EP0886727A1 - Electromagnetically controlled valve - Google Patents

Electromagnetically controlled valve

Info

Publication number
EP0886727A1
EP0886727A1 EP97947009A EP97947009A EP0886727A1 EP 0886727 A1 EP0886727 A1 EP 0886727A1 EP 97947009 A EP97947009 A EP 97947009A EP 97947009 A EP97947009 A EP 97947009A EP 0886727 A1 EP0886727 A1 EP 0886727A1
Authority
EP
European Patent Office
Prior art keywords
core
layer
valve
armature
layer thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97947009A
Other languages
German (de)
French (fr)
Other versions
EP0886727B1 (en
Inventor
Markus Gesk
Norbert Keim
Joachim Stilling
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0886727A1 publication Critical patent/EP0886727A1/en
Application granted granted Critical
Publication of EP0886727B1 publication Critical patent/EP0886727B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0614Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of electromagnets or fixed armature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • F02M51/0682Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto the body being hollow and its interior communicating with the fuel flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/166Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting

Definitions

  • the invention relates to an electromagnetically actuated valve according to the preamble of the main claim.
  • Various electromagnetically actuated valves in particular fuel injection valves, are already known in which components subject to wear are provided with wear-resistant layers.
  • a fuel injection valve is also known from EP-OS 0 536 773, in which a hard metal layer is applied to the armature on its cylindrical circumferential surface and annular stop surface by electroplating.
  • This layer of chrome or nickel has a thickness of 15 to 25 ⁇ m, for example.
  • a slightly wedge-shaped layer thickness Distribution whereby a slightly thicker layer is achieved on the outer edges. Due to the galvanically deposited layers, the layer thickness distribution is physically predetermined and can hardly be influenced.
  • the electromagnetically actuated valve according to the invention with the characterizing features of the main claim has the advantage that an inexpensive stop area is created in a simple manner.
  • the measure according to the invention of applying a thicker wear protection layer to the stationary core than to the axially moving armature it is also possible to increase the magnetic force of the electromagnetic circuit of the valve. Since the spread of galvanic-type coatings is reduced with smaller setpoints for the layer thicknesses, this results in functionally lower fluctuations in the residual air gap in the core / armature area. This advantageously reduces the
  • the wear on the moving armature is significantly less than on the stationary core, and thus the wear protection layer on the armature can be made with a significantly reduced thickness without sacrificing quality in terms of endurance stability, this results in a not insignificant saving in coating material.
  • the coating times are shortened in an advantageous manner, especially when coating the anchor.
  • the material savings go hand in hand with a cost reduction, which is exacerbated by the decreasing disposal costs at the galvanizing baths.
  • Another advantage lies in the smaller scatter of the armature diameter, which has a particularly favorable effect on the wear behavior due to the resulting lower guide play.
  • FIG. 1 shows a fuel injection valve
  • FIG. 2 shows an enlarged stop of the injection valve in the area of the core and armature with wear protection layers.
  • the electromagnetically actuated valve for example shown in FIG. 1, in the form of an injection valve for fuel injection systems of mixture-compressing, spark-ignited internal combustion engines has a core 2, which is surrounded by a magnetic coil 1 and serves as a fuel inlet connector, which is, for example, tubular and has a constant length over its entire length Has outer diameter.
  • a coil body 3 which is stepped in the radial direction, takes up a winding of the magnet coil 1 and, in conjunction with the core 2, enables the injection valve to be particularly compact in the area of the magnet coil 1.
  • a tubular metal intermediate part 12 is tightly connected concentrically to a longitudinal valve axis 10, for example by welding, and thereby partially surrounds the core end 9 axially.
  • the stepped coil body 3 partially overlaps the core 2 and, with a step 15 of larger diameter, the intermediate part 12 at least partially axially.
  • a tubular valve seat carrier 16 extends downstream of the bobbin 3 and the intermediate part 12 and is, for example, firmly connected to the intermediate part 12.
  • a longitudinal bore 17 runs in the valve seat carrier 16 and is formed concentrically with the valve longitudinal axis 10.
  • a tubular valve needle 19 is arranged, which is connected at its downstream end 20 to a spherical valve closing body 21, on the periphery of which, for example, five flats 22 are provided for the fuel to flow past, for example by welding.
  • the injection valve is actuated electromagnetically in a known manner.
  • the electromagnetic circuit with the solenoid coil 1, the core 2 and a sleeve-shaped armature 27 is used for the axial movement of the valve needle 19 and thus for opening against the spring force of a return spring 25 or closing the injection valve End of the valve needle 19 facing away from the valve closing body 21 is connected by a first weld 28 and aligned with the core 2.
  • a cylindrical valve seat body 29 which has a fixed valve seat, is tightly mounted in the longitudinal bore 17 by welding.
  • the longitudinal valve axis 10 serves as a guide opening 32 of the valve seat body 29.
  • the spherical valve closing body 21 interacts with the valve seat of the valve seat body 29 which tapers in the shape of a truncated cone in the direction of flow.
  • the valve seat body 29 On its end facing away from the valve closing body 21, the valve seat body 29 is connected concentrically and firmly to a spray-perforated disk 34, for example in the form of a pot. At least one runs in the base part of the spray perforated disk 34, for example four spray openings 39 formed by eroding or stamping.
  • the insertion depth of the valve seat body 29 with the cup-shaped spray orifice plate 34 determines the setting of the stroke of the valve needle 19.
  • the one end position of the valve needle 19 when the solenoid coil 1 is not energized is determined by the valve closing body 21 resting on the valve seat of the valve seat body 29, while the other end position is fixed of the valve needle 19 when the solenoid coil 1 is energized by the contact of the armature 27 at the core end 9, that is to say precisely in the region which is designed according to the invention, is identified in more detail by a circle and is shown in a modified scale in FIG.
  • An adjusting sleeve 48 which is pushed into a flow bore 46 of the core 2 concentrically to the longitudinal axis 10 of the valve and is formed, for example, from rolled spring steel sheet, serves to adjust the spring preload of the return spring 25 abutting the adjusting sleeve 48, which in turn is located on the valve needle 19 with its opposite side supports.
  • the injection valve is largely enclosed in a plastic encapsulation 50, which extends from the core 2 in the axial direction via the solenoid coil 1 to the valve seat support 16 extends.
  • This plastic encapsulation 50 includes, for example, an injection-molded electrical connector 52.
  • a fuel filter 61 projects into the flow bore 46 of the core 2 at its inlet end 55 and provides for the filtering out of those fuel components which, because of their size, could cause blockages or damage in the injection valve.
  • FIG. 2 the area marked with a circle in FIG. 1 of the one end position of the valve needle 19, in which the armature 27 strikes the core end 9 of the core 2, is shown on a different scale.
  • metallic layers 65 to the core end 9 of the core 2 and to the armature 27, for example chromium or nickel layers, by means of electroplating.
  • the layers 65 and 65 ' both on the end faces 67 and 67' running perpendicular to the longitudinal axis 10 of the valve and also at least partially
  • Circumferential surfaces 66 and 66 'of the armature 27 and the core 2 are applied.
  • the layers 65 which usually have layer thicknesses between 10 and 25 ⁇ m, are not shown in FIG. 2 with their layer thicknesses to the size of the components 2 and 27.
  • the stop partners should have stop surfaces that are as precise as possible, so that the pull-in and drop-out times of the armature 27 remain almost constant, despite a slight wear on the layers 65 and 65 '.
  • the tolerances of the fuel quantities to be sprayed can also be kept very narrow.
  • the endurance test shows that the moving component anchor 27 wears less than the stationary component core 2.
  • the layer thickness x of the layer 65 'of the stationary core 2 is clearly above the layer thickness y of the layer 65 of the axially moving armature 27, which means that the layer thickness x of the layer 65' of the core 2 is Layer thickness y of the layer 65 of the armature 27 exceeds by at least 25%.
  • the stop area a, a ' is the actually wearing contact point (contact area of the two stop partners), which in the ideal case is circular and usually crescent-shaped, i.e. H. annular segment-shaped.
  • the stop area a, a ' usually has a stop width of 50 to 200 ⁇ m, maximum widths of 300 ⁇ m still being conceivable.
  • the layers 65 and 65' can also be designed in a wedge shape such that the respective opposite layer thicknesses largely equalize.
  • the layer 65 on the armature 27 consistently has a smaller layer thickness y than the layer thickness x of the layer 65 'on the core 2; x> y applies, in particular at the stop area a, a '.
  • Chromium, molybdenum, nickel or carbon carbides are used as coating materials.
  • completely different coating materials that are customary for coating purposes can also be used in order to produce the wear-resistant layers 65, 65 ′ on the core 2 and armature 27 according to the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Magnetically Actuated Valves (AREA)
  • Fluid-Driven Valves (AREA)

