EP0880398A2 - Process for separating substances using a suitable membrane - Google Patents

Process for separating substances using a suitable membrane

Info

Publication number
EP0880398A2
EP0880398A2 EP97903300A EP97903300A EP0880398A2 EP 0880398 A2 EP0880398 A2 EP 0880398A2 EP 97903300 A EP97903300 A EP 97903300A EP 97903300 A EP97903300 A EP 97903300A EP 0880398 A2 EP0880398 A2 EP 0880398A2
Authority
EP
European Patent Office
Prior art keywords
promoter
separation
synthesis
membrane
cofactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97903300A
Other languages
German (de)
French (fr)
Inventor
Christian Wandrey
Udo Kragl
Andreas Bommarius
Karlheinz Drauz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa GmbH filed Critical Degussa GmbH
Publication of EP0880398A2 publication Critical patent/EP0880398A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2475Membrane reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/04Feed or outlet devices; Feed or outlet control devices using osmotic pressure using membranes, porous plates

Definitions

  • the invention relates to a method for separating substances by means of a suitable membrane according to claims 1 to 8.
  • Separation processes are an essential part of all (bio) chemical syntheses.
  • the separation of substances is indispensable for the recovery of products that are or have been formed during or after syntheses. It represents an important criterion for the synthesis planning in large-scale productions. In many cases, the separation of intermediate or end products in a required quality decides on the possible synthesis route.
  • auxiliaries In the case of catalytic reactions or reactions which require synthesis auxiliaries, the separation of these auxiliaries from the product formed can also be important. This is because synthesis aids, such as catalysts in chemical syntheses or cofactors in enzymatic syntheses, are generally very expensive. It is therefore the goal to use the synthesis aids as effectively as possible in order to reduce the costs of syntheses as much as possible. On the one hand, the amounts of auxiliaries to be used for corresponding syntheses are kept as low as possible. On the other hand, there are already various approaches to enable better use of synthesis aids. These include in particular attempts to separate the products formed during the syntheses from the auxiliary in order to achieve reuse of the auxiliary.
  • auxiliaries or catalysts are immobilized on supports, but the contact surfaces between the adjuvant and the support are often greatly reduced, which is attempted to be compensated for by a corresponding increase in the porosity of the support material. That too is
  • Immobilization process in terms of labor and catalyst loss is not without problems. Furthermore, immobilization often results in a changed mode of action of the auxiliary.
  • Synthesis aid is made by using membranes.
  • the enzymes used in enzymatic reactions are separated from the remaining reaction solution by membranes.
  • the molecular weight differences between enzyme or protein and the other reaction participants, such as substrates, products, cocatalyst or cofactor, among others are usually very large: the molecular weight of enzymes is in a range of 40 000 g / mol, that of the other reaction participants often below 1,000 g / mol.
  • the retention rate of commercially available membranes (amicon) is plotted against the molar mass.
  • enzymes in the molecular weight range mentioned can easily be passed through a membrane, such as the YMIO membrane. separate from the other substances with a molecular weight below 1,000 g / mol.
  • the auxiliary or cofactor NAD (P) or NAD (P) H whose molecular weight is approximately 700 g / mol, is also to be used frequently in enzymatic reactions and is separated from products with a molecular weight, for example, 150 g / mol separation by means of membranes, as shown in FIG. 1, is no longer possible: If a YC05 membrane according to FIG. 1 is used, it would be expected that about 75% of the product would be retained by the membrane and that there would be no effective separation between the cofactor and product . When using a YML membrane according to FIG. 1, the product was not retained; for that would but also a relatively large proportion of the cofactor pass through the membrane and thus there is no effective separation of both substances.
  • the molar mass of a substance Si should be 70 to 1,000 g / mol, the molar mass of another substance ⁇ 2 300 to 2,000 g / mol, the molar mass difference S2 minus S ⁇ _ 200 to 1,000 g / mol, the quotient (S2 minus S ⁇ _) / S2 0.5 to 0.9 and the retention rate of S2 is at least 75 to 80%.
  • Membranes suitable for the separation process are those which are generally referred to in the trade as nanofiltration or reverse osmosis membranes. A membrane that is optimal for separation can be determined by tests, with manufacturer information on nominal separation limits or salt retention rates only serving as a guide.
  • the process according to the invention makes it very easy to separate substances with the following molecular weights, the
  • Retention rate of substance S2 95 up to 100% is:
  • the process according to the invention is particularly suitable for separating products formed in the presence of a synthesis aid from the synthesis aid.
  • Products obtained from enzyme-catalyzed reactions can thus be separated from cofactors or products obtained from chemical, preferably asymmetrical, chemical catalysis from the catalyst.
  • products and cofactors such as NAD (P), FAD or PQQ are separated extremely effectively.
  • the process according to the invention thus makes it possible to retain auxiliary substances or to separate products, in particular epoxides, amino acids, alcohols or hydroxy acids, with comparable orders of magnitude but slightly different retentions. Separations can also be carried out in all solvents and under all membrane-compatible conditions.
  • the auxiliaries can be used without change and therefore do not lose their typical characteristics.
  • Substance 2 is in part non-complexed ligands of a synthesis aid; for substance 1, the conditions according to the invention apply with regard to the molecular weight ranges.
  • REPLACEMENT BUTT (RULE 26) They show schematically for enzymatic catalysis (examples 1 and 2):
  • Figure 2 a reaction as it was carried out in a membrane reactor.
  • a substrate S is converted into a product P in a reaction catalyzed by enzyme 1.
  • Reverse osmosis membrane in a membrane reactor (1).
  • the feed solution containing substrate, cofactor and HCOOH is fed to the reactor via a pump (3).
  • the NF / RO membrane (2) now retains the enzymes (4) and some of the cofactors, while the unreacted substrate and the product formed, as well as the small proportion of the cofactor, pass through the membrane.
  • Table 2 finally shows the retentions of the substrates or products obtained in the exemplary embodiments and of the catalysts or auxiliaries as a function of the molar mass, concentration and
  • Lactobacillus kefir alcohol dehydrogenase 0.5 U / mL
  • Candida boidinii formate dehydrogenase 0.5 U / mL
  • the concentration of the cofactor in the reactor was raised to 0.5 mM by a single addition of the cofactor.
  • the solution fed to the reactor contained only 5% of this cofactor concentration. This means that the retention capacity of the membrane is so high that the small proportion of the permeating cofactor can be replaced by this 5%. This small amount also compensates for the thermal deactivation of the cofactor.
  • ERSATZBLAH (REGEL26) The number of changes in the cofactor was 204 molp / mol NAD (75% x 7 mM / 25 ⁇ M).
  • Amino acid dehydrogenase from Bacillus sp. 15 U / mL formate dehydrogenase from Candida boidinii; 15 U / mL
  • the conversion with respect to the substrate trimethylpyruvate was 95%.
  • the concentration of the cofactor in the reactor was raised to 0.2 mM by a single addition of the cofactor.
  • the solution fed to the reactor contained only 33% of this cofactor concentration.
  • the reaction conditions for the cofactor are very unfavorable, so that due to the pH value and the temperature, a significantly higher deactivation of the cofactor NAD (H) occurs, which must be compensated for by a correspondingly higher cofactor concentration in the substrate solution. Ie that with a large part of the supplied cofactor quantity, only the deactivated cofactor has to be compensated. Even in this case, a third of the cofactor can still be saved by using the RO membrane.
  • the number of changes of the cofactor was 7920 molp /
  • a nanofiltration membrane (Celfa CMF-KX-060, or Membrane Products: MPF 60) is conditioned in a 10 ml EMR (experimental setup corresponds to that of FIG. 2) by rinsing with 1.) acetone and 2.) dichloromethane. Now the weighed-in amount of ligand (ligand of the Jacobsen catalyst, see FIG. 4) dissolved in dichloromethane is flushed in. The solution emerging during the flushing-in process is collected and the ligand concentration is determined photometrically in order to be able to calculate the amount of ligand remaining in the reactor.
  • the emerging solution is collected over a period of 1 hour and the ligand concentration in this permeate is also determined photometrically. This gives the possibility to calculate the permeated amount of ligand per unit of time and to relate it to the amount of ligand remaining in the reactor.

