of the magnetic field (gradient) are required Differences in the amplification units D1 and D2 to reduce interference.

Die Induktionsspulen müssen sehr homogen und reproduzierbar gewickelt werden, damit von der in der Spule induzierten Spannung mit hoher Genauigkeit auf die Magnetfeldstärke geschlossen werden kann. Die Homogenität und Reproduzierbarkeit sind mit herkömmlichen Wicklungen aus Kupferrunddraht nur äusserst schwer zu erreichen. Aus diesem Grund werden nachstehend zwei weitere Möglichkeiten zur Realisierung von Induktionsspulen vorgeschlagen, bei denen die vorstehend genannten Nachteile vermieden werden. The induction coils must be very homogeneous and reproducible be wound so that of the induced in the coil Voltage with high accuracy on the magnetic field strength can be closed. The homogeneity and Reproducibility are common with conventional windings Round copper wire is extremely difficult to reach. Out for this reason, two more options are below proposed for the realization of induction coils at which the disadvantages mentioned above are avoided.

Zunächst sei die bereits eingangs erwähnte erfindungsgemässe Vorrichtung erläutert, die sich von der erst genannten dadurch unterscheidet, dass Sende- und Empfangseinheiten ausgetauscht sind, womit ein sogenanntes Differenzfeld aufgrund der zur Messung der Feldableitung zusammen geschalteten Spulen, die nunmehr von einem vorgegeben Strom durchflossen werden, entsteht. Somit ist bei dieser Ausführungsvariante die Empfangseinheit bzw. die Empfangseinheiten im oder in der Nähe des Objektes T - d.h. des Tumors - und die Sendeeinheit bzw. die Sendeeinheiten ausserhalb des Raumes K - d.h. des Körpers - positioniert. Diese Ausführungsform hat den Vorteil, dass die ausserhalb des Körpers K liegenden Sendeeinheiten höher liegende Leistungsgrenzwerte aufweisen können als bei der erst genannten Variante. Dadurch wird bei der Empfangseinheit ein erheblich verbesserter Signal-Rausch-Abstand erreicht, womit die Anforderungen an die die Messsignale verarbeitende Recheneinheit geringer sind und womit die Messresultate genauer werden. Darüber hinaus benötigt die beim Objekt plazierte Empfangseinheit viel geringere Energiemengen zur Übertragung der Messsignale nach aussen, womit in den meisten Fällen eine Batterie-gestützte oder auf einem Transponderprinzip beruhende Empfangseinheit dazu ausreichend ist.First of all, let's start with the one already mentioned Device according to the invention explained, which differs from the distinguishes only in that broadcast and Receiving units are exchanged, with which a so-called Differential field due to the measurement of the field derivative interconnected coils, which are now one given current are flowing through. So is in this embodiment, the receiving unit or Receiving units in or near the object T - i.e. of the tumor - and the transmitter unit or transmitters outside the room K - i.e. of the body - positioned. This embodiment has the advantage that the outside of the body K lying higher lying units May have performance limits than the first mentioned variant. This will result in the receiving unit achieved a significantly improved signal-to-noise ratio, with which the requirements for the measurement signals processing arithmetic unit are smaller and what the Measurement results become more accurate. In addition, the receiving unit placed at the object much smaller Amounts of energy to transmit the measurement signals to the outside, which in most cases is battery-powered or receiving unit based on a transponder principle is sufficient.

Um die Genauigkeit der Messsignale weiter zu verbessern, sind mehrere Kalibrationsspulen mit bekannten Positionen vorgesehen, aufgrund derer Störgrössen erfasst werden, die bei der Positionsbestimmung in korrigierender Weise verwendet werden.To further improve the accuracy of the measurement signals, are several calibration coils with known positions provided on the basis of which disturbance variables are recorded, the when determining the position in a corrective manner be used.

Bei dieser zweiten Ausführungsvariante ist bei der Positionsbestimmung sowohl ein Zeit- als auch ein Frequenzmultiplexverfahren anwendbar: Beim Zeitmultiplexverfahren sendet jeweils nur eine Sendeeinheit - falls ein Differenzfeld gesendet wird, die zwei entsprechenden Sendeeinheiten S11 und S12 bzw. S21 und S22 - in einem definierten Zeitabschnitt. Beim Frequenzmultiplexverfahren hingegen senden alle Sendeeinheiten gleichzeitig, allerdings mit definierten, sich von anderen unterscheidenden Frequenzen.In this second variant, the Positioning both a time and a Frequency division multiplex method applicable: Time division multiplexing sends only one transmission unit at a time - if a difference field is sent, the two corresponding transmission units S11 and S12 or S21 and S22 - in a defined period of time. At the Frequency division multiplexing, however, all send Sending units simultaneously, but with defined, different from other differing frequencies.

In der vorstehend genannten zweiten Ausführungsform der Erfindung wird von der in Fig. 1 dargestellten Konfiguration ausgegangen, wobei Sende- und Empfangsort ausgetauscht wurden. Denkbar ist jedoch auch eine Ausführungsvariante, bei der in der Empfangseinheit SE beispielsweise zwei Spulen vorgesehen sind, mit denen entweder Absolutwerte oder Feldableitungen gemessen werden. Entsprechendes gilt auch für die Sendeeinheiten S11 bis S22, die je als Spule oder als Spulenpaar ausgebildet sein können.In the aforementioned second embodiment of the Invention is illustrated by that in FIG. 1 Configuration started, with sending and receiving location were exchanged. However, one is also conceivable Design variant in which in the receiving unit SE For example, two coils are provided with which either absolute values or field derivatives are measured. The same applies to the transmission units S11 to S22, each designed as a coil or as a pair of coils can.