Abstract

PCT No. PCT/DE97/02406 Sec. 371 Date Aug. 12, 1998 Sec. 102(e) Date Aug. 12, 1998 PCT Filed Oct. 18, 1997 PCT Pub. No. WO98/28537 PCT Pub. Date Jul. 2, 1998A fuel injection valve for use in fuel injection systems of compressed-mixture, externally ignited internal combustion engines has a core provided with a wear-resistant layer that has a greater layer thickness than a layer thickness of a wear-resistant layer of an armature facing the core. This greater layer thickness is present at least in an immediate contact area between the core and the armature.

Description

Elektromagnetisch betätigbares VentilElectromagnetically actuated valve
Stand der TechnikState of the art
Die Erfindung geht aus von einem elektromagnetisch betätigbaren Ventil nach der Gattung des Hauptanspruchs. Es sind bereits verschiedene elektromagnetisch betätigbare Ventile, insbesondere Brennstoffeinspritzventile bekannt, bei denen verschleißbeanspruchte Bauteile mit verschleißfesten Schichten versehen sind.The invention relates to an electromagnetically actuated valve according to the preamble of the main claim. Various electromagnetically actuated valves, in particular fuel injection valves, are already known in which components subject to wear are provided with wear-resistant layers.
Aus der DE-OS 29 42 928 ist bereits bekannt, verschleißfe- ste diamagnetische Materialschichten an verschleißbeanspruchten Teilen, wie Anker und Düsenkörper, aufzutragen. Diese in genau bemessener Schichtstärke aufgebrachten Schichten dienen der Begrenzung des Hubes der Ventilnadel, wodurch die Auswirkungen des Restmagnetismus auf die bewegten Teile des Brennstoffeinspritzventils minimiert werden .It is already known from DE-OS 29 42 928 to apply wear-resistant diamagnetic material layers to parts subject to wear, such as anchors and nozzle bodies. These layers, which are applied in precisely measured layer thickness, serve to limit the stroke of the valve needle, as a result of which the effects of residual magnetism on the moving parts of the fuel injector are minimized.
Aus der EP-OS 0 536 773 ist ebenfalls ein Brennstoffein- spritzventil bekannt, bei dem am Anker an dessen zylindri- scher Umfangsflache und ringförmiger Anschlagfläche eine Hartmetallschicht durch Galvanisieren aufgetragen ist. Diese Schicht aus Chrom oder Nickel besitzt beispielsweise eine Dicke von 15 bis 25 μm. Infolge der galvanischen Beschichtung entsteht eine gering keilige Schichtdicken- Verteilung, wobei an den äußeren Kanten eine minimal dickere Schicht erreicht wird. Durch die galvanisch abgeschiedenen Schichten ist die Schichtdickenverteilung physikalisch vorgegeben und kaum beeinflußbar.A fuel injection valve is also known from EP-OS 0 536 773, in which a hard metal layer is applied to the armature on its cylindrical circumferential surface and annular stop surface by electroplating. This layer of chrome or nickel has a thickness of 15 to 25 μm, for example. As a result of the galvanic coating, a slightly wedge-shaped layer thickness Distribution, whereby a slightly thicker layer is achieved on the outer edges. Due to the galvanically deposited layers, the layer thickness distribution is physically predetermined and can hardly be influenced.
Vorteile der ErfindungAdvantages of the invention
Das erfindungsgemäße elektromagnetisch betätigbare Ventil mit den kennzeichnenden Merkmalen des Hauptanspruchs hat den Vorteil, daß auf einfache Art und Weise ein kostengünstiger Anschlagbereich geschaffen ist. Mit der erfindungsgemäßen Maßnahme des Aufbringens einer dickeren Verschleißschutzschicht auf dem ruhenden Kern als auf dem axial bewegten Anker ist es außerdem möglich, die Magnetkraft des elektromagnetischen Kreises des Ventils zu erhöhen. Da bei Beschichtungen galvanischer Art die Streuung bei kleineren Sollwerten für die Schichtdicken reduziert wird, ergeben sich dadurch funktional geringere RestluftspaltSchwankungen im Bereich Kern/Anker. In vorteilhafter Weise verringern sich dadurch dieThe electromagnetically actuated valve according to the invention with the characterizing features of the main claim has the advantage that an inexpensive stop area is created in a simple manner. With the measure according to the invention of applying a thicker wear protection layer to the stationary core than to the axially moving armature, it is also possible to increase the magnetic force of the electromagnetic circuit of the valve. Since the spread of galvanic-type coatings is reduced with smaller setpoints for the layer thicknesses, this results in functionally lower fluctuations in the residual air gap in the core / armature area. This advantageously reduces the
Schwankungen der abzuspritzenden Brennstoffmengen qdyn, während sich die Werte der Mindestanzugsspannung erhöhen.Fluctuations in the amount of fuel to be sprayed q dyn , while the values of the minimum tightening voltage increase.
Da der Verschleiß am bewegten Anker deutlich geringer ist als am ruhenden Kern und somit die Verschleißschutzschicht am Anker mit erheblich reduzierter Dicke ohne Qualitäts- einbußen bei der DauerlaufStabilität ausgeführt werden kann, ergibt sich eine nicht unwesentliche Einsparung an Beschichtungsmaterial . Zudem verkürzen sich in vorteil - hafter Weise die Beschichtungszeiten, speziell bei der Beschichtung des Ankers. Die Materialeinsparung geht einher mit einer Kostenreduzierung, die noch verstärkt wird durch den sinkenden Entsorgungsaufwand an den Galvanisationsbädern . Ein weiterer Vorteil liegt in der geringeren Streuung des Ankerdurchmessers, was sich aufgrund des sich ergebenden geringeren Führungsspiels besonders günstig auf das Verschleißverhalten auswirkt .Since the wear on the moving armature is significantly less than on the stationary core, and thus the wear protection layer on the armature can be made with a significantly reduced thickness without sacrificing quality in terms of endurance stability, this results in a not insignificant saving in coating material. In addition, the coating times are shortened in an advantageous manner, especially when coating the anchor. The material savings go hand in hand with a cost reduction, which is exacerbated by the decreasing disposal costs at the galvanizing baths. Another advantage lies in the smaller scatter of the armature diameter, which has a particularly favorable effect on the wear behavior due to the resulting lower guide play.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Hauptanspruch angegebenen elektromagnetisch betätigbaren Ventils, insbesondere Brennstoffeinspritzventils mög- lieh.The measures listed in the subclaims permit advantageous developments and improvements of the electromagnetically actuated valve, in particular fuel injector, specified in the main claim.
