EP0875107B1 - Codierverfahren zur einbringung eines nicht hörbaren datensignals in ein audiosignal, decodierverfahren, codierer und decodierer - Google Patents
Codierverfahren zur einbringung eines nicht hörbaren datensignals in ein audiosignal, decodierverfahren, codierer und decodierer Download PDFInfo
- Publication number
- EP0875107B1 EP0875107B1 EP97902223A EP97902223A EP0875107B1 EP 0875107 B1 EP0875107 B1 EP 0875107B1 EP 97902223 A EP97902223 A EP 97902223A EP 97902223 A EP97902223 A EP 97902223A EP 0875107 B1 EP0875107 B1 EP 0875107B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- signal
- data signal
- audio signal
- audio
- spectrum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005236 sound signal Effects 0.000 title claims abstract description 168
- 238000000034 method Methods 0.000 title claims abstract description 70
- 230000008569 process Effects 0.000 title description 12
- 230000000873 masking effect Effects 0.000 claims abstract description 61
- 230000003595 spectral effect Effects 0.000 claims abstract description 34
- 238000001228 spectrum Methods 0.000 claims description 57
- 238000009826 distribution Methods 0.000 claims description 11
- 239000000969 carrier Substances 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 5
- 230000000694 effects Effects 0.000 claims description 4
- 230000001131 transforming effect Effects 0.000 claims 30
- 239000000284 extract Substances 0.000 claims 10
- 230000005284 excitation Effects 0.000 claims 4
- 230000005540 biological transmission Effects 0.000 description 22
- 230000009466 transformation Effects 0.000 description 17
- 230000008901 benefit Effects 0.000 description 8
- 238000004891 communication Methods 0.000 description 8
- 238000004364 calculation method Methods 0.000 description 7
- 230000002441 reversible effect Effects 0.000 description 6
- 238000005070 sampling Methods 0.000 description 6
- 230000015654 memory Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 230000005855 radiation Effects 0.000 description 4
- 230000001360 synchronised effect Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000003032 molecular docking Methods 0.000 description 3
- 230000010363 phase shift Effects 0.000 description 3
- 108010003272 Hyaluronate lyase Proteins 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000035987 intoxication Effects 0.000 description 1
- 231100000566 intoxication Toxicity 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04H—BROADCAST COMMUNICATION
- H04H20/00—Arrangements for broadcast or for distribution combined with broadcast
- H04H20/28—Arrangements for simultaneous broadcast of plural pieces of information
- H04H20/30—Arrangements for simultaneous broadcast of plural pieces of information by a single channel
- H04H20/31—Arrangements for simultaneous broadcast of plural pieces of information by a single channel using in-band signals, e.g. subsonic or cue signal
Definitions
- the present invention relates to an encoding method for introducing an inaudible data signal into an audio signal, on a method for decoding a inaudible data signal contained in an audio signal, to an encoder and a decoder.
- the transmission of inaudible data signals in one Audio signal is used, for example, in range research for broadcasting.
- the range research serves the distribution of listeners of individual radio stations to reliably determine.
- the prior art is different Processes known to individual audience distribution Identify radio stations.
- a first method works in such a way that by means of a microphone, that is carried by a handset, the ambient noise recorded and using a reference receiver compared. The reception frequency can then be obtained from the comparison of the radio receiver.
- the ambient noise in compressed form with the information of the exact time be recorded in a memory and then on a control center can be transferred.
- There the data from powerful computers compared with sample programs, which during a predetermined period of time, for example one day. In this way, the heard station can be determined.
- the system described first is not applicable to one Multi-band reception, multi-standard reception or multi-media reception, since it's only on the transmission of frequency modulated signals is limited.
- An additional local radiation other media via free FM channels is due to the diversity of the program sources can only be carried out in individual cases.
- the reception strength is the same required as the receiver of the listener has. At a good reception system or e.g. this condition is in the car not realizable.
- Another disadvantage is in the response time to tune the reference receiver and the correlation, as this increases with the range of programs and is in the range of minutes. The electricity consumption such a process is due to the components used, the receiver, the signal processing, etc., considerably.
- the receiver cannot be designed to be as economical as desired be because of the power consumption of the reference receiver immediately determines the large signal strength is.
- Another disadvantage is that the comparison principle only the frequency of the received Signal can be determined, but the frequency assignment depends on the current location. So it is necessary to provide information regarding the location of the Available to the listener, for example via the current station tables.
- the second method described above has the disadvantage a considerable memory requirement, since a Recording over 24 hours a net amount of data of approx. 150 MB results. Even with good compression e.g. the factor 10 is about 15 MB of data per day. Consequently the memories to be used are large and therefore expensive and also have a high power consumption.
- the investigation of the reference programs difficult because they are decentralized nationwide. Again there is another problem in the issue of data protection, since the audio information collected directly from the environment of the test person and transported to a central evaluation.
- US-A-5,450,490 describes an apparatus and method for including codes in audio signals and for Decode them. This system uses different ones Symbols encoded using crossed frequency lines become. To ensure that the transmitted data signals are inaudible at all times, is regarding of the individual frequencies that make up the broadcast Assemble symbols, a masking assessment carried out. The disadvantage of this method is in that the generation of signals to be transmitted is very is complex.
- US-A-5,473,631 relates to a communication system simultaneously data and audio signals over a conventional one Send audio communication channel, being psychoacoustic Coding techniques (perceptual coding) used become.
- a first network is used, which one Audio channel monitors to discover ways to do that Insert data signal in the audio signal such that the inserted signals are masked by the audio signal.
- a control is provided by means of which a data signal is provided, which is then in RAM memories is filed.
- the data signal is either by a Encoded spread spectrum encoder. That in the RAM memory stored data signal is input into a modulo2 encoder, in it with a synchronous pseudo-noise code is mixed by a PN code generator.
- the resulting Signal is input to a head signal generator, and the signal output from this generator is sent to an adjustable Attenuator applied.
- the output of the adjustable Attenuator is connected to a summer which serves the audio signal and the data signal summarize, then the audio and data signal at the output to spend.
- the network is used for opportunities to capture a data signal in such a way in the audio signal insert so that the data signals from a human Listeners are not noticed.
- the present Invention the object of a method for coding a data signal not audibly contained in an audio signal to ensure that the Data signal to be transmitted not perceived by the human ear becomes insensitive to interference and forms a good channel utilization, the data signal can be decoded safely and easily.
- the present Another object of the invention is an encoder for inserting and removing one inaudible in one To create audio signal contained data signal at which it is ensured that the data signal to be transmitted from human ear is not perceived, against interference is insensitive and good channel utilization forms, the data signal being decoded safely and easily can be.
- An advantage of the methods according to the invention is that that information is introduced into an audio signal, without being perceived by the human ear, but can be safely decoded by a detector.
- Another Advantage of the present invention is that the Spread spectrum modulation is used where the information or the data signal in the entire transmission band spreads, increasing susceptibility to interference and reduces the multipath becomes. At the same time, there is good channel utilization.
- the inaudibility thereby achieved that the audio signal, which for example is a music signal to which the data signal or the information should be added to a psychoacoustic calculation is subjected.
- This becomes the masking threshold determined and the spread spectrum signal with this weighted. This ensures that at no time more energy is used for data transmission than is permitted psychoacoustically.
- a non-recursive can be used to decode the encoded data signal Filters (matched filters) can be used.
- This Filters can be used for correlation and reconstruction so that decoding is particularly easy, what with regard to a later hardware implementation is advantageous.
- the decoder can, for example, in the Form of a wrist watch can be easily provided by test subjects can be worn.
- An advantage of the encoder according to the invention is that that information is introduced into an audio signal, without being perceived by the human ear, but can be safely decoded by a detector.
- Another Advantage of the present invention is that the Spread spectrum modulation is used where the information or the data signal in the entire transmission band spreads, increasing susceptibility to interference and reduces the multipath becomes. At the same time, there is good channel utilization.
- the inaudibility thereby achieved that the audio signal, which for example is a music signal to which the data signal or the information should be added to a psychoacoustic calculation is subjected.
- This becomes the masking threshold determined and the spread spectrum signal with this weighted. This ensures that at no time more energy is used for data transmission than is permitted psychoacoustically.
- the decoder can use a non-recursive filter (matched filter) use.
- This filter can be used for correlation and Reconstruction can be used so that the decoding designed especially simple, with a view to a later one Hardware implementation is advantageous.
- the decoder can be provided, for example, in the form of a wristwatch that can be easily carried by test persons.
- FIG. 1 An exemplary embodiment is described below with reference to FIG. 1 of an encoder described in more detail. It should be noted that the circuit shown in Fig. 1 is only a represents preferred embodiment, and the present Invention is not limited to this.
- BPSK baseband modulator 108, the BPSK modulator 110 and the device for weighting two signals 112 each formed by a multiplier.
- the transformation block 100 is with an input ON Circuit connected.
- the output of the transformation block 100 is connected to psychoacoustic block 102.
- the entrance the circuit is also connected to an input of the superposition device 116 connected.
- the output of the pseudo-noise signal generator 106 is with connected to an input of the BPSK baseband modulator 108 and the output of the data signal generator 104 with the input of the source coding block 105, whose output again with the other input of the BPSK baseband modulator 108 is connected.
- the output of the BPSK baseband modulator 108 is with an input of the BPSK modulator 110 connected, the other input of which is connected to a signal generator (not shown) is connected, which is a cosine Applies signal to the other input of the BPSK modulator 110.
- the output of the BPSK modulator 110 is with the further Transformation block 118 connected, the output of which the weighting device 112 is connected.
