EP0879474B1 - Electronic switch magnet control system for switching on and holding a contactor - Google Patents

Electronic switch magnet control system for switching on and holding a contactor Download PDF

Info

Publication number
EP0879474B1
EP0879474B1 EP97900969A EP97900969A EP0879474B1 EP 0879474 B1 EP0879474 B1 EP 0879474B1 EP 97900969 A EP97900969 A EP 97900969A EP 97900969 A EP97900969 A EP 97900969A EP 0879474 B1 EP0879474 B1 EP 0879474B1
Authority
EP
European Patent Office
Prior art keywords
armature
current
sensor
switch magnet
magnet control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97900969A
Other languages
German (de)
French (fr)
Other versions
EP0879474A1 (en
Inventor
Klaus Dieter NÜRENBERG
Ralf Thar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eaton Industries GmbH
Original Assignee
Moeller GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moeller GmbH filed Critical Moeller GmbH
Publication of EP0879474A1 publication Critical patent/EP0879474A1/en
Application granted granted Critical
Publication of EP0879474B1 publication Critical patent/EP0879474B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/16Indicators for switching condition, e.g. "on" or "off"
    • H01H9/168Indicators for switching condition, e.g. "on" or "off" making use of an electromagnetic wave communication
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/002Monitoring or fail-safe circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/08Indicators; Distinguishing marks

Definitions

  • the invention relates to an electronic solenoid control for contactors, the contactor has a displacement sensor with which the position of the armature can be determined, and the solenoid control to a sensor that determines the actual current in the armature coil of the contactor, a current setpoint device, which in Dependency of the position of the armature specifies a target current, and has a voltage regulator which specifies the voltage applied to the armature coil as a function of the current deviation between the actual current and the target current.
  • DE 44 09 010 A1 describes a switching device in which the position of the movable member, in particular the armature of a contactor, can be determined by means of a sensor during the switching process.
  • the sensor is a potentiometer, consisting of an elongated sensor element and a movable rotor attached to the armature, which is supported on the sensor element.
  • the coil current is controlled over the entire displacement distance during the switching process, which on the one hand increases the closing force of the contactor and on the other hand improves the electrical and mechanical durability of the device.
  • the coil is connected to a current meter in series.
  • the coil current is controlled as a function of the difference between the target coil current and the measured actual coil current by means of a pulse modulation circuit, the coil current depending on the level of the pulse size modulation.
  • a potentiometer as a position sensor has several disadvantages.
  • the resistance of the potentiometer is temperature-dependent, so that the actual position of the armature in the event of temperature fluctuations cannot be determined by the switching device without additional outlay on circuitry.
  • the armature moved by the coil is braked by the required pressure force of the sliding contacts of the potentiometer, which unnecessarily increases the coil current and thus reduces the electrical durability. Due to the relatively fast movement of the armature, the resistance surface of the potentiometer is additionally stressed, which leads to changes in resistance due to detachment or abrasion of the resistance material. In this case, it is no longer possible to control the contactor.
  • the object of the invention is therefore to develop an electronic switching magnet control of the type mentioned above such that the position of the armature can be determined without the force exerted on the armature, the position determination being independent of any temperature fluctuations.
  • the displacement sensor has a number of n sensors, in particular mechanical switches, light barriers, Hall detectors or induction switches, which are arranged along the stroke distance to be covered by the armature and by means of which the position of the armature can be determined discretely, and in that each Displacement sensor a target current value is assigned.
  • n sensors in particular mechanical switches, light barriers, Hall detectors or induction switches, which are arranged along the stroke distance to be covered by the armature and by means of which the position of the armature can be determined discretely, and in that each Displacement sensor a target current value is assigned.
  • the target current is a function of the position of the armature or a function of the time and position of the armature. Due to the position-dependent current specification, a higher target current can advantageously be specified at the beginning of the switching process. As soon as the armature or the switching contacts have been accelerated and a maximum speed has been reached, the inertia of the armature is sufficient to move the armature into the ON position. The current through the coil can therefore be small compared to the initial current, since smaller acceleration forces are sufficient to accelerate the armature.
  • a maximum target current is advantageously specified again at the end of the switch-on process, so that the armature is pressed firmly against the fixed parts of the magnetic circuit. Since the armature and the switching contacts of the contactor are not rigidly connected to each other, the armature can be moved a smaller distance after the switching contacts have closed. This distance is also known as the residual anchor stroke. It has now been shown that a defined armature speed during the closing of the contactor's switching contacts can significantly reduce the contact bounce of the switching contacts and thus increase the service life.
  • the n sensors are arranged at uniform intervals from one another over the stroke are.
  • the sensors recognize the armature or its markings, passages, protrusions or depressions and each send a specific signal to the switching magnet control.
  • the first sensor recognizes or detects the armature or its markings immediately after leaving the rest position or the OFF position.
  • the last sensor recognizes or detects the armature or its markings immediately before the stop position or the ON position is reached.
  • the ON position of the contactor is the position in which the circuit is closed. The position and speed of the armature can thus be determined precisely. The greater the accuracy requirements for determining the position and / or the speed, the higher the number of sensors to be selected.
  • the optimal target current values are determined empirically or arithmetically and stored in a memory.
  • the target current values or the course of the target current curve depend crucially on the length of the stroke, the inertia or mass of the armature and the switching contacts attached to it.
  • the switch-on process can be started, for example, by a start signal. However, it is also possible that the switch-on process is started when the supply voltage of the switching magnet control exceeds a certain value. It is particularly advantageous if, at the start of the switch-on process, the current setpoint generator specifies a constant current profile or degressive or ramped current profile, each starting from zero, until the first sensor detects the armature or its markings by the movement of the armature and a corresponding signal has given to the solenoid control. As soon as the first sensor or one of the subsequent sensors the anchor or its markings detected, the target current value associated with the corresponding sensor is read from the memory. This nominal current value transmitter is specified by means of the current nominal value transmitter until the next sensor detects the armature or the markings, in which case another nominal current value is then generally specified.
  • a timer is also advantageously reset and started. For reasons of circuit technology, it is proposed to use only one timer. If only one timepiece is used, the timepiece must be reset and restarted each time the anchor is detected by a new sensor. However, it is also conceivable for the timer to run continuously and for the time to be stored in a memory each time the armature is detected by a new sensor. By comparing the stored time with the elapsed time, the time that has passed since the armature was detected by the previous sensor can also be determined.
  • a certain time for driving through a distance determined by two sensors is exceeded, this is evaluated as an error and the switching magnet control is caused to abort the switch-on process or to start an emergency aid program for a predeterminable time. If the next sensor is not reached even after the emergency time has elapsed, the switch-on process is finally stopped.
  • a maximum target current is advantageously specified in order to accelerate a possibly stuck armature with the maximum available force. If the next sensor detects the armature within the duration of the emergency aid program, the switch-on process continues as normal.
  • a maximum time is predefined for each section of the stroke distance determined by two sensors arranged next to one another, after the anchor must reach the next sensor.
  • the maximum time is also stored in a memory.
  • the setpoint current values assigned to a sensor are fast or slow. If the anchor reaches e.g. relatively quickly a certain sensor, this is a sign that the armature can be accelerated without great effort. It is therefore not necessary to specify large target current values. If a relatively long time elapses before the armature is detected by a specific sensor, this is a sign of a great inertia of the armature and the parts that are operatively connected to it.
  • the further desired current values to be specified should be selected accordingly.
  • the time interval that has elapsed since the start of the switch-on process or since the detection of the sensor in front of it has therefore been determined in this embodiment. Then, according to this time interval, the target current value associated with this sensor and the time interval is read out from the memory and specified by means of the target current value transmitter.
  • the current setpoint generator starts a holding program as soon as the switch-on process has been successfully completed or after the last sensor has detected the armature or its markings.
  • the current setpoint generator specifies the holding current, the strength of the holding current being dimensioned such that the force generated by the magnetic field of the coil is just sufficient to press the armature against the fixed magnetic parts. This makes energy consumption advantageous minimized. This also makes the use of the contactor more economical.
  • the current setpoint generator advantageously specifies a maximum holding current in order to close the switching magnet again with the greatest possible force. If it is determined by means of the sensors that the magnetic circuit is closed again, the current setpoint generator again specifies the smaller holding current. If it is found that the magnetic circuit is still not closed after a predetermined time, the holding phase is ended and the contactor is opened or the switch-off process is initiated.
  • the electronic switching magnet control has a data and / or control bus and communicates with other electronic devices via it.
  • the switching magnet control itself can also be controlled by means of the data and / or control bus. It is also conceivable that other electronic devices are controlled by the solenoid control via the data and / or control bus.
  • FIG. 1 shows an electronically controlled contactor 2 with which at least one phase 15 of a circuit can be interrupted or closed.
  • the switching contact 5 of the contactor 2 is in the open position, ie the current path 15 is interrupted.
  • the switching contact 5 acted upon by a contact spring 5a is loosely connected to an armature 4 which can be moved by means of a coil 7.
  • a current I Ist flows in the coil 7, which current generates a magnetic field which pulls the armature 4 into the coil 7.
  • the current I actual is determined by means of the ammeter 6 and transmitted to the switching magnet control, not shown.
  • the armature 4 of the contactor 2 covers the stroke distance H between the ON position (FIG.
  • the anchor 4 has a mark 4a, which by means of Sensors S, 3a is detected as soon as the marking 4a passes the sensor S, 3a.
  • the sensors S, 3a can be light barriers, with exactly one light source 3a being arranged opposite each photodetector S.
  • the marking 4a can be a recess or bore, so that the light from a light source 3a is detected by the associated photodetector S as soon as the marking 4a of the armature 4 is exactly between the light source 3a and the associated sensor S.
  • the photodetectors S and the light sources 3a are connected to the switching magnet control, not shown, by means of the feed lines 3b, 3c.
  • the displacement sensor 3 consists of n equal to seven light barriers with the sensors S 1 to S 7 .
  • marking 4a of armature 4 will first pass sensor S 1 . Shortly before the marking 4a has passed the last sensor S 7 , the switching contact 5 closes. The armature 4 is then moved by the remaining armature stroke until the marking 4a has also passed the last sensor S 7 . At this moment the armature 4 closes the magnetic circuit.
  • FIG. 3 shows in connection with FIG. 5 a time diagram to show a normal closing process and the subsequent holding phase.
  • the upper diagram shows a path-time diagram for the position of the marking 4a or the armature 4.
  • the switch-on process is started. This can be done manually using a switch 13 or via a control bus 12.
  • a set current I set is specified by means of the current setpoint generator 8.
  • the current profile of the target current I target is an exponential function, the target current I target increasing from zero towards a final value I max .
  • the armature 4 is accelerated by the magnetic field of the coil 7, the marking 4a of the armature 4 moving in the direction of the first sensor S 1 .
  • the switching magnet control uses the current setpoint generator 8 to specify the set current I set, 1 associated with the sensor S 1 .
  • the voltage regulator 9 specifies a new voltage such that an actual current I actual is set in the coil 7, which is equal to the target current I target, 1 .
  • the armature 4 with the switch contacts 5 attached to it is accelerated further in the direction of the ON position, as a result of which the mark 4a is detected by the second sensor S 2 after a time T 2 .
  • a new set current I set 2 is specified again by means of the current setpoint generator 8.
  • the current setpoint generator 8 specifies a set current I set, 9 or I set, 8 , which corresponds to the maximum possible current.
  • This maximum possible current is calculated in such a way that it can also be predetermined or regulated by means of the voltage regulator 9 when the supply voltage of the switching magnet drive 1 corresponds only to approximately 75% of the normal supply voltage.
  • the target current I Soll, 9 is from time T 9 for a specific Time specified, so that it is always ensured that the switching magnet is firmly closed and the armature 4 no longer bounces.
  • the switching magnet control switches to the holding phase, a current I holding being specified by means of the current setpoint generator 8, which is dimensioned such that the switching magnet just remains closed and the magnetic circuit is not opened even with normal vibrations. If the switching contacts 5 are deflected due to excessive vibrations, the armature 4 is also moved, the marking 4a being first detected by the last sensor S 9 . If this happens during the holding phase, as in 22 of FIG. 3, from time T 10 at which sensor S 9 detects the marking, the maximum possible target current I max is specified until sensor S 9 detects marking 4a no longer detected. However, it is also possible for the maximum target current I max to be predetermined for a certain time from time T 11 , so that it is also ensured, as in the switch-on process, that the switching contacts 5 no longer bounce.
  • FIGs of Figure 4 show two possible acceleration processes A and B of the armature 4. If, in a simple switch magnet control each sensor S i only a fixed target current I set, i assigned, they are in an intelligent switch magnet control according to Figure 4 a sensor S i several target currents I target, i, j assigned. It depends on the time elapsed until detection by the sensor S i which target current I target, i, j is specified. At A the armature 4 and the parts of the contactor 2 to be accelerated by it have a smaller inertia compared to B, whereby the armature 4 is accelerated faster at the same initial predetermined target current I Soll and accordingly also the marking from the first sensor S. 1 is detected than in B.
  • the slower acceleration of the armature 4 at B can also result from the armature 4 being stuck or from the contactor being in an unfavorable installation position for switching on. Passes up to detect more time, this means that the armature 4 is sluggish or stiff and is difficult to accelerate.
  • a larger acceleration force must be generated by means of the coil magnetic field. This means that the coil current must be increased accordingly. Since the time elapsed until the detection is a measure of the inertia, a larger target current I target i, j is specified in accordance with the past time.
  • FIG. 5 shows a block diagram of an intelligent switching magnet control 1, in which the target currents I target, i, j depend on the time elapsed until the associated sensor S 1 was detected.
  • the solenoid control 1 has a control block 17.
  • the switch-on or switch-off process can be initiated by means of conventional input means 13. It is also advantageous if the solenoid control 1 has an auxiliary power supply 16 and the control is carried out via a bus control signal. From the supply voltage U V supplied by the control block 17, the coil voltage U coil applied to the coil 7 is adjusted by means of the voltage regulator 9 as a function of the difference between the actual and the nominal value.
  • the timer 10 is controlled, ie reset and / or started, by means of the control block 17 and the displacement sensor 3.
  • the current setpoints I setpoint, i, j are advantageously stored in a non-volatile memory 11 and are read out accordingly and fed to the comparator 20.
  • the actual current I actual of the coil 7 is determined by means of the ammeter 6 and is likewise fed to the comparator 20.
  • Both the actual current I Ist and the signals from the displacement sensor 3 and the contact system, consisting among other things of the switching contacts 5, are fed to the message block 19.
  • the message block 19 communicates with other electronic devices, not shown, by means of a data and / or control bus 12.
  • the Switching solenoid control 1 has a control circuit 18, by means of which the contactor is switched off.
  • FIG. 6 shows a flow chart for the switching magnet control 1 according to the invention.
  • the program sequence shown is the same for the normal and the intelligent switching magnet control 1.
  • each sensor S i is only assigned a target current I target, i , these being predefined in step S2 by means of the current target value transmitter 8.
  • a target current I target, i, j in step S2, which depends on the time period or the time interval ⁇ T i, j until the associated sensor S i is detected (intelligent switching magnet control).
  • a start signal starts the switch-on process. This can be done by the supply voltage exceeding a certain voltage level. The voltage level is dimensioned so that the voltage is sufficient to regulate all current setpoints.
  • step S2 after detecting the first sensor S1, the target current I target, 1 or I target, 1, ⁇ T is specified. Simultaneously or immediately thereafter, the timer 10 is reset and restarted in step S3. After step S3, the loop S4, S5 is run through until the next sensor S k + 1 has detected the marking 4a (step S5) or has exceeded the time t (k) associated with sensor S k (step S4). If this time t (k) is exceeded, the program branches to an emergency aid program at step S8. In step S8, a higher target current value I target than the target current I target, k is specified in order to accelerate the armature with the maximum possible force. After step S8, it may be appropriate to reset and start the timer 10 again.
  • step S9 a loop consisting of steps S9 and S10 is run through again until the next sensor S k + 1 has detected the marking 4a (step S10) or the time t on measured by the timer 10 for the respective sensor S k proper time t (k) has exceeded (step S9). If the maximum time is exceeded during the emergency aid program (steps S8, S9, S10, S11), the abort or switch-off process is initiated with step S11 and a corresponding message is sent to other electronic components by means of the data and / or control bus. However, if the next sensor S k + 1 detects the marking 4a (step S10), the system branches back to the switch-on program and step S6 is carried out.
  • step S6 If the last sensor S n has detected the marking, the switch-on process is completed and the hold phase is initiated with step S7, ie the hold current I hold is specified until the switch-off process is initiated. If, on the other hand, it is determined in step S6 that the marking 4a has not yet passed the last sensor, a branch is made to step S2 and a new target current I target, k + 1 is specified.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Linear Motors (AREA)
  • Relay Circuits (AREA)
  • Keying Circuit Devices (AREA)