Zeichnungdrawing
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert . Es zeigen Figur 1 ein Brennstoffein- spritzventil und Figur 2 einen vergrößerten Anschlag des Einspritzventils im Bereich von Kern und Anker mit Verschleißschutzschichten .An embodiment of the invention is shown in simplified form in the drawing and explained in more detail in the following description. FIG. 1 shows a fuel injection valve and FIG. 2 shows an enlarged stop of the injection valve in the area of the core and armature with wear protection layers.
Beschreibung der AusführungsbeispieleDescription of the embodiments
Das in der Figur 1 beispielsweise dargestellte elektromagnetisch betätigbare Ventil in der Form eines Einspritz- ventils für Brennstoffeinspritzanlagen von gemischverdichtenden, fremdgezündeten Brennkraftmaschinen hat einen von einer Magnetspule 1 umgebenen, als Brennstoffeinlaßstutzen dienenden Kern 2, der beispielsweise rohrförmig ausgebildet ist und über seine gesamte Länge einen konstanten Außendurchmesser aufweist. Ein in radialer Richtung gestufter Spulenkörper 3 nimmt eine Bewicklung der Magnetspule 1 auf und ermöglicht in Verbindung mit dem Kern 2 einen besonders kompakten Aufbau des Einspritz- ventils im Bereich der Magnetspule 1. Mit einem unteren Kernende 9 des Kerns 2 ist konzentrisch zu einer Ventillängsachse 10 dicht ein rohrförmiges metallenes Zwischenteil 12 beispielsweise durch Schweißen verbunden und umgibt dabei das Kernende 9 teilweise axial. Der gestufte Spulenkörper 3 übergreift teilweise den Kern 2 und mit einer Stufe 15 größeren Durchmessers das Zwischenteil 12 zumindest teilweise axial. Stromabwärts des Spulenkörpers 3 und des Zwischenteils 12 erstreckt sich ein rohrförmiger Ventilsitzträger 16, der beispielsweise fest mit dem Zwischenteil 12 verbunden ist. In dem Ventilsitzträger 16 verläuft eine Längsbohrung 17, die konzentrisch zu der Ventillängsachse 10 ausgebildet ist. In der Längsbohrung 17 ist eine zum Beispiel rohrförmige Ventilnadel 19 angeordnet, die an ihrem stromabwärtigen Ende 20 mit einem kugelförmigen Ventilschließkörper 21, an dessen Umfang beispielsweise fünf Abflachungen 22 zum Vorbeiströmen des Brennstoffs vorgesehen sind, beispielsweise durch Schweißen verbunden ist.The electromagnetically actuated valve, for example shown in FIG. 1, in the form of an injection valve for fuel injection systems of mixture-compressing, spark-ignited internal combustion engines has a core 2, which is surrounded by a magnetic coil 1 and serves as a fuel inlet connector, which is, for example, tubular and has a constant length over its entire length Has outer diameter. A coil body 3, which is stepped in the radial direction, takes up a winding of the magnet coil 1 and, in conjunction with the core 2, enables the injection valve to be particularly compact in the area of the magnet coil 1. With a lower core end 9 of the core 2, a tubular metal intermediate part 12 is tightly connected concentrically to a longitudinal valve axis 10, for example by welding, and thereby partially surrounds the core end 9 axially. The stepped coil body 3 partially overlaps the core 2 and, with a step 15 of larger diameter, the intermediate part 12 at least partially axially. A tubular valve seat carrier 16 extends downstream of the bobbin 3 and the intermediate part 12 and is, for example, firmly connected to the intermediate part 12. A longitudinal bore 17 runs in the valve seat carrier 16 and is formed concentrically with the valve longitudinal axis 10. In the longitudinal bore 17, for example, a tubular valve needle 19 is arranged, which is connected at its downstream end 20 to a spherical valve closing body 21, on the periphery of which, for example, five flats 22 are provided for the fuel to flow past, for example by welding.
Die Betätigung des Einspritzventils erfolgt in bekannter Weise elektromagnetisch. Zur axialen Bewegung der Ventil - nadel 19 und damit zum Öffnen entgegen der Federkraft einer Rückstellfeder 25 bzw. Schließen des Einspritzventils dient der elektromagnetische Kreis mit der Magnetspu- le 1, dem Kern 2 und einem hülsenförmigen Anker 27. Der Anker 27 ist mit dem dem Ventilschließkörper 21 abgewandten Ende der Ventilnadel 19 durch eine erste Schweißnaht 28 verbunden und auf den Kern 2 ausgerichtet. In das stromabwärts liegende, dem Kern 2 abgewandte Ende des Ventilsitzträgers 16 ist in der Längsbohrung 17 ein Zylinderförmiger Ventilsitzkörper 29, der einen festen Ventilsitz aufweist, durch Schweißen dicht montiert.The injection valve is actuated electromagnetically in a known manner. The electromagnetic circuit with the solenoid coil 1, the core 2 and a sleeve-shaped armature 27 is used for the axial movement of the valve needle 19 and thus for opening against the spring force of a return spring 25 or closing the injection valve End of the valve needle 19 facing away from the valve closing body 21 is connected by a first weld 28 and aligned with the core 2. In the downstream end of the valve seat carrier 16 facing away from the core 2, a cylindrical valve seat body 29, which has a fixed valve seat, is tightly mounted in the longitudinal bore 17 by welding.