- the output of the psychoacoustic block 102 is also included of the weighting device 112.
- the exit of the Weighting device 112 has an input of the reverse transformation block 114 connected.
- the output of the reverse transformation block 114 is with another entrance Superposition device 116 connected, the output the superposition device 116 with an output AUS der Circuit is connected.
- PCM Pulsed Code Modulation
- FFT fast Fourier transformation
- N (..) of the music signal n (k) with 512 frequency lines before that as an input signal for psychoacoustics 102 is used.
- the spectrum of the music signal becomes simultaneous applied to the superposition device 116, such as this is illustrated by arrow 120.
- the spectrum N ( ⁇ ) is divided into critical bands. These bands have a width of 1/3 bark, which, depending on the sampling frequency (in the present example this is 44.1 kHz or 48 kHz, for example) results in a band number of approximately 60 critical bands.
- the assignment of the frequencies f (Hz) in bands z (bark) is based on the band division that the human ear makes during the hearing process and is listed in a table, for example in the standard ISO / IEC 11172-3.
- the masking threshold W (z) is significant for tonal audio signals to set lower. Therefore, using signal prediction a measure of the tonality for each frequency line certainly.
- the prediction determines from the two past FFTs for each line have a predicted vector by adding the phase and magnitude difference to the vector the last FFT line. Then an error vector by forming the difference between the predicted vector and actually vector obtained from the FFT.
- the masking threshold can be calculated differently.
- the spectral lines obtained from the FFT are summarized in critical bands. These bands have a width of 1/3 bark, which, depending on the sampling frequency (in the present example this is 44.1 kHz or 48 kHz, for example) results in a band number of approximately 60 critical bands.
- the assignment of the frequencies f (Hz) in bands z (bark) is based on the band division that the human ear makes during the hearing process and is listed in a table, for example in the standard ISO / IEC 11172-3.
- W (z) is now converted into W ( ⁇ ), this conversion according to the ISO / IEC 11172-3 standard.
- the history the masking threshold W ( ⁇ ) is thus at the output of the Blocks 102, and indicates up to which energy level energy may be added to the signal at a point ⁇ , so that this change remains inaudible.
- the data signal generator 104 provides the useful data signal x (n), which is generally repeated cyclically in order to enable decoding in a decoder at any time.
- the data signal has a bandwidth of, for example, 50 Hz.
- the data at the output of the DSG 104 are in the form of a binary signal and have a low bit rate 1 / T x in the range from 1-100 bit / s.
- the spectrum of this signal must be very narrow-band in comparison to the spectrum of the signal which is output by the PN signal generator 106 with ⁇ x .
- the useful data signals x (n) exist in the one described in FIG. 1 Embodiment from words with a length of 11 bits. These data words are in a frame built-in, which has a length between 26 and 29 bits.
- Fig. 2 the structure of such a transmission frame is shown in more detail.
- the transmission frame 200 comprises four sections 202, 204, 206, 208.
- the first section is a synchronous word 202, which consists of seven bits (bits 0 to 6) and in which example shown in FIG. 2 by the bit sequence 1111110 is formed.
- the second section 202 is used for error protection and consists of four bits (bits 7 to 10).
- the third Section 206 contains the data word, which is a length of 11 Has bits (bits 11 to 21).
- the fourth section 208 contains a check sum (checksum) consisting of four bits (bits 22 to 25).
- the error protection (section 204 in FIG. 2) is provided by a non-systematic (15,11) hamming code implemented. With this Block code can correct all 1-bit errors. At Multi-bit errors will result in the data word received being incorrect discarded.
- the advantage of this code is that it without great computer effort through simple matrix multiplication is realizable and thus also with regard to the decoding method suitable is.
- the transmission frame 200 is through the source coding block 105 (Fig. 1) constructed.
- Fig. 3 is the source coding block 105 shown in detail.
- the source coding block 105 are from the data signal generator 104 the data signals provided.
- the data are data words with 11 bits Length before, as shown in Fig. 3.
- the transmission framework is now set up in such a way that first the error protection in a first block 304 by the (15, 11) Hamming code is realized.
- the frame now has a length of 15 bits.
- a second block 306 added the check sum to the frame.
- the length is then 19 bits.
- the required one takes place Coding of the transmission frame by an HDLC encoder, which results in a frame length of 19 to 22 bits.
- the Binary signal present at the output of block 308 is now in converted an antipodal signal. This can e.g.
- the pseudo-noise signal generator 106 provides the spread signal g (l) with the bit rate 1 / T g .
- the bandwidth ⁇ g of this signal determines the bandwidth ⁇ s of the spread spectrum signal and, in the exemplary embodiment shown in FIG. 1, lies in the range of 6 kHz.
- the PNSG 106 is constructed as a feedback shift register and supplies a pseudo-random pseudo-noise sequence (PN sequence) of length N. This sequence must be known in the decoder for decoding the signal.
- the ratio T x / T n is called the spreading factor and directly determines the signal-to-noise ratio up to which the method still works reliably.
- the present binary signal g (1) of the PNSG 106 is now in converted an antipodal signal. This can e.g. with the Assignment 0 -> 1 and 1 -> -1 take place. After this formatting the signal is processed and becomes the BPSK baseband modulator fed.
- the BPSK baseband modulator 108 is simple to use when using antipodal signals since a sample-wise multiplication corresponds to the BPSK modulation.
- the resulting signal h (l) g (l) x '(n) has a bandwidth of ⁇ h ⁇ 6 kHz.
- the amplitude values are -1 and 1.
- the signal has the main maximum at 0 Hz, so it is in the baseband.
- the baseband signal h (l) is now fed to the BPSK modulator 110. There, the baseband signal h (l) is modulated onto a cosine carrier cos ( ⁇ T t).
- the frequency of the carrier is half the bandwidth of the spread-band signal in the baseband.
- the first zero of the modulated spectrum thus comes to be at 0 Hz.
- the signal can be transmitted on channels whose transmission function dampens strongly in the range from 0 to 100 Hz, as is to be expected with audio transmissions via loudspeakers and microphone.
- the modulation can be used instead of a carrier cosine also be done by suitable coding.
- the Manchester Code can also be a property that is free of mean values Find use. Because of its freedom from the mean there is therefore no energy of the Spread band signal to lie, which is for portability important is.
- the coding rule for the Manchester code reads 0 -> 10 and 1 -> 01. Double the number of bits so yourself.
- the time signal s (1), which is at the output of the BPSK modulator 110 is now applied by means of a fast Fourier transformation in transformation block 118 into the spectral range transformed so that S ( ⁇ ) is present at the output of block 118.
- the psychoacoustically weighted useful signal added n (k) in the time domain to the music signal.
- the encoder supplies a digital PCM signal n c (k), which can be transmitted on any transmission link as long as it has a bandwidth of at least 6 kHz.
- the output of the Transformation blocks 100 can the output of the Transformation blocks 100 additionally with the overlay device 116 connected.
- the overlay device 116 there is a Superposition of the spectral spread signal and the spectral Audio signal and then the inverse transformation in the time domain.
- the decoder comprises a microphone 400 which, for example music signal emitted by a radio receiver receives.
- the output of the microphone 400 is with the input a low pass 402, the output of which is connected to a Amplifier 404 connected to automatic gain control is.
- the output of amplifier 404 is one Analog / digital converter 406 connected.
- the output of the analog / digital converter 406 is with the receipt of a non-recursive Filters 408 (matched FIR filter) connected whose Output with an input of a bit synchronization control block 410 is connected.
- the output of block 410 is connected to the input of a data decoder 412. At the The output of the data decoder 412 is the decoded data signal in front.
- a decoder is described below with reference to FIG. 4.
- the music signal n c (k) emitted by the radio receiver is converted into electrical signals by the microphone 400 and fed to the low-pass filter 402.
- the cut-off frequency of the low-pass filter 402 is dimensioned such that the frequency components in which no data are modulated in are greatly attenuated. In the present exemplary embodiment, the cutoff frequency is 6 kHz. Low-pass filtering is used to avoid convolutions that may result from the later sampling of the signal.
- the amplifier 404 with automatic gain control provides constant instantaneous power of the input signal before the A / D converter 406 for sure. This is necessary at times due to channel To be able to compensate for damping. It should be noted that the decoder is both hardware and software is feasible. In the case of a software Realization can be dispensed with the amplifier 404.
- the A / D converter scans and digitizes the Signal through.
- the matched filter 408 consists of an FIR filter or a non-recursive filter.
- the filter 408 contains the reverse sequence of the PN sequence as a coefficient of the transmitter.
- the PN sequence of the pseudo noise signal can be, for example, coded in manchester.
- contains the filter 408 contains the reverse as coefficients manchester-coded sequence of the transmitter's PN sequence.
- filter 408 generates one at maximum correlation Tip at the exit, the sign of which is the transmitted symbol corresponds.
- the filter output thus delivers at a distance of Length 2 * N of the PN sequence peaks which is the transmitted data represent. Because the peaks are not clear at all times is the filter 408 the bit synchronization control block 410 downstream.
- the synchronization controller in block 410 searches in the output signal of the filter 408 peaks, which clearly differ from stand out from the intoxication. If such a tip is found is synchronized to the length of the PN sequence in the output of the Filters 408 keyed in to the transmitted symbols to recover. A clear one appears during this time Peak, the sampling time is corrected accordingly.
- the output of block 410 provides a bit stream which is in the subsequent data decoder 412 is processed. This In the event that at the input of the microphone 402 there is no validly coded signal, a random sequence of bits. If the decoder is bit synchronized, contains the bit stream the data sent.