Abstract

The invention relates to an electronic switch magnet control system for contactors, the contactor (2) having a travel sensor (3) used to determine the position of the armature (4). A measuring transducer (6) determines the actual current in the armature coil (7). A current-theoretical-value transmitter presets a theoretical current in relation to the armature position. A voltage regulator presets the coil voltage (Ucoil) applied to the armature coil (7) in relation to the current deviation between the actual current and the theoretical current. The travel sensor (3) has a number of n sensors, in particular mechanical switches, light barriers, Hall-effect detectors or induction switches which are all arranged along the distance (H) covered by the armature (4), thereby determining the armature position discretely, a theoretical-current value being allocated to each sensor of the travel sensor (3).

Description

Technisches GebietTechnical field

Die Erfindung betrifft eine elektronische Schaltmagnetansteuerung für Schütze, wobei das Schütz einen Wegsensor hat, mit dem die Position des Ankers bestimmbar ist, und die Schaltmagnetansteuerung einen Meßaufnehmer, der den Ist-Strom in der Ankerspule des Schützes ermittelt, einen Strom-Sollgeber, der in Abhängigkeit der Position des Ankers einen Soll-Strom vorgibt, und einen Spannungssteller hat, der die an der Ankerspule anliegende Spannung in Abhängigkeit von der Stromabweichung zwischen Ist-Strom und Soll-Strom vorgibt.The invention relates to an electronic solenoid control for contactors, the contactor has a displacement sensor with which the position of the armature can be determined, and the solenoid control to a sensor that determines the actual current in the armature coil of the contactor, a current setpoint device, which in Dependency of the position of the armature specifies a target current, and has a voltage regulator which specifies the voltage applied to the armature coil as a function of the current deviation between the actual current and the target current.