Abstract

In catalytic reactions and reactions requiring synthesis-promoters, it is useful to be able to separate the promoter from the product formed and thus make it available for recycling. One possible way of achieving this separation is by immobilising the synthesis-promoter on special carriers. This, however, often reduces the contact area between the promoter and carrier and thus markedly reduces the reactivity of the promoter or alters its mode of action. The immobilisation process itself may also present problems in terms of working time spent and catalyst loss. If the product and promoter in a catalytic reaction are separated by filtration using a nanofiltration or reverse osmosis membrane, it is possible, even when the weight differences between promoter and product are relatively small and provided that the retension differences are sufficient and the associated recovery rate of the promoter therefore high, to dispense with separation based on immobilisation techniques. The process proposed can be used for separating reaction mixtures for catalytic reactions with the aim of efficiently producing organic synthesis products or optically active organic compounds.

Description

Verfahren zur Trennung von Substanzen mittels einer geeigneten Membran Process for the separation of substances using a suitable membrane
Die Erfindung bezieht sich auf ein Verfahren zur Trennung von Substanzen mittels einer geeigneten Membran gemäß Anspruch 1 bis 8.The invention relates to a method for separating substances by means of a suitable membrane according to claims 1 to 8.
Trennprozesse sind ein wesentlicher Bestandteil aller (bio) chemischen Synthesen. So ist die Trennung von Substanzen für die Gewinnung von Produkten, die während oder nach Synthesen gebildet werden bzw. worden sind, unerläßlich. Sie stellt für die Syntheseplanung bei Produktionen im großen Maßstab ein wichtiges Kriterium dar. Vielfach entscheidet gerade die Abtrennung von Zwischen¬ oder Endprodukten in einer geforderten Qualität über den möglichen Syntheseweg.Separation processes are an essential part of all (bio) chemical syntheses. For example, the separation of substances is indispensable for the recovery of products that are or have been formed during or after syntheses. It represents an important criterion for the synthesis planning in large-scale productions. In many cases, the separation of intermediate or end products in a required quality decides on the possible synthesis route.
Bei katalytischen Reaktionen bzw. bei Reaktionen, die Synthesehilfsstoffe benötigen, kann zusätzlich die Abtrennung dieser Hilfsstoffe vom gebildeten Produkt wichtig werden. Denn Synthesehilfsstoffe, wie beispielsweise Katalysatoren bei chemischen Synthesen oder auch Cofaktoren bei enzymatischen Synthesen, sind in der Regel sehr kostspielig. Daher ist es das Ziel, die Synthesehilfsstoffe so effektiv wie möglich zu nutzen, um die Kosten von Synthesen weitestgehend zu vermindern. Dafür werden zum einen die für entsprechende Synthesen einzusetzenden Mengen an Hilfsstoffen möglichst gering gehalten. Zum anderen gibt es aber auch bereits verschiedene Ansätze, um eine verbesserte Ausnutzung von Synthesehilfsstoffen zu ermöglichen. Dazu zählen insbesondere Versuche, die während der Synthesen gebildeten Produkte vom Hilfsstoff zu trennen, um eine Wiederverwendung des Hilfsstoffes zu erreichen.In the case of catalytic reactions or reactions which require synthesis auxiliaries, the separation of these auxiliaries from the product formed can also be important. This is because synthesis aids, such as catalysts in chemical syntheses or cofactors in enzymatic syntheses, are generally very expensive. It is therefore the goal to use the synthesis aids as effectively as possible in order to reduce the costs of syntheses as much as possible. On the one hand, the amounts of auxiliaries to be used for corresponding syntheses are kept as low as possible. On the other hand, there are already various approaches to enable better use of synthesis aids. These include in particular attempts to separate the products formed during the syntheses from the auxiliary in order to achieve reuse of the auxiliary.
Die Trennung von Produkten vom Synthesehilfsstoff wurde bisher auf verschiedene Weise verwirklicht. So werden beispielsweise die Hilfsstoffe bzw. Katalysatoren auf Trägern immobilisiert, wobei aber häufig die Kontaktflächen zwischen Hilfsstoff und Träger stark vermindert sind, was man durch eine entsprechende Erhöhung der Porosität des Trägermaterials zu kompensieren versucht. Auch ist derThe separation of products from the synthesis aid has so far been achieved in various ways. For example, the auxiliaries or catalysts are immobilized on supports, but the contact surfaces between the adjuvant and the support are often greatly reduced, which is attempted to be compensated for by a corresponding increase in the porosity of the support material. That too is
Immobilisierungsvorgang in Bezug auf den Arbeitsaufwand und den Katalysatorverlust nicht unproblematisch. Desweiteren resultiert eine Immobilisierung häufig in einer veränderten Wirkweise des Hilfsstoffes.Immobilization process in terms of labor and catalyst loss is not without problems. Furthermore, immobilization often results in a changed mode of action of the auxiliary.
Eine weitere Möglichkeit zur Trennung von Produkten vomAnother way to separate products from