- the decoding of the useful data signal takes place in the data decoder 412 from the bit stream from block 410.
- the data decoder is described in more detail below.
- the Data decoder 412 includes an input ON that is connected to a Frame synchronization block 502 and an HDLC decoding block 504 is connected.
- Block 502 issues a trigger Trigger signal to block 504.
- the exit of the block 504 is with the input of a Hamming error correction block 506 connected, the output of which is connected to the input of a checksum block 508 is connected.
- Subsequent to the Block 508 is a Hamming data calculation in block 410.
- the output of block 410 is the output of the data decoder 412 connected, at the output of which the data word with a length of 11 bits.
- Frame synchronization block 502 receives the input bit stream and looks for synchronization word 202 in it. It is found, the HDLC decoder 504 is triggered and the Input data decoded accordingly. Then follows the syndrome calculation and the error correction by the Hamming code. Via the bit error corrected 15-bit word the checksum is calculated and compared with the transmitted bits. If all of these operations are successful, the 15 bits decoded with the Hamming code and the 11 transmitted Data bits output from the decoder.
- the essential features of the coding method according to the invention for introducing an inaudible data signal into an audio signal are converting the audio signal into the Spectral range, determining the masking threshold of the Audio signal, providing a pseudo noise signal, providing the data signal, multiplying the Pseudo noise signal with the data signal to a frequency spread data signal to create the weighting of the spread data signal with the masking threshold and that Superimposing the audio signal and the weighted signal.
- the essential features of the method according to the invention for decoding an inaudibly contained in an audio signal are sampling the audio signal, the non-recursive filtering of the sampled audio signal, and comparing the filtered audio signal to one Threshold to recover the data signal.
- FIG. 6 A system according to the present invention is described below with reference to FIG. 6 Invention for determining the distribution of listeners individual Radio stations described in more detail using an identification signal.
- the system described with reference to FIG. 6 is used for introducing the identification signal into the transmitted one Audio signal, the coding method described above, and used to decode the signal from the received audio signal, the decoding method described above.
- the system described with reference to FIG. 6 enables the Reliable distribution of listeners to the individual radio stations to determine.
- the system is independent of the one used Receivers, so that the different listening habits Can be taken into account.
- the detection of the listener range takes place in a predetermined Time interval that depends on the individual case is adjustable. According to an example, the time interval 10 seconds. It must also be determined how current the evaluation has to be. According to that shown in Fig. 6 An example of a system is the handset data Night captured. In other embodiments, it may be sufficient the data acquisition device every 4 weeks send in.
- the system as shown in Fig. 6 includes a recording device that is highly accepted by the listeners achieved to ensure the reliability of data collection. To get the most comprehensive data possible ensure the acquisition device is on the body of the test handset or subjects, and this is about a small device with sufficient battery supply, such as batteries, which are attractive in design and is easy to use.
- the batteries are in reloaded with a charging or docking station.
- System 600 exists from the following components.
- An audio signal is in a radio station 602 and generated by means of an identifier 604 with an identification signal.
- the audio signal applied with the identification signal is passed to an antenna 606 which emits radiation 608 of the audio signal.
- a radio receiver 610 consisting of an antenna 612, a receiver device 614 and two speakers 616 receives the radiated Audio signal.
- the audio signal received by antenna 612 is in via the receiver 614 and the speakers 616 audible audio signal 618 converted by a capture device 620 is received.
- the one shown in Fig. 6 The exemplary embodiment is the receiving device 620 in FIG Designed in the shape of a wristwatch.
- the detection device 620 operates to extract the identification signal from the received audio signal 618 pull out. This is done by means of the invention Process for decoding an inaudible in a data signal containing an audio signal.
- the identification signal that is determined by the receiver 620 is shown in FIG cached to the receiving device.
- a so-called Docking station 622 is provided to watch 620 for example during the night to record a broadcast to effect the stored identifier data.
- the Docking station 622 is via a line 624 and a corresponding one Junction 626 to which there is also a telephone 628 can be connected with a communication network 630 connected, which in one embodiment Telephone network is.
- the data or identification data stored by the receiving device 620 sent to a control center 632 which is a computer 634 to evaluate the received data.
- a control center 632 which is a computer 634 to evaluate the received data.
- the Computer 634 is connected to a modem 638 via a line 636 connected, which in turn via a line 640 and a further connection device 642 with the communication network 630 is connected.
- FIG. 7 Invention for determining the range of a transmitter Radio station described in more detail using an identification signal.
- the system described with reference to FIG. 7 is used for insertion the identification signal into the transmitted audio signal, the coding method described above, and used to decode the signal from the received audio signal, the decoding method described above.
- the system according to the invention is shown in its entirety in FIG. 7 provided with the reference numeral 700.
- the system 700 With the system 700 becomes an audio signal in a radio station 702 for example generated in a Studio 704 and using an identifier or encoder 706 with an identification signal.
- the application of the audio signal by the identifier 706 is done using the encoding method described above for introducing an inaudible data signal into an audio signal.
- the one charged with the identification signal Audio signal is passed to an antenna 708 which causes a radiation 710 of the audio signal.
- a radio receiver 712 for example a test receiver from an antenna 714 and a receiver device 716 the emitted audio signal.
- the one shown in Fig. 7 Receiver 716 is only used to receive the audio signal. Since it is only in this embodiment the determination of the transmitter range goes to a Playback of the transmitted audio signal can be omitted.
- An advantage of this procedure is that the Determining the transmitter range is not just a limited one Band area in the audio signal for transmission of the data signal can be used. It is possible the whole Bandwidth of the transmitted audio signal. Thereby can either the decoding security or the transmitted Amount of data can be increased.
- the Decoder 718 which carries out the method for decoding, formed by a computer 720, which processes the software realized.
- the Receiver 716 operates via a line or cable 722 connected to a so-called sound card 724 in the computer, processing of the audio signal by the computer to enable.
- the transmission from the receiver 712 to decoder 718 over line 722 is analog. With in other words, the received audio signal is sent directly from the Receiver 712 is fed into decoder 718.
- Decoder 718 is connected to a modem via line 724 728 connected, which in turn via another line 730 connected to a corresponding connection point 732 is.
- the junction 732 is with a communication network 734, for example connected to a telephone network. They are switched off via the communication network 734 data or identification data recorded to the data signal to a Control center 736 sent, which has a computer 738 to evaluate the received data.
- the calculator 738 is over a line 740 is connected to a modem 742, which in turn is connected to the communication network 734.
- a system for labeling is described below with reference to FIG. 8 described by audio signals, which is used for sound carriers and copies of sound carriers based on the in the audio signal identify the introduced identification signal.
- the advantage is that it enables possible pirated copies easily identified since every single one Provide the sound carrier with an individual identifier from the factory is.
- FIG. 8a schematically shows the production of a sound carrier, such as a compact disc "CD" in a press shop 800 shown.
- the pressing plant 800 comprises a playback device 802, in which a master tape runs, which the on a CD contains audio signals to be applied.
- the CD is in a press 804 pressed.
- an encoder 806 is arranged between press 804 and Playing device 802.
- Each CD is assigned an identification signal by the encoder, which is introduced into the audio signal.
- the coding takes place according to the coding method described above.
- a counter is assigned to encoder 806, for example, consecutive identification numbers provides as an identification signal that in the audio signal is introduced.
- FIG. 8b The mode of operation of the identifiers is shown in FIG. 8b individual CDs explained in more detail.
- a CD 808 with a individual ID is copied several times, like this through the schematically represented players 810 is indicated.
- the copies can be both analog and be created digitally.
- FIG. 9 is a system for remote control represented by audio devices that the invention Methods of coding and decoding are used.
- the system according to the invention is shown in its entirety in FIG. 9 provided with the reference number 900.
- the 900 system With the 900 system becomes an audio signal in a radio station 902 for example created in a Studio 904.
- Using an encoder 706 becomes a data signal or control signal in the audio signal brought in.
- the application of the audio signal by encoder 906 is done using that described above Coding method for inserting an inaudible Data signal into an audio signal. That acted on the signal Audio signal is passed to an antenna 908, which causes radiation 910 of the audio signal.
- a Receiver 912, consisting of an antenna 914 and one Receiver device 916 receives the radiated audio signal.
- a decoder is provided to the receiver 916, which decoder in data signal contained in the audio signal according to the above-described Decoding process.
- the recipient is constructed such that it responds to the data signal to for example the recording of a music program Radio stations to begin. Because of the from the audio signal extracted data signal causes the receiver that a Recording device 918 is activated with which the sent Audio signal is recorded. This will make one for radios System created that provides a process that is compatible with the "VPS" procedure when watching TV is comparable.
- a system is created that a parallel to Audio signal working data channel in audio devices that process, provide digital data.
- This data channel has a low bit rate, in the information according to the methods described above are introduced, and according to pulled out the decoding method described above become.
- the main features of the Encoder for the introduction of an inaudible data signal into an audio signal are converting the audio signal into the spectral range, determining the masking threshold the audio signal, the provision of a pseudo noise signal, providing the data signal, multiplying of the pseudo noise signal with the data signal to a frequency spread data signal to create the weighting of the spread data signal with the masking threshold and superimposing the audio signal and the weighted signal.