Stand der TechnikState of the art

Die DE 44 09 010 A1 beschreibt eine Schaltvorrichtung, bei der mittels eines Sensors die Position des beweglichen Organs, insbesondere des Ankers eines Schützes, während des Schaltvorganges bestimmbar ist. Der Sensor ist dabei ein Potentiometer, bestehend aus einem längsgestreckten Fühlerelement und einem am Anker befestigten beweglichen Läufer, welcher sich auf dem Fühlerelement abstützt. Mittels der ermittelten Position des beweglichen Organs des Schützes wird während des Schaltvorgangs der Spulenstrom über die gesamte Verschiebungsstrecke gesteuert, womit zum einen die Schließkraft des Schützes erhöht und zum anderen die elektrische und mechanische Haltbarkeit der Vorrichtung verbessert wird. Zur Steuerung des Spulenstroms ist der Spule ein Strommesser in Reihe geschaltet. Der Spulenstrom wird dabei in Abhängigkeit der Differenz zwischen Soll-Spulenstrom und gemessenem Ist-Spulenstrom mittels einer Impulsmodulations-Schaltung gesteuert, wobei der Spulenstrom vom Niveau der Impulsgrößenmodulation abhängt. Der Einsatz eines Potentiometers als Positionssensor hat jedoch mehrere Nachteile. So ist zum einen der Widerstand des Potentiometers temperaturabhängig, wodurch die tatsächliche Position des Ankers bei Temperaturschwankungen von der Schaltvorrichtung nicht ohne zusätzlichen schaltungstechnischen Aufwand ermittelt werden kann. Zum anderen wird der von der Spule bewegte Anker durch die erforderliche Andruckkraft der Schleifkontakte des Potentiometers gebremst, wodurch der Spulenstrom unnötig erhöht wird und somit die elektrische Haltbarkeit herabgesetzt wird. Durch das relativ schnelle Verfahren des Ankers wird zusätzlich die Widerstandsfläche des Potentiometers stark beansprucht, wodurch es zu Widerstandsveränderungen bedingt durch Ablösungen bzw. Abrieb des Widerstandsmaterials kommt. Eine Ansteuerung des Schützes ist in diesem Fall nicht mehr möglich.DE 44 09 010 A1 describes a switching device in which the position of the movable member, in particular the armature of a contactor, can be determined by means of a sensor during the switching process. The sensor is a potentiometer, consisting of an elongated sensor element and a movable rotor attached to the armature, which is supported on the sensor element. By means of the determined position of the movable member of the contactor, the coil current is controlled over the entire displacement distance during the switching process, which on the one hand increases the closing force of the contactor and on the other hand improves the electrical and mechanical durability of the device. To control the Coil current, the coil is connected to a current meter in series. The coil current is controlled as a function of the difference between the target coil current and the measured actual coil current by means of a pulse modulation circuit, the coil current depending on the level of the pulse size modulation. However, using a potentiometer as a position sensor has several disadvantages. On the one hand, the resistance of the potentiometer is temperature-dependent, so that the actual position of the armature in the event of temperature fluctuations cannot be determined by the switching device without additional outlay on circuitry. On the other hand, the armature moved by the coil is braked by the required pressure force of the sliding contacts of the potentiometer, which unnecessarily increases the coil current and thus reduces the electrical durability. Due to the relatively fast movement of the armature, the resistance surface of the potentiometer is additionally stressed, which leads to changes in resistance due to detachment or abrasion of the resistance material. In this case, it is no longer possible to control the contactor.

Darstellung der ErfindungPresentation of the invention

Aufgabe der Erfindung ist es daher, eine elektronische Schaltmagnetansteuerung der oben genannten Art derart weiterzubilden, daß die Position des Ankers ohne Krafteinwirkung auf den Anker bestimmbar ist, wobei die Positionsbestimmung unabhängig von eventuellen Temperaturschwankungen ist.The object of the invention is therefore to develop an electronic switching magnet control of the type mentioned above such that the position of the armature can be determined without the force exerted on the armature, the position determination being independent of any temperature fluctuations.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß der Wegsensor eine Anzahl n Sensoren, insbesondere mechanische Schalter, Lichtschranken, Halldetektoren oder Induktionsschalter hat, die entlang der vom Anker zurückzulegenden Hubstrecke angeordnet sind, und mittels derer die Position des Ankers diskret bestimmbar ist, und daß jedem Sensor des Wegsensors ein Soll-Stromwert zugeordnet ist. Durch die Verwendung eines diskreten Sensors liegt die Information über die Position des Ankers des Schütze in digitaler Form vor, wodurch eine Umwandlung des analogen Signals in ein digitales Positionssignal nicht mehr notwendig ist. Hierdurch werden vorteilhaft elektronische Bauteile eingespart, wodurch der technische Aufwand und die Produktionskosten verringert und gleichzeitig die Funktionssicherheit der Steuerung erhöht wird.This object is achieved in that the displacement sensor has a number of n sensors, in particular mechanical switches, light barriers, Hall detectors or induction switches, which are arranged along the stroke distance to be covered by the armature and by means of which the position of the armature can be determined discretely, and in that each Displacement sensor a target current value is assigned. By using a discrete sensor, the information about the position of the armature of the contactor is available in digital form, whereby a conversion of the analog signal into a digital position signal is no longer necessary. This advantageously saves electronic components, which reduces the technical outlay and production costs and at the same time increases the functional reliability of the control.

Um eine möglichst definierte Schließgeschwindigkeit des Schaltmagneten zu erzielen, ist der Soll-Strom eine Funktion der Position des Ankers oder eine Funktion der Zeit und der Position des Ankers. Durch die positionsabhängige Stromvorgabe kann zu Beginn des Schaltvorgangs vorteilhaft ein höherer Soll-Strom vorgegeben werden. Sobald der Anker bzw. die Schaltkontakte beschleunigt worden sind und eine maximale Geschwindigkeit erreicht ist, genügt die Trägheit des Ankers, um diesen in die EIN-Stellung zu verfahren. Der Strom durch die Spule kann demnach klein gegenüber den Anfangsstrom sein, da kleinere Beschleunigungskräfte ausreichen, um den Anker zu beschleunigen. Um ein sicheres Schließen des Schaltmagneten zu erreichen, wird vorteilmäßig zum Ende des Einschaltvorganges wieder ein maximaler Soll-Strom vorgegeben, damit der Anker fest gegen die feststehenden Teile des Magnetkreises gedrückt wird. Da der Anker und die Schaltkontakte des Schützes nicht starr miteinander verbunden sind, kann der Anker nach dem Schließen der Schaltkontakte noch eine kleinere Wegstrecke verfahren werden. Diese Wegstrecke wird auch als Anker-Resthub bezeichnet. Es hat sich nun gezeigt, daß durch eine definierte Ankergeschwindigkeit während des Schließens der Schaltkontakte des Schützes eine erhebliche Verringerung des Kontaktprellens der Schaltkontakte und damit eine Erhöhung der Lebensdauer erzielbar ist.In order to achieve the closing speed of the switching magnet as defined as possible, the target current is a function of the position of the armature or a function of the time and position of the armature. Due to the position-dependent current specification, a higher target current can advantageously be specified at the beginning of the switching process. As soon as the armature or the switching contacts have been accelerated and a maximum speed has been reached, the inertia of the armature is sufficient to move the armature into the ON position. The current through the coil can therefore be small compared to the initial current, since smaller acceleration forces are sufficient to accelerate the armature. In order to ensure that the switching magnet closes securely, a maximum target current is advantageously specified again at the end of the switch-on process, so that the armature is pressed firmly against the fixed parts of the magnetic circuit. Since the armature and the switching contacts of the contactor are not rigidly connected to each other, the armature can be moved a smaller distance after the switching contacts have closed. This distance is also known as the residual anchor stroke. It has now been shown that a defined armature speed during the closing of the contactor's switching contacts can significantly reduce the contact bounce of the switching contacts and thus increase the service life.

Es ist weiterhin von Vorteil, wenn die n Sensoren in gleichmäßigen Abständen zueinander über die Hubstrecke verteilt angeordnet sind. Durch das Verfahren des Ankers entlang der an der Hubstrecke angeordneten Sensoren des Wegsensors erkennen die Sensoren den Anker oder dessen Markierungen, Durchlässe, Vorsprünge oder Vertiefungen und senden jeweils ein bestimmtes Signal an die Schaltmagnetansteuerung. Hierbei erkennt bzw. detektiert der erste Sensor den Anker oder dessen Markierungen unmittelbar nach Verlassen der Ruheposition bzw. der AUS-Stellung. Der letzte Sensor erkennt bzw. detektiert den Anker oder dessen Markierungen unmittelbar vor Erreichen der Halteposition bzw. der EIN-Stellung. Die EIN-Stellung des Schützes ist dabei die Stellung, in der der Schaltkreis geschlossen ist. Die Position und die Geschwindigkeit des Ankers ist somit genauestens bestimmbar. Je größer die Genauigkeitsanforderungen für die Ermittlung der Position und/oder der Geschwindigkeit sind, desto höher ist die Anzahl der zu verwendenden Sensoren zu wählen.It is also advantageous if the n sensors are arranged at uniform intervals from one another over the stroke are. By moving the armature along the sensors of the displacement sensor arranged on the stroke, the sensors recognize the armature or its markings, passages, protrusions or depressions and each send a specific signal to the switching magnet control. The first sensor recognizes or detects the armature or its markings immediately after leaving the rest position or the OFF position. The last sensor recognizes or detects the armature or its markings immediately before the stop position or the ON position is reached. The ON position of the contactor is the position in which the circuit is closed. The position and speed of the armature can thus be determined precisely. The greater the accuracy requirements for determining the position and / or the speed, the higher the number of sensors to be selected.

Die optimalen Soll-Stromwerte werden im einfachsten Fall empirisch oder rechnerisch ermittelt und in einem Speicher abgelegt. Die Soll-Stromwerte bzw. der Verlauf der Soll-Stromkurve hängt dabei maßgeblich von der Länge der Hubstrecke, der Trägheit bzw. Masse des Ankers und der daran befestigten Schaltkontakte ab.In the simplest case, the optimal target current values are determined empirically or arithmetically and stored in a memory. The target current values or the course of the target current curve depend crucially on the length of the stroke, the inertia or mass of the armature and the switching contacts attached to it.

Der Einschaltvorgang kann z.B. durch ein Startsignal gestartet werden. Es ist jedoch auch möglich, daß der Einschaltvorgang dann gestartet wird, wenn die Versorgungsspannung der Schaltmagnetansteuerung einen bestimmten Wert überschreitet. Dabei ist es besonders vorteilhaft, wenn zu Beginn des Einschaltvorgangs der Strom-Sollwertgeber einen konstanten Stromverlauf oder degressiven oder rampenförmigen, jeweils von Null beginnenden Stromverlauf solange vorgibt, bis durch das Verfahren des Ankers der erste Sensor den Anker oder dessen Markierungen detektiert und ein entsprechendes Signal an die Schaltmagnetansteuerung abgegeben hat. Sobald der erste Sensor oder einer der nachfolgenden Sensoren den Anker oder dessen Markierungen detektiert, wird der zu dem entsprechenden Sensor gehörige Soll-Stromwert aus dem Speicher ausgelesen. Dieser Soll-Stromwertgeber wird mittels des Strom-Sollwertgeber solange vorgegeben, bis der nächste Sensor den Anker oder die Markierungen detektiert, wobei dann im allgemeinen ein anderer Soll-Stromwert vorgegeben wird.The switch-on process can be started, for example, by a start signal. However, it is also possible that the switch-on process is started when the supply voltage of the switching magnet control exceeds a certain value. It is particularly advantageous if, at the start of the switch-on process, the current setpoint generator specifies a constant current profile or degressive or ramped current profile, each starting from zero, until the first sensor detects the armature or its markings by the movement of the armature and a corresponding signal has given to the solenoid control. As soon as the first sensor or one of the subsequent sensors the anchor or its markings detected, the target current value associated with the corresponding sensor is read from the memory. This nominal current value transmitter is specified by means of the current nominal value transmitter until the next sensor detects the armature or the markings, in which case another nominal current value is then generally specified.