Synthesehilfsstoff erfolgt durch Einsatz von Membranen. So werden beispielsweise die bei enzymatischen Umsetzungen eingesetzten Enzyme durch Membranen von der übrigen Reaktionslösung abgetrennt. Allerdings ist eine solche Abtrennung deshalb möglich, weil die Molmasseunterschiede zwischen Enzym bzw. Protein und den übrigen Reaktionsteilnehmern, wie Substrate, Produkte, Cokatalysator bzw. Cofaktor u.a., in der Regel sehr groß sind: So liegt die Molmasse von Enzymen in einem Bereich von 40 000 g/mol, die der übrigen Reaktionsteilήehmern häufig unter 1 000 g/mol. In Figur 1 ist die Retentionsrate von käuflich zu erwerbenden Membranen (amicon) gegen die Molmasse aufgetragen. Wie aus dieser Figur hervorgeht, lassen sich Enzyme in dem genannten Molmassebereich leicht durch eine Membran, wie beispielsweise der YMIO-Membran, von den übrigen Substanzen mit einer Molmasse unter 1 000 g/mol abtrennen.Synthesis aid is made by using membranes. For example, the enzymes used in enzymatic reactions are separated from the remaining reaction solution by membranes. However, such a separation is possible because the molecular weight differences between enzyme or protein and the other reaction participants, such as substrates, products, cocatalyst or cofactor, among others, are usually very large: the molecular weight of enzymes is in a range of 40 000 g / mol, that of the other reaction participants often below 1,000 g / mol. In Figure 1, the retention rate of commercially available membranes (amicon) is plotted against the molar mass. As can be seen from this figure, enzymes in the molecular weight range mentioned can easily be passed through a membrane, such as the YMIO membrane. separate from the other substances with a molecular weight below 1,000 g / mol.
Betrachtet man die Graphik der Membranen mit geringerer Porengroße, z.B. für die Membran YC05 (nominelle Trenngrenze 500 g/mol) , muß man feststellen, daß nicht mehr von einer Trenngrenze gesprochen werden sollte. Es entsteht vielmehr ein Massenbereich, bei dem eine mehr oder weniger gute Retention der Moleküle auftritt. Diese Tendenz ist bereits bei den Membranen YM1 (nominelle Trenngrenze 1 000 g/mol) und YM3 (nominelle Trenngrenze 3 000 g/mol) zu erkennen. Versucht man also eine Trennung von Substanzen, deren Molmassedifferenz bezogen auf die nominelle Trenngrenze relativ gering ist, so findet man bei hohen nominellen Trenngrenzen (wie z.B. bei YM10-, YM30-, YM100- Membranen) gute Retentionsunterschiede, wahrend man bei geringen nominellen Trenngrenzen (wie z.B. bei YC05-, YM1-, YM3-Membranen) keine oder kaum Retentionsunterschiede findet .Considering the graph of the membranes with smaller pore sizes, e.g. for the membrane YC05 (nominal separation limit 500 g / mol), one has to state that one should no longer speak of a separation limit. Rather, a mass range is created in which a more or less good retention of the molecules occurs. This tendency can already be seen in the membranes YM1 (nominal separation limit 1 000 g / mol) and YM3 (nominal separation limit 3 000 g / mol). If you try to separate substances whose molecular weight difference relative to the nominal separation limit is relatively small, you will find good retention differences at high nominal separation limits (such as with YM10, YM30, YM100 membranes), while at low nominal separation limits ( as for example with YC05, YM1, YM3 membranes) no or hardly any retention differences are found.
Soll beispielsweise der bei enzymatischen Umsetzungen ebenfalls häufig einzusetzende Hilfsstoff bzw. Cofaktor NAD(P) oder NAD(P)H, dessen Molmasse bei etwa 700 g/mol liegt, von gebildeten Produkten mit einer Molmasse beispielsweise bei 150 g/mol getrennt werden, ist eine Separation mittels Membranen, wie in Figur 1 dargestellt, nicht mehr möglich: Bei Verwendung einer YC05-Membran gemäß Figur 1 wäre damit zu rechnen, daß etwa 75 % des Produkts von der Membran zurückgehalten werden und damit keine effektive Trennung zwischen Cofaktor und Produkt stattfindet. Bei Verwendung einer YMl-Membran gemäß Figur 1 wurde zwar das Produkt nicht zurückgehalten; dafür würde aber auch ein relativ großer Anteil des Cofaktors die Membran passieren und damit ebenfalls keine effektive Abtrennung beider Substanzen erfolgen. Dieses, aus enzymkatalysierten Umsetzungen angeführte Beispiel ist selbstverständlich auch auf andere Umsetzungen übertragbar: So werden beispielsweise in der chemischen Katalyse wertvolle Hilfsstoffe, darunter auch Katalysatoren, eingesetzt, deren Wiederverwendung von großer Bedeutung ist. Aber auch in diesen Fällen ist der Molmasseunterschied zwischen Produkt und Katalysator bzw. Hilfsstoff häufig so gering, daß mit einer Trennung der Substanzen mittels Membranen nicht zu rechnen ist.If, for example, the auxiliary or cofactor NAD (P) or NAD (P) H, whose molecular weight is approximately 700 g / mol, is also to be used frequently in enzymatic reactions and is separated from products with a molecular weight, for example, 150 g / mol separation by means of membranes, as shown in FIG. 1, is no longer possible: If a YC05 membrane according to FIG. 1 is used, it would be expected that about 75% of the product would be retained by the membrane and that there would be no effective separation between the cofactor and product . When using a YML membrane according to FIG. 1, the product was not retained; for that would but also a relatively large proportion of the cofactor pass through the membrane and thus there is no effective separation of both substances. This example, given from enzyme-catalyzed reactions, can of course also be applied to other reactions: For example, in chemical catalysis, valuable auxiliaries, including catalysts, are used, the reuse of which is of great importance. But even in these cases the difference in molar mass between the product and the catalyst or auxiliary is often so small that a separation of the substances by means of membranes cannot be expected.
Um trotzdem eine Abtrennung durch Filtration zu ermöglichen, wurden abzutrennende Substanzen, wie z.B. Synthesehilfsstoffe, derart vergrößert, daß sie sich in ihrer molaren Masse und ihrem sterischen Anspruch um Größenordnungen von denen der weiteren Substanzen bzw. der gebildeten Produkte unterscheiden, um eine Rückhaltung mittels geeigneter Membranen zu erreichen. Die Hauptnachteile einer solchen Vorgehensweise sind aber auch hier -wie bereits oben für die Immobilisierung der Hilfsstoffe erwähnt - hohe Verluste des Hilfsstoffes, z.B. während der Polymeranbindung, sowie veränderte Eigenschaften: Beispielsweise wird durch chemische Modifizierung von Cofaktoren, die im übrigen bisher nur für eine geringe Anzahl von Cofaktoren durchgeführt werden konnte, häufig die Affinität des Enzyms zu den Cofaktoren herabgesetzt.In order to enable separation by filtration anyway, substances to be separated, e.g. Synthesis auxiliaries, enlarged in such a way that their molar mass and steric demands differ by orders of magnitude from those of the other substances or the products formed in order to achieve retention by means of suitable membranes. However, the main disadvantages of such a procedure are - as already mentioned above for the immobilization of the auxiliary substances - high losses of the auxiliary substance, e.g. during the polymer attachment, as well as changed properties: For example, the chemical affinity of the enzyme to the cofactors is often reduced by chemical modification of cofactors, which previously could only be carried out for a small number of cofactors.