Zur Führung des Ventilschließkörpers 21 während der Axial- bewegung der Ventilnadel 19 mit dem Anker 27 entlang der Ventillängsachse 10 dient eine FührungsÖffnung 32 des Ventilsitzkörpers 29. Der kugelförmige Ventilschließkörper 21 wirkt mit dem sich in Strömungsrichtung kegelstumpfförmig verjüngenden Ventilsitz des Ventilsitzkörpers 29 zusammen. An seiner dem Ventilschließkörper 21 abgewandten Stirnseite ist der Ventilsitzkörper 29 mit einer beispielsweise topfförmig ausgebildeten Spritzlochscheibe 34 konzentrisch und fest, verbunden. Im Bodenteil der Spritzlochscheibe 34 verläuft wenigstens eine, beispielsweise verlaufen vier durch Erodieren oder Stanzen ausgeformte Abspritz- Öffnungen 39.To guide the valve closing body 21 during the axial movement of the valve needle 19 with the armature 27 along the The longitudinal valve axis 10 serves as a guide opening 32 of the valve seat body 29. The spherical valve closing body 21 interacts with the valve seat of the valve seat body 29 which tapers in the shape of a truncated cone in the direction of flow. On its end facing away from the valve closing body 21, the valve seat body 29 is connected concentrically and firmly to a spray-perforated disk 34, for example in the form of a pot. At least one runs in the base part of the spray perforated disk 34, for example four spray openings 39 formed by eroding or stamping.
Die Einschubtiefe des Ventilsitzkörpers 29 mit der topfförmigen Spritzlochscheibe 34 bestimmt die Einstellung des Hubs der Ventilnadel 19. Dabei ist die eine Endstellung der Ventilnadel 19 bei nicht erregter Magnetspule 1 durch die Anlage des Ventilschließkörpers 21 am Ventilsitz des Ventilsitzkörpers 29 festgelegt, während sich die andere Endstellung der Ventilnadel 19 bei erregter Magnet- spule 1 durch die Anlage des Ankers 27 am Kernende 9 ergibt, also genau in dem Bereich, der erfindungsgemäß ausgebildet, durch einen Kreis näher gekennzeichnet und in der Figur 2 in verändertem Maßstab dargestellt ist.The insertion depth of the valve seat body 29 with the cup-shaped spray orifice plate 34 determines the setting of the stroke of the valve needle 19. The one end position of the valve needle 19 when the solenoid coil 1 is not energized is determined by the valve closing body 21 resting on the valve seat of the valve seat body 29, while the other end position is fixed of the valve needle 19 when the solenoid coil 1 is energized by the contact of the armature 27 at the core end 9, that is to say precisely in the region which is designed according to the invention, is identified in more detail by a circle and is shown in a modified scale in FIG.
Eine in eine konzentrisch zur Ventillängsachse 10 verlaufende Strömungsbohrung 46 des Kerns 2 eingeschobene Einstellhülse 48, die beispielsweise aus gerolltem Federstahlblech ausgeformt ist, dient zur Einstellung der Federvorspannung der an der Einstellhülse 48 anliegenden Rückstellfeder 25, die sich wiederum mit ihrer gegenüberliegenden Seite an der Ventilnadel 19 abstützt.An adjusting sleeve 48, which is pushed into a flow bore 46 of the core 2 concentrically to the longitudinal axis 10 of the valve and is formed, for example, from rolled spring steel sheet, serves to adjust the spring preload of the return spring 25 abutting the adjusting sleeve 48, which in turn is located on the valve needle 19 with its opposite side supports.
Das Einspritzventil ist weitgehend mit einer Kunststoffum- spritzung 50 umschlossen, die sich vom Kern 2 ausgehend in axialer Richtung über die Magnetspule 1 bis zum Ventil- sitzträger 16 erstreckt. Zu dieser Kunststoffumspritzung 50 gehört beispielsweise ein mitangespritzter elektrischer Anschlußstecker 52.The injection valve is largely enclosed in a plastic encapsulation 50, which extends from the core 2 in the axial direction via the solenoid coil 1 to the valve seat support 16 extends. This plastic encapsulation 50 includes, for example, an injection-molded electrical connector 52.
Ein Brennstoffilter 61 ragt in die Strömungsbohrung 46 des Kerns 2 an dessen Zulaufseitigem Ende 55 hinein und sorgt für die Herausfiltrierung solcher Brennstoffbestandteile, die aufgrund ihrer Größe im Einspritzventil Verstopfungen oder Beschädigungen verursachen könnten.A fuel filter 61 projects into the flow bore 46 of the core 2 at its inlet end 55 and provides for the filtering out of those fuel components which, because of their size, could cause blockages or damage in the injection valve.
In der Figur 2 ist der in Figur 1 mit einem Kreis gekennzeichnete Bereich der einen Endstellung der Ventilnadel 19, in dem der Anker 27 an dem Kernende 9 des Kerns 2 anschlägt, in einem anderen Maßstab dargestellt. Bereits bekannt ist das Aufbringen von metallischen Schichten 65 auf dem Kernende 9 des Kerns 2 und auf dem Anker 27, beispielsweise von Chrom- oder Nickelschichten, mittels Gal- vanisierens. Dabei werden die Schichten 65 und 65' sowohl auf senkrecht zur Ventillängsachse 10 verlaufende Stirn- flächen 67 und 67' als auch zumindest teilweise aufIn FIG. 2, the area marked with a circle in FIG. 1 of the one end position of the valve needle 19, in which the armature 27 strikes the core end 9 of the core 2, is shown on a different scale. It is already known to apply metallic layers 65 to the core end 9 of the core 2 and to the armature 27, for example chromium or nickel layers, by means of electroplating. In this case, the layers 65 and 65 'both on the end faces 67 and 67' running perpendicular to the longitudinal axis 10 of the valve and also at least partially
Umfangsflachen 66 und 66' des Ankers 27 bzw. des Kerns 2 aufgebracht. Die Schichten 65, die üblicherweise Schichtdicken zwischen 10 und 25 μm aufweisen, sind in Figur 2 mit ihren Schichtdicken nicht maßstäblich zur Größe der Bauteile 2 und 27 dargestellt.Circumferential surfaces 66 and 66 'of the armature 27 and the core 2 are applied. The layers 65, which usually have layer thicknesses between 10 and 25 μm, are not shown in FIG. 2 with their layer thicknesses to the size of the components 2 and 27.
Für die Funktion des Einspritzventils ist es notwendig, daß Kern 2 und Anker 27 nur in einem relativ kleinen Bereich, beispielsweise nur im äußeren, von der Ventil- längsachse 10 abgewandten Bereich der oberen Stirnfläche des Ankers 27 anschlagen. Diese Forderung wird durch die galvanische Beschichtung erreicht. Bei der galvanischen Beschichtung tritt an den Kanten der zu beschichtenden Teile, hier Kern 2 und Anker 27, eine Feldlinienkonzentra- tion auf, die dazu führt, daß z. B. eine minimal keilige Schichtdickenverteilung auftritt. Die aufgebrachten Schichten 65 und 65' werden also beim Betrieb des Einspritzventils nur in kleinen Bereichen beansprucht.For the function of the injection valve, it is necessary for core 2 and armature 27 to strike only in a relatively small area, for example only in the outer area of the upper end face of armature 27 facing away from valve longitudinal axis 10. This requirement is achieved through the galvanic coating. In the case of galvanic coating, a field line concentration occurs at the edges of the parts to be coated, here core 2 and armature 27. B. a minimal wedge Layer thickness distribution occurs. The layers 65 and 65 'applied are therefore only stressed in small areas during the operation of the injection valve.