Zu Beginn des Einschaltvorgangs wird vorteilhaft zusätzlich ein Zeitmesser zurückgesetzt und gestartet. Aus schaltungstechnischen Gründen wird vorgeschlagen, nur einen Zeitmesser zu verwenden. Wird nur ein Zeitmesser verwendet, so muß der Zeitmesser jedesmal dann zurückgesetzt und wieder neu gestartet werden, wenn der Anker von einem neuen Sensor detektiert wird. Es ist jedoch auch denkbar, daß der Zeitmesser kontinuierlich durchläuft und jedesmal, wenn der Anker von einem neuen Sensor detektiert wird, die Zeit in einem Speicher abgespeichert wird. Durch Vergleich der abgespeicherten Zeit mit der abgelaufenen Zeit kann dann ebenso die Zeit ermittelt werden, die vergangen ist, seitdem der Anker von dem vorhergehenden Sensor detektiert worden ist. Wird eine bestimmte Zeit für das Durchfahren einer durch zwei Sensoren festgelegten Strecke überschritten, so wird dies als Fehler gewertet und die Schaltmagnetansteuerung veranlaßt, den Einschaltvorgang abzubrechen oder ein Nothilfsprogramm für eine vorbestimmbare Zeit zu starten. Wird der nächste Sensor auch nach Ablauf der Notzeit nicht erreicht, wird der Einschaltvorgang endgültig abgebrochen. Während der Dauer des Nothilfsprogramms wird vorteilhaft ein maximaler Soll-Strom vorgegeben, um einen eventuell festsitzenden Anker mit der maximal zur Verfügung stehenden Kraft zu beschleunigen. Detektiert innerhalb der Zeitdauer des Nothilfsprogramms der nächste Sensor den Anker, so wird der Einschaltvorgang normal fortgesetzt.At the beginning of the switch-on process, a timer is also advantageously reset and started. For reasons of circuit technology, it is proposed to use only one timer. If only one timepiece is used, the timepiece must be reset and restarted each time the anchor is detected by a new sensor. However, it is also conceivable for the timer to run continuously and for the time to be stored in a memory each time the armature is detected by a new sensor. By comparing the stored time with the elapsed time, the time that has passed since the armature was detected by the previous sensor can also be determined. If a certain time for driving through a distance determined by two sensors is exceeded, this is evaluated as an error and the switching magnet control is caused to abort the switch-on process or to start an emergency aid program for a predeterminable time. If the next sensor is not reached even after the emergency time has elapsed, the switch-on process is finally stopped. During the duration of the emergency aid program, a maximum target current is advantageously specified in order to accelerate a possibly stuck armature with the maximum available force. If the next sensor detects the armature within the duration of the emergency aid program, the switch-on process continues as normal.

In einer ebenfalls vorteilhaften Ausführungsform, wird für jede von zwei nebeneinander angeordneten Sensoren festgelegte Teilstrecke der Hubstrecke eine maximale Zeit vorgegeben, nach der der Anker den nächsten Sensor erreichen muß. Die maximale Zeit wird hierbei ebenfalls in einem Speicher abgelegt.In a likewise advantageous embodiment, a maximum time is predefined for each section of the stroke distance determined by two sensors arranged next to one another, after the anchor must reach the next sensor. The maximum time is also stored in a memory.

In einer besonders bevorzugten Ausführungsform sind jedem Sensor des Wegsensors mehrere Soll-Stromwerte zugeordnet, wobei die einem Sensor zugeordneten Soll-Stromwerte jeweils unterschiedlichen Zeitintervallen zugeordnet sind. Dies ist besonders dann von Vorteil, wenn je nach Trägheit oder Schwergängigkeit der Anzug des Ankers und der mit ihm wirkverbundenen beweglichen Teile schnell oder langsam erfolgt. Erreicht der Anker z.B. relativ schnell einen bestimmten Sensor, so ist dies ein Zeichen dafür, daß der Anker ohne großen Kraftaufwand beschleunigt werden kann. Es ist daher nicht erforderlich große Soll-Stromwerte vorzugeben. Verstreicht relativ viel Zeit, bis der Anker von einem bestimmten Sensor detektiert wird, so ist dies ein Zeichen für eine große Trägheit des Ankers und der mit ihm wirkverbundenen Teile. Dementsprechend größer sind in diesem Fall die weiteren vorzugebenden Soll-Stromwerte zu wählen. Nachdem ein bestimmter Sensor den Anker detektiert hat, wird daher bei dieser Ausführungsform zuerst das Zeitintervall ermittelt, das seit dem Beginn des Einschaltvorgangs oder seit dem Detektieren des davorliegenden Sensors verstrichen ist. Danach wird entsprechend diesem Zeitintervall der zu diesem Sensor und dem Zeitintervall gehörige Soll-Stromwert aus dem Speicher ausgelesen und mittels des Soll-Stromwertgebers vorgegeben.In a particularly preferred embodiment, several setpoint current values are assigned to each sensor of the displacement sensor, the setpoint current values assigned to a sensor each being assigned to different time intervals. This is particularly advantageous if, depending on the inertia or sluggishness, the armature and the moving parts operatively connected to it are fast or slow. If the anchor reaches e.g. relatively quickly a certain sensor, this is a sign that the armature can be accelerated without great effort. It is therefore not necessary to specify large target current values. If a relatively long time elapses before the armature is detected by a specific sensor, this is a sign of a great inertia of the armature and the parts that are operatively connected to it. In this case, the further desired current values to be specified should be selected accordingly. After a specific sensor has detected the armature, the time interval that has elapsed since the start of the switch-on process or since the detection of the sensor in front of it has therefore been determined in this embodiment. Then, according to this time interval, the target current value associated with this sensor and the time interval is read out from the memory and specified by means of the target current value transmitter.

Ebenfalls vorteilhaft ist es, wenn der Strom-Sollwertgeber ein Halteprogramm startet, sobald der Einschaltvorgang erfolgreich abgeschlossen worden ist bzw. nachdem der letzte Sensor den Anker oder dessen Markierungen detektiert hat. Während des Halteprogramms gibt der Strom-Sollwertgeber den Haltestrom vor, wobei die Stärke des Haltestroms so bemessen ist, daß die durch das Magnetfeld der Spule erzeugte Kraft gerade noch ausreicht, um den Anker gegen die feststehenden Magnetteile zu drücken. Hierdurch wird vorteilmäßig der Energieverbrauch minimiert. Auch wird zudem der Einsatz des Schützes hierdurch wirtschaftlicher.It is also advantageous if the current setpoint generator starts a holding program as soon as the switch-on process has been successfully completed or after the last sensor has detected the armature or its markings. During the holding program, the current setpoint generator specifies the holding current, the strength of the holding current being dimensioned such that the force generated by the magnetic field of the coil is just sufficient to press the armature against the fixed magnetic parts. This makes energy consumption advantageous minimized. This also makes the use of the contactor more economical.

Sobald während der Haltephase der Anker durch eine Störung ausgelenkt wird, wird diese Auslenkung mittels des letzten Sensors detektiert und der Schaltmagnetansteuerung gemeldet. Nach Eintreten dieses Zustandes gibt der Strom-Sollwertgeber vorteilhaft einen maximalen Haltestrom vor, um den Schaltmagneten mit der größtmöglichen Kraft wieder zu schließen. Wird mittels der Sensoren festgestellt, daß der Magnetkreis wieder geschlossen ist, gibt der Strom-Sollwertgeber wieder den kleineren Haltestrom vor. Wird festgestellt, daß der Magnetkreis nach einer vorbestimmten Zeit immer noch nicht wieder geschlossen ist, wird die Haltephase beendet und das Schütz geöffnet bzw. der Ausschaltvorgang eingeleitet.As soon as the armature is deflected by a fault during the holding phase, this deflection is detected by means of the last sensor and reported to the switching magnet control. After this state has occurred, the current setpoint generator advantageously specifies a maximum holding current in order to close the switching magnet again with the greatest possible force. If it is determined by means of the sensors that the magnetic circuit is closed again, the current setpoint generator again specifies the smaller holding current. If it is found that the magnetic circuit is still not closed after a predetermined time, the holding phase is ended and the contactor is opened or the switch-off process is initiated.

Ebenfalls vorteilmäßig ist es, wenn die elektronische Schaltmagnetansteuerung einen Daten- und/oder Steuerbus hat, und über diesen mit anderen elektronischen Geräten kommuniziert. Auch kann die Schaltmagnetansteuerung selbst mittels des Daten- und/oder Steuerbusses gesteuert werden. Es ist ebenfalls denkbar, daß andere elektronische Geräte von der Schaltmagnetansteuerung über den Daten- und/oder Steuerbus gesteuert werden.It is also advantageous if the electronic switching magnet control has a data and / or control bus and communicates with other electronic devices via it. The switching magnet control itself can also be controlled by means of the data and / or control bus. It is also conceivable that other electronic devices are controlled by the solenoid control via the data and / or control bus.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Nachfolgend wird die Erfindung anhand von Zeichnungen näher erläutert. Es zeigen

Figur 1:
Eine mechanische Darstellung eines elektronisch gesteuerten Schützes;
Figur 2:
ein elektronisch gesteuertes Schütz mit geschlossenen Kontakten;
Figur 2b:
ein elektronisch gesteuertes Schütz, dessen Schaltmagnet durch äußere Einflüsse leicht geöffnet wurde;
Figur 3:
ein Weg-Zeitdiagramm zur Darstellung eines normalen Schließvorganges und der sich daran anschließenden Haltephase;
Figur 4:
ein Weg-Zeitdiagramm zur Darstellung zweier Schließvorgänge, wobei der Anker bei A ein kleineres Trägheitsmoment hat als der Anker bei B;
Figur 5:
ein Blockschaltbild der elektronischen Schaltmagnetansteuerung und
Figur 6:
ein Flußdiagramm eines Programms zur Steuerung des Einschaltvorganges eines gesteuerten Schützes nach Figur 1.
The invention is explained in more detail below with reference to drawings. Show it
Figure 1:
A mechanical representation of an electronically controlled contactor;
Figure 2:
an electronically controlled contactor with closed contacts;
Figure 2b:
an electronically controlled contactor, the switching magnet of which was slightly opened by external influences;
Figure 3:
a path-time diagram to show a normal closing process and the subsequent holding phase;
Figure 4:
a path-time diagram to illustrate two closing operations, the armature at A having a smaller moment of inertia than the armature at B;
Figure 5:
a block diagram of the electronic solenoid control and
Figure 6:
2 shows a flow chart of a program for controlling the switching-on process of a controlled contactor according to FIG. 1.