Für die Bestimmung der genauen Position sei auf den Aufsatz von S. Kirsch et. al. mit dem Titel "Real Time Tracking of Tumor Positions for Precision Irradiation" (Proceedings of the Second Symposium on Hadrontherapy, September 9-13, 1996) hingewiesen.For the determination of the exact position be on the essay by S. Kirsch et. al. titled "Real Time Tracking of Tumor Positions for Precision Irradiation "(Proceedings of the Second Symposium on Hadrontherapy, September 9-13, 1996).

Im folgenden wird auf zwei weitere Möglichkeiten zur Realisierung von Induktionspulen eingegangen, die es ermöglichen, die in die Spulen induzierten Spannungen mit hoher Genauigkeit zu bestimmen:
Eine erste Ausführungsform der Induktionsspule wird in Fig. 2 dargestellt, wobei bei dieser anstelle eines Drahtes eine Folie F, die mit parallelen Kupferstreifen KS beschichtet ist, verwendet wird. Die Folienbreite entspricht der gewünschten Wicklungslänge und somit der Länge eines zu bewickelnden Spulenkörpers SK. Die Folie F wird, wie in Fig. 2A dargestellt, direkt auf den Spulenkörper SK gewickelt, wobei die gesamte Drahtlage einer herkömmlichen Induktionsspule einer Folienlage entspricht. Aus Fig. 2 B ist ersichtlich, wie die parallelen Kupferstreifen KS über eine elektrische Verbindungsleitung EL miteinander verbunden sind. Dabei ist das jeweils am Wicklungsanfang WA liegende Ende eines Kupferstreifens KS mit einem am Wicklungsende WE liegenden Ende eines Kupferstreifens KS zu verbinden, was allerdings eine relativ komplizierte Verbindungstechnik erfordert.
In the following, two further options for realizing induction coils are discussed, which make it possible to determine the voltages induced in the coils with high accuracy:
A first embodiment of the induction coil is shown in FIG. 2, with a foil F, which is coated with parallel copper strips KS, being used instead of a wire. The film width corresponds to the desired winding length and thus the length of a bobbin SK to be wound. As shown in FIG. 2A, the film F is wound directly onto the coil former SK, the entire wire layer of a conventional induction coil corresponding to a film layer. 2B shows how the parallel copper strips KS are connected to one another via an electrical connecting line EL. In this case, the end of a copper strip KS located at the start of the winding WA must be connected to an end of a copper strip KS located at the winding end WE, which, however, requires a relatively complicated connection technique.

Aus diesem Grund wurde für den Fall, bei dem lediglich das Differenzsignal von zwei Induktionsspulen benötigt wird, die eben erläuterte Induktionsspule dahingehend verbessert, dass die Anwendung der obengenannten Verbindungstechnik vermieden werden kann. Wie erwähnt, ist bei der vorliegenden Anwendung (Gradiometer), nämlich das Messen von Feldableitungen (Feldgradienten), nur das Differenzsignal von zwei Induktionsspulen von Interesse. Aufgrund dieser Einschränkung kann die Wicklung somit dahingehend vereinfacht werden, indem beide Induktionsspulen aus derselben Folie F angefertigt werden. Dies wird anhand Fig. 2C dargestellt, aus der ersichtlich ist, dass die Folie F am Wicklungsanfang WA zweimal rechtwinklig gefaltet ist. Ferner werden beide Induktionsspulen parallel auf denselben Spulenkörper gewickelt. Dadurch wird erreicht, dass derselbe Kupferstreifen einmal von aussen nach innen und für die zweite Induktionsspule von innen nach aussen geführt wird. Damit wird ein in der ersten Induktionsspule induziertes Signal mit umgekehrter Polarität auch in die zweite Induktionsspule induziert, womit sich gleiche Signale gegenseitig kompensieren. Daraus folgt, dass an den Anschlussstellen AS1 und AS2 bei der in Fig. 2C dargestellten Ausführungsform lediglich das Differenzsignal ansteht. Die anhand Fig. 1 erläuterten und als Differenzverstärker ausgebildeten Verstärkungseinheiten D1 und D2 sind diesfalls nicht mehr notwendig.For this reason, in the case where only that Differential signal from two induction coils is required improved the induction coil just explained in that that the application of the above connection technology can be avoided. As mentioned, the present application (gradiometer), namely measuring of field derivatives (field gradients), only that Difference signal from two induction coils of interest. Because of this limitation, the winding can to be simplified by both Induction coils are made from the same film F. This is illustrated with reference to FIG. 2C, from which it can be seen is that the film F at the winding start WA twice is folded at right angles. Furthermore, both Induction coils in parallel on the same bobbin wound. This ensures that the same Copper strips once from the outside in and for them second induction coil is guided from the inside to the outside. This is an induced in the first induction coil Reverse polarity signal also in the second Induction coil induces, with which the same signals compensate each other. It follows that at the Connection points AS1 and AS2 in the in Fig. 2C embodiment shown only the difference signal pending. The explained with reference to Fig. 1 and as Differential amplifier trained amplification units D1 and D2 are no longer necessary in this case.

Als wesentlicher Vorteil der anhand Fig. 2C erläuterten Induktionsspulen gegenüber den anhand Fig. 2A erläuterten Induktionsspulen ist, dass keine zusätzlichen elektrischen Verbindungsleitungen zwischen dem Wicklungsanfang WA und dem Wicklungsende WE notwendig sind, denn nunmehr befinden sich alle nötigen Verbindungen am Wicklungsende WE (Fig. 2C).As a major advantage of those explained with reference to FIG. 2C Induction coils compared to those explained with reference to FIG. 2A Induction coils is that no additional electrical Connection lines between the winding start WA and the winding end WE are necessary, because are now located all necessary connections at the winding end WE (Fig. 2C).