Es wurde nunmehr überraschenderweise gefunden, daß eine Trennung von Substanzen mittels Membranen mit niedriger Trenngrenze auch dann erfolgt, wenn dieIt has now surprisingly been found that separation of substances by means of membranes with lower Separation limit also occurs when the
Molmasseunterschiede zwischen den Substanzen relativ gering sind. Dafür sollte die Molmasse einer Substanz Si 70 bis 1 000 g/mol, die Molmasse einer weiteren Substanz ≤2 300 bis 2 000 g/mol, die Molmassedifferenz S2 minus Sι_ 200 bis 1 000 g/mol, der Quotient (S2 minus Sι_)/S2 0,5 bis 0,9 und die Retentionsrate von S2 mindestens 75 bis 80 % betragen. Für das Trennverfahren geeignete Membranen sind solche, die im Handel in der Regel als Nanofiltrations- oder Umkehrosmosemembranen bezeichnet werden. Eine für eine Trennung optimale Membran kann durch Versuche ermittelt werden, wobei Herstellerangaben über nominelle Trenngrenzen oder Salzretentionsraten nur als Anhaltspunkte dienen.Molecular weight differences between the substances are relatively small. For this purpose, the molar mass of a substance Si should be 70 to 1,000 g / mol, the molar mass of another substance ≤2 300 to 2,000 g / mol, the molar mass difference S2 minus Sι_ 200 to 1,000 g / mol, the quotient (S2 minus Sι_) / S2 0.5 to 0.9 and the retention rate of S2 is at least 75 to 80%. Membranes suitable for the separation process are those which are generally referred to in the trade as nanofiltration or reverse osmosis membranes. A membrane that is optimal for separation can be determined by tests, with manufacturer information on nominal separation limits or salt retention rates only serving as a guide.
Durch das erfindungsgemäße Verfahren sind Substanzen mit den folgenden Molmassen sehr gut trennbar, wobei dieThe process according to the invention makes it very easy to separate substances with the following molecular weights, the
Retentionsrate der Substanz S2 95 bis zu 100 % beträgt:Retention rate of substance S2 95 up to 100% is:
Molma:sseMolar mass
(g/mol)(g / mol)
Sl S2 S]_ minus S2 (Si minus S2) /S2Sl S2 S ] _ minus S2 (Si minus S2) / S2
70 300 230 0,76770 300 230 0.767
70 350 280 0,80070 350 280 0.800
70 700 630 0,90070 700 630 0.900
100 550 450 0,818100 550 450 0.818
112200 884400 772200 0,857112200 884400 772200 0.857
130 720 590 0,819130 720 590 0.819
500 1000 500 0,500500 1000 500 0.500
500 1500 1000 0, 667500 1500 1000 0, 667
1000 2000 1000 0,500 Das erfindungsgemäße Verfahren ist insbesondere zur Trennung von in Gegenwart eines Synthesehilfsstoffes gebildeten Produkten vom Synthesehilfsstoff geeignet. Damit können aus enzymkatalysierten Umsetzungen erhaltene Produkte von Cofaktoren oder auch aus chemischer, vorzugsweise asymmetrischer chemischer Katalyse erhaltene Produkte vom Katalysator getrennt werden. Insbesondere bei enzymkatalysierten Umsetzungen erfolgt eine äußerst effektive Trennung von Produkten und Cofaktoren, wie NAD(P), FAD oder PQQ. Durch das erfindungsgemäße Verfahren ist damit eine Rückhaltung von Hilfsstoffen bzw. Abtrennung von Produkten, insbesondere von Epoxiden, Aminosäuren, Alkoholen oder -Hydroxysäuren, bei vergleichbaren Größenordnungen, aber leicht unterschiedlichen Retentionen möglich. Auch können Trennungen in allen Lösungsmitteln und unter allen membranverträglichen Bedingungen durchgeführt werden. Zudem sind die Hilfsstoffe ohne Veränderung einsetzbar und verlieren damit auch nicht ihre typischen Charakteristika.1000 2000 1000 0.500 The process according to the invention is particularly suitable for separating products formed in the presence of a synthesis aid from the synthesis aid. Products obtained from enzyme-catalyzed reactions can thus be separated from cofactors or products obtained from chemical, preferably asymmetrical, chemical catalysis from the catalyst. Particularly in the case of enzyme-catalyzed reactions, products and cofactors such as NAD (P), FAD or PQQ are separated extremely effectively. The process according to the invention thus makes it possible to retain auxiliary substances or to separate products, in particular epoxides, amino acids, alcohols or hydroxy acids, with comparable orders of magnitude but slightly different retentions. Separations can also be carried out in all solvents and under all membrane-compatible conditions. In addition, the auxiliaries can be used without change and therefore do not lose their typical characteristics.
Desweiteren kann das Verfahren aber auch zur Trennung einer Vielzahl weiterer Substanzen eingesetzt werden, z.B. solcher Substanzen, die in Tabelle 1 beispielhaft aufgeführt sind. Dabei handelt es sich bei Substanz 2 teilweise um nicht-komplexierte Liganden eines Synthesehilfsstoffes; für Substanz 1 gelten hinsichtlich der Molmassebereiche die erfindungsgemäßen Bedingungen.Furthermore, the method can also be used to separate a large number of other substances, e.g. those substances which are listed in Table 1 as examples. Substance 2 is in part non-complexed ligands of a synthesis aid; for substance 1, the conditions according to the invention apply with regard to the molecular weight ranges.
Nachfolgend wird die Erfindung anhand der beigefügten Zeichnungen sowie dreier Ausführungsbeispiele näher erläutert.The invention is explained in more detail below with reference to the accompanying drawings and three exemplary embodiments.
ERSATZBUTT(REGEL26) Es zeigen schematisch für die enzymatische Katalyse (Beispiel 1 und 2) :REPLACEMENT BUTT (RULE 26) They show schematically for enzymatic catalysis (examples 1 and 2):
