EP0887814B1 - Circuit de commande d'un actionneur magnétique bistable - Google Patents

Circuit de commande d'un actionneur magnétique bistable Download PDF

Info

Publication number
EP0887814B1
EP0887814B1 EP98110117A EP98110117A EP0887814B1 EP 0887814 B1 EP0887814 B1 EP 0887814B1 EP 98110117 A EP98110117 A EP 98110117A EP 98110117 A EP98110117 A EP 98110117A EP 0887814 B1 EP0887814 B1 EP 0887814B1
Authority
EP
European Patent Office
Prior art keywords
switch
energy store
winding
circuit arrangement
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98110117A
Other languages
German (de)
English (en)
Other versions
EP0887814A3 (fr
EP0887814A2 (fr
Inventor
Hans-Joachim Dr. Rer. Nat. Krokoszinski
Berthold Dipl.-Ing. Dilger
Gerhard Dipl.Ing. Hörner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Original Assignee
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Research Ltd Switzerland, ABB Research Ltd Sweden filed Critical ABB Research Ltd Switzerland
Publication of EP0887814A2 publication Critical patent/EP0887814A2/fr
Publication of EP0887814A3 publication Critical patent/EP0887814A3/fr
Application granted granted Critical
Publication of EP0887814B1 publication Critical patent/EP0887814B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • H01H47/226Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil for bistable relays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1872Bistable or bidirectional current devices