- the main features of the pull-out decoder inaudible data signal contained in an audio signal are the sampling of the audio signal, the non-recursive Filtering the sampled audio signal, and comparing of the filtered audio signal with a threshold around which Recover data signal.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
- Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)
Description
- Fig. 1
- ein Ausführungsbeispiel eines erfindungsgemäßen Codierers;
- Fig. 2
- eine Darstellung des Übertragungsrahmens, der zur Übertragung des Nutzsignals verwendet wird;
- Fig. 3
- ein Blockdiagramm des in Fig. 1 dargestellten Quellencodierungsblocks;
- Fig. 4
- ein Beispiel eines Decodierers;
- Fig. 5
- ein Blockdiagramm des in Fig. 4 dargestellten Datendekodieres;
- Fig. 6
- ein Ausführungsbeispiel eines Systems zur Bestimmung der Zuhörerverteilung einer Radiostation, das die erfindungsgemäßen Verfahren zum Codieren verwendet;
- Fig. 7
- ein Ausführungsbeispiel eines Systems zur Bestimmung der Zuhörerverteilung einer Radiostation, das die erfindungsgemäßen Verfahren zum Codieren verwendet;
- Fig. 8
- ein Ausführungsbeispiel eines Systems zum Kennzeichnen von Audiosignalen mit einer eindeutigen Kennummer zur Identifizierung von Tonträgern; und
- Fig. 9
- ein Ausführungsbeispiel eines Systems zur Fernsteuerung von Audiogeräten, das die erfindungsgemäßen Verfahren zum Codieren verwendet.
- FM (analog)
- Kabel (analog und digital)
- DAB (220 MHz terrestrisch; 1,5 GHz terrestrisch und satellitengestützt)
- ADR
- Analoge Satelliten Unterträger (Fernsehsatelliten)
- LW/MW/KW
- Fernsehton
Claims (37)
- Codierverfahren zur Einbringung eines nicht hörbaren Datensignals (x(n)) in ein Audiosignal (n(k)), gekennzeichnet durch folgende Schritte:a) Umwandeln (100) des Audiosignals (n(k)) in den Spektralbereich;b) Bestimmen (102) des Spektrums der Maskierungsschwelle (W(ω)) ausschließlich aus dem Audiosignal;c) Bereitstellen (106) eines Pseudorauschsignals (g(l));d) Bereitstellen (104) des Datensignals ((x(n));e) Multiplizieren (108) des Pseudorauschsignals (g(l)) mit dem Datensignal (x(n)), um ein frequenzmäßig gespreiztes Datensignal zu schaffen;f) Gewichten (112) des Spektrums des gespreizten Datensignals mit dem Spektrum der Maskierungsschwelle;g) Umwandeln (114) des gewichteten Datensignals in den Zeitbereich; undh) Überlagern (112) des Audiosignals und des gewichteten Datensignals.
- Codierverfahren zur Einbringung eines nicht hörbaren Datensignals (x(n)) in ein Audiosignal (n(k)), gekennzeichnet durch folgende Schritte:a) Umwandeln (100) des Audiosignals (n(k)) in den Spektralbereich;b) Bestimmen (102) des Spektrums der Maskierungsschwelle (W(ω)) ausschließlich aus dem Audiosignal;c) Bereitstellen (106) eines Pseudorauschsignals (g(l));d) Bereitstellen (104) des Datensignals (x(n));e) Multiplizieren (108) des Pseudorauschsignals (g(l)) mit dem Datensignal (x(n)), um ein frequenzmäßig gespreiztes Datensignal zu schaffen;f) Gewichten (112) des Spektrums des gespreizten Datensignals mit der Maskierungsschwelle;g) Überlagern des Audiosignals und des gewichteten Datensignals im Spektralbereich; undh) Umwandeln des überlagerten Signals in den Zeitbereich.
- Codierverfahren nach Anspruch 1 oder 2, bei dem der Schritt a) das Anwenden einer schnellen Fourier-Transformation auf das Audiosignal (n(k)) einschließt.
- Codierverfahren nach einem der Ansprüche 1 bis 3, bei dem der Schritt b) folgende Schritte umfaßt:b1) Aufteilen des Spektrums des Audiosignals in kritische Bänder (z);b2) Bestimmen der Energie in jedem kritischen Band;b3) Berechnen der Spreizungsfunktion für jedes kritische Band;b4) Falten der Spreizungsverläufe aller kritischen Bänder mit den Bandenergien, um den Verlauf der Anregung zu erhalten;b5) Bestimmen der Unvorhersagbarkeit des Signals;b6) Falten der Unvorhersagbarkeit mit der Spreizungsfunktion, um ein Maß für die Tonalität zu gewinnen;b7) Berechnen des Verdeckungsmaßes aus der Tonalität; undb8) Berechnen der Maskierungsschwelle aus der Anregung unter Berücksichtigung des Verdeckungsmaßes.
- Codierverfahren nach einem der Ansprüche 1 bis 3, bei dem der Schritt b) folgende Schritte umfaßt:b1) Aufteilen des Spektrums des Audiosignals in kritische Bänder (z);b2) Bestimmen der Energie in jedem kritischen Band; undb3) Bestimmen der Maskierungsschwelle aus den Bandenergien unter Berücksichtigung des Verdeckungsmaßes für tonale Verdeckung.
- Codierverfahren nach einem der Ansprüche 1 bis 5, bei dem das Pseudorauschsignal (g(l)) eine Bandbreite von 6 kHz hat.
- Codierverfahren nach einem der Ansprüche 1 bis 6, bei dem das Datensignal (x(n)) eine Bandbreite von 50 Hz hat.
- Codierverfahren nach einem der Ansprüche 1 bis 7, bei dem das Datensignal (x(n)) durch einen Blockcode kanalcodiert ist.
- Codierverfahren nach einem der Ansprüche 1 bis 8, bei dem vor dem Schritt e) das Pseudorauschsignal (g(l)) und das Datensignal (x(n)) in antipodische Signale umgewandelt werden.
- Codierverfahren nach einem der Ansprüche 1 bis 9, bei dem der Schritt e) folgende Schritte umfaßt:e1) BPSK-Basisbandmodulieren des Datensignals (x(n)) mit dem Pseudorauschsignal (g(l));e2) BPSK-Modulieren des modulierten Signals aus dem Schritt e1) mit einem Trägersignal, dessen Frequenz im Bereich des hörbaren Audiospektrums liegt; unde3) Umformen des modulierten Signals aus dem Schritt e2) in den Spektralbereich.
- Codierverfahren nach Anspruch 10, bei dem das Trägersignal cosinusförmig ist und eine Frequenz von 3 kHz hat.
- Codierverfahren nach Anspruch 10, bei dem der Schritt e1) durch eine Manchestercodierung des Pseudorauschsignals realisiert wird.
- Codierverfahren nach Anspruch 1 oder 2, bei dem die Rücktransformation (114) in den Zeitbereich durch eine schnelle Fourier-Transformation erfolgt.
- Codierer zur Einbringung eines nicht hörbaren Datensignals (x(n)) in ein Audiosignal (n(k)), gekennzeichnet durcheine Einrichtung (100) zum Umwandeln des Audiosignals (n(k)) in den Spektralbereich;eine Einrichtung (102) zum Bestimmen des Spektrums der Maskierungsschwelle (W(ω)) ausschließlich aus dem Audiosignal;eine Pseudorauschsignalquelle (106);eine Datensignal-Quelle (104);eine Einrichtung (108) zum Multiplizieren des Pseudorauschsignals (g(l)) mit dem Datensignal (x(n)), um ein frequenzmäßig gespreiztes Datensignal zu schaffen;eine Einrichtung (112) zum Gewichten des Spektrums des gespreizten Datensignals mit dem Spektrum der Maskierungsschwelle;eine Einrichtung (114) zum Umwandeln des gewichteten Datensignals in den Zeitbereich; undeine Einrichtung (116) zum Überlagern des Audiosignals und des gewichteten Datensignals.
- Codierer zur Einbringung eines nicht hörbaren Datensignals (x(n)) in ein Audiosignal (n(k)), gekennzeichnet durcheine Einrichtung (100) zum Umwandeln des Audiosignals (n(k)) in den Spektralbereich;eine Einrichtung (102) zum Bestimmen des Spektrums der Maskierungsschwelle (W(ω)) ausschließlich aus dem Audiosignal;eine Pseudorauschsignalquelle (106);eine Datensignal-Quelle (104);eine Einrichtung (108) zum Multiplizieren des Pseudorauschsignals (g(l)) mit dem Datensignal (x(n)), um ein frequenzmäßig gespreiztes Datensignal zu schaffen;eine Einrichtung (112) zum Gewichten des Spektrums des gespreizten Datensignals mit der Maskierungsschwelle;eine Einrichtung zum Überlagern des Audiosignals und des gewichteten Datensignals im Spektralbereich; undeine Einrichtung zum Umwandeln des überlagerten Signals in den Zeitbereich.
- Codierer nach Anspruch 14 oder 15, bei dem die Einrichtung (100) zum Umwandeln des Audiosignals eine schnelle Fourier-Transformation durchführt.
- Codierer nach einem der Ansprüche 14 bis 16, bei dem die Einrichtung zum Bestimmen der Maskierungsschwelle folgende Merkmale ausweist:eine Einrichtung zum Aufteilen des Spektrums des Audiosignals in kritische Bänder (z);eine Einrichtung zum Bestimmen der Energie in jedem kritischen Band;eine Einrichtung zum Berechnen der Spreizungsfunktion für jedes kritische Band;eine Einrichtung zum Falten der Spreizungsverläufe aller kritischen Bänder mit den Bandenergien, um den Verlauf der Anregung zu erhalten;eine Einrichtung zum Bestimmen der Unvorhersagbarkeit des Signals;eine Einrichtung zum Bestimmen des Verdeckungsmaß aus der Tonalität; undeine Einrichtung zum Berechnen der Maskierungsschwelle aus der Anregung unter Berücksichtigung des bestimmten Verdeckungsmaßes.