Eine weitere, erfindungsgemässe Ausführungsform der Induktionsspulen ist in Fig. 3 bzw. in Fig. 3A und 3B dargestellt, wobei bei dieser Ausführungsform die Induktionsspulen aus Folienscheiben FS aufgebaut sind, auf die vorzugsweise mittels einem photolithographischen Verfahren entweder eine links- oder eine rechtsdrehende Kupferspirale KSPL bzw. KSPR aufgetragen sind (Fig. 3A). Je eine dieser linksdrehenden Kupferspiralen KSPL ist mit einer rechtsdrehenden Kupferspirale KSPR jeweils im inneren Spiralenanfang über eine elektrische Verbindungsleitung EL verbunden. Dadurch wird erreicht, dass sich der Drehsinn des Kupferstreifens vom äusseren Anfang der linksdrehenden Spirale zum äusseren Ende der rechtsdrehenden Spirale nicht ändert. Dies bedeutet, dass sich die induzierten Signale addieren. Die Induktionsspule wird nun aus einem Stapel solcher links- und rechtsdrehender Spiralenpaare entsprechend der in Fig. 3B dargestellten Anordnung aufgebaut, wobei die Spiralenpaare nur aussen elektrisch verbunden werden müssen.Another embodiment of the invention Induction coils is in Fig. 3 or in Figs. 3A and 3B shown, the in this embodiment Induction coils are constructed from foil disks FS preferably by means of a photolithographic Process either a left or a right turn Copper spiral KSPL or KSPR are applied (Fig. 3A). ever one of these left-handed copper spirals KSPL is included a clockwise rotating copper spiral KSPR each inside Spiral start via an electrical connection line EL connected. This ensures that the sense of rotation of the copper strip from the outer beginning of the left-turning Spiral to the outer end of the clockwise spiral does not change. This means that the induced Add signals. The induction coil is now one Stack of such left and right rotating pairs of spirals corresponding to the arrangement shown in Fig. 3B built up, the spiral pairs only electrically on the outside need to be connected.

Die anhand Fig. 2 und 3 erläuterten Induktionsspulen können in jedweden Anwendungen verwendet werden, in denen Magnetfeldkomponenten oder deren Ableitungen bestimmt werden müssen. Insbesondere wenn eine hohe Genauigkeit der zu messenden Grössen und eine hohe Sensitivität der Messeinheit verlangt wird, eignen sich die angegebenen Induktionsspulen besonders als Gradiometer. Darüber hinaus drängen sich die derart ausgebildeten Induktionsspulen geradezu zur Bestimmung von kleinen Magnetfeldkomponenten bzw. deren Ableitungen auf, denn kleine Werte können mit diesen Induktionsspulen äusserst genau gemessen werden. Ferner gewährleistet auch eine einfache Herstellung derartiger Induktionsspulen eine überaus gute Reproduzierbarkeit der gemessenen Grössen mit verschiedenen Induktionsspulen.The induction coils explained with reference to FIGS. 2 and 3 can be used in any application in which Magnetic field components or their derivatives determined Need to become. Especially when high accuracy of sizes to be measured and a high sensitivity of the Unit of measurement is required, the specified ones are suitable Induction coils especially as gradiometers. Furthermore the induction coils designed in this way are crowding downright for the determination of small magnetic field components or their derivatives, because small values can with these induction coils can be measured very precisely. It also ensures simple manufacture such induction coils an extremely good one Reproducibility of the measured sizes with different Induction coils.

Da die als Empfangseinheit S11 bis S22 verwendeten Induktionsspulen nur auf zeitlich sich ändernde Felder reagieren, wird die als Sendeeinheit SE ausgebildete Sendespule mit einem zeitlich variablen Stromsignal von bekannter Form und Grösse angeregt.Since the used as receiving unit S11 to S22 Induction coils only on time-changing fields respond, the trained as a transmitter unit SE Transmitter coil with a time-variable current signal from known shape and size.

Als Empfangseinheit S11 bis S22 können aber auch andere Sensoren als Induktionsspulen verwendet werden. Denkbar ist insbesondere die Verwendung von SQUID ("Sensors", W. Göpel et al. Verlag VC Hauer, Weinheim, 1989).However, others can also be used as the receiving unit S11 to S22 Sensors can be used as induction coils. Is conceivable in particular the use of SQUID ("Sensors", W. Göpel et al. Publisher VC Hauer, Weinheim, 1989).

Die Positionsbestimmung einer Sendeeinheit SE durch Messung des von ihr erzeugten modulierten Feldes mit Hilfe von Gradiometern ist nicht beschränkt auf die Positionsbestimmung von zu bestrahlenden Tumoren. Vielmehr lässt sich die erfindungsgemässe Vorrichtung überall dort erfolgreich einsetzen, wo eine berührungsfreie Positionsbestimmung benötigt wird.The position determination of a transmitter unit SE by measurement of the modulated field it generates using Gradiometers is not limited to that Position determination of tumors to be irradiated. Much more the device according to the invention can be found anywhere there use successfully where a non-contact Positioning is needed.

Bei der erläuterten Ausführungsvariante mit einer Sendeeinheit beim Objekt, dessen Position bestimmt werden soll, ist in einer Weiterentwicklung denkbar, dass weitere Sendeeinheiten beim jeweiligen Objekt oder anderen Orten plaziert werden. Damit können mit den Empfangseinheiten mehrere Positionen bestimmt werden. Es muss allerdings darauf geachtet werden, dass die Sendeeinheiten entweder in verschiedenen Zeitabschnitten (Zeitmultiplexverfahren) oder mit verschiedenen Frequenzen (Frequenzmultiplexverfahren) senden.In the illustrated embodiment with a Sending unit for the object whose position is to be determined in a further development it is conceivable that further Sending units at the respective object or other locations be placed. So that with the receiving units multiple positions can be determined. However, it must make sure that the transmitter units are either in different time periods (time division multiplexing) or with different frequencies (frequency division multiplexing) send.