Bester Weg zur Ausführung der ErfindungBest way to carry out the invention

Die Figur 1 zeigt ein elektronisch gesteuertes Schütz 2, mit dem mindestens eine Phase 15 eines Schaltkreises unterbrochen oder geschlossen werden kann. In Figur 1 ist der Schaltkontakt 5 des Schützes 2 in geöffneter Stellung, d.h., der Strompfad 15 ist unterbrochen. Der durch eine Kontaktfeder 5a beaufschlagte Schaltkontakt 5 ist mit einem Anker 4 lose in Verbindung, der mittels einer Spule 7 verfahrbar ist. Durch Anlegen einer Spannung USpule an die Anschlußdrähte 7a der Spule 7 fließt in der Spule 7 ein Strom IIst, welcher ein Magnetfeld erzeugt, das den Anker 4 in die Spule 7 hineinzieht. Der Strom IIst wird dabei mittels des Strommessers 6 bestimmt und der nicht dargestellten Schaltmagnetansteuerung übermittelt. Zwischen der EIN-Stellung (Fig. 2a) und der AUS-Stellung (Fig. 1) legt der Anker 4 des Schützes 2 die Hubstrecke H zurück. Der Anker 4 hat dabei eine Markierung 4a, welche mittels der Sensoren S, 3a detektiert wird, sobald die Markierung 4a an dem Sensor S, 3a vorbeifährt. Dabei können die Sensoren S, 3a Lichtschranken sein, wobei jeweils einem Photodetektor S genau eine Lichtquelle 3a gegenüberliegend angeordnet ist. Die Markierung 4a kann eine Ausnehmung oder Bohrung sein, so daß das Licht einer Lichtquelle 3a von dem jeweils zugehörigen Photodetektor S detektiert wird, sobald sich die Markierung 4a des Ankers 4 genau zwischen der Lichtquelle 3a und dem zugehörigen Sensor S befindet. Die Photodetektoren S und die Lichtquellen 3a sind mittels der Zuführungsleitungen 3b, 3c mit der nicht dargestellten Schaltmagnetansteuerung in Verbindung.FIG. 1 shows an electronically controlled contactor 2 with which at least one phase 15 of a circuit can be interrupted or closed. In Figure 1, the switching contact 5 of the contactor 2 is in the open position, ie the current path 15 is interrupted. The switching contact 5 acted upon by a contact spring 5a is loosely connected to an armature 4 which can be moved by means of a coil 7. By applying a voltage U coil to the connecting wires 7a of the coil 7, a current I Ist flows in the coil 7, which current generates a magnetic field which pulls the armature 4 into the coil 7. The current I actual is determined by means of the ammeter 6 and transmitted to the switching magnet control, not shown. The armature 4 of the contactor 2 covers the stroke distance H between the ON position (FIG. 2a) and the OFF position (FIG. 1). The anchor 4 has a mark 4a, which by means of Sensors S, 3a is detected as soon as the marking 4a passes the sensor S, 3a. The sensors S, 3a can be light barriers, with exactly one light source 3a being arranged opposite each photodetector S. The marking 4a can be a recess or bore, so that the light from a light source 3a is detected by the associated photodetector S as soon as the marking 4a of the armature 4 is exactly between the light source 3a and the associated sensor S. The photodetectors S and the light sources 3a are connected to the switching magnet control, not shown, by means of the feed lines 3b, 3c.

Wie in Figur 2a dargestellt, besteht der Wegsensor 3 aus n gleich sieben Lichtschranken mit den Sensoren S1 bis S7. Sobald das Schütz 2 eingeschaltet bzw. der Einschaltvorgang gestartet wird, wobei sich das Schütz 2 zu Beginn des Einschaltvorgangs in der AUS-Stellung befindet, wird die Markierung 4a des Ankers 4 zuerst den Sensor S1 passieren. Kurz bevor die Markierung 4a den letzten Sensor S7 passiert hat, schließt der Schaltkontakt 5. Der Anker 4 wird danach noch um den Anker-Resthub verfahren, bis auch die Markierung 4a den letzten Sensor S7 passiert hat. In diesem Moment schließt der Anker 4 den Magnetkreis.As shown in FIG. 2a, the displacement sensor 3 consists of n equal to seven light barriers with the sensors S 1 to S 7 . As soon as contactor 2 is switched on or the switch-on process is started, contactor 2 being in the OFF position at the start of the switch-on process, marking 4a of armature 4 will first pass sensor S 1 . Shortly before the marking 4a has passed the last sensor S 7 , the switching contact 5 closes. The armature 4 is then moved by the remaining armature stroke until the marking 4a has also passed the last sensor S 7 . At this moment the armature 4 closes the magnetic circuit.

Wird, wie in Figur 2b dargestellt, durch Schock oder sonstige Einflüsse der Anker 4 ausgelenkt, so passiert die Markierung 4a des Ankers 4 den letzten Sensor S7 . Der Anker 4 muß dabei noch nicht soweit ausgelenkt worden sein, daß auch der Schaltkontakt 5 ausgelenkt wurde. Die Schaltmagnetansteuerung registriert mittels des Sensors 3 diesen Zustand und leitet entsprechende Maßnahmen ein, um den Magnetkreis des Schaltmagneten wieder zu schließen. Gelingt dies nicht innerhalb einer bestimmten Zeit, so wird das Schütz 2 notabgeschaltet. Figur 3 zeigt in Verbindung mit Figur 5 ein Zeitdiagramm zur Darstellung eines normalen Schließvorganges und der sich daran anschließenden Haltephase. Das obere Diagramm zeigt ein Weg-Zeit-Diagramm für die Position der Markierung 4a bzw. des Ankers 4. Zum Zeitpunkt T gleich Null wird der Einschaltvorgang gestartet. Dies kann manuell mittels eines Schalters 13 oder über einen Steuerbus 12 geschehen. Zu Beginn der Einschaltphase (0<t<T1) wird mittels des Strom-Sollwertgebers 8 ein Soll-Strom ISoll vorgegeben. Der Stromverlauf des Soll-Stroms ISoll ist dabei eine Exponentialfunktion, wobei der Soll-Strom ISoll von Null gegen einen Endwert Imax ansteigt. Während der Zeit von t=0 bis t=T1 wird der Anker 4 von dem Magnetfeld der Spule 7 beschleunigt, wobei sich die Markierung 4a des Ankers 4 in Richtung des ersten Sensors S1 bewegt. Sobald der Sensor S1 die Markierung detektiert hat, wird dies von der Schaltmagnetansteuerung 1 erkannt, und die Schaltmagnetansteuerung gibt mittels des Strom-Sollwertgebers 8 den zum Sensor S1 gehörigen Soll-Strom ISoll, 1 vor. Durch die neue Soll-Stromvorgabe ISoll, 1 wird von dem Spannungssteller 9 eine neue Spannung derart vorgegeben, daß sich in der Spule 7 ein Ist-Strom IIst einstellt, der gleich dem Soll-Strom ISoll, 1 ist. Während dieses Vorgangs wird der Anker 4 mit den daran befestigten Schaltkontakten 5 weiter in Richtung der EIN-Stellung beschleunigt, wodurch nach einer Zeit T2 die Markierung 4a von zweiten Sensor S2 detektiert wird. Sobald dies der Fall ist, wird erneut mittels des Strom-Sollwertgebers 8 ein neuer Soll-Strom ISoll, 2 vorgegeben. Dieser Vorgang wiederholt sich bei jedem Sensor Si . Wird die Markierung vom z.B. letzten Sensor Sn=9 oder vorletzten Sensor S8 detektiert, gibt der Strom-Sollwertgeber 8 einen Soll-Strom ISoll, 9 bzw. ISoll, 8 vor, der dem maximal möglichen Strom entspricht. Dieser maximal mögliche Strom ist dabei so berechnet, daß er auch dann vorgegeben bzw. mittels des Spannungsreglers 9 einregelbar ist, wenn die Versorgungsspannung der Schaltmagnetansteuerung 1 lediglich ca. 75% der normalen Versorgungsspannung entspricht. Der Soll-Strom ISoll, 9 wird dabei ab dem Zeitpunkt T9 für eine bestimmte Zeit vorgegeben, so daß stets gewährleistet ist, daß der Schaltmagnet fest geschlossen ist und der Anker 4 nicht mehr nachprellt. Ist diese Zeit abgelaufen, schaltet die Schaltmagnetansteuerung in die Haltephase, wobei mittels des Strom-Sollwertgebers 8 ein Strom IHalten vorgegeben wird, der so bemessen ist, daß der Schaltmagnet gerade noch geschlossen bleibt und auch bei normalen Erschütterungen der Magnetkreis nicht geöffnet wird. Werden die Schaltkontakte 5 bei zu starken Erschütterungen ausgelenkt, so wird auch der Anker 4 verfahren, wobei die Markierung 4a zuerst vom letzten Sensor S9 detektiert wird. Geschieht dies während der Haltephase, wie bei 22 der Figur 3, so wird ab dem Zeitpunkt T10 , bei dem der Sensor S9 die Markierung detektiert, solange der maximal mögliche Soll-Strom Imax vorgegeben, bis der Sensor S9 die Markierung 4a nicht mehr detektiert. Es ist jedoch auch möglich, daß der maximale Soll-Strom Imax ab dem Zeitpunkt T11 für eine bestimmte Zeit weiter vorgegeben wird, so daß ebenfalls wie beim Einschaltvorgang sichergestellt ist, daß die Schaltkontakte 5 nicht mehr nachprellen.If, as shown in FIG. 2 b, the armature 4 is deflected by shock or other influences, the marking 4 a of the armature 4 passes the last sensor S 7 . The armature 4 does not have to be deflected so far that the switch contact 5 has also been deflected. The switching magnet control registers this state by means of the sensor 3 and initiates appropriate measures to close the magnetic circuit of the switching magnet again. If this does not succeed within a certain time, contactor 2 is switched off in an emergency. FIG. 3 shows in connection with FIG. 5 a time diagram to show a normal closing process and the subsequent holding phase. The upper diagram shows a path-time diagram for the position of the marking 4a or the armature 4. At the time T equals zero, the switch-on process is started. This can be done manually using a switch 13 or via a control bus 12. At the beginning of the switch-on phase (0 <t <T 1 ), a set current I set is specified by means of the current setpoint generator 8. The current profile of the target current I target is an exponential function, the target current I target increasing from zero towards a final value I max . During the time from t = 0 to t = T 1 , the armature 4 is accelerated by the magnetic field of the coil 7, the marking 4a of the armature 4 moving in the direction of the first sensor S 1 . As soon as the sensor S 1 has detected the marking, this is recognized by the switching magnet control 1, and the switching magnet control uses the current setpoint generator 8 to specify the set current I set, 1 associated with the sensor S 1 . Due to the new target current specification I target, 1 , the voltage regulator 9 specifies a new voltage such that an actual current I actual is set in the coil 7, which is equal to the target current I target, 1 . During this process, the armature 4 with the switch contacts 5 attached to it is accelerated further in the direction of the ON position, as a result of which the mark 4a is detected by the second sensor S 2 after a time T 2 . As soon as this is the case, a new set current I set 2 is specified again by means of the current setpoint generator 8. This process is repeated for each sensor S i . If the marking is detected by the last sensor S n = 9 or the penultimate sensor S 8 , for example, the current setpoint generator 8 specifies a set current I set, 9 or I set, 8 , which corresponds to the maximum possible current. This maximum possible current is calculated in such a way that it can also be predetermined or regulated by means of the voltage regulator 9 when the supply voltage of the switching magnet drive 1 corresponds only to approximately 75% of the normal supply voltage. The target current I Soll, 9 is from time T 9 for a specific Time specified, so that it is always ensured that the switching magnet is firmly closed and the armature 4 no longer bounces. If this time has expired, the switching magnet control switches to the holding phase, a current I holding being specified by means of the current setpoint generator 8, which is dimensioned such that the switching magnet just remains closed and the magnetic circuit is not opened even with normal vibrations. If the switching contacts 5 are deflected due to excessive vibrations, the armature 4 is also moved, the marking 4a being first detected by the last sensor S 9 . If this happens during the holding phase, as in 22 of FIG. 3, from time T 10 at which sensor S 9 detects the marking, the maximum possible target current I max is specified until sensor S 9 detects marking 4a no longer detected. However, it is also possible for the maximum target current I max to be predetermined for a certain time from time T 11 , so that it is also ensured, as in the switch-on process, that the switching contacts 5 no longer bounce.