- Codierer nach einem der Ansprüche 14 bis 16, bei dem die Einrichtung zum Bestimmen der Maskierungsschwelle folgende Merkmale ausweist:eine Einrichtung zum Aufteilen des Spektrums des Audiosignals in kritische Bänder (z);eine Einrichtung zum Bestimmen der Energie in jedem kritischen Band;eine Einrichtung zum Bestimmen der Maskierungsschwelle aus den Bandenergien unter Berücksichtigung des Verdeckungsmaßes für die tonale Verdeckung.
- Codierer nach einem der Ansprüche 14 bis 18, bei dem das Pseudorauschsignal (g(l)) eine Bandbreite von 6 kHz hat.
- Codierer nach einem der Ansprüche 14 bis 19, bei dem das Datensignal (x(n)) eine Bandbreite von 50 Hz hat.
- Codierer nach einem der Ansprüche 14 bis 20, der eine Einrichtung (105) aufweist, die das Datensignal durch einen Blockcode kanalcodiert.
- Codierer nach einem der Ansprüche 14 bis 21, der eine Einrichtung aufweist, die vor dem Multiplizieren des Pseudorauschsignals mit dem Datensignal das Pseudorauschsignal und das Datensignal in antipodische Signale umwandelt.
- Codierer nach einem der Ansprüche 14 bis 22, bei dem die Einrichtung zum Multiplizieren des Pseudorauschsignals mit dem Datensignaleine BPSK-Basisbandmodulation des Datensignals mit dem Pseudorauschsignal bewirkt;eine BPSK-Modulation des modulierten Signals mit einem Trägersignal, dessen Frequenz im Bereich des hörbaren Audiospektrums liegt, bewirkt; unddas modulierte Signal in den Spektralbereich umwandelt.
- Codierer nach Anspruch 23, bei dem das Trägersignal cosinusförmig ist und eine Frequenz von 3 kHz hat.
- Codierer nach Anspruch 23, bei dem die Einrichtung (108) zum Multiplizieren des Pseudorauschsignals mit dem Datensignal durch eine Manchester-Codierung des Pseudorauschsignals erfolgt.
- Codierer nach Anspruch 14 oder 15, bei dem die Einrichtung (114) die Rücktransformation in den Zeitbereich durch eine schnelle Fourier-Transformation bewirkt.
- Vorrichtung (600) zum Bestimmen der Zuhörerverteilung einzelner Radiostationen anhand eines Kennungssignals, gekennzeichnet durch
einen Codierer (604), der das Kennungssignal in das Audiosignal einbringt und folgende Merkmale aufweist:eine Einrichtung (100) zum Umwandeln des Audiosignals (n(k)) in den Spektralbereich;eine Einrichtung (102) zum Bestimmen des Spektrums der Maskierungsschwelle (W(ω)) ausschließlich aus dem Audiosignal;eine Pseudorauschsignalquelle (106);eine Datensignal-Quelle (104);eine Einrichtung (108) zum Multiplizieren des Pseudorauschsignals (g(l)) mit dem Datensignal (x(n)), um ein frequenzmäßig gespreiztes Datensignal zu schaffen;eine Einrichtung (112) zum Gewichten des Spektrums des gespreizten Datensignals mit dem Spektrum der Maskierungsschwelle;eine Einrichtung (114) zum Umwandeln des gewichteten Datensignals in den Zeitbereich; undeine Einrichtung (116) zum Überlagern des Audiosignals und des gewichteten Datensignals; und - Vorrichtung (600) zum Bestimmen der Zuhörerverteilung einzelner Radiostationen (602) anhand eines Kennungssignals, gekennzeichnet durch
einen Codierer (604), der das Kennungssignal in das Audiosignal einbringt und folgende Merkmale aufweist:eine Einrichtung (100) zum Umwandeln des Audiosignals (n(k)) in den Spektralbereich;eine Einrichtung (102) zum Bestimmen des Spektrums der Maskierungsschwelle (W(ω)) ausschließlich aus dem Audiosignal;eine Pseudorauschsignalquelle (106);eine Datensignal-Quelle (104);eine Einrichtung (108) zum Multiplizieren des Pseudorauschsignals (g(l)) mit dem Datensignal (x(n)), um ein frequenzmäßig gespreiztes Datensignal zu schaffen;eine Einrichtung (112) zum Gewichten des Spektrums des gespreizten Datensignals mit der Maskierungsschwelle;eine Einrichtung zum Überlagern des Audiosignals und des gewichteten Datensignals im Spektralbereich; undeine Einrichtung zum Umwandeln des überlagerten Signals in den Zeitbereich; und - Vorrichtung (700) zum Bestimmen der Senderreichweite einer Radiostation (702) anhand eines Kennungssignals, gekennzeichnet durch
einen Codierer (702), der das Kennungssignal in das Audiosignal einbringt und folgende Merkmale aufweist:eine Einrichtung (100) zum Umwandeln des Audiosignals (n(k)) in den Spektralbereich;eine Einrichtung (102) zum Bestimmen des Spektrums der Maskierungsschwelle (W(ω)) ausschließlich aus dem Audiosignal;eine Pseudorauschsignalquelle (106);eine Datensignal-Quelle (104);eine Einrichtung (108) zum Multiplizieren des Pseudorauschsignals (g(l)) mit dem Datensignal (x(n)), um ein frequenzmäßig gespreiztes Datensignal zu schaffen;eine Einrichtung (112) zum Gewichten des Spektrums des gespreizten Datensignals mit dem Spektrum der Maskierungsschwelle;eine Einrichtung (114) zum Umwandeln des gewichteten Datensignals in den Zeitbereich; undeine Einrichtung (116) zum Überlagern des Audiosignals und des gewichteten Datensignals; und - Vorrichtung (700) zum Bestimmen der Senderreichweite einer Radiostation (702) anhand eines Kennungssignals, gekennzeichnet durch
einen Codierer (704), der das Kennungssignal in das Audiosignal einbringt und folgende Merkmale aufweist:eine Einrichtung (100) zum Umwandeln des Audiosignals (n(k)) in den Spektralbereich;eine Einrichtung (102) zum Bestimmen des Spektrums der Maskierungsschwelle (W(ω)) ausschließlich aus dem Audiosignal;eine Pseudorauschsignalquelle (106);eine Datensignal-Quelle (104);eine Einrichtung (108) zum Multiplizieren des Pseudorauschsignals (g(l)) mit dem Datensignal (x(n)), um ein frequenzmäßig gespreiztes Datensignal zu schaffen;eine Einrichtung (112) zum Gewichten des Spektrums des gespreizten Datensignals mit der Maskierungsschwelle;eine Einrichtung zum Überlagern des Audiosignals und des gewichteten Datensignals im Spektralbereich; undeine Einrichtung zum Umwandeln des überlagerten Signals in den Zeitbereich; und - Vorrichtung (800) zum Kennzeichnen von Audiosignalen mit einer eindeutigen Kennummer zur Identifizierung der Quellen von Kopien von Tonträgern (808), gekennzeichnet durch
einen Codierer (806), der die Kennummmer in das Audiosignal einbringt und folgende Merkmale aufweist:eine Einrichtung (100) zum Umwandeln des Audiosignals (n(k)) in den Spektralbereich;eine Einrichtung (102) zum Bestimmen des Spektrums der Maskierungsschwelle (W(ω)) ausschließlich aus dem Audiosignal;eine Pseudorauschsignalquelle (106);eine Datensignal-Quelle (104);eine Einrichtung (108) zum Multiplizieren des Pseudorauschsignals (g(l)) mit dem Datensignal (x(n)), um ein frequenzmäßig gespreiztes Datensignal zu schaffen;eine Einrichtung (112) zum Gewichten des Spektrums des gespreizten Datensignals mit dem Spektrum der Maskierungsschwelle;eine Einrichtung (114) zum Umwandeln des gewichteten Datensignals in den Zeitbereich; undeine Einrichtung (116) zum Überlagern des Audiosignals und des gewichteten Datensignals; und - Vorrichtung (800) zum Kennzeichnen von Audiosignalen mit einer eindeutigen Kennummer zur Identifizierung der Quellen von Kopien von Tonträgern (808), gekennzeichnet durch
einen Codierer (806), der die Kennummer in das Audiosignal einbringt und folgende Merkmale aufweist:eine Einrichtung (100) zum Umwandeln des Audiosignals (n(k)) in den Spektralbereich;eine Einrichtung (102) zum Bestimmen des Spektrums der Maskierungsschwelle (W(ω)) ausschließlich aus dem Audiosignal;eine Pseudorauschsignalquelle (106);eine Datensignal-Quelle (104);eine Einrichtung (108) zum Multiplizieren des Pseudorauschsignals (g(l)) mit dem Datensignal (x(n)), um ein frequenzmäßig gespreiztes Datensignal zu schaffen;eine Einrichtung (112) zum Gewichten des Spektrums des gespreizten Datensignals mit der Maskierungsschwelle;eine Einrichtung zum Überlagern des Audiosignals und des gewichteten Datensignals im Spektralbereich; undeine Einrichtung zum Umwandeln des überlagerten Signals in den Zeitbereich; und - Vorrichtung (900) zum Fernsteuern von Audiogeräten (916, 918) anhand eines Steuerungssignals, gekennzeichnet durch
einen Codierer (906), der das Steuerungssignal in das Audiosignal einbringt und folgende Merkmale aufweist:eine Einrichtung (100) zum Umwandeln des Audiosignals (n(k)) in den Spektralbereich;eine Einrichtung (102) zum Bestimmen des Spektrums der Maskierungsschwelle (W(ω)) ausschließlich aus dem Audiosignal;eine Pseudorauschsignalquelle (106);eine Datensignal-Quelle (104);eine Einrichtung (108) zum Multiplizieren des Pseudorauschsignals (g(l)) mit dem Datensignal (x(n)), um ein frequenzmäßig gespreiztes Datensignal zu schaffen;eine Einrichtung (112) zum Gewichten des Spektrums des gespreizten Datensignals mit dem Spektrum der Maskierungsschwelle;eine Einrichtung (114) zum Umwandeln des gewichteten Datensignals in den Zeitbereich; undeine Einrichtung (116) zum Überlagern des Audiosignals und des gewichteten Datensignals; und - Vorrichtung (900) zum Fernsteuern von Audiogeräten (916, 918) anhand eines Steuerungssignals, gekennzeichnet durch
einen Codierer (906), der das Steuerungssignal in das Audiosignal einbringt und folgende Merkmale aufweist:eine Einrichtung (100) zum Umwandeln des Audiosignals (n(k)) in den Spektralbereich;eine Einrichtung (102) zum Bestimmen des Spektrums der Maskierungsschwelle (W(ω)) ausschließlich aus dem Audiosignal;eine Pseudorauschsignalquelle (106);eine Datensignal-Quelle (104);eine Einrichtung (108) zum Multiplizieren des Pseudorauschsignals (g(l)) mit dem Datensignal (x(n)), um ein frequenzmäßig gespreiztes Datensignal zu schaffen;eine Einrichtung (112) zum Gewichten des Spektrums des gespreizten Datensignals mit der Maskierungsschwelle;eine Einrichtung zum Überlagern des Audiosignals und des gewichteten Datensignals im Spektralbereich; undeine Einrichtung zum Umwandeln des überlagerten Signals in den Zeitbereich; und - Vorrichtung (900) zum Fernsteuern von Audiogeräten anhand eines Steuerungssignals, nach Anspruch 33 oder 34, derart ausgestaltet, daß die Aufzeichnung eines Audiosignals in einem Aufnahmegerät durch das Steuerungssignal begonnen und/oder beendet wird.