Auch nach langer Betriebszeit sollen die Anschlagpartner möglichst exakte Anschlagflächen besitzen, so daß trotz eines geringen Verschleißes an den Schichten 65 und 65' die Anzugs- und Abfallzeiten des Ankers 27 nahezu konstant bleiben. Mit einer sehr hohen DauerlaufStabilität im Bereich dieses Ventilanschlags können ebenso in vorteilhafter Weise die Toleranzen der abzuspritzenden Brennstoffmengen ^yn sehr eng gehalten werden. In der Dauerlauferprobung zeigt sich, daß das bewegte Bauteil Anker 27 weniger verschleißt als das ruhende Bauteil Kern 2. Die sich nach vielen Jahren ergebendeEven after a long period of operation, the stop partners should have stop surfaces that are as precise as possible, so that the pull-in and drop-out times of the armature 27 remain almost constant, despite a slight wear on the layers 65 and 65 '. With a very high endurance stability in the area of this valve stop, the tolerances of the fuel quantities to be sprayed can also be kept very narrow. The endurance test shows that the moving component anchor 27 wears less than the stationary component core 2. The resultant after many years
Verschleißtiefe an den Schichten 65 und 65' kann am Kern 2 z. B. zweimal bis dreimal so groß sein wie am Anker 27. Deshalb ist es sinnvoll, ohne Einschränkungen der DauerlaufStabilität die Schicht 65 am Anker 27 reduziert gegenüber der Schicht 65' am Kern 2 bezüglich der Schichtdicke auszuführen. Besonders im Falle einer Toleranzverschärfung empfiehlt es sich, den Kern 2 mit einer eine größere Schichtdicke x aufweisenden Schicht 65' zu versehen als den Anker 27.Depth of wear on the layers 65 and 65 'can be on the core 2 z. B. be two to three times the size of the armature 27. Therefore, it is sensible to reduce the layer 65 on the armature 27 with respect to the layer 65 'on the core 2 with respect to the layer thickness, without restrictions of the endurance stability. Particularly in the case of a tighter tolerance, it is advisable to provide the core 2 with a layer 65 'having a greater layer thickness x than the armature 27.
Als ein Ausführungsbeispiel für mögliche Schichtdicken x und y für die Schichten 65 und 65' sollen hier 7 μm für den Kern 2 und 4 μm für den Anker 27 genannt werden. Diese Maße sind natürlich in engen Grenzen jeweils toleranzbehaftet. Die Größenangaben dienen nur dem besseren Verständnis und schränken die Erfindung in keiner Weise ein. Auf jeden Fall liegt die Schichtdicke x der Schicht 65' des ruhenden Kerns 2 deutlich über der Schichtdicke y der Schicht 65 des axial bewegten Ankers 27, womit gemeint ist, daß die Schichtdicke x der Schicht 65' des Kerns 2 die Schichtdicke y der Schicht 65 des Ankers 27 um wenigstens 25 % übersteigt. Diese Angaben beziehen sich nur auf den unmittelbaren Anschlagbereich a bzw. a' am Kern 2 und am Anker 27, dessen axialer Annäherungsbereich mit einem Doppelpfeil kenntlich gemacht ist.As an exemplary embodiment for possible layer thicknesses x and y for the layers 65 and 65 ', 7 μm for the core 2 and 4 μm for the armature 27 should be mentioned here. Of course, these dimensions are each subject to tolerance within narrow limits. The sizes are only for better understanding and do not limit the invention in any way. In any case, the layer thickness x of the layer 65 'of the stationary core 2 is clearly above the layer thickness y of the layer 65 of the axially moving armature 27, which means that the layer thickness x of the layer 65' of the core 2 is Layer thickness y of the layer 65 of the armature 27 exceeds by at least 25%. These details relate only to the immediate stop area a or a 'on the core 2 and on the armature 27, whose axial approach area is indicated by a double arrow.
Bei dem Anschlagbereich a, a' handelt es sich um die eigentlich verschleißende Kontaktstelle (Berührungsbereich der beiden Anschlagpartner) , der im Idealfall kreisringförmig und üblicherweise sichelförmig, d. h. kreisringabschnittförmig, gebildet wird. Gewöhnlich besitzt der Anschlagbereich a, a' eine Anschlagbreite von 50 bis 200 μm, wobei maximale Breiten von 300 μm noch denkbar sind. Außerhalb des Anschlagbereichs a, a' können die Schichten 65 und 65' auch so keilig ausgeführt sein, daß sich die jeweils gegenüberliegenden Schichtdicken weitgehend angleichen. Im Normalfall besitzt die Schicht 65 am Anker 27 jedoch durchgehend eine geringere Schichtdicke y als die Schichtdicke x der Schicht 65' am Kern 2; es gilt x > y, insbesondere am Anschlagbereich a, a' . Als Beschichtungsmaterialien dienen beispielsweise Chrom, Molybdän, Nickel oder Kohlenstoffkarbide . Es sind jedoch auch völlig andere für Beschichtungszwecke übliche Beschichtungsmaterialien verwendbar, um die erfindungsgemäßen verschleißfesten Schichten 65, 65' am Kern 2 und Anker 27 herzustellen. The stop area a, a 'is the actually wearing contact point (contact area of the two stop partners), which in the ideal case is circular and usually crescent-shaped, i.e. H. annular segment-shaped. The stop area a, a 'usually has a stop width of 50 to 200 μm, maximum widths of 300 μm still being conceivable. Outside the stop area a, a ', the layers 65 and 65' can also be designed in a wedge shape such that the respective opposite layer thicknesses largely equalize. In the normal case, however, the layer 65 on the armature 27 consistently has a smaller layer thickness y than the layer thickness x of the layer 65 'on the core 2; x> y applies, in particular at the stop area a, a '. Chromium, molybdenum, nickel or carbon carbides are used as coating materials. However, completely different coating materials that are customary for coating purposes can also be used in order to produce the wear-resistant layers 65, 65 ′ on the core 2 and armature 27 according to the invention.