In ähnlicher Weise ist auch die Ausführungsvariante, bei der eine Empfangseinheit im bzw. in der Nähe des Objektes vorgesehen ist, derart weiter entwickelbar, dass weitere Empfangseinheiten im bzw. in der Nähe des Objektes oder an anderen Stellen vorgesehen sind. Vorteilhaft bei dieser Ausführungsform ist dabei, dass die Positionen der verschiedenen Empfangseinheiten simultan bestimmt werden können, da weder ein Zeitmultiplex- noch ein Frequenzmultiplexverfahren notwendig ist.In a similar way, the embodiment variant, is of a receiving unit in or near the object is intended to be further developed such that further Receiving units in or near the object or on other places are provided. Advantageous with this Embodiment is that the positions of the different receiving units can be determined simultaneously can, since neither a time division nor a Frequency division multiplexing is necessary.

Die erfindungsgemässe Vorrichtung wurde anhand einer medizinischen Anwendung ausführlich erläutert. Dadurch wird die Universalität der Erfindung jedoch in keiner Weise eingeschränkt. So eignet sich die erfindungsgemässe Vorrichtung insbesondere als sogenannte dreidimensionale Maus in "Cyber Space"- Anwendungen oder dergleichen.The device according to the invention was based on a medical application explained in detail. This will however, the universality of the invention in no way limited. So the invention is suitable Device in particular as a so-called three-dimensional Mouse in "Cyber Space" applications or the like.

Claims (16)

  1. Device for determining the position of an object (T) in a space (P), in particular for determining a tumour in a human body, where several receiver units (S11, ..., S22) and a transmitter unit (SE) are provided, characterised in that at least two receiver units (S11, ...., S22) are provided for each parameter to be determined which corresponds to a degree of freedom of the transmitter unit (SE), that the two receiver units (S11, ...., S22) required to determine such a parameter arc connected together to measure a field gradient, where the transmitter unit (SE) is positioned in or as close as possible to the object to be observed (T) and the receiver units (S11, ....., S22) are preferably positioned outside the space (P).
  2. Device for determining the position of an object (T) in a space (P), in particular for determining a tumour in a human body, where several transmitter units (S11, ...., S22) and a receiver unit (SE) are provided for sending and receiving a magnetic field. characterised in that two transmitter units (S11, ....., S22) are provided for each parameter to be determined which corresponds to a degree of freedom of the receiver unit (SE), that the two transmitter units (S11, ....., SE22) required to determine such a parameter are connected together to generate a differential field, where the receiver unit (SE) is positioned in or as close as possible to the object to be observed (T) and the transmitter units (SE11, ....., SE22) are preferably positioned outside the space (P).
  3. Device according to claim 1 or 2, characterised in that the transmitter unit (SE; S11, ....., S22) and/or the receiver unit (SE11, ....., SE22; SE) have an energy accumulator.
  4. Device according to claim 1 or 2, characterised in that a generator unit (GE) is provided outside the space (P), where the generator unit (GE) is actively connected with the transmitter unit or receiver unit (SE) positioned inside the space (P).
  5. Device according to any of the previous claims, characterised in that at least one calibration coil with known position is provided to calibrate the measurement results.
  6. Device according to any of the previous claims, characterised in that the receiver units (SE; SE11, ....., SE22) are formed as induction coils, that the windings of the induction coils are formed as parallel electrically conductive strips (KS) applied to a film (F) and that the ends of the parallel strips (KS) are connected to windings by means of electrical connecting leads (EL).
  7. Device according to claim 6, characterised in that the film (F) is folded twice to form two interconnected identical induction coils.
  8. Device according to any of claims 1 to 5, characterised in that the receiver units (SE; SE11, ....., SE22) are formed as induction coils, that the induction coils consist of several film discs (FS) and that electrically conductive spirals (KSPL, KSPR) are applied to the film discs (FS).
  9. Device according to claim 8, characterised that in each case a right- and a left-turning spiral (KSPL, KSPR) are connected together electrically at the inner spiral ends into a spiral pair and that the spiral pairs are connected together at the outer spiral ends.
  10. Device according to any of claims 1 to 5, characterised in that the receiver units (SE; SE11, ....., SE22) are formed as magnetic field sensors, in particular of the SQUID type.
  11. Device according to any of the previous claims, characterised in that a signal preparation unit (SE) and a computer unit (RE) are provided which are exposed to the signals from the signal preparation unit (SA) measured by the receiver units (SE; SE11, ....., SE22) and the signals prepared in the signal preparation unit (SE) from the computer unit (RE) to determine the position.
  12. Device according to any of the previous claims, characterised in that an irradiation unit (BE) is provided to irradiate the object (T).
  13. Device according to claim 12, characterised in that the irradiation unit (BE) can be guided according to the object (T) or that the irradiation unit (BE) is activated only when the object (T) is in a fixed prespecifiable target area.
  14. Use of the device according to any of claims 1 to 11 for three dimensional position input units.
  15. Process for determining the position of an object (T) in a space (P), in particular for determining a tumour in a human body, where the process comprises:
    at least one transmitter unit (SE) is positioned in the object (T) or as close as possible to the object (T),
    the transmitter unit (SE) generates an electromagnetic field, preferably a magnetic field, and
    the position of the transmitter unit (SE) is determined from field gradient measurements.
  16. Process for determining the position of an object (T) in a space (P), in particular for determining a tumour in the human body, where the process comprises:
    at least one receiver unit (SE) is positioned in the object (T) or as close as possible to the object (T),
    at least two transmitter units (SE11, ....., SE22) lying outside the space (P) generate a magnetic differential field and
    the position of the receiver unit (SE) is determined on the basis of measurements of the electromagnetic field in the receiver unit (SE).
EP97908104A 1996-03-27 1997-03-27 Device and process for determining position Expired - Lifetime EP0890117B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CH79796 1996-03-27
CH797/96 1996-03-27
CH79796 1996-03-27
PCT/CH1997/000132 WO1997036192A1 (en) 1996-03-27 1997-03-27 Device and process for determining position