Figur 2 : eine Reaktion, wie sie in einem Membranreaktor durchgeführt wurde. Ein Substrat S wird in einer durch Enzym 1 katalysierten Reaktion zu einem Produkt P umgesetzt. Dazu wird ein Cofaktor, hier NADH, benötigt, der zu NAD+ abreagiert und in einer zweiten Reaktion, durch ein Enzym 2 katalysierten Reaktion (Oxidation von Ameisensäure, HCOOH, zu CO2) regeneriert wird.Figure 2: a reaction as it was carried out in a membrane reactor. A substrate S is converted into a product P in a reaction catalyzed by enzyme 1. This requires a cofactor, here NADH, which reacts to NAD + and is regenerated in a second reaction by an enzyme 2 catalyzed reaction (oxidation of formic acid, HCOOH, to CO2).
Figur 3: Einsatz einer Nanofiltrations- (NF) bzw.Figure 3: Use of a nanofiltration (NF) or
Umkehrosmosemembran (RO) in einem Membranreaktor (1) . Die Substrat, Cofaktor und HCOOH enthaltene Feedlösung wird dem Reaktor über eine Pumpe (3) zugeführt. Die NF-/RO-Membran (2) hält nun die Enzyme (4) und einen Teil der Cofaktoren zurück, während nicht abreagiertes Substrat und entstandenes Produkt sowie der geringe Anteil des Cofaktors die Membran passieren.Reverse osmosis membrane (RO) in a membrane reactor (1). The feed solution containing substrate, cofactor and HCOOH is fed to the reactor via a pump (3). The NF / RO membrane (2) now retains the enzymes (4) and some of the cofactors, while the unreacted substrate and the product formed, as well as the small proportion of the cofactor, pass through the membrane.
Die in Figur 3 dargestellte Anordnung wurde zur Produktion von chiralen Alkoholen und Aminosäuren verwendet . Die Prozessbedingungen sind in den beiden nachfolgenden Beispielen (Beispiel 1 und Beispiel 2) aufgeführt.The arrangement shown in Figure 3 was used to produce chiral alcohols and amino acids. The process conditions are listed in the two examples below (Example 1 and Example 2).
Tabelle 2 zeigt schließlich die Retentionen der in den Ausführungsbeispielen eingesetzten Substrate bzw. erhaltenen Produkte und der Katalysatoren bzw. Hilfsstoffe in Abhängigkeit der molaren Masse, Konzentration undTable 2 finally shows the retentions of the substrates or products obtained in the exemplary embodiments and of the catalysts or auxiliaries as a function of the molar mass, concentration and
Verweilzeit. Desweiteren sind auch die für einige weitere Substanzen gemessenen Retentionen angegeben. Beispiel 1Dwell time. The retentions measured for some other substances are also given. example 1
In einem 10 ml - Enzymmembranreaktor (EMR) mit einer Umkehrosmosemembran (ROM 365, amafilter) wurden die Enzyme:In a 10 ml enzyme membrane reactor (EMR) with a reverse osmosis membrane (ROM 365, amafilter) the enzymes were:
Alkoholdehydrogenase aus Lactobacillus kefir : 0,5 U/mL Formiatdehydrogenase aus Candida boidinii : 0,5 U/mLLactobacillus kefir alcohol dehydrogenase: 0.5 U / mL Candida boidinii formate dehydrogenase: 0.5 U / mL
gegeben und als Feedlösung eine wäßrige Lösung von pH 7,0 mitgiven and as an feed solution with an aqueous solution of pH 7.0
[Acetophenon] = 7 mM[Acetophenone] = 7 mM
[Magnesiumchlorid] = 1 mM [NADP+] = 25 μM (entspricht 5 % der im Reaktor beabsichtigten Konzentration)[Magnesium chloride] = 1 mM [NADP +] = 25 μM (corresponds to 5% of the intended concentration in the reactor)
[Natriumformiat] = 100 mM[Sodium formate] = 100 mM
[di-Kaliumhydrogenphosphat] = 50 mM[di-potassium hydrogen phosphate] = 50 mM
Bei einer Verweilzeit von 1 h und einer Reaktionstemperatur von 25°C betrug der Umsatz bezüglich des Substrates Acetophenons 75 %.With a residence time of 1 h and a reaction temperature of 25 ° C., the conversion with respect to the substrate acetophenone was 75%.
Zu Beginn der Reaktion wurde die Konzentration des Cofaktors im Reaktor durch eine einmalige Zugabe an Cofaktor auf 0,5 mM angehoben. Die dem Reaktor zugeführte Lösung enthielt nur 5 % dieser Cofaktor Konzentration. D.h., daß das Rückhaltevermögen der Membran so hoch ist, daß der geringe Anteil des permeierenden Cofaktors durch diese 5 % ersetzt werden kann. Auch die thermische Deaktivierung des Cofaktors wird durch diese geringe Menge aufgefangen.At the start of the reaction, the concentration of the cofactor in the reactor was raised to 0.5 mM by a single addition of the cofactor. The solution fed to the reactor contained only 5% of this cofactor concentration. This means that the retention capacity of the membrane is so high that the small proportion of the permeating cofactor can be replaced by this 5%. This small amount also compensates for the thermal deactivation of the cofactor.
ERSATZBLAH(REGEL26) Die Wechselzahl des Cofaktors betrug 204 molp / molNAD (75 % x 7 mM / 25 μM) .ERSATZBLAH (REGEL26) The number of changes in the cofactor was 204 molp / mol NAD (75% x 7 mM / 25 μM).
Ohne den Einsatz der RO-Metnbran ergäbe sich eine Wechselzahl von 10,5 molp / molNAJ:ι (75 % x 7 mM / 500 μM) . Somit ergibt sich durch die durch Retention mögliche Rezyklierung des Cofaktors eine 20 - fach bessere Ausnutzung des teuren Cofaktors.Without the use of the RO membrane, there would be an alternating number of 10.5 molp / mol NAJ: ι (75% x 7 mM / 500 μM). The recycling of the cofactor, which is possible through retention, results in a 20-fold better utilization of the expensive cofactor.
Trotz der Retention von Acetophenon bzw. Phenylethanol konnte keine Anreicherung dieser Substanzen im Reaktor festgestellt werden.Despite the retention of acetophenone or phenylethanol, no accumulation of these substances was found in the reactor.
Beispiel 2Example 2
In einem 10 ml - Enzymmembranreaktor (EMR) mit einer Umkehrosmosemembran (ROM 365, amafilter) wurden die Enzyme:In a 10 ml enzyme membrane reactor (EMR) with a reverse osmosis membrane (ROM 365, amafilter) the enzymes were:
Aminosäuredehydrogenase aus Bacillus sp. : 15 U/mL Formiatdehydrogenase aus Candida boidinii ; 15 U/mLAmino acid dehydrogenase from Bacillus sp. : 15 U / mL formate dehydrogenase from Candida boidinii; 15 U / mL
gegeben und als Feedlösung eine mit NH3 auf pH 8 gebrachte wäßrige Lösung mitgiven and as an aqueous solution brought to pH 8 with NH3