Definitions

  • the invention relates to a circuit arrangement for controlling a bistable magnetic actuator according to the preamble of claim 1 and the Claim 6.
  • Bistable magnetic actuators are used for movement, for example of contacts in low, medium and high voltage switches (e.g. in the OXR, the Pole Mounted Auto-recloser from GEC Alsthom). So far they are common for such applications mechanical drives that draw their energy from a spring mechanism, which is charged with an electric motor that uses its energy relates to the power supply network. Through a mechanism of pawls, waves, The mechanical movement becomes auxiliary switches and electromechanical triggers with the receipt or the transmission of electrical command and feedback signals coupled.
  • a mechanical drive magnetic actuator in which the energy is stored in an electrical store stored and electronically controlled converted into a magnetic flux. Thereby becomes a movable magnetic core, which is connected to the movable switch poles is coupled from a stable end position to a second stable end position moved.
  • a bistable magnetic actuator that can be used for this purpose contains a magnetic core with a also known as anchoring movable central leg.
  • the magnetic core carries two windings. To operate the actuator, a surge must be applied through a of the two windings are generated, the one necessary for the armature movement causes magnetic flux.
  • FIG. 1 A prior art circuit arrangement for control a bistable magnetic actuator is shown in FIG.
  • FIG. 5 shows a parallel connection of a first electrical winding L 1, which is connected in series with a first semiconductor selector switch S 1 , and a second electrical winding L 2, which is connected in series with a second semiconductor selector switch S 2 .
  • the start of the winding of one of the windings for example the first winding L 1
  • a free-wheeling diode D 1 or D 2 is connected in parallel to the windings L 1, L 2 .
  • the windings L 1, L 2 connected to one another at the beginning or end are connected to the positive pole of an electrical energy store E.
  • the negative pole of the energy store E is connected to the switches S 1, S 2 .
  • An accumulator battery or an electrical capacitor are suitable as the energy store E.
  • the energy store E can be connected to a charger LG by closing a charging switch S 3 .
  • the charger LG is connected on the primary side to a DC or AC voltage network with the voltage U i and supplies a system DC voltage U s on the secondary side.
  • the current surge required to actuate the actuator is generated by closing one of the two semiconductor selector switches S 1 , S 2 . Simultaneously to actuate one of the selector switches S 1, S 2 , the charging switch S 3 can be opened so that the current is drawn solely from the energy store E.
  • the current After completing a movement, the current must flow through the winding be interrupted because the common types of energy storage, such as Battery or electrolytic capacitor, allow only one voltage polarity.
  • the resonant circuit consisting of storage capacity and winding inductance would be a reversal force the current direction.
  • the current-carrying winding After opening the just closed Selector switch S1, S2, the current-carrying winding acts as a current source and drives the current through the associated freewheeling diode until the one stored in the magnetic circuit Energy converted into heat via the ohmic resistance of the freewheeling circuit is.
  • the invention has for its object the power part of a circuit arrangement to control a bistable magnetic actuator so that initiated an anchor movement with a minimal current-time area and after a countermovement can be initiated with the minimum free time. Moreover the switching movements are to be made possible with as little energy expenditure as possible become.
  • the magnetic decoupling achieved that exists for actuator actuation Avoid inductive delays in magnetic field build-up or breakdown are and therefore the energy storage requires a comparatively small amount of charge is withdrawn per movement. On for recharging the energy storage existing charger can therefore be designed to be particularly small.
  • As a semiconductor selector switch instead of actively switching off semiconductor switches, like MOSFET or GTO, normal thyristors are used. thyristors are lockable and lockable; through the extinguishing branch their natural commutation anyway forced near the zero current value.
  • the circuit arrangement without energy recovery is the number of semiconductor components required the same size compared to the prior art. It becomes an additional active one Switch required as a discharge switch, but on the other hand only a free-wheeling diode.
  • FIG. 1 shows, in accordance with FIG. 5 already described, an energy store E which can be charged from a charger LG by closing an optionally available charging switch S 3 .
  • FIG. 5 there is also a parallel connection of a series connection of the first electrical winding L 1 with the first semiconductor selection switch S 1 and the second electrical winding L 2 with the second semiconductor selection switch S 2 .
  • the start of the winding of the first winding L 1 and the end of the second winding L 2 are connected to the positive pole of the energy store E.
  • the series connection of a free-wheeling diode D and an extinguishing resistor R is connected in parallel.
  • the negative pole of the energy store E can be connected to the selector switches S 1, S 2 and the resistor R by means of a discharge switch S 0 .
  • the switching state of the semiconductor switches S 0 to S 3 shown in FIG. 1 shows the so-called discharge phase, in which a current flows from the energy store E via the first winding L 1 of the first semiconductor selector switches S 1 and the discharge switch S 0 .
  • the second semiconductor selector switch, in the example shown the second switch S 2 , and the charging switch S 3 are open in this phase.
  • FIG. 2 shows a so-called free-running phase for the same circuit arrangement, in which the discharge switch S 0 is open, so that the current on the quenching branch commutates with the free-wheeling diode D and the quenching resistor R.
  • the selector switch, eg S 1 is still closed. The current flows in the freewheeling phase until the magnetic field of the winding L 1 is reduced.
  • a switchable semiconductor switch for example MOSFET or GTO, is used as the discharge switch S 0 .
  • the extinguishing resistance R is advantageously chosen so that a desired release time can be maintained, after which a countermovement should be initiated by closing the other selector switch.
  • the discharge switch S 0 must be designed for this voltage peak.
  • the charging switch S 3 is closed during the freewheeling phase for recharging the energy store E.
  • FIGS. 3 and 4 show a second circuit variant with which at the time one of the windings L 1 , L 2 is switched off, the energy stored in the magnetic field can at least partially be fed back to the energy store E.
  • two discharge switches S 01 , S 02 are arranged instead of one discharge switch S 0 , which are switched simultaneously at the beginning and end of a movement process.
  • a first common free-wheeling diode D 1 is connected with its cathode directly to the positive pole of the energy store E and with its anode without the interposition of a resistor with the connection point of the two selector switches S 1 , S 2 .
  • the positive pole of the energy store E can be connected to the start of the winding of the first winding L 1 and the end of the winding of the second winding L 2 by means of the first discharge switch S 01 .
  • the second discharge switch S 02 connects the negative pole of the energy store to the anode of the first free-wheeling diode D 1 and to the selector switches S 1 , S 2 .
  • a second free-wheeling diode D 2 is connected with its anode to the negative pole of the energy store E, and with its cathode to the start or end of the windings L 1 , L 2 .
  • FIG. 3 shows the switch position in the discharge phase.
  • a discharge current flows from the energy store E via the first discharge switch S 01, via one of the windings L 1 , L 2 , in the example L 1, via the closed selector switch S1 and the second discharge switch S 02 back to the energy store E.
  • Figure 4 shows for this circuit variant the free-running phase, in which the two discharge switches S 01 , S 02 are open, i.e. only the selector switch S, remains closed, so that in the free-running phase the current flow from the winding L 1 via the first selector switch S 1 , the first free-wheeling diode D 1 flows to the positive pole of the energy store E and from its negative pole flows via the second free-wheeling diode D 2 to the first winding L 1 .
  • the direction of current flow is indicated by arrows.
  • the energy store E is recharged from the charger LG via a charging diode D 3, which prevents a current flow to the charger LG during the freewheeling phase.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Stepping Motors (AREA)

Claims (7)