Claims

Patentansprüche claims
1. Elektromagnetisch betätigbares Ventil, insbesondere Brennstoffeinspritzventil für Brennstoffeinspritzanlagen von Brennkraf maschinen, mit einer Ventillängsachse, mit einem Kern aus ferromagnetischem Material, mit einer Magnetspule und mit einem Anker, der ein mit einem festen Ventilsitz zusammenwirkenden Ventilschließkörper betätigt und bei erregter Magnetspule gegen eine Anschlagfläche des Kerns gezogen wird, wobei sowohl die anschlagende Fläche des axial beweglichen Ankers als auch die Anschlagfläche des ruhenden Kerns mit einer Verschleißschutz bietenden Schicht versehen sind, dadurch gekennzeichnet, daß die Schicht (65') auf der Stirnfläche (67') des Kerns (2), die zum Anker (27) gerichtet ist, zumindest im unmittelbaren Anschlagbereich (a, a' ) eine größere Schichtdicke (x) besitzt als die Schichtdicke (y) der Schicht (65) auf der dem Kern (2) zugewandten Stirnfläche (67) des Ankers (27) .1. Electromagnetically actuated valve, in particular fuel injection valve for fuel injection systems of internal combustion engines, with a valve longitudinal axis, with a core made of ferromagnetic material, with a magnet coil and with an armature that actuates a valve closing body interacting with a fixed valve seat and, when the magnet coil is excited, against a stop surface of the Core is pulled, wherein both the abutting surface of the axially movable armature and the abutting surface of the stationary core are provided with a layer providing wear protection, characterized in that the layer (65 ') on the end face (67') of the core (2) , which is directed towards the anchor (27), at least in the immediate stop area (a, a ') has a greater layer thickness (x) than the layer thickness (y) of the layer (65) on the end face (67) facing the core (2) the anchor (27).
2. Ventil nach Anspruch 1, dadurch gekennzeichnet, daß die Schichtdicke (x) der Schicht (65') des Kerns (2) die Schichtdicke (y) der Schicht (65) des Ankers (27) im Anschlagbereich (a, a' ) um mindestens 25% übersteigt. 2. Valve according to claim 1, characterized in that the layer thickness (x) of the layer (65 ') of the core (2), the layer thickness (y) of the layer (65) of the armature (27) in the stop area (a, a') by at least 25%.
3. Ventil nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Schichtdicke der Schicht (65') am Kern (2) durchgehend größer ist als die Schichtdicke der Schicht3. Valve according to claim 1 or 2, characterized in that the layer thickness of the layer (65 ') on the core (2) is continuously greater than the layer thickness of the layer
(65) am Anker (27) .(65) on the anchor (27).
4. Ventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Schichten (65, 65') am Kern (2) und am Anker (27) keilig verlaufen.4. Valve according to one of the preceding claims, characterized in that the layers (65, 65 ') on the core (2) and on the armature (27) run in a wedge shape.
5. Ventil nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die maximale Breite des Anschlagbereichs (a, a' ) am Kern (2) und am Anker (27) 300 μm beträgt.5. Valve according to claim 1 or 2, characterized in that the maximum width of the stop region (a, a ') on the core (2) and on the armature (27) is 300 microns.
6. Ventil nach Anspruch 1, dadurch gekennzeichnet, daß die Schichten (65, 65') magnetisch sind. 6. Valve according to claim 1, characterized in that the layers (65, 65 ') are magnetic.
EP97947009A 1996-12-24 1997-10-18 Electromagnetically controlled valve Expired - Lifetime EP0886727B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19654322 1996-12-24
DE19654322A DE19654322C2 (en) 1996-12-24 1996-12-24 Electromagnetically actuated valve
PCT/DE1997/002406 WO1998028537A1 (en) 1996-12-24 1997-10-18 Electromagnetically controlled valve

Publications (2)

Publication Number Publication Date
EP0886727A1 true EP0886727A1 (en) 1998-12-30
EP0886727B1 EP0886727B1 (en) 2003-01-22

Family

ID=7816181

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97947009A Expired - Lifetime EP0886727B1 (en) 1996-12-24 1997-10-18 Electromagnetically controlled valve

Country Status (9)

Country Link
US (1) US5996911A (en)
EP (1) EP0886727B1 (en)
JP (1) JP2000505863A (en)
KR (1) KR100573503B1 (en)
CN (1) CN1084844C (en)
AT (1) ATE231585T1 (en)
DE (2) DE19654322C2 (en)
ES (1) ES2191204T3 (en)
WO (1) WO1998028537A1 (en)