[Trimethylpyruvat] = 500 mM [Ameisensäure] = 1,0 M [NAD+] = 0,08 mM (entspricht 33 % der im Reaktor beabsichtigten Konzentration)[Trimethyl pyruvate] = 500 mM [formic acid] = 1.0 M [NAD +] = 0.08 mM (corresponds to 33% of the intended concentration in the reactor)
Bei einer Verweilzeit von 4 h und einer Reaktionstemperatur von 30°C betrug der Umsatz bezüglich des Substrates Trimethylpyruvat 95 %. Zu Beginn der Reaktion wurde die Konzentration des Cofaktors im Reaktor durch eine einmalige Zugabe an Cofaktor auf 0,2 mM angehoben. Die dem Reaktor zugeführte Lösung enthielt nur 33 % dieser Cofaktor Konzentration. Im Gegensatz zu Beispiel 1 sind die Reaktionsbedingungen für den Cofaktor sehr ungünstig, so daß aufgrund des pH-Werts und der Temperatur eine deutlich höhere Deaktivierung des Cofaktors NAD(H) auftritt, die durch eine entsprechend höhere Cofaktorkonzentration in der Substratlösung kompensiert werden muß. D.h., daß mit einem Großteil der zugeführten Cofaktormenge ausschließlich der deaktivierte Cofaktor ausgeglichen werden muß. Selbst für diesen Fall kann immer noch ein Drittel des Cofaktors durch Anwendung der RO-Membran eingespart werden.With a residence time of 4 h and a reaction temperature of 30 ° C., the conversion with respect to the substrate trimethylpyruvate was 95%. At the start of the reaction, the concentration of the cofactor in the reactor was raised to 0.2 mM by a single addition of the cofactor. The solution fed to the reactor contained only 33% of this cofactor concentration. In contrast to Example 1, the reaction conditions for the cofactor are very unfavorable, so that due to the pH value and the temperature, a significantly higher deactivation of the cofactor NAD (H) occurs, which must be compensated for by a correspondingly higher cofactor concentration in the substrate solution. Ie that with a large part of the supplied cofactor quantity, only the deactivated cofactor has to be compensated. Even in this case, a third of the cofactor can still be saved by using the RO membrane.
Die Wechselzahl des Cofaktors betrug 7920 molp / The number of changes of the cofactor was 7920 molp /
(95 % x 500 mM / 0,08 mM) .(95% x 500mM / 0.08mM).
Ohne den Einsatz der RO-Membran ergäbe sich eineWithout the use of the RO membrane, there would be one
Wechselzahl von 2375 molp / molNAD (95 % x 500 mM /Alternation number of 2375 molp / mol NAD (95% x 500 mM /
Somit ergibt sich durch die durch Retention möglicheThis results in the possible through retention
Rezyklierung des Cofaktors eine 3,3 - fach bessereRecycling the cofactor is 3.3 times better
Ausnutzung des teuren Cofaktors.Exploiting the expensive cofactor.
Demgegenüber lag die Retentionsrate des Substrats Trimethylpyruvat bzw. des gebildeten Produkts tert. Leucin bei nur 2 %. Beispiel 3In contrast, the retention rate of the substrate trimethyl pyruvate or the product formed was tert. Leucine at only 2%. Example 3
In einem 10 ml EMR (Versuchsaufbau entspricht dem von Figur 2) wird eine Nanofiltrationsmembran (Celfa CMF-KX- 060, bzw. Membrane Products:MPF 60) durch spülen mit 1.) Aceton und 2.) Dichlormethan konditioniert. Nun wird die in Dichlormethan gelöste, eingewogene Ligandmenge (Ligand des Jacobsen-Katalysators, siehe Figur 4) eingespült. Die während des Einspülvorgangs austretende Lösung wird aufgefangen, und die Ligandkonzentration photometrisch bestimmt, um die im Reaktor verbliebene Ligandmenge ausrechnen zu können. Bei einer Flußrate von 20 ml/h (= Verweilzeit von 0,5 h) wird nun die austretende Lösung jeweils über einen Zeitraum von 1 Stunde aufgefangen und ebenfalls die Ligandkonzentration in diesem Permeat photometrisch bestimmt. Man erhält so die Möglichkeit die permeierte Menge Ligand pro Zeiteinheit auszurechnen und mit der im Reaktor verbleibenden Ligandmenge ins Verhältnis zu setzen.A nanofiltration membrane (Celfa CMF-KX-060, or Membrane Products: MPF 60) is conditioned in a 10 ml EMR (experimental setup corresponds to that of FIG. 2) by rinsing with 1.) acetone and 2.) dichloromethane. Now the weighed-in amount of ligand (ligand of the Jacobsen catalyst, see FIG. 4) dissolved in dichloromethane is flushed in. The solution emerging during the flushing-in process is collected and the ligand concentration is determined photometrically in order to be able to calculate the amount of ligand remaining in the reactor. At a flow rate of 20 ml / h (= residence time of 0.5 h), the emerging solution is collected over a period of 1 hour and the ligand concentration in this permeate is also determined photometrically. This gives the possibility to calculate the permeated amount of ligand per unit of time and to relate it to the amount of ligand remaining in the reactor.
Hieraus ergeben sich über einen Zeitraum von 7 Verweilzeiten bis zum Abbruch des Versuchs Retentionen von über 97 %.This results in retention of over 97% over a period of 7 dwell times until the experiment is terminated.
Nach demselben Verfahren wird die Retention von Styren, einem möglichen Substrat für die enantioselektive Epoxidierung, bestimmt. Als Analytik wurde hier eine gaschromatographische Methode gewählt.The retention of styrene, a possible substrate for enantioselective epoxidation, is determined using the same procedure. A gas chromatographic method was chosen as the analysis.
Es ergeben sich für Styren Retentionen von unter 47 %, wobei auch hier eine Anreicherung der Substanz im Reaktor nicht erfolgte .Retentions of less than 47% are obtained for styrene, although here too there was no accumulation of the substance in the reactor.
ERSATZBLAπ(REGEL26) Tabelle 1REPLACEMENT BLAπ (RULE 26) Table 1
Substrat 2 Substrat 1Substrate 2 substrate 1
Name o. Substanzklasse Molgewicht Name o. Substanzklasse / (g/mol)Name or substance class Molecular weight Name or substance class / (g / mol)
DIOP 498 Olef ineDIOP 498 Olef ine
NORPHOS 463 Olef ineNORPHOS 463 Olef ine
BINAP 623 Olef ineBINAP 623 olefin
Dendrimere 300-2000 KetoneDendrimers 300-2000 ketones
Sharpless -Liganden 300-600 Olef ineSharpless ligands 300-600 olefins
PPPA 429 KetonePPPA 429 ketones
X-Pybox 305-318 KetoneX-Pybox 305-318 ketones
Ferrocenylphosphin « 660 Ketone, AldehydeFerrocenylphosphine «660 ketones, aldehydes
Tabelle 2Table 2