  1. Circuit de commande d'un actionneur magnétique bistable, dans lequel on dispose du branchement en parallèle d'un premier enroulement électrique (L1) en série avec un premier commutateur de sélection semi-conducteur (S1) et d'un deuxième enroulement électrique (L2) en série avec un deuxième commutateur de sélection semi-conducteur (S2), et dans lequel on peut prélever un courant de décharge dans un stockage d'énergie électrique (E) pour commuter respectivement l'actionneur dans son autre position stable en fermant respectivement un des commutateurs de sélection semi-conducteurs (S1, S2), caractérisé en ce que
    a) en plus du branchement en parallèle des circuits série (L1, S1 et L2, S2), on branche en parallèle une diode de récupération commune (D) en série avec une résistance d'amortissement (R), et
    b) l'ensemble du branchement en parallèle des circuits (L1, S1 + L2, S2 + D, R) est relié à un stockage d'énergie électrique (E) au moyen d'un commutateur de décharge (S0) branché en série.
  2. Circuit selon la revendication 1, caractérisé en ce que le stockage d'énergie (E) est une batterie d'accumulateur ou un condensateur qui peut être relié à un chargeur (LG) au moyen d'un commutateur de charge (S3) ou qui y est relié directement.
  3. Circuit selon la revendication 1 ou 2, caractérisé en ce que les commutateurs de sélection semi-conducteurs (S1, S2) sont des thyristors.
  4. Circuit selon une des revendications précédentes, caractérisé en ce que le commutateur de décharge (S0) est un IGBT, un MOSFET ou un GTO.
  5. Circuit selon une des revendications 2 à 4, caractérisé en ce que le commutateur de charge (S3) est un commutateur semi-conducteur pouvant être commandé.
  6. Circuit de commande d'un actionneur magnétique bistable, dans lequel on dispose du branchement en parallèle d'un premier enroulement électrique (L1) en série avec un premier commutateur de sélection semi-conducteur (S1) et d'un deuxième enroulement électrique (L2) en série avec un deuxième commutateur de sélection semi-conducteur (S2), et dans lequel on peut prélever un courant de décharge dans un stockage d'énergie électrique (E) pour commuter respectivement l'actionneur dans son autre position stable en fermant respectivement un des commutateurs de sélection semi-conducteurs (S1, S2), caractérisé en ce que pour commuter l'actionneur en englobant la récupération de l'énergie stockée dans le champ magnétique,
    a) on peut relier la borne positive (+) du stockage d'énergie (E) au moyen d'un premier commutateur de décharge (S01) avec le début d'enroulement du premier enroulement (L1) et avec la fin d'enroulement du deuxième enroulement (L2),
    b) la borne positive (+) du stockage d'énergie (E) est par ailleurs reliée à la cathode (K) d'une première diode de récupération (D1) dont l'anode (A) est acheminée vers le côté où sont reliés les commutateurs de sélection (S1, S2),
    c) on peut relier la borne négative (-) du stockage d'énergie (E) au moyen d'un deuxième commutateur de décharge (S02) pouvant être commuté en même temps que le premier commutateur de décharge (S01), avec l'anode (A) de la première diode de récupération (D1), et
    d) une deuxième diode de récupération (D2) relie la borne négative (-) du stockage d'énergie (E) avec le début, respectivement la fin des enroulements (L1, L2) reliés ensemble.
  7. Circuit selon la revendication 6, caractérisé en ce que pour recharger le stockage d'énergie (E), celui-ci est relié à un chargeur (LG) au moyen d'une diode de charge (D3).
EP98110117A 1997-06-23 1998-06-03 Circuit de commande d'un actionneur magnétique bistable Expired - Lifetime EP0887814B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19726562 1997-06-23
DE19726562A DE19726562A1 (de) 1997-06-23 1997-06-23 Schaltungsanordnung zur Steuerung eines bistabilen magnetischen Aktuators

Publications (3)

Publication Number Publication Date
EP0887814A2 EP0887814A2 (fr) 1998-12-30
EP0887814A3 EP0887814A3 (fr) 2000-03-22
EP0887814B1 true EP0887814B1 (fr) 2004-04-21

Family

ID=7833349

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98110117A Expired - Lifetime EP0887814B1 (fr) 1997-06-23 1998-06-03 Circuit de commande d'un actionneur magnétique bistable

Country Status (2)