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999014487A1 (en) * 1997-09-16 1999-03-25 Robert Bosch Gmbh Perforated disk or atomizing disk and an injection valve with a perforated disk or atomizing disk
US6047907A (en) 1997-12-23 2000-04-11 Siemens Automotive Corporation Ball valve fuel injector
US6508418B1 (en) * 1998-05-27 2003-01-21 Siemens Automotive Corporation Contaminant tolerant compressed natural gas injector and method of directing gaseous fuel therethrough
EP1110018B1 (en) 1998-09-10 2003-11-26 Continental Teves AG & Co. oHG Electromagnetic valve
DE19930969A1 (en) * 1998-09-10 2000-04-20 Continental Teves Ag & Co Ohg Solenoid valve
US20010002680A1 (en) 1999-01-19 2001-06-07 Philip A. Kummer Modular two part fuel injector
US6431474B2 (en) 1999-05-26 2002-08-13 Siemens Automotive Corporation Compressed natural gas fuel injector having magnetic pole face flux director
US6405947B2 (en) 1999-08-10 2002-06-18 Siemens Automotive Corporation Gaseous fuel injector having low restriction seat for valve needle
JP3767268B2 (en) * 1999-09-10 2006-04-19 三菱電機株式会社 High pressure fuel supply device
US6186421B1 (en) * 1999-12-06 2001-02-13 Delphi Technologies, Inc. Fuel Injector
US6676044B2 (en) * 2000-04-07 2004-01-13 Siemens Automotive Corporation Modular fuel injector and method of assembling the modular fuel injector
DE10039083A1 (en) * 2000-08-10 2002-02-21 Bosch Gmbh Robert Fuel injector
US6481646B1 (en) 2000-09-18 2002-11-19 Siemens Automotive Corporation Solenoid actuated fuel injector
US6631857B2 (en) 2000-12-22 2003-10-14 Caterpillar Inc Partially plastic fuel injector component and method of making the same
US6523761B2 (en) 2000-12-29 2003-02-25 Siemens Automotive Corporation Modular fuel injector having an integral or interchangeable inlet tube and having a lift set sleeve
US6550690B2 (en) 2000-12-29 2003-04-22 Siemens Automotive Corporation Modular fuel injector having interchangeable armature assemblies and having an integral filter and dynamic adjustment assembly
US6523760B2 (en) 2000-12-29 2003-02-25 Siemens Automotive Corporation Modular fuel injector having interchangeable armature assemblies and having a terminal connector interconnecting an electromagnetic actuator with an electrical terminal
US6520422B2 (en) 2000-12-29 2003-02-18 Siemens Automotive Corporation Modular fuel injector having a low mass, high efficiency electromagnetic actuator and having a terminal connector interconnecting an electromagnetic actuator with an electrical terminal
US6568609B2 (en) 2000-12-29 2003-05-27 Siemens Automotive Corporation Modular fuel injector having an integral or interchangeable inlet tube and having an integral filter and o-ring retainer assembly
US6502770B2 (en) 2000-12-29 2003-01-07 Siemens Automotive Corporation Modular fuel injector having a snap-on orifice disk retainer and having a terminal connector interconnecting an electromagnetic actuator with an electrical terminal
US6547154B2 (en) 2000-12-29 2003-04-15 Siemens Automotive Corporation Modular fuel injector having a terminal connector interconnecting an electromagnetic actuator with a pre-bent electrical terminal
US6499668B2 (en) 2000-12-29 2002-12-31 Siemens Automotive Corporation Modular fuel injector having a surface treatment on an impact surface of an electromagnetic actuator and having a terminal connector interconnecting an electromagnetic actuator with an electrical terminal
US6520421B2 (en) 2000-12-29 2003-02-18 Siemens Automotive Corporation Modular fuel injector having an integral filter and o-ring retainer
US6695232B2 (en) 2000-12-29 2004-02-24 Siemens Automotive Corporation Modular fuel injector having interchangeable armature assemblies and having a lift set sleeve
US6533188B1 (en) 2000-12-29 2003-03-18 Siemens Automotive Corporation Modular fuel injector having a snap-on orifice disk retainer and having an integral filter and dynamic adjustment assembly
US6698664B2 (en) 2000-12-29 2004-03-02 Siemens Automotive Corporation Modular fuel injector having an integral or interchangeable inlet tube and having an integral filter and dynamic adjustment assembly
US6511003B2 (en) 2000-12-29 2003-01-28 Siemens Automotive Corporation Modular fuel injector having an integral or interchangeable inlet tube and having a terminal connector interconnecting an electromagnetic actuator with an electrical terminal
US6523756B2 (en) 2000-12-29 2003-02-25 Siemens Automotive Corporation Modular fuel injector having a low mass, high efficiency electromagnetic actuator and having a lift set sleeve
US6508417B2 (en) 2000-12-29 2003-01-21 Siemens Automotive Corporation Modular fuel injector having a snap-on orifice disk retainer and having a lift set sleeve
US6536681B2 (en) 2000-12-29 2003-03-25 Siemens Automotive Corporation Modular fuel injector having a surface treatment on an impact surface of an electromagnetic actuator and having an integral filter and O-ring retainer assembly
US6499677B2 (en) 2000-12-29 2002-12-31 Siemens Automotive Corporation Modular fuel injector having a low mass, high efficiency electromagnetic actuator and having an integral filter and dynamic adjustment assembly
US6708906B2 (en) * 2000-12-29 2004-03-23 Siemens Automotive Corporation Modular fuel injector having a surface treatment on an impact surface of an electromagnetic actuator and having an integral filter and dynamic adjustment assembly
US6811091B2 (en) 2000-12-29 2004-11-02 Siemens Automotive Corporation Modular fuel injector having an integral filter and dynamic adjustment assembly
US6543707B2 (en) 2000-12-29 2003-04-08 Siemens Automotive Corporation Modular fuel injector having a lift set sleeve
US6607143B2 (en) 2000-12-29 2003-08-19 Siemens Automotive Corporation Modular fuel injector having a surface treatment on an impact surface of an electromagnetic actuator and having a lift set sleeve
US6565019B2 (en) 2000-12-29 2003-05-20 Seimens Automotive Corporation Modular fuel injector having a snap-on orifice disk retainer and having an integral filter and O-ring retainer assembly
US6655609B2 (en) 2000-12-29 2003-12-02 Siemens Automotive Corporation Modular fuel injector having a low mass, high efficiency electromagnetic actuator and having an integral filter and o-ring retainer assembly
JP2002295329A (en) * 2001-01-25 2002-10-09 Hitachi Ltd Electromagnetic fuel injection valve and fuel injection device
DE10108195A1 (en) * 2001-02-21 2002-08-22 Bosch Gmbh Robert Fuel injector
DE10109611A1 (en) * 2001-02-28 2002-09-05 Bosch Gmbh Robert Fuel injector
US6676043B2 (en) 2001-03-30 2004-01-13 Siemens Automotive Corporation Methods of setting armature lift in a modular fuel injector
US6687997B2 (en) 2001-03-30 2004-02-10 Siemens Automotive Corporation Method of fabricating and testing a modular fuel injector
US7093362B2 (en) 2001-03-30 2006-08-22 Siemens Vdo Automotive Corporation Method of connecting components of a modular fuel injector
US6904668B2 (en) 2001-03-30 2005-06-14 Siemens Vdo Automotive Corp. Method of manufacturing a modular fuel injector
DE10123850C2 (en) * 2001-05-16 2003-06-26 Bosch Gmbh Robert Fuel injector
JP3882680B2 (en) * 2001-11-16 2007-02-21 株式会社デンソー Fuel injection nozzle
DE10204655A1 (en) * 2002-02-05 2003-08-28 Bosch Gmbh Robert Fuel injector
JP2003328901A (en) * 2002-05-13 2003-11-19 Hitachi Unisia Automotive Ltd Fuel injection valve
DE10226649A1 (en) * 2002-06-14 2004-01-08 Siemens Ag Dosing device for fluids, in particular motor vehicle injection valve
US6978950B2 (en) * 2003-02-21 2005-12-27 Siemens Vdo Automotive Corporation High flow, tubular closure member for a fuel injector
DE10314670A1 (en) * 2003-04-01 2004-10-14 Robert Bosch Gmbh Process for manufacturing and fastening a perforated disc
US7021566B2 (en) * 2003-08-19 2006-04-04 Siemens Vdo Automotive Corporation Modular fuel injector with a deep pocket seat and method of maintaining spatial orientation
US7237731B2 (en) * 2003-08-19 2007-07-03 Siemens Vdo Automotive Corporation Fuel injector with a deep pocket seat and method of maintaining spatial orientation
ITTO20030990A1 (en) * 2003-12-10 2005-06-11 Fiat Ricerche FUEL INJECTOR DEVICE FOR AN INTERNAL COMBUSTION ENGINE.
US7258284B2 (en) * 2003-12-19 2007-08-21 Siemens Vdo Automotive Corporation Fuel injector with a metering assembly having a seat molded to a polymeric support member
US7377040B2 (en) * 2003-12-19 2008-05-27 Continental Automotive Systems Us, Inc. Method of manufacturing a polymeric bodied fuel injector
JP2006022727A (en) * 2004-07-08 2006-01-26 Aisan Ind Co Ltd Fuel injection valve
JP3955055B2 (en) * 2004-09-27 2007-08-08 株式会社ケーヒン Electromagnetic fuel injection valve
DE102004047041B4 (en) * 2004-09-28 2017-06-14 Robert Bosch Gmbh Fuel injector
JP2006266231A (en) * 2005-03-25 2006-10-05 Aisan Ind Co Ltd Fuel injection valve
US7617991B2 (en) * 2006-03-31 2009-11-17 Delphi Technologies, Inc. Injector fuel filter with built-in orifice for flow restriction
JP5048617B2 (en) * 2008-09-17 2012-10-17 日立オートモティブシステムズ株式会社 Fuel injection valve for internal combustion engine
JP5254131B2 (en) * 2009-06-03 2013-08-07 株式会社ケーヒン Electromagnetic fuel injection valve
JP5178683B2 (en) * 2009-10-21 2013-04-10 日立オートモティブシステムズ株式会社 Electromagnetic fuel injection valve
DE102012204753A1 (en) * 2012-03-26 2013-09-26 Robert Bosch Gmbh Method for producing a solenoid valve
CN106103966B (en) * 2014-03-14 2018-07-03 日立汽车系统株式会社 Solenoid valve
JP5862712B2 (en) * 2014-06-27 2016-02-16 株式会社デンソー Fuel injection valve
JP5862713B2 (en) * 2014-06-27 2016-02-16 株式会社デンソー Fuel injection valve
JP6137296B2 (en) * 2015-12-22 2017-05-31 株式会社デンソー Fuel injection valve
KR102417009B1 (en) 2016-06-29 2022-07-04 호르톤 인코포레이티드 Viscous clutch and associated electromagnetic coil
CN209164045U (en) * 2018-11-19 2019-07-26 浙江锐韦机电科技有限公司 Integrated pump valve mechanism
JP6788085B1 (en) * 2019-09-20 2020-11-18 株式会社ケーヒン Electromagnetic fuel injection valve
MX2022014138A (en) 2020-05-14 2022-11-30 Horton Inc Valve control system for viscous friction clutch.