Claims

Patentansprüche claims
1. Verfahren zur Trennung von Substanzen mittels einer geeigneten Membran, bei dem die Molmasse einer Substanz S]_ 70 bis 1 000 g/mol, die Molmasse einer weiteren Substanz S2 300 bis 2 000 g/mol, die Molmassedifferenz S2 - Si 200 bis 1000 g/mol, der Quotient (S2 - S]_)/S2 0,5 bis 0,9 und die Retentionsrate von S2 mindestens 75% beträgt.1. Process for the separation of substances by means of a suitable membrane, in which the molar mass of a substance S ] _70 to 1,000 g / mol, the molar mass of a further substance S2 300 to 2,000 g / mol, the molar mass difference S 2 - Si 200 up to 1000 g / mol, the quotient (S 2 - S ] _) / S2 0.5 to 0.9 and the retention rate of S2 is at least 75%.
2. Verfahren nach Anspruch 1 zur Trennung von in Gegenwart eines Snthesehilfsstoffes (S2) gebildeten Produkten2. The method according to claim 1 for the separation of products formed in the presence of a synthesis aid (S2)
<Sχ) vom Synthesehilfsstoff (S2) .<Sχ) from the synthesis aid (S2).
3. Verfahren nach Anspruch 2 zur Trennung von aus enzym¬ katalysierten Umsetzungen erhaltenen Produkten (S]_) von Cofaktoren (S2) .3. The method according to claim 2 for separating products obtained from enzyme-catalyzed reactions (S ] _) from cofactors (S 2 ).
4. Verfahren nach Anspruch 2 zur Trennung von aus chemischer Katalyse erhaltenen Produkten (S]_) vom Katalysator (S2) •4. The method according to claim 2 for separating products obtained from chemical catalysis (S] _) from the catalyst (S2) •
5. Verfahren nach Anspruch 4 zur Trennung von aus asymmetrischer chemischer Katalyse erhaltenen Produkten (Si) vom Katalysator (S2) .5. The method according to claim 4 for the separation of products (Si) obtained from asymmetric chemical catalysis from the catalyst (S2).
6. Verfahren nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet , daß das Produkt ein Epoxid, eine Aminosäure, ein Alkohol oder eine -Hydroxysäure ist.6. The method according to any one of claims 2 to 5, characterized in that the product is an epoxide, an amino acid, an alcohol or a -hydroxy acid.
ERSATZBLÄΓT(REGEL26) SPARE BLADE (RULE 26)
7. Verfahren nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, daß für die Umsetzung und Trennung ein Membranreaktor verwendet wird.7. The method according to any one of claims 2 to 6, characterized in that a membrane reactor is used for the reaction and separation.
8. Verfahren nach einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, daß die Umsetzung und Trennung kontinuierlich erfolgt, 8. The method according to any one of claims 2 to 7, characterized in that the reaction and separation takes place continuously,
EP97903300A 1996-02-16 1997-02-17 Process for separating substances using a suitable membrane Withdrawn EP0880398A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE1996105683 DE19605683A1 (en) 1996-02-16 1996-02-16 Process for the separation of substances using a suitable membrane
DE19605683 1996-02-16
PCT/EP1997/000734 WO1997029837A2 (en) 1996-02-16 1997-02-17 Process for separating substances using a suitable membrane