Country Link
EP (1) EP0887814B1 (fr)
DE (2) DE19726562A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1056100A1 (fr) * 1999-05-28 2000-11-29 Landis & Gyr Communications Sàrl Electro-aimants a faible consommation
DE102005016826A1 (de) * 2005-04-12 2006-10-19 Trw Automotive Gmbh Ansteuerschaltung für einen impulsgesteuerten Aktor
UA97914C2 (uk) * 2011-04-19 2012-03-26 Виктор Михайлович Бугайчук Бістабільний електромагнітний привід комутаційного пристрою
DE102012113056B4 (de) * 2012-12-21 2014-07-24 Eto Magnetic Gmbh Elektromagnetische Stellvorrichtung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2451477C3 (de) * 1974-10-30 1979-08-09 Triumph Werke Nuernberg Ag, 8500 Nuernberg Anordnung zur Unterdrückung von Spannungsspitzen an schaltenden Transistoren
US4527216A (en) * 1983-03-16 1985-07-02 International Business Machines Corporation Sub-milliamp mechanical relay control
DE3702680A1 (de) * 1986-02-18 1987-10-29 Bosch Gmbh Robert Verfahren und schaltung zur ansteuerung von elektromagnetischen verbrauchern
DE4012353C2 (de) * 1990-04-18 1994-04-14 Lucas Ind Plc Schaltung zum Betätigen von zwei Elektromagnetventilen
GB2305560B (en) * 1995-09-19 2000-01-19 Gec Alsthom Ltd Switch circuit for a bistable magnetic actuator

Also Published As

Publication number Publication date
EP0887814A3 (fr) 2000-03-22
EP0887814A2 (fr) 1998-12-30
DE59811215D1 (de) 2004-05-27
DE19726562A1 (de) 1998-12-24

Similar Documents

Publication Publication Date Title
DE3612937C2 (fr)
DE2058091C3 (de) Steuerschaltung für die Impulssteuerung eines Gleichstrommotors
EP0852842B1 (fr) Onduleur de puissance a faibles pertes
DE69012834T2 (de) Ladevorrichtung zur elektrischen energiespeicherung mit ladesteuerungsmitteln.
DE3702680A1 (de) Verfahren und schaltung zur ansteuerung von elektromagnetischen verbrauchern
WO2015014866A1 (fr) Convertisseur-élévateur, onduleur correspondant et procédé de fonctionnement
DE102019124212A1 (de) Entmagnetisierung des Rotors einer fremderregten Synchronmaschine
EP1705795B1 (fr) Générateur XRAM avec commutateur de coupure
EP1859465B1 (fr) Circuit d'alimentation electrique, dispositif d'actionnement de commutateur et procede pour faire fonctionner un dispositif d'actionnement de commutateur
DE102012008614A1 (de) Elektrischer Steckverbinder zum sicheren Trennen von elektrischen Strömen unter elektrischer Gleichspannung in Stromnetzen mit bidirektionalem Stromfluss
EP0887814B1 (fr) Circuit de commande d'un actionneur magnétique bistable
EP0583328B1 (fr) Circuit electronique de commande servant a alimenter des charges inductives ohmiques au moyen d'impulsions de courant continu
DE19816918A1 (de) Elektrisches System
DE19747033A1 (de) Elektronische Schalteinrichtung für Magneten
DE10341582B4 (de) Schaltungsanordnung zum schnellen Schalten induktiver Lasten
DE2600139A1 (de) Gleichstromgespeiste antriebsanordnung
EP1402546B1 (fr) Entrainement lineaire electrodynamique
AT511846B1 (de) Kombinierter sperr-durchflusswandler mit nur einer diode
EP1358711B1 (fr) Dispositif convertisseur de puissance pour un des divers bobinages d'un moteur a reluctance
EP1260694B1 (fr) Méthode et appareil pour accroître le niveau du voltage d'une charge inductive à grande dynamique
EP2985898A1 (fr) Convertisseur de courant continu ayant deux modes d'opération
EP3815208B1 (fr) Source de tension longitudinale commutable, système de transmission de courant continu pourvu de la source de tension longitudinale et procédé destiné à faire fonctionner une source de tension longitudinale
DE102011081448A1 (de) Schaltungsanordnung mit elektronischem Schalter und Induktivität
CN102255556B (zh) 驱动电路及控制电容元件的方法
AT414187B (de) Verlustarme dc/dc konverter mit mittelangezapfter speicherkondensatorbatterie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7H 01F 7/18 A, 7H 01H 47/22 B

17P Request for examination filed

Effective date: 20000530

AKX Designation fees paid

Free format text: DE FR GB NL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59811215

Country of ref document: DE

Date of ref document: 20040527

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040719

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050124

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170621

Year of fee payment: 20

Ref country code: GB

Payment date: 20170620

Year of fee payment: 20

Ref country code: FR

Payment date: 20170621

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20170620

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59811215

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20180602

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20180602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20180602