- Vorrichtung zum Bereitstellen eines zum Audiosignal parallel arbeitenden Datenkanals mit niedriger Bitrate in digital verarbeitenden Audiogeräten, gekennzeichnet durch
einen Codierer, der ein Informationssignal in das Audiosignal einbringt und folgende Merkmale aufweist:eine Einrichtung (100) zum Umwandeln des Audiosignals (n(k)) in den Spektralbereich;eine Einrichtung (102) zum Bestimmen des Spektrums der Maskierungsschwelle (W(ω)) ausschließlich aus dem Audiosignal;eine Pseudorauschsignalquelle (106);eine Datensignal-Quelle (104);eine Einrichtung (108) zum Multiplizieren des Pseudorauschsignals (g(l)) mit dem Datensignal (x(n)), um ein frequenzmäßig gespreiztes Datensignal zu schaffen;eine Einrichtung (112) zum Gewichten des Spektrums des gespreizten Datensignals mit dem Spektrum der Maskierungsschwelle;eine Einrichtung (114) zum Umwandeln des gewichteten Datensignals in den Zeitbereich; undeine Einrichtung (116) zum Überlagern des Audiosignals und des gewichteten Datensignals; und - Vorrichtung zum Bereitstellen eines zum Audiosignal parallel arbeitenden Datenkanals mit niedriger Bitrate in digital verarbeitenden Audiogeräten, gekennzeichnet durch
einen Codierer, der ein Informationssignal in das Audiosignal einbringt und folgende Merkmale aufweist:eine Einrichtung (100) zum Umwandeln des Audiosignals (n(k)) in den Spektralbereich;eine Einrichtung (102) zum Bestimmen des Spektrums der Maskierungsschwelle (W(ω)) ausschließlich aus dem Audiosignal;eine Pseudorauschsignalquelle (106);eine Datensignal-Quelle (104);eine Einrichtung (108) zum Multiplizieren des Pseudorauschsignals (g(l)) mit dem Datensignal (x(n)), um ein frequenzmäßig gespreiztes Datensignal zu schaffen;eine Einrichtung (112) zum Gewichten des Spektrums des gespreizten Datensignals mit der Maskierungsschwelle;eine Einrichtung zum Überlagern des Audiosignals und des gewichteten Datensignals im Spektralbereich; undeine Einrichtung zum Umwandeln des überlagerten Signals in den Zeitbereich; und
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19608926 | 1996-03-07 | ||
DE19608926 | 1996-03-07 | ||
DE19640825A DE19640825C2 (de) | 1996-03-07 | 1996-10-02 | Codierer zur Einbringung eines nicht hörbaren Datensignals in ein Audiosignal und Decodierer zum decodieren eines nicht hörbar in einem Audiosignal enthaltenen Datensignals |
DE19640825 | 1996-10-02 | ||
DE19640814 | 1996-10-02 | ||
DE19640814A DE19640814C2 (de) | 1996-03-07 | 1996-10-02 | Codierverfahren zur Einbringung eines nicht hörbaren Datensignals in ein Audiosignal und Verfahren zum Decodieren eines nicht hörbar in einem Audiosignal enthaltenen Datensignals |
PCT/EP1997/000338 WO1997033391A1 (de) | 1996-03-07 | 1997-01-24 | Codierverfahren zur einbringung eines nicht hörbaren datensignals in ein audiosignal, decodierverfahren, codierer udn decodierer |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0875107A1 EP0875107A1 (de) | 1998-11-04 |
EP0875107B1 true EP0875107B1 (de) | 1999-09-01 |
Family
ID=27215995
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97902223A Expired - Lifetime EP0875107B1 (de) | 1996-03-07 | 1997-01-24 | Codierverfahren zur einbringung eines nicht hörbaren datensignals in ein audiosignal, decodierverfahren, codierer und decodierer |
Country Status (4)
Country | Link |
---|---|
US (1) | US6584138B1 (de) |
EP (1) | EP0875107B1 (de) |
AT (1) | ATE184140T1 (de) |
WO (1) | WO1997033391A1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10254470A1 (de) * | 2002-11-21 | 2004-06-17 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Vorrichtung und Verfahren zum Bestimmen einer Impulsantwort und Vorrichtung und Verfahren zum Vorführen eines Audiostücks |
US7395211B2 (en) | 2000-08-16 | 2008-07-01 | Dolby Laboratories Licensing Corporation | Modulating one or more parameters of an audio or video perceptual coding system in response to supplemental information |
Families Citing this family (113)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7562392B1 (en) * | 1999-05-19 | 2009-07-14 | Digimarc Corporation | Methods of interacting with audio and ambient music |
EP1071081B1 (de) * | 1996-11-07 | 2002-05-08 | Matsushita Electric Industrial Co., Ltd. | Verfahren zur Erzeugung eines Vektorquantisierungs-Codebuchs |
GB9700854D0 (en) | 1997-01-16 | 1997-03-05 | Scient Generics Ltd | Sub-audible acoustic data transmission mechanism |
US6427012B1 (en) | 1997-05-19 | 2002-07-30 | Verance Corporation | Apparatus and method for embedding and extracting information in analog signals using replica modulation |
US7644282B2 (en) | 1998-05-28 | 2010-01-05 | Verance Corporation | Pre-processed information embedding system |
US7006555B1 (en) | 1998-07-16 | 2006-02-28 | Nielsen Media Research, Inc. | Spectral audio encoding |
AU6695100A (en) * | 1999-07-19 | 2001-02-05 | Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. | Method and device for identifying pieces of music |
GB9917985D0 (en) * | 1999-07-30 | 1999-09-29 | Scient Generics Ltd | Acoustic communication system |
DE19938095A1 (de) * | 1999-08-12 | 2001-03-01 | Fraunhofer Ges Forschung | Verfahren und Vorrichtung zum Einbringen von Informationen in ein Audiosignal und Verfahren und Vorrichtung zum Ermitteln von in einem Audiosignal eingebrachten Informationen |
DE19947877C2 (de) * | 1999-10-05 | 2001-09-13 | Fraunhofer Ges Forschung | Verfahren und Vorrichtung zum Einbringen von Informationen in einen Datenstrom sowie Verfahren und Vorrichtung zum Codieren eines Audiosignals |
US6737957B1 (en) | 2000-02-16 | 2004-05-18 | Verance Corporation | Remote control signaling using audio watermarks |
US6968564B1 (en) | 2000-04-06 | 2005-11-22 | Nielsen Media Research, Inc. | Multi-band spectral audio encoding |
US7664274B1 (en) * | 2000-06-27 | 2010-02-16 | Intel Corporation | Enhanced acoustic transmission system and method |
US6879652B1 (en) * | 2000-07-14 | 2005-04-12 | Nielsen Media Research, Inc. | Method for encoding an input signal |
GB2365295A (en) * | 2000-07-27 | 2002-02-13 | Cambridge Consultants | Watermarking key |
DE60110086T2 (de) * | 2000-07-27 | 2006-04-06 | Activated Content Corp., Inc., Burlingame | Stegotextkodierer und -dekodierer |
EP2288121A3 (de) * | 2000-11-30 | 2011-06-22 | Intrasonics S.A.R.L. | Telekommunikationsvorrichtung mit Audioübertragung-interaktivem Betrieb |
AU2211102A (en) * | 2000-11-30 | 2002-06-11 | Scient Generics Ltd | Acoustic communication system |
US7864938B2 (en) | 2000-12-26 | 2011-01-04 | Polycom, Inc. | Speakerphone transmitting URL information to a remote device |
US7339605B2 (en) * | 2004-04-16 | 2008-03-04 | Polycom, Inc. | Conference link between a speakerphone and a video conference unit |
US7221663B2 (en) * | 2001-12-31 | 2007-05-22 | Polycom, Inc. | Method and apparatus for wideband conferencing |
US8948059B2 (en) * | 2000-12-26 | 2015-02-03 | Polycom, Inc. | Conference endpoint controlling audio volume of a remote device |
US8977683B2 (en) | 2000-12-26 | 2015-03-10 | Polycom, Inc. | Speakerphone transmitting password information to a remote device |
US8964604B2 (en) | 2000-12-26 | 2015-02-24 | Polycom, Inc. | Conference endpoint instructing conference bridge to dial phone number |
US9001702B2 (en) | 2000-12-26 | 2015-04-07 | Polycom, Inc. | Speakerphone using a secure audio connection to initiate a second secure connection |
US8976712B2 (en) * | 2001-05-10 | 2015-03-10 | Polycom, Inc. | Speakerphone and conference bridge which request and perform polling operations |
US8934382B2 (en) | 2001-05-10 | 2015-01-13 | Polycom, Inc. | Conference endpoint controlling functions of a remote device |
RU2293368C2 (ru) * | 2001-05-10 | 2007-02-10 | Поликом Израиль Лтд. | Способ (варианты) и система (варианты) для управления конференциями и блок управления для многоточечной мультимедийной/речевой системы |