Die Diagramme der Figur 4 zeigen zwei mögliche Beschleunigungsvorgänge A und B des Ankers 4. Wird bei einer einfachen Schaltmagnetansteuerung jedem Sensor Si lediglich ein fester Soll-Strom ISoll, i zugeordnet, so werden bei einer intelligenten Schaltmagnetansteuerung nach Figur 4 einem Sensor Si mehrere Soll-Ströme ISoll, i, j zugeordnet. Dabei hängt es von der bis zur Detektierung durch den Sensor Si vergangenen Zeit ab, welcher Soll-Strom ISoll, i, j vorgegeben wird. Bei A besitzen der Anker 4 und die von ihm zu beschleunigenden Teile des Schützes 2 im Vergleich zu B eine kleinere Trägheit, wodurch der Anker 4 bei gleichem anfänglichen vorgegebenen Soll-Strom ISoll schneller beschleunigt wird und demnach auch eher die Markierung vom ersten Sensor S1 detektiert wird als bei B. Die langsamere Beschleunigung des Ankers 4 bei B kann auch daher resultieren, daß der Anker 4 festsitzt oder eine für das Einschalten ungünstige Einbaulage vom Schütz eingenommen wird. Verstreicht bis zur Detektierung mehr Zeit, so bedeutet dies, daß der Anker 4 träger bzw. schwergängiger ist und sich schlechter beschleunigen läßt. Um auch bei diesem trägen Anker 4 eine möglichst definierte Schließgeschwindigkeit zu erzielen, muß eine größere Beschleunigungskraft mittels des Spulenmagnetfeldes erzeugt werden. Dies bedeutet, daß der Spulenstrom entsprechend erhöht werden muß. Da die bis zur Detektierung vergangene Zeit ein Maß für die Trägheit ist, wird entsprechend der vergangenen Zeit ein größerer Soll-Strom ISoll i, j vorgegeben.The diagrams of Figure 4 show two possible acceleration processes A and B of the armature 4. If, in a simple switch magnet control each sensor S i only a fixed target current I set, i assigned, they are in an intelligent switch magnet control according to Figure 4 a sensor S i several target currents I target, i, j assigned. It depends on the time elapsed until detection by the sensor S i which target current I target, i, j is specified. At A the armature 4 and the parts of the contactor 2 to be accelerated by it have a smaller inertia compared to B, whereby the armature 4 is accelerated faster at the same initial predetermined target current I Soll and accordingly also the marking from the first sensor S. 1 is detected than in B. The slower acceleration of the armature 4 at B can also result from the armature 4 being stuck or from the contactor being in an unfavorable installation position for switching on. Passes up to detect more time, this means that the armature 4 is sluggish or stiff and is difficult to accelerate. In order to achieve a closing speed as defined as possible with this inert armature 4, a larger acceleration force must be generated by means of the coil magnetic field. This means that the coil current must be increased accordingly. Since the time elapsed until the detection is a measure of the inertia, a larger target current I target i, j is specified in accordance with the past time.

Die Figur 5 zeigt ein Blockschaltbild einer intelligenten Schaltmagnetansteuerung 1, bei der die Soll-Ströme ISoll, i, j von der jeweils bis zur Detektierung des zugehörigen Sensors S1 vergangenen Zeit abhängen. Die Schaltmagnetansteuerung 1 hat einen Ansteuerungsblock 17. Mittels konventionellen Eingabemitteln 13, kann der Einschaltvorgang oder der Ausschaltvorgang eingeleitet werden. Es ist zudem vorteilhaft, wenn die Schaltmagnetansteuerung 1 eine Energiehilfsversorgung 16 hat, und die Ansteuerung über ein Bus-Ansteuerungssignal vollzogen wird. Aus der vom Ansteuerungsblock 17 gelieferten Versorgungsspannung UV wird mittels des Spannungsstellers 9 die an der Spule 7 liegende Spulenspannung USpule in Abhängigkeit der Differenz zwischen IIst und ISoll eingeregelt. Mittels des Ansteuerungsblocks 17 und dem Wegsensor 3 wird der Zeitmesser 10 gesteuert, d.h. rückgesetzt und/oder gestartet. Die StromSollwerte ISoll, i, j sind dabei vorteilhaft in einem nichtflüchtigen Speicher 11 abgespeichert und werden entsprechend ausgelesen und dem Vergleicher 20 zugeführt. Mittels des Strommessers 6 wird der Ist-Strom IIst der Spule 7 ermittelt und ebenfalls dem Vergleicher 20 zugeführt. Sowohl der Ist-Strom IIst , als auch die Signale des Wegsensors 3 und des Kontaktsystems, bestehend unter anderem aus den Schaltkontakten 5, werden dem Meldeblock 19 zugeführt. Der Meldeblock 19 kommuniziert mittels eines Daten- und/oder Steuerbusses 12 mit anderen nicht dargestellten elektronischen Geräten. Die Schaltmagnetansteuerung 1 hat darüber eine Aussteuerschaltung 18, mittels der das Schütz ausgeschaltet wird.FIG. 5 shows a block diagram of an intelligent switching magnet control 1, in which the target currents I target, i, j depend on the time elapsed until the associated sensor S 1 was detected. The solenoid control 1 has a control block 17. The switch-on or switch-off process can be initiated by means of conventional input means 13. It is also advantageous if the solenoid control 1 has an auxiliary power supply 16 and the control is carried out via a bus control signal. From the supply voltage U V supplied by the control block 17, the coil voltage U coil applied to the coil 7 is adjusted by means of the voltage regulator 9 as a function of the difference between the actual and the nominal value. The timer 10 is controlled, ie reset and / or started, by means of the control block 17 and the displacement sensor 3. The current setpoints I setpoint, i, j are advantageously stored in a non-volatile memory 11 and are read out accordingly and fed to the comparator 20. The actual current I actual of the coil 7 is determined by means of the ammeter 6 and is likewise fed to the comparator 20. Both the actual current I Ist and the signals from the displacement sensor 3 and the contact system, consisting among other things of the switching contacts 5, are fed to the message block 19. The message block 19 communicates with other electronic devices, not shown, by means of a data and / or control bus 12. The Switching solenoid control 1 has a control circuit 18, by means of which the contactor is switched off.