Publications (1)

Publication Number Publication Date
EP0880398A2 true EP0880398A2 (en) 1998-12-02

Family

ID=7785529

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97903300A Withdrawn EP0880398A2 (en) 1996-02-16 1997-02-17 Process for separating substances using a suitable membrane

Country Status (3)

Country Link
EP (1) EP0880398A2 (en)
DE (1) DE19605683A1 (en)
WO (1) WO1997029837A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10208007A1 (en) * 2002-02-26 2003-09-18 Forschungszentrum Juelich Gmbh Process for the production of alcohols from substrates by means of oxidoreductases, two-phase system comprising an aqueous phase and an organic phase and device for carrying out the process
US7084284B2 (en) * 2004-11-16 2006-08-01 Lyondell Chemical Technology, L.P. Separation process
CN110227357B (en) * 2019-06-29 2021-09-21 华南理工大学 Flexible tailorable nanocellulose/covalent organic framework composite membrane and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5130025A (en) * 1978-04-20 1992-07-14 Unisearch Limited Membrane separation and purification of compounds
DE3245591C2 (en) * 1982-12-09 1986-11-06 Schott Glaswerke, 6500 Mainz Process for the fractional separation of mixtures of substances with membranes
DE3570866D1 (en) * 1984-02-03 1989-07-13 Ladenburg Biochemie Process for the isolation of citric acid
US4806484A (en) * 1987-08-07 1989-02-21 Igb Products, Ltd. Perfusion airlift bioreactor
US5250305A (en) * 1989-06-21 1993-10-05 The United States Of America As Represented By The Secretary Of Agriculture Process for enzymatic ultrafiltration of deamidated protein
GB9024668D0 (en) * 1990-11-13 1991-01-02 Dow Danmark Membrane process for the dealcoholization of naturally fermented beverages
JP3134236B2 (en) * 1992-01-30 2001-02-13 株式会社林原生物化学研究所 Method for producing high α-glycosyl-L-ascorbic acid content and separation system for the production
DE4342345C2 (en) * 1993-12-11 1998-10-22 Merck Patent Gmbh Decolorization of fermentation solutions
DE19505263A1 (en) * 1995-02-16 1996-08-22 Consortium Elektrochem Ind Process for the purification of water-soluble cyclodextrin derivatives

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9729837A3 *

Also Published As

Publication number Publication date
WO1997029837A3 (en) 1997-10-09
DE19605683A1 (en) 1997-09-11
WO1997029837A2 (en) 1997-08-21

Similar Documents

Publication Publication Date Title
Kragl et al. Enzyme engineering aspects of biocatalysis: cofactor regeneration as example
EP0023346B1 (en) Process for the continuous enzymatic transformation of water-soluble alpha-keto carbonic acids into the corresponding amino acids
EP0024547B1 (en) Process for the continuous enzymatic transformation of water-soluble alpha-keto carbonic acids into the corresponding alpha-hydroxy carbonic acids
EP0132557B1 (en) Process for the continuous enzymatic production of gluconic acid or its derivatives and sorbitol and/or mannitol
EP0200069B1 (en) Continuous process for the enzymatic preparation of isomaltulose
WO1997029837A2 (en) Process for separating substances using a suitable membrane
EP0347374B1 (en) Process for the preparation of hydroxy acids
WO1996011256A1 (en) Process for the continuous enzymatic extraction of hydrophobic products and device suitable therefor
EP0056038B1 (en) Carbohydrate process
DE60115849T2 (en) METHOD AND CATALYTIC SYSTEM FOR THE STEREOSELECTIVE INVERTING OF A CHIRAL CENTER IN A CHEMICAL COMPOUND
DE10208007A1 (en) Process for the production of alcohols from substrates by means of oxidoreductases, two-phase system comprising an aqueous phase and an organic phase and device for carrying out the process
EP0496799B1 (en) Production of glyoxylic acid by enzymatic oxidation of glycolic acid
EP1870390A1 (en) Preparing reaction solutions from whole cell biotransformations
US4456622A (en) Combination semi-continuous and batch process for preparation of vinegar
DE3819467A1 (en) METHOD FOR PRODUCING A BIO CATALYST AND ITS USE FOR RAZEMATE CUTTING
DE10313971A1 (en) Coupled cofactor-dependent enzymatic reaction system
JP3845912B2 (en) Method for producing erythritol
Orlich et al. Ultrafiltration of water/oil microemulsions in biocatalysis
JP2001521760A5 (en)
US5219745A (en) Production of glyoxylic acid from glycolic acid
EP1049794A1 (en) Method for producing l-carnitine from crotonobetaine
DE10313972A1 (en) Coupled cofactor-dependent enzymatic reaction system
DE60024297T2 (en) SUPPORTED FERROCENE-CONTAINING CATALYSTS FOR SELECTIVE ALDEHYDE HYDROGENATION
CA1251750A (en) Ultrafiltration purification of glucose isomerase
EP1048737B1 (en) Stereoselective synthesis of 2-hydroxycétones

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980612

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB LI NL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19990505