DE10129239C1 (de) | 2001-06-18 | 2002-10-31 | Fraunhofer Ges Forschung | Vorrichtung und Verfahren zum Einbetten eines Wasserzeichens in ein Audiosignal |
CN100380493C (zh) * | 2001-09-05 | 2008-04-09 | 皇家飞利浦电子股份有限公司 | 用于直接流数字信号的坚韧水印 |
WO2003034627A1 (en) * | 2001-10-17 | 2003-04-24 | Koninklijke Philips Electronics N.V. | System for encoding auxiliary information within a signal |
AU2002363907A1 (en) | 2001-12-24 | 2003-07-30 | Scientific Generics Limited | Captioning system |
US8102984B2 (en) | 2001-12-31 | 2012-01-24 | Polycom Inc. | Speakerphone and conference bridge which receive and provide participant monitoring information |
US8885523B2 (en) * | 2001-12-31 | 2014-11-11 | Polycom, Inc. | Speakerphone transmitting control information embedded in audio information through a conference bridge |
US7742588B2 (en) * | 2001-12-31 | 2010-06-22 | Polycom, Inc. | Speakerphone establishing and using a second connection of graphics information |
US8705719B2 (en) | 2001-12-31 | 2014-04-22 | Polycom, Inc. | Speakerphone and conference bridge which receive and provide participant monitoring information |
US8223942B2 (en) * | 2001-12-31 | 2012-07-17 | Polycom, Inc. | Conference endpoint requesting and receiving billing information from a conference bridge |
US8934381B2 (en) * | 2001-12-31 | 2015-01-13 | Polycom, Inc. | Conference endpoint instructing a remote device to establish a new connection |
US20050213726A1 (en) * | 2001-12-31 | 2005-09-29 | Polycom, Inc. | Conference bridge which transfers control information embedded in audio information between endpoints |
US7978838B2 (en) | 2001-12-31 | 2011-07-12 | Polycom, Inc. | Conference endpoint instructing conference bridge to mute participants |
US8144854B2 (en) | 2001-12-31 | 2012-03-27 | Polycom Inc. | Conference bridge which detects control information embedded in audio information to prioritize operations |
US8947487B2 (en) * | 2001-12-31 | 2015-02-03 | Polycom, Inc. | Method and apparatus for combining speakerphone and video conference unit operations |
US7787605B2 (en) | 2001-12-31 | 2010-08-31 | Polycom, Inc. | Conference bridge which decodes and responds to control information embedded in audio information |
US8023458B2 (en) | 2001-12-31 | 2011-09-20 | Polycom, Inc. | Method and apparatus for wideband conferencing |
US20030131350A1 (en) * | 2002-01-08 | 2003-07-10 | Peiffer John C. | Method and apparatus for identifying a digital audio signal |
US7295939B2 (en) * | 2002-06-24 | 2007-11-13 | Em Photonics, Inc. | Hardware implementation of the pseudo-spectral time-domain method |
US20040125125A1 (en) * | 2002-06-29 | 2004-07-01 | Levy Kenneth L. | Embedded data windows in audio sequences and video frames |
EP2782337A3 (de) | 2002-10-15 | 2014-11-26 | Verance Corporation | Media-Überwchung, Verwaltung und Informationssystem |
CN1774922A (zh) | 2002-10-23 | 2006-05-17 | 尼尔逊媒介研究股份有限公司 | 用于压缩音频/视频数据的数字数据插入装置和方法 |
US7881485B2 (en) | 2002-11-21 | 2011-02-01 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E. V. | Apparatus and method of determining an impulse response and apparatus and method of presenting an audio piece |
US6845360B2 (en) * | 2002-11-22 | 2005-01-18 | Arbitron Inc. | Encoding multiple messages in audio data and detecting same |
US20060069549A1 (en) * | 2003-04-08 | 2006-03-30 | Koninklijke Philips Electronics N.V. | Updating of a buried data channel |
DE10321983A1 (de) * | 2003-05-15 | 2004-12-09 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Vorrichtung und Verfahren zum Einbetten einer binären Nutzinformation in ein Trägersignal |
US7460684B2 (en) * | 2003-06-13 | 2008-12-02 | Nielsen Media Research, Inc. | Method and apparatus for embedding watermarks |
KR100513729B1 (ko) * | 2003-07-03 | 2005-09-08 | 삼성전자주식회사 | 계층적인 대역폭 구조를 갖는 음성 압축 및 복원 장치와그 방법 |
US20060239501A1 (en) | 2005-04-26 | 2006-10-26 | Verance Corporation | Security enhancements of digital watermarks for multi-media content |
CA2562137C (en) * | 2004-04-07 | 2012-11-27 | Nielsen Media Research, Inc. | Data insertion apparatus and methods for use with compressed audio/video data |
DE102004021404B4 (de) | 2004-04-30 | 2007-05-10 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Wasserzeicheneinbettung |
DE102004021403A1 (de) * | 2004-04-30 | 2005-11-24 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Informationssignalverarbeitung durch Modifikation in der Spektral-/Modulationsspektralbereichsdarstellung |
MX2007000076A (es) | 2004-07-02 | 2007-03-28 | Nielsen Media Res Inc | Metodos y aparatos para mezclar corrientes comprimidas de bits digitales. |
US7796565B2 (en) | 2005-06-08 | 2010-09-14 | Polycom, Inc. | Mixed voice and spread spectrum data signaling with multiplexing multiple users with CDMA |
US8126029B2 (en) | 2005-06-08 | 2012-02-28 | Polycom, Inc. | Voice interference correction for mixed voice and spread spectrum data signaling |
US8199791B2 (en) | 2005-06-08 | 2012-06-12 | Polycom, Inc. | Mixed voice and spread spectrum data signaling with enhanced concealment of data |
JP2007013683A (ja) * | 2005-06-30 | 2007-01-18 | Toshiba Corp | サーバ装置 |
US8020004B2 (en) | 2005-07-01 | 2011-09-13 | Verance Corporation | Forensic marking using a common customization function |
US8781967B2 (en) | 2005-07-07 | 2014-07-15 | Verance Corporation | Watermarking in an encrypted domain |
EP1764780A1 (de) | 2005-09-16 | 2007-03-21 | Deutsche Thomson-Brandt Gmbh | Blindes Wasserzeichen für Audio-Signale mittels Phasen-Änderungen |
EP1837875A1 (de) | 2006-03-22 | 2007-09-26 | Deutsche Thomson-Brandt Gmbh | Verfahren und Vorrichtung zur Korrelierung zweier Datenteile |
WO2007110103A1 (en) | 2006-03-24 | 2007-10-04 | Dolby Sweden Ab | Generation of spatial downmixes from parametric representations of multi channel signals |
WO2008045950A2 (en) | 2006-10-11 | 2008-04-17 | Nielsen Media Research, Inc. | Methods and apparatus for embedding codes in compressed audio data streams |
EP1947642B1 (de) * | 2007-01-16 | 2018-06-13 | Apple Inc. | Aktives geräuschdämpfungssystem |
US8542802B2 (en) | 2007-02-15 | 2013-09-24 | Global Tel*Link Corporation | System and method for three-way call detection |
US8494903B2 (en) | 2007-03-16 | 2013-07-23 | Activated Content Corporation | Universal advertising model utilizing digital linkage technology “U AD” |
EP2081187A1 (de) | 2008-01-21 | 2009-07-22 | Deutsche Thomson OHG | Verfahren und Vorrichtung zur Entscheidung darüber, ob in einem empfangenen und möglicherweise mit einem Wasserzeichen versehenen Signal ein Referenzmuster enthalten ist |
EP2083418A1 (de) | 2008-01-24 | 2009-07-29 | Deutsche Thomson OHG | Verfahren und Vorrichtung zur Bestimmung und Verwendung einer zufälligen Frequenz zur Entschlüsselung von Wasserzeicheninformationen, die in einem empfangenen Signal und mit einer ursprünglichen zufälligen Frequenz auf der Verschlüsselungsseite eingebettet wurde |
US8677437B2 (en) * | 2008-05-07 | 2014-03-18 | Evertz Microsystems Ltd. | Systems and methods for calculating the delay between media signals |
US8754947B2 (en) * | 2008-05-07 | 2014-06-17 | Evertz Microsystems Ltd. | Systems and methods for comparing media signals |
US8780209B2 (en) * | 2008-05-07 | 2014-07-15 | Evertz Microsystems Ltd. | Systems and methods for comparing media signals |
GB2460306B (en) | 2008-05-29 | 2013-02-13 | Intrasonics Sarl | Data embedding system |
US8259938B2 (en) | 2008-06-24 | 2012-09-04 | Verance Corporation | Efficient and secure forensic marking in compressed |
EP2337376A4 (de) * | 2008-09-24 | 2014-02-26 | Yamaha Corp | Vorrichtung zur messung einer regelkreisverstärkung und vorrichtung zur rückkopplungsverhinderung |