Die Figur 6 zeigt ein Flußdiagramm für die erfindungsgemäß Schaltmagnetansteuerung 1. Dabei ist der dargestellte Programmablauf für die normale und die intelligente Schaltmagnetansteuerung 1 gleich. Bei der normalen Schaltmagnetansteuerung 1 ist jedem Sensor Si lediglich ein Soll-Strom ISoll, i zugeordnet, wobei diese jeweils im Schritt S2 mittels des Strom-Sollwertgebers 8 vorgegeben werden. Es ist jedoch auch möglich, im Schritt S2 einen Soll-Strom ISoll, i, j vorzugeben, welcher von der Zeitdauer bzw. dem Zeitintervall ΔTi, j bis zur Detektierung des zugehörigen Sensors Si abhängt (intelligente Schaltmagnetansteuerung). Im Schritt S1 startet ein Startsignal den Einschaltvorgang. Dies kann dadurch geschehen, daß die Versorgungsspannung einen bestimmten Spannungspegel überschreitet. Der Spannungspegel ist dabei so bemessen, daß die Spannung ausreichend ist, um sämtliche Stromsollvorgaben einzuregeln. Im Schritt S2 wird nach Detektieren des ersten Sensors S1 der Soll-Strom ISoll, 1 bzw. ISoll, 1,ΔT vorgegeben. Gleichzeitig oder unmittelbar danach wird in Schritt S3 der Zeitmesser 10 zurückgesetzt und neu gestartet. Nach dem Schritt S3 wird die Schleife S4, S5 so lange durchlaufen, bis der nächste Sensor Sk+1 die Markierung 4a detektiert hat (Schritt S5) oder die mittels Sensor Sk gehörige Zeit t(k) überschritten hat (Schritt S4). Wird diese Zeit t(k) überschritten, so wird in ein Nothilfsprogramm zu Schritt S8 verzweigt. Bei Schritt S8 wird ein höherer Soll-Stromwert ISoll als der Soll-Strom ISoll, k vorgegeben, um den Anker mit der möglichst maximalen Kraft zu beschleunigen. Nach dem Schritt S8 kann es zweckmäßig sein, den Zeitmesser 10 erneut zurückzusetzen und zu starten. Danach wird erneut eine Schleife, bestehend aus den Schritten S9 und S10, solange durchlaufen, bis der nächste Sensor Sk+1 die Markierung 4a detektiert hat (Schritt S10) oder die mittels des Zeitmessers 10 gemessene Zeit t ein für den jeweiligen Sensor Sk gehörige Zeit t(k) überschritten hat (Schritt S9). Wird die maximale Zeit während des Nothilfsprogramms (Schritte S8, S9, S10, S11) überschritten, so wird mit Schritt S11 der Abbruch bzw. der Ausschaltvorgang eingeleitet und eine entsprechende Meldung mittels des Daten- und/oder Steuerbusses an andere elektronische Komponenten ausgesandt. Detektiert jedoch der nächste Sensor Sk+1 die Markierung 4a (Schritt S10), so wird zurück zum Einschaltprogramm verzweigt und der Schritt S6 ausgeführt. Hat der letzte Sensor Sn die Markierung detektiert, so wird der Einschaltvorgang abgeschlossen und mit Schritt S7 die Haltephase eingeleitet, d.h. der Haltestrom IHalten bis zum Einleiten des Ausschaltvorgangs vorgegeben. Wird dagegen bei Schritt S6 festgestellt, daß die Markierung 4a den letzten Sensor noch nicht passiert hat, so wird zum Schritt S2 verzweigt und ein neuer Soll-Strom ISoll, k+1 vorgegeben.FIG. 6 shows a flow chart for the switching magnet control 1 according to the invention. The program sequence shown is the same for the normal and the intelligent switching magnet control 1. In normal switching magnet control 1, each sensor S i is only assigned a target current I target, i , these being predefined in step S2 by means of the current target value transmitter 8. However, it is also possible to specify a target current I target, i, j in step S2, which depends on the time period or the time interval ΔT i, j until the associated sensor S i is detected (intelligent switching magnet control). In step S1, a start signal starts the switch-on process. This can be done by the supply voltage exceeding a certain voltage level. The voltage level is dimensioned so that the voltage is sufficient to regulate all current setpoints. In step S2, after detecting the first sensor S1, the target current I target, 1 or I target, 1, ΔT is specified. Simultaneously or immediately thereafter, the timer 10 is reset and restarted in step S3. After step S3, the loop S4, S5 is run through until the next sensor S k + 1 has detected the marking 4a (step S5) or has exceeded the time t (k) associated with sensor S k (step S4). If this time t (k) is exceeded, the program branches to an emergency aid program at step S8. In step S8, a higher target current value I target than the target current I target, k is specified in order to accelerate the armature with the maximum possible force. After step S8, it may be appropriate to reset and start the timer 10 again. Then a loop consisting of steps S9 and S10 is run through again until the next sensor S k + 1 has detected the marking 4a (step S10) or the time t on measured by the timer 10 for the respective sensor S k proper time t (k) has exceeded (step S9). If the maximum time is exceeded during the emergency aid program (steps S8, S9, S10, S11), the abort or switch-off process is initiated with step S11 and a corresponding message is sent to other electronic components by means of the data and / or control bus. However, if the next sensor S k + 1 detects the marking 4a (step S10), the system branches back to the switch-on program and step S6 is carried out. If the last sensor S n has detected the marking, the switch-on process is completed and the hold phase is initiated with step S7, ie the hold current I hold is specified until the switch-off process is initiated. If, on the other hand, it is determined in step S6 that the marking 4a has not yet passed the last sensor, a branch is made to step S2 and a new target current I target, k + 1 is specified.

Claims (23)

  1. Electronic switch magnet control for contactors, in which case the contactor (2) has a movement sensor (3) by means of which the position of the armature (4) can be determined, and the switch magnet control (1) has a measuring sensor (6) which determines the actual current (Iact) in the armature coil (7) of the contactor (2) and has a current set-value transmitter (8) which predetermines a set current (Iset) as a function of the position of the armature (4), and has a voltage regulator (9) which predetermines the voltage (Ucoil) applied to the armature coil (7), as a function of the current error between the actual current and the set current, characterized
    - in that the movement sensor (3) has a number n of sensors (Sk=1..n), in particular mechanical switches, light barriers, Hall detectors or induction switches, which are arranged along the movement path (H) travelled by the armature (4), and by means of which the position of the armature (4) can be determined discretely, and
    - in that each sensor (Si) of the movement sensor (3) is operatively connected to the current set-value transmitter (8), in which case the digital information of the sensor (Si) governs the respective set current value (Iset,i) to be predetermined.
  2. Electronic switch magnet control according to Claim 1, characterized in that the set current (Iset) is a function of the position of the armature (4), or a function of time and of the position of the armature (4).
  3. Electronic switch magnet control according to Claim 2, characterized in that each sensor (Si) of the movement sensor (3) is assigned a plurality of set current values (Iset i, j), in which case the set current values (Iset, i, j) assigned to a sensor (Si) are in each case assigned to different time intervals (ΔTi, j).
  4. Electronic switch magnet control according to Claim 3, characterized in that the time intervals (ΔTi, j) in each case correspond to the duration of the total elapsed time from the time when the contactor (2) was switched on until the associated sensor (Si) is reached, or the time intervals (ΔTi, j) each correspond to the duration of the time required for the sensors (Si-1) and (Si) arranged in front of the movement path to move through the movement path.
  5. Electronic switch magnet control according to one of the preceding claims, characterized in that the switch magnet control (1) has at least one timer (10).
  6. Electronic switch magnet control according to one of the preceding claims, characterized in that the sensors (Sk) are arranged distributed at uniform intervals from one another over the movement distance (H).
  7. Electronic switch magnet control according to one of the preceding claims, characterized in that, as a result of the movement of the armature (4), those sensors (Sk) of the movement sensor (3) which are arranged along the movement path (H) in each case successively transmit a specific signal to the switch magnet control (1) after identifying the armature (4) or after identifying corresponding markings, apertures, projections or depressions (4a, 5a) in the armature (4) .
  8. Electronic switch magnet control according to one of the preceding claims, characterized in that the first sensor (S1) of the movement sensor (3) detects or identifies the armature (4) immediately after it leaves the rest position or the OFF position, and the last sensor (Sn) detects or identifies the armature (4) immediately before it reaches the holding position.
  9. Electronic switch magnet control according to one of the preceding claims, characterized in that the switch magnet control (1) has a memory (11) in which set current values (Iset) are stored.
  10. Electronic switch magnet control according to one of the preceding claims, characterized in that the electronic switch magnet control (1) has a data bus and/or control bus (12), and communicates with other electronic appliances via this bus (12).
  11. Electronic switch magnet control according to Claim 10, characterized in that the electronic switch magnet control (1) can be controlled by means of the data bus and/or control bus (12), and/or other appliances can be controlled by the electronic switch magnet control (1), and/or data can be interchanged via the data bus (12).
  12. Electronic switch magnet control according to one of the preceding claims, characterized in that the set current values (Iset) are dimensioned such that the predetermined set current can be stabilized when a supply voltage from the voltage controller (9) whose value is less than the normal supply voltage is applied.
  13. Method for switching on an electronic contactor by means of the electronic switch magnet control according to one of the preceding claims, characterized in that the switch magnet control (1) starts the process of switching on the contactor (2) as soon as a start signal is present at the input of the switch magnet control (1), or the supply voltage (Uv) of the switch magnet control (1) exceeds a specific value.
  14. Method for switching on an electronic contactor according to Claim 13, characterized in that a timer (10) is reset and started at the start of the switching-on process, and the current set-value transmitter (8) predetermines a constant current profile or a degressive or ramp current profile, which in each case starts from zero, for the voltage controller (9) until the movement of the armature (4) results in the first sensor (S1) detecting the armature (4) or its markings (4a) and emits an appropriate signal to the switch magnet control (1), or a specific time (Ton, max) is exceeded.
  15. Method for switching on an electronic contactor according to Claim 13 or 14, characterized in that, as soon as the first sensor (S1) or one of the following sensors (Si) detects the armature (4) or its markings (4a), the current set-value transmitter (8) predetermines the set current value (Iset, i) associated with the respective sensor (Si) or the set current value (Iset, i, j) associated with the respective sensor (Si) and the time (ΔT, i,j) required for the armature (4) to move to this position.
  16. Method for switching on an electronic contactor according to Claim 15, characterized in that the timer (10) is then reset and started.
  17. Method for switching on an electronic contactor according to Claim 16, characterized in that a maximum time duration (Tmax, i) is defined for each movement path (Hi) to be travelled by the armature (4) between two sensors (S1) and (Si+1) respectively (sensor interval Si, Si+1), and in that the actually required time (t) is continuously compared with the predetermined maximum time duration (Tmax, i), and a standby program is started as soon as (t) is greater than or equal to (Tmax, i).
  18. Method for switching on an electronic contactor according to Claim 17, characterized in that a timer (10) is reset and started at the start of the standby program, and a maximum set current (Iset, max) is predetermined by the current set-value transmitter (8) for the duration of the standby program, in which case a specific maximum set current (Iset, max, i) can be predetermined either for all the sensor intervals (Si, Si+1) with the same maximum set current (Iset, max) or for each sensor interval (Si, Si+1).
  19. Method for switching on an electronic contactor according to Claim 18, characterized in that a maximum standby time duration (Tmax, Stby, i) is defined for each movement path (Hi) to be travelled by the armature (4) between two sensors (Si) and (Si+1) respectively (sensor interval Si, Si+1), and in that the actually required time (t) is continuously compared with the predetermined maximum standby time duration (Tmax, Stby, i), and the process of switching on the contactor (2) is ended as soon as (t) is greater than or equal to (Tmax, Stby, i).
  20. Method for switching on an electronic contactor according to one of Claims 13 to 19, characterized in that, as soon as the last sensor (Sn) has detected the armature (4) or its markings (4a), the current set-value transmitter (8) predetermines a holding current (IHold) and starts the holding phase.
  21. Method for holding an electronic contactor in its ON position by means of the electronic switch magnet control according to one of Claims 1 to 12, characterized in that, when the switch magnet of the contactor (2) is closed, a small holding current (IHold, small) is predetermined by means of the current set-value transmitter (8), and in that, when the armature (4) is deflected, a maximum holding current (IHold, max) is predetermined by means of the current set-value transmitter (8) .
  22. Method for holding an electronic contactor in its ON position according to Claim 21, characterized in that the last sensor (Sn) detects inadvertent deflection of the armature (4), and in that, as soon as the sensor (Sn) detects the armature (4) or its markings (4a), the maximum holding current (IHold, max) is predetermined by the set current-value transmitter (8) until the switch magnet of the contactor is closed again or a maximum time has passed.
  23. Method for holding an electronic contactor in its ON position according to Claim 22, characterized in that the contactor (2) is switched off when the maximum time is exceeded.
EP97900969A 1996-02-06 1997-01-09 Electronic switch magnet control system for switching on and holding a contactor Expired - Lifetime EP0879474B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19605974 1996-02-06
DE19605974A DE19605974A1 (en) 1996-02-06 1996-02-06 Electronic switching magnet control for switching on and holding a contactor
PCT/EP1997/000052 WO1997029501A1 (en) 1996-02-06 1997-01-09 Electronic switch magnet control system for switching on and holding a contactor