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2466630B1 (en) * 1979-10-05 1985-06-28 Weber Spa ELECTROMAGNETICALLY ACTUATED INJECTOR FOR INTERNAL COMBUSTION ENGINES
DE3230844A1 (en) * 1982-08-19 1984-02-23 Robert Bosch Gmbh, 7000 Stuttgart ELECTROMAGNETICALLY ACTUABLE VALVE
JPS5950285A (en) * 1982-09-17 1984-03-23 Toyoda Mach Works Ltd Solenoid valve
JPS6179860A (en) * 1984-09-26 1986-04-23 Hitachi Ltd Electromagnetic fuel injection valve
JPS62215175A (en) * 1986-03-14 1987-09-21 Hitachi Metals Ltd Ceramic coated piezo-electric actuation valve
KR880005354A (en) * 1986-10-08 1988-06-28 나까무라 겐조 Electronic actuator
JPH0344282U (en) * 1989-09-11 1991-04-24
IT1250845B (en) * 1991-10-11 1995-04-21 Weber Srl ELECTROMAGNETICALLY OPERATED FUEL DOSING AND PULVERIZING VALVE FOR AN ENDOTHERMAL MOTOR FEEDING DEVICE
IT1257958B (en) * 1992-12-29 1996-02-19 Mario Ricco ELECTROMAGNETIC CONTROL DOSING VALVE REGISTRATION DEVICE, FOR A FUEL INJECTOR
ES2118531T3 (en) * 1993-12-09 1998-09-16 Bosch Gmbh Robert ELECTROMAGNETICALLY ACTIONABLE VALVE.
DE4421947A1 (en) * 1993-12-09 1995-06-14 Bosch Gmbh Robert Electromagnetically actuated valve
JPH08210217A (en) * 1995-02-03 1996-08-20 Zexel Corp Solenoid type fuel injction valve
DE19503821A1 (en) * 1995-02-06 1996-08-08 Bosch Gmbh Robert Electromagnetically actuated valve

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9828537A1 *

Also Published As

Publication number Publication date
CN1212040A (en) 1999-03-24
EP0886727B1 (en) 2003-01-22
KR100573503B1 (en) 2006-08-10
US5996911A (en) 1999-12-07
JP2000505863A (en) 2000-05-16
ES2191204T3 (en) 2003-09-01
DE59709194D1 (en) 2003-02-27
KR19990082045A (en) 1999-11-15
ATE231585T1 (en) 2003-02-15
DE19654322A1 (en) 1998-06-25
WO1998028537A1 (en) 1998-07-02
CN1084844C (en) 2002-05-15
DE19654322C2 (en) 1999-12-23

Similar Documents

Publication Publication Date Title
EP0886727B1 (en) Electromagnetically controlled valve
EP0683862B1 (en) Electromagnetic valve
EP1042606B1 (en) Electromagnetically actuatable valve
EP0683861B1 (en) Electromagnetic valve
EP0523405B1 (en) Method for adjusting a fuel injection valve and fuel injection valve
DE4137994C2 (en) Electromagnetically actuated injection valve with a nozzle holder and method for producing a nozzle holder of an injection valve
DE19638201A1 (en) Fuel injection valve for IC engines
WO1999043948A2 (en) Electromagnetically controlled valve
EP1966483A1 (en) Electromagnetically operated valve
EP1062421A1 (en) Fuel injector
EP2742517B1 (en) Solenoid armature for an injection valve
EP1966479A1 (en) Electromagnetically operated valve
DE4421947A1 (en) Electromagnetically actuated valve
WO2002010584A1 (en) Fuel-injection valve
DE3834446A1 (en) ELECTROMAGNETIC INJECTION VALVE IN CARTRIDGE DESIGN
DE10116186A1 (en) Fuel injector
DE4411554A1 (en) Injector
DE10065528A1 (en) Fuel injector
WO2001002719A1 (en) Fuel-injection valve
DE3501973A1 (en) Fuel injection nozzle
EP1366283A1 (en) Fuel injection valve comprising an adjusting bush
DE3716073A1 (en) Electromagnetically actuatable valve
DE102021213142A1 (en) Electromagnetically operable device and method of manufacturing a magnetic circuit component of an electromagnetically operable device
WO2004101986A1 (en) Fuel injection valve
DE10349634A1 (en) electromagnet

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE ES FR GB IT SE

17P Request for examination filed

Effective date: 19990104

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20011031

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE ES FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59709194

Country of ref document: DE

Date of ref document: 20030227

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030425

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2191204

Country of ref document: ES

Kind code of ref document: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20031021

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20031022

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041019

EUG Se: european patent has lapsed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20081027

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081024

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091018

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20101109

Year of fee payment: 14

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110324

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101023

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091019

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111102

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111018

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20131217

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59709194

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150501