Publications (2)

Publication Number Publication Date
EP0890117A1 EP0890117A1 (en) 1999-01-13
EP0890117B1 true EP0890117B1 (en) 2002-01-02

Family

ID=4195413

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97908104A Expired - Lifetime EP0890117B1 (en) 1996-03-27 1997-03-27 Device and process for determining position

Country Status (6)

Country Link
US (1) US6385482B1 (en)
EP (1) EP0890117B1 (en)
JP (1) JP2001505071A (en)
AT (1) ATE211557T1 (en)
DE (1) DE59706099D1 (en)
WO (1) WO1997036192A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7588569B2 (en) 2002-03-22 2009-09-15 Karl Storz Gmbh & Co. Kg Medical instrument for the treatment of tissue by means of a high-frequency current and medical system with a medical instrument of this type
US8641210B2 (en) 2011-11-30 2014-02-04 Izi Medical Products Retro-reflective marker including colored mounting portion
US8661573B2 (en) 2012-02-29 2014-03-04 Izi Medical Products Protective cover for medical device having adhesive mechanism

Families Citing this family (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2652928B1 (en) 1989-10-05 1994-07-29 Diadix Sa INTERACTIVE LOCAL INTERVENTION SYSTEM WITHIN A AREA OF A NON-HOMOGENEOUS STRUCTURE.
US6363275B1 (en) 1997-07-25 2002-03-26 Werner Alois Kaiser Device for detecting, for characterizing by differential diagnosis, and treating tumors
US6226548B1 (en) 1997-09-24 2001-05-01 Surgical Navigation Technologies, Inc. Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
US6021343A (en) 1997-11-20 2000-02-01 Surgical Navigation Technologies Image guided awl/tap/screwdriver
US6363940B1 (en) * 1998-05-14 2002-04-02 Calypso Medical Technologies, Inc. System and method for bracketing and removing tissue
EP2289423A1 (en) * 1998-05-14 2011-03-02 David N. Krag System for bracketing tissue
EP1867275B1 (en) * 1998-09-30 2010-12-08 Sicel Technologies, Inc. Systems comprising implantable devices for dynamic monitoring of tumors
US11331150B2 (en) 1999-10-28 2022-05-17 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US8644907B2 (en) 1999-10-28 2014-02-04 Medtronic Navigaton, Inc. Method and apparatus for surgical navigation
AU2000220903A1 (en) 2000-02-02 2000-05-08 Northern Digital Inc. Device for determining the position of body parts and use of the same
WO2001064124A1 (en) 2000-03-01 2001-09-07 Surgical Navigation Technologies, Inc. Multiple cannula image guided tool for image guided procedures
US6553326B1 (en) 2000-04-07 2003-04-22 Northern Digital Inc. Errors in systems using magnetic fields to locate objects
US6484118B1 (en) * 2000-07-20 2002-11-19 Biosense, Inc. Electromagnetic position single axis system
CN1330978C (en) 2000-07-26 2007-08-08 北方数字化技术公司 Method for determining position of sensor element
ATE456332T1 (en) * 2000-11-17 2010-02-15 Calypso Medical Inc SYSTEM FOR LOCALIZING AND DEFINING A TARGET POSITION IN A HUMAN BODY
US6658300B2 (en) 2000-12-18 2003-12-02 Biosense, Inc. Telemetric reader/charger device for medical sensor
US6746404B2 (en) 2000-12-18 2004-06-08 Biosense, Inc. Method for anchoring a medical device between tissue
US6592518B2 (en) 2001-04-05 2003-07-15 Kenergy, Inc. Cardiac monitoring system and method with multiple implanted transponders
US6636757B1 (en) 2001-06-04 2003-10-21 Surgical Navigation Technologies, Inc. Method and apparatus for electromagnetic navigation of a surgical probe near a metal object
US20020193685A1 (en) 2001-06-08 2002-12-19 Calypso Medical, Inc. Guided Radiation Therapy System
US6625563B2 (en) 2001-06-26 2003-09-23 Northern Digital Inc. Gain factor and position determination system
US7135978B2 (en) * 2001-09-14 2006-11-14 Calypso Medical Technologies, Inc. Miniature resonating marker assembly
DE10146197B4 (en) * 2001-09-14 2016-04-21 Karl Storz Gmbh & Co. Kg Intracorporeal probe for the analysis or diagnosis of, for example, hollow organs and body cavities in the human or animal body
US6812842B2 (en) 2001-12-20 2004-11-02 Calypso Medical Technologies, Inc. System for excitation of a leadless miniature marker
US6838990B2 (en) 2001-12-20 2005-01-04 Calypso Medical Technologies, Inc. System for excitation leadless miniature marker
US6822570B2 (en) 2001-12-20 2004-11-23 Calypso Medical Technologies, Inc. System for spatially adjustable excitation of leadless miniature marker
US6947786B2 (en) 2002-02-28 2005-09-20 Surgical Navigation Technologies, Inc. Method and apparatus for perspective inversion
US6990368B2 (en) 2002-04-04 2006-01-24 Surgical Navigation Technologies, Inc. Method and apparatus for virtual digital subtraction angiography
US7998062B2 (en) 2004-03-29 2011-08-16 Superdimension, Ltd. Endoscope structures and techniques for navigating to a target in branched structure
US8244330B2 (en) 2004-07-23 2012-08-14 Varian Medical Systems, Inc. Integrated radiation therapy systems and methods for treating a target in a patient
US7060075B2 (en) 2002-07-18 2006-06-13 Biosense, Inc. Distal targeting of locking screws in intramedullary nails
US7289839B2 (en) 2002-12-30 2007-10-30 Calypso Medical Technologies, Inc. Implantable marker with a leadless signal transmitter compatible for use in magnetic resonance devices
US9248003B2 (en) * 2002-12-30 2016-02-02 Varian Medical Systems, Inc. Receiver used in marker localization sensing system and tunable to marker frequency
US6889833B2 (en) 2002-12-30 2005-05-10 Calypso Medical Technologies, Inc. Packaged systems for implanting markers in a patient and methods for manufacturing and using such systems
US7660623B2 (en) 2003-01-30 2010-02-09 Medtronic Navigation, Inc. Six degree of freedom alignment display for medical procedures
DE10314838A1 (en) * 2003-04-01 2004-10-28 Robert Seuffer Gmbh & Co. Kg Method and device for measuring the position which a magnet and a measuring location have in relation to one another
US7158754B2 (en) * 2003-07-01 2007-01-02 Ge Medical Systems Global Technology Company, Llc Electromagnetic tracking system and method using a single-coil transmitter
EP2316328B1 (en) 2003-09-15 2012-05-09 Super Dimension Ltd. Wrap-around holding device for use with bronchoscopes
ATE556643T1 (en) 2003-09-15 2012-05-15 Super Dimension Ltd COVERING DEVICE FOR FIXING BRONCHOSCOPES
US8196589B2 (en) * 2003-12-24 2012-06-12 Calypso Medical Technologies, Inc. Implantable marker with wireless signal transmitter
US20050154284A1 (en) * 2003-12-31 2005-07-14 Wright J. N. Method and system for calibration of a marker localization sensing array
US20050154280A1 (en) * 2003-12-31 2005-07-14 Wright J. N. Receiver used in marker localization sensing system
US7684849B2 (en) * 2003-12-31 2010-03-23 Calypso Medical Technologies, Inc. Marker localization sensing system synchronized with radiation source
US8764725B2 (en) 2004-02-09 2014-07-01 Covidien Lp Directional anchoring mechanism, method and applications thereof
CA2555473A1 (en) 2004-02-17 2005-09-01 Traxtal Technologies Inc. Method and apparatus for registration, verification, and referencing of internal organs
US7596403B2 (en) * 2004-06-30 2009-09-29 Given Imaging Ltd. System and method for determining path lengths through a body lumen
EP1778077B1 (en) * 2004-07-23 2015-01-14 Varian Medical Systems, Inc. Wireless markers for anchoring within a human body