Publications (2)

Publication Number Publication Date
EP0879474A1 EP0879474A1 (en) 1998-11-25
EP0879474B1 true EP0879474B1 (en) 2000-04-05

Family

ID=7785715

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97900969A Expired - Lifetime EP0879474B1 (en) 1996-02-06 1997-01-09 Electronic switch magnet control system for switching on and holding a contactor

Country Status (4)

Country Link
EP (1) EP0879474B1 (en)
AT (1) ATE191583T1 (en)
DE (2) DE19605974A1 (en)
WO (1) WO1997029501A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19813395A1 (en) * 1998-03-26 1999-09-30 Lsp Innovative Automotive Sys Electromagnetic control device for motor vehicle engine valves
DE19832198A1 (en) * 1998-07-17 2000-01-20 Bayerische Motoren Werke Ag Controlling armature motion in electromagnetic actuator used to operate internal combustion engine valve
DE19834548B4 (en) * 1998-07-31 2007-11-29 Bayerische Motoren Werke Ag Method for controlling the movement of an armature of an electromagnetic actuator
US6292345B1 (en) 1998-09-02 2001-09-18 Siemens Aktiengesellschaft Method for controlling an electromechanical actuator
JP2003500600A (en) 1999-05-27 2003-01-07 エフ・エー・フアウ・モトーレンテヒニック・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Method of controlling an electromagnetic actuator for operating a gas exchange valve of a piston type internal combustion engine
DE10315584B4 (en) * 2003-04-05 2015-01-08 Mahle Filtersysteme Gmbh Method for actuating an electromagnetic actuating device and device for carrying it out
DE102007002176B4 (en) * 2007-01-15 2018-07-19 Siemens Aktiengesellschaft Detecting means for detecting the switching state of an electromagnetic switching device
DE102008046374B3 (en) * 2008-09-09 2009-12-31 Siemens Aktiengesellschaft Electromagnetic switchgear e.g. relay, has contact system standing in effective connection with magnetic system, and sensor arranged at side of yoke lying opposite to movable armature, where sensor detects impact torque of armature
FR2940509B1 (en) 2008-12-19 2010-12-10 Schneider Electric Ind Sas OPERATING ELECTRICAL SWITCH OPTIMIZED
DE102012112692A1 (en) * 2012-12-20 2014-06-26 Eaton Electrical Ip Gmbh & Co. Kg Device and method for operating an electromagnetic switching device drive
DE102015215028A1 (en) * 2015-08-06 2017-02-09 Siemens Aktiengesellschaft Method for reporting a switching state of an electrical switching device and device for carrying out the method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2910810C2 (en) * 1979-03-20 1984-06-20 Popp + Co Gmbh, 8582 Bad Berneck Contact spring
US4608620A (en) * 1985-11-14 1986-08-26 Westinghouse Electric Corp. Magnetic sensor for armature and stator
DE3615908A1 (en) * 1986-05-12 1987-11-19 Siemens Ag Electromagnetic switching apparatus
DE3822342A1 (en) * 1987-07-09 1989-01-19 Mitsubishi Electric Corp CIRCUIT BREAKER
DE3731661A1 (en) * 1987-09-20 1989-03-30 Sempell Rhein Armaturen DEVICE FOR INFLUENCING THE RETURN VALUE OF A VALVE OR A PRESSURE SWITCH
US4851959A (en) * 1988-07-25 1989-07-25 Eastman Kodak Company Solenoid engagement sensing circuit
DE4031427A1 (en) * 1990-10-04 1992-04-09 Luetze Gmbh Co F Operating EM regulator at reduced energy level - reducing retention power once switched on and monitoring to boost power if change in switched state is detected
DE4129265A1 (en) * 1991-08-30 1993-03-04 Mannesmann Ag ELECTROMAGNETIC SWITCHGEAR
FR2702880B1 (en) * 1993-03-17 1995-04-28 Telemecanique Electromagnetic switch device.
DE4430867A1 (en) * 1994-08-31 1996-03-07 Licentia Gmbh Electromagnetic drive for switching Apparatus

Also Published As

Publication number Publication date
EP0879474A1 (en) 1998-11-25
DE19605974A1 (en) 1997-08-07
ATE191583T1 (en) 2000-04-15
WO1997029501A1 (en) 1997-08-14
DE59701402D1 (en) 2000-05-11

Similar Documents

Publication Publication Date Title
EP0879474B1 (en) Electronic switch magnet control system for switching on and holding a contactor
EP1896746B1 (en) Clutch reference position
DE2609843A1 (en) DEVICE FOR REGULATING THE SPEED OF A MOTOR VEHICLE
DE4315637C2 (en) Method for recognizing the position and the direction of movement of a movably mounted part
EP3111454A1 (en) Electric switch having an electromagnetic actuator
EP1234316B1 (en) Electromagnetic switchgear comprising a controlled drive, a corresponding method and a circuit
DE2146507B2 (en) Control device for diesel engines
DE4331781C2 (en) Control device for a drive motor for moving a gate guided along a certain path between two end positions, in particular a garage door
DE3935593A1 (en) METHOD AND DEVICE FOR REGULATING THE INTERIOR TEMPERATURE OF MOTOR VEHICLES
DE2336081A1 (en) METHOD AND DEVICE FOR CONTROLLING SPINNING MACHINES
EP1770313A2 (en) Method and device for operating a drive mechanism
EP1671024A2 (en) Method for controlling an electromagnetic valve
WO2004057634A1 (en) Method and device for determining the remaining service life of a switchgear
DE102014118743A1 (en) Method for controlling the thread delivery of a yarn feeding device and yarn feeding device
WO1992015779A1 (en) Device for determining the start of injection in a fuel-injection valve
WO2009135519A1 (en) Method and device for controlling a magnetic actuator
WO2019038106A1 (en) Method for setting the attractive behaviour of an electromagnetic feedback actuator
DE102018218799B4 (en) Actuator device, valve device and method for detecting a position of an actuator
DE102006043075A1 (en) Gearbox/clutch method for operating a drive device adjusts especially an automatic gearbox and/or a clutch in a motor vehicle
DE102012023704A1 (en) Method for operating glue valve of device for manufacturing and/or packaging of cigarettes at cigarette industry, involves monitoring and inducing characteristic voltage pulse in coil as result of sudden deceleration of magnet
DE10112902A1 (en) Method for operating a brake having an electromagnet
EP0879475B1 (en) Electronic switch magnet control system for holding a contactor
DE2531739C3 (en) Electronic switch-off device for the circulation pump of a regulated heating system with mixing valve
EP2936532B1 (en) Apparatus and method for operating an electromagnetic drive for a switching device
DE2139418C3 (en) Circuitry for controlling the duty cycle of a machine gun firing magnet

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980814

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI SE

17Q First examination report despatched

Effective date: 19990114

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MOELLER GMBH

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000405

REF Corresponds to:

Ref document number: 191583

Country of ref document: AT

Date of ref document: 20000415

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59701402

Country of ref document: DE

Date of ref document: 20000511

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. PATENTANWAELTE

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000705

ET Fr: translation filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20000405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20010123

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060112

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060113

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070618

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080109