EP1805506A4 (en) 2004-08-12 2010-06-02 Navotek Medical Ltd Localization of a radioactive source within a body of a subject
ATE455499T1 (en) * 2004-11-05 2010-02-15 Us Gov Health & Human Serv ACCESS SYSTEM
US7805269B2 (en) * 2004-11-12 2010-09-28 Philips Electronics Ltd Device and method for ensuring the accuracy of a tracking device in a volume
US7751868B2 (en) * 2004-11-12 2010-07-06 Philips Electronics Ltd Integrated skin-mounted multifunction device for use in image-guided surgery
KR100689707B1 (en) * 2004-11-12 2007-03-08 삼성전자주식회사 Bank selection signal control circuit, semiconductor memory device having the same and method for control bank selection signal
US7840254B2 (en) * 2005-01-18 2010-11-23 Philips Electronics Ltd Electromagnetically tracked K-wire device
CA2588002A1 (en) * 2005-01-18 2006-07-27 Traxtal Inc. Method and apparatus for guiding an instrument to a target in the lung
WO2007002079A2 (en) * 2005-06-21 2007-01-04 Traxtal Inc. System, method and apparatus for navigated therapy and diagnosis
EP1937153B1 (en) * 2005-06-21 2010-12-22 Traxtal Inc. Device and method for a trackable ultrasound
JP2009502251A (en) * 2005-07-22 2009-01-29 トモセラピー・インコーポレーテッド System and method for evaluating dose delivered by a radiation therapy system
US9661991B2 (en) * 2005-08-24 2017-05-30 Koninklijke Philips N.V. System, method and devices for navigated flexible endoscopy
EP1926426B1 (en) 2005-09-08 2014-10-08 Philips Intellectual Property & Standards GmbH Magnetic tracking system for an imaging system
US9168102B2 (en) 2006-01-18 2015-10-27 Medtronic Navigation, Inc. Method and apparatus for providing a container to a sterile environment
US8660635B2 (en) 2006-09-29 2014-02-25 Medtronic, Inc. Method and apparatus for optimizing a computer assisted surgical procedure
US7508195B2 (en) 2007-01-18 2009-03-24 General Electric Company Anti-distortion electromagnetic sensor method and system
US7573258B2 (en) 2007-01-18 2009-08-11 General Electric Company Coil arrangement for electromagnetic tracker method and system
US8249689B2 (en) 2007-02-23 2012-08-21 General Electric Company Coil arrangement for electromagnetic tracking method and system
US7902817B2 (en) 2007-03-26 2011-03-08 General Electric Company Electromagnetic tracking method and system
US7834621B2 (en) 2007-09-25 2010-11-16 General Electric Company Electromagnetic tracking employing scalar-magnetometer
US8905920B2 (en) 2007-09-27 2014-12-09 Covidien Lp Bronchoscope adapter and method
US9575140B2 (en) 2008-04-03 2017-02-21 Covidien Lp Magnetic interference detection system and method
KR100955686B1 (en) * 2008-04-14 2010-05-03 국립암센터 Method of tracing an eyeball in an eyeball tumor treatment
EP2297673B1 (en) 2008-06-03 2020-04-22 Covidien LP Feature-based registration method
WO2009149409A1 (en) 2008-06-05 2009-12-10 Calypso Medical Technologies, Inc. Motion compensation for medical imaging and associated systems and methods
US8218847B2 (en) 2008-06-06 2012-07-10 Superdimension, Ltd. Hybrid registration method
US8932207B2 (en) 2008-07-10 2015-01-13 Covidien Lp Integrated multi-functional endoscopic tool
CN101836862B (en) 2009-03-16 2014-03-26 上海微创医疗器械(集团)有限公司 Three-dimensional mapping method of human chamber inner wall and equipment and system thereof
US8611984B2 (en) 2009-04-08 2013-12-17 Covidien Lp Locatable catheter
CN102711648B (en) * 2009-11-30 2015-07-29 麦迪威公司 There is the radio frequency ablation system of tracking transducer
WO2011159834A1 (en) 2010-06-15 2011-12-22 Superdimension, Ltd. Locatable expandable working channel and method
EP2629111A1 (en) 2012-02-14 2013-08-21 Koninklijke Philips Electronics N.V. Active position marker system for use in an MRI apparatus
US9367914B2 (en) 2012-05-16 2016-06-14 The Johns Hopkins University Imaging system and method for use of same to determine metric scale of imaged bodily anatomy
US9474465B2 (en) 2012-06-27 2016-10-25 Ascension Technology Corporation System and method for magnetic position tracking
BR112015009608A2 (en) 2012-10-30 2017-07-04 Truinject Medical Corp cosmetic or therapeutic training system, test tools, injection apparatus and methods for training injection, for using test tool and for injector classification
CA2972754A1 (en) 2014-01-17 2015-07-23 Clark B. Foster Injection site training system
US10290231B2 (en) 2014-03-13 2019-05-14 Truinject Corp. Automated detection of performance characteristics in an injection training system
US10952593B2 (en) 2014-06-10 2021-03-23 Covidien Lp Bronchoscope adapter
WO2016089706A1 (en) 2014-12-01 2016-06-09 Truinject Medical Corp. Injection training tool emitting omnidirectional light
US10426555B2 (en) 2015-06-03 2019-10-01 Covidien Lp Medical instrument with sensor for use in a system and method for electromagnetic navigation
US9955912B2 (en) 2015-07-14 2018-05-01 Getchell Technologies Llc Magnet-based monitoring system
US10500340B2 (en) 2015-10-20 2019-12-10 Truinject Corp. Injection system
US9962134B2 (en) 2015-10-28 2018-05-08 Medtronic Navigation, Inc. Apparatus and method for maintaining image quality while minimizing X-ray dosage of a patient
WO2017151441A2 (en) 2016-02-29 2017-09-08 Truinject Medical Corp. Cosmetic and therapeutic injection safety systems, methods, and devices
DE102016103655A1 (en) 2016-03-01 2017-09-07 Ignident Gmbh Apparatus and method for measuring a relative position and / or movement of a lower jaw relative to an upper jaw of a patient
CN109414310B (en) 2016-03-01 2022-04-12 易格尼牙科用品有限责任公司 Apparatus and method for measuring mandible movement
EP3423972A1 (en) 2016-03-02 2019-01-09 Truinject Corp. Sensory enhanced environments for injection aid and social training
US10478254B2 (en) 2016-05-16 2019-11-19 Covidien Lp System and method to access lung tissue
US10638952B2 (en) 2016-10-28 2020-05-05 Covidien Lp Methods, systems, and computer-readable media for calibrating an electromagnetic navigation system
US10418705B2 (en) 2016-10-28 2019-09-17 Covidien Lp Electromagnetic navigation antenna assembly and electromagnetic navigation system including the same
US10517505B2 (en) 2016-10-28 2019-12-31 Covidien Lp Systems, methods, and computer-readable media for optimizing an electromagnetic navigation system
US10615500B2 (en) 2016-10-28 2020-04-07 Covidien Lp System and method for designing electromagnetic navigation antenna assemblies
US10446931B2 (en) 2016-10-28 2019-10-15 Covidien Lp Electromagnetic navigation antenna assembly and electromagnetic navigation system including the same
US10751126B2 (en) 2016-10-28 2020-08-25 Covidien Lp System and method for generating a map for electromagnetic navigation
US10792106B2 (en) 2016-10-28 2020-10-06 Covidien Lp System for calibrating an electromagnetic navigation system
US10722311B2 (en) 2016-10-28 2020-07-28 Covidien Lp System and method for identifying a location and/or an orientation of an electromagnetic sensor based on a map
WO2018136901A1 (en) 2017-01-23 2018-07-26 Truinject Corp. Syringe dose and position measuring apparatus
US11194071B2 (en) 2017-07-19 2021-12-07 Intricon Corporation Interconnect ring for microminiature electrical coil
US11219489B2 (en) 2017-10-31 2022-01-11 Covidien Lp Devices and systems for providing sensors in parallel with medical tools

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4317078A (en) * 1979-10-15 1982-02-23 Ohio State University Research Foundation Remote position and orientation detection employing magnetic flux linkage
DE3211003C2 (en) * 1982-03-25 1984-06-28 Stefan Dr. 6500 Mainz Kunke Device for determining the respective position of the front end of a probe
FI83266C (en) * 1988-09-12 1991-06-10 Teknillinen Korkeakoulu FOERFARANDE OCH ANORDNING FOER LOKALISERING AV ELEKTRODER FAESTADE VID KROPPEN AV EN MAENNISKA, I SYNNERHET HUVUDET.
NL8802481A (en) * 1988-10-10 1990-05-01 Texas Instruments Holland TRANSPONDER AND METHOD FOR MAKING THE SAME
US5005592A (en) * 1989-10-27 1991-04-09 Becton Dickinson And Company Method and apparatus for tracking catheters
US5122744A (en) * 1990-10-09 1992-06-16 Ibm Corporation Gradiometer having a magnetometer which cancels background magnetic field from other magnetometers
US5134370A (en) * 1991-01-08 1992-07-28 Northwest Marine Technology Inc. Apparatus for the detection of magnetic tags
JP3432825B2 (en) * 1992-08-14 2003-08-04 ブリテイッシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニー Positioning system
US5313944A (en) * 1992-09-21 1994-05-24 Biomagnetic Technologies, Inc. Measurement of internal body structure during biomagnetometry
US5558091A (en) * 1993-10-06 1996-09-24 Biosense, Inc. Magnetic determination of position and orientation
US5868673A (en) * 1995-03-28 1999-02-09 Sonometrics Corporation System for carrying out surgery, biopsy and ablation of a tumor or other physical anomaly

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7588569B2 (en) 2002-03-22 2009-09-15 Karl Storz Gmbh & Co. Kg Medical instrument for the treatment of tissue by means of a high-frequency current and medical system with a medical instrument of this type
US8668344B2 (en) 2011-11-30 2014-03-11 Izi Medical Products Marker sphere including edged opening to aid in molding
US8646921B2 (en) 2011-11-30 2014-02-11 Izi Medical Products Reflective marker being radio-opaque for MRI
US8651274B2 (en) 2011-11-30 2014-02-18 Izi Medical Products Packaging for retro-reflective markers
US8662684B2 (en) 2011-11-30 2014-03-04 Izi Medical Products Radiopaque core
US8641210B2 (en) 2011-11-30 2014-02-04 Izi Medical Products Retro-reflective marker including colored mounting portion
US8668342B2 (en) 2011-11-30 2014-03-11 Izi Medical Products Material thickness control over retro-reflective marker
US8668343B2 (en) 2011-11-30 2014-03-11 Izi Medical Products Reflective marker with alignment feature
US8668345B2 (en) 2011-11-30 2014-03-11 Izi Medical Products Retro-reflective marker with snap on threaded post
US8672490B2 (en) 2011-11-30 2014-03-18 Izi Medical Products High reflectivity retro-reflective marker
US9085401B2 (en) 2011-11-30 2015-07-21 Izi Medical Products Packaging for retro-reflective markers
US9964649B2 (en) 2011-11-30 2018-05-08 Izi Medical Products Packaging for retro-reflective markers
US8661573B2 (en) 2012-02-29 2014-03-04 Izi Medical Products Protective cover for medical device having adhesive mechanism

Also Published As

Publication number Publication date
ATE211557T1 (en) 2002-01-15
US6385482B1 (en) 2002-05-07
EP0890117A1 (en) 1999-01-13
DE59706099D1 (en) 2002-02-28
WO1997036192A1 (en) 1997-10-02
JP2001505071A (en) 2001-04-17

Similar Documents

Publication Publication Date Title
EP0890117B1 (en) Device and process for determining position
DE69634976T2 (en) METHOD AND DEVICE FOR HEATING WITH ULTRASOUND, CONTROLLED BY IMAGING WITH MAGNETIC RESONANCE
DE69631008T2 (en) Method and device for magnetic resonance
DE69733341T2 (en) LOCATION PROCESS WITH FIELD ASSESSMENT SEQUENCES
EP0071896B1 (en) High frequency coil system for a nuclear resonance imaging apparatus
DE4221759C2 (en) Reception coil device for a magnetic resonance imaging device
DE60207636T2 (en) Medical device with a position sensor
EP0848832B1 (en) Method and arrangement for determining the position of a marker in an organic cavity
DE112011100190B4 (en) Surface receiving coils for use in thermal ablation procedures
EP1021730A1 (en) Mr imaging method and medical device for use in method
DE69920395T2 (en) Device for localization of endocardial electrodes
DE3411521A1 (en) NUCLEAR MAGNETIC RESONANCE DEVICE
DE102013219128B3 (en) Wireless signal transmission in magnetic resonance systems
DE69721985T2 (en) TO INDUCTION CORRECTION
DE10249239A1 (en) Magnetic resonance imaging device with additional electrical equipment
DE102008006117A1 (en) Magnetic resonance system, antenna system, method for setting up a magnetic resonance system and method for generating magnetic resonance images
DE10151778A1 (en) Method for determining the spatial distribution of magnetic particles
DE3343625C2 (en) Measuring head and method for recording high-resolution nuclear magnetic resonance signals
DE102010028993B4 (en) Antenna arrangement and transponder reader
DE2946820A1 (en) METHOD AND DEVICE FOR EXAMINING A BODY BY MEANS OF NUCLEAR MAGNETIC RESONANCE
EP1304581A2 (en) Method for localising an object in an mr apparatus, catheter and mr apparatus to carry out the method
EP0324136A2 (en) Electromagnetic device for position measurement
EP0142077A1 (en) High-frequency device in a nuclear-spin resonance apparatus with a surface coil
DE4024582A1 (en) MRI
DE3020385A1 (en) NMR DIAGNOSTIC DEVICE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980821

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK FR GB IT LI NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MEDNETIX AG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010208

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20020102

REF Corresponds to:

Ref document number: 211557

Country of ref document: AT

Date of ref document: 20020115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

REF Corresponds to:

Ref document number: 59706099

Country of ref document: DE

Date of ref document: 20020228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020402

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020402

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020327

ET Fr: translation filed
BERE Be: lapsed

Owner name: *MEDNETIX A.G.

Effective date: 20020331

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: NORTHERN DIGITAL INC.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: MEDNETIX AG TRANSFER- NORTHERN DIGITAL INC.

26N No opposition filed
NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: NORTHERN DIGITAL INC.

NLS Nl: assignments of ep-patents

Owner name: NORTHERN DIGITAL INC.

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080328

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20080324

Year of fee payment: 12

Ref country code: GB

Payment date: 20080327

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20080304

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080317

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090327

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090327

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20091001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090327

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091123

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160322

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59706099

Country of ref document: DE