US20100095188A1 (en) * | 2008-10-09 | 2010-04-15 | Transwitch Corporation | Apparatus and method for detecting and correcting errors in control characters of a multimedia interface |
EP2175443A1 (de) | 2008-10-10 | 2010-04-14 | Thomson Licensing | Verfahren und Vorrichtung zur Wiedererlangung von Wasserzeichendaten, die in einem ursprünglichen Signal eingebettet waren, durch Änderung von Abschnitten des genannten ursprünglichen Signals in Zusammenhang mit mindestens zwei verschiedenen Referenzdatensequenzen |
US9225838B2 (en) | 2009-02-12 | 2015-12-29 | Value-Added Communications, Inc. | System and method for detecting three-way call circumvention attempts |
CN102369573A (zh) * | 2009-03-13 | 2012-03-07 | 皇家飞利浦电子股份有限公司 | 嵌入和提取辅助数据 |
EP2362386A1 (de) * | 2010-02-26 | 2011-08-31 | Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V. | Wasserzeichenerzeuger, Wasserzeichendecodierer, Verfahren zur Bereitstellung eines Wasserzeichensignals in Abhängigkeit binärer Benachrichtigungsdaten, Verfahren zur Bereitstellung binärer Benachrichtigungsdaten in Abhängigkeit eines Wasserzeichensignals und Computerprogramm mit zweidimensionaler Bit-Verbreiterung |
EP2362382A1 (de) | 2010-02-26 | 2011-08-31 | Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V. | Wasserzeichensignalversorger und Verfahren zur Bereitstellung eines Wasserzeichensignals |
EP2362384A1 (de) | 2010-02-26 | 2011-08-31 | Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V. | Wasserzeichenerzeuger, Wasserzeichendecodierer, Verfahren zur Bereitstellung eines Wasserzeichensignals, Verfahren zur Bereitstellung binärer Benachrichtigungsdaten in Abhängigkeit eines Wasserzeichensignals und Computerprogramm mit verbessertem Synchronisierungskonzept |
EP2362383A1 (de) | 2010-02-26 | 2011-08-31 | Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V. | Wasserzeichendecodierer und Verfahren zur Bereitstellung binärer Benachrichtigungsdaten |
EP2362385A1 (de) | 2010-02-26 | 2011-08-31 | Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V. | Wasserzeichensignalversorger und Wasserzeicheneinbettung |
EP2362387A1 (de) | 2010-02-26 | 2011-08-31 | Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V. | Wasserzeichenerzeuger, Wasserzeichendecodierer, Verfahren zur Bereitstellung eines Wasserzeichensignals in Abhängigkeit binärer Benachrichtigungsdaten, Verfahren zur Bereitstellung binärer Benachrichtigungsdaten in Abhängigkeit eines Wasserzeichensignals und Computerprogramm mit differentieller Codierung |
US9607131B2 (en) | 2010-09-16 | 2017-03-28 | Verance Corporation | Secure and efficient content screening in a networked environment |
EP2431970A1 (de) * | 2010-09-21 | 2012-03-21 | Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V. | Wasserzeichengenerator, Wasserzeichendekodierer, Verfahren zur Bereitstellung eines mit einem Wasserzeichen markierten Signals basierend auf diskreten Datenwerten und Verfahren zur Bereitstellung von diskreten Datenwerten in Abhängigkeit eines mit einem Wasserzeichen markierten Signals |
US8615104B2 (en) | 2011-11-03 | 2013-12-24 | Verance Corporation | Watermark extraction based on tentative watermarks |
US8682026B2 (en) | 2011-11-03 | 2014-03-25 | Verance Corporation | Efficient extraction of embedded watermarks in the presence of host content distortions |
US8533481B2 (en) | 2011-11-03 | 2013-09-10 | Verance Corporation | Extraction of embedded watermarks from a host content based on extrapolation techniques |
US8923548B2 (en) | 2011-11-03 | 2014-12-30 | Verance Corporation | Extraction of embedded watermarks from a host content using a plurality of tentative watermarks |
US8745403B2 (en) | 2011-11-23 | 2014-06-03 | Verance Corporation | Enhanced content management based on watermark extraction records |
US9547753B2 (en) | 2011-12-13 | 2017-01-17 | Verance Corporation | Coordinated watermarking |
US9323902B2 (en) | 2011-12-13 | 2016-04-26 | Verance Corporation | Conditional access using embedded watermarks |
US9571606B2 (en) | 2012-08-31 | 2017-02-14 | Verance Corporation | Social media viewing system |
US9106964B2 (en) | 2012-09-13 | 2015-08-11 | Verance Corporation | Enhanced content distribution using advertisements |
US8869222B2 (en) | 2012-09-13 | 2014-10-21 | Verance Corporation | Second screen content |
US8726304B2 (en) | 2012-09-13 | 2014-05-13 | Verance Corporation | Time varying evaluation of multimedia content |
US20150294539A1 (en) * | 2012-10-31 | 2015-10-15 | Promotie Voor Speciale Evenementen - Belgium | Method for remotely controlling human perceivable output of a plurality of devices, system, transmitter, device, software product and human unperceivable acoustic signal for performing the method |
US9262794B2 (en) | 2013-03-14 | 2016-02-16 | Verance Corporation | Transactional video marking system |
CN104217608B (zh) * | 2013-05-29 | 2018-02-23 | 星贝瑞有限公司 | 基于公交工具的信息服务方法及系统 |
US9251549B2 (en) | 2013-07-23 | 2016-02-02 | Verance Corporation | Watermark extractor enhancements based on payload ranking |
US9208334B2 (en) | 2013-10-25 | 2015-12-08 | Verance Corporation | Content management using multiple abstraction layers |
EP3117626A4 (de) | 2014-03-13 | 2017-10-25 | Verance Corporation | Erfassung von interaktivem inhalt mittels eingebetteter codes |
EP3826324A1 (de) | 2015-05-15 | 2021-05-26 | Nureva Inc. | System und verfahren zur einbettung zusätzlicher informationen in einem schallmaskenrauschsignal |
US9930088B1 (en) | 2017-06-22 | 2018-03-27 | Global Tel*Link Corporation | Utilizing VoIP codec negotiation during a controlled environment call |
EP4256558A4 (de) | 2020-12-02 | 2024-08-21 | Hearunow Inc | Dynamische sprachakzentation und -verstärkung |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3885217A (en) * | 1973-07-11 | 1975-05-20 | Computer Specifics Corp | Data transmission system |
US4980917A (en) * | 1987-11-18 | 1990-12-25 | Emerson & Stern Associates, Inc. | Method and apparatus for determining articulatory parameters from speech data |
US5212551A (en) * | 1989-10-16 | 1993-05-18 | Conanan Virgilio D | Method and apparatus for adaptively superimposing bursts of texts over audio signals and decoder thereof |
GB2252023B (en) * | 1991-01-21 | 1995-01-18 | Mitsubishi Electric Corp | Acoustic system |
FR2681997A1 (fr) | 1991-09-30 | 1993-04-02 | Arbitron Cy | Procede et dispositif d'identification automatique d'un programme comportant un signal sonore. |
GB2292506B (en) | 1991-09-30 | 1996-05-01 | Arbitron Company The | Method and apparatus for automatically identifying a program including a sound signal |
US5319735A (en) | 1991-12-17 | 1994-06-07 | Bolt Beranek And Newman Inc. | Embedded signalling |
JP3306600B2 (ja) * | 1992-08-05 | 2002-07-24 | 三菱電機株式会社 | 自動音量調整装置 |
US5293369A (en) * | 1992-10-28 | 1994-03-08 | International Business Machines Corporation | Asynchronous sampling digital detector system for magnetic and optical recording channels |
NZ259776A (en) | 1992-11-16 | 1997-06-24 | Ceridian Corp | Identifying recorded or broadcast audio signals by mixing with encoded signal derived from code signal modulated by narrower bandwidth identification signal |
US5483276A (en) | 1993-08-02 | 1996-01-09 | The Arbitron Company | Compliance incentives for audience monitoring/recording devices |
US5450490A (en) | 1994-03-31 | 1995-09-12 | The Arbitron Company | Apparatus and methods for including codes in audio signals and decoding |
US5404377A (en) * | 1994-04-08 | 1995-04-04 | Moses; Donald W. | Simultaneous transmission of data and audio signals by means of perceptual coding |
US5822360A (en) | 1995-09-06 | 1998-10-13 | Solana Technology Development Corporation | Method and apparatus for transporting auxiliary data in audio signals |
-
1997
- 1997-01-24 AT AT97902223T patent/ATE184140T1/de active
- 1997-01-24 EP EP97902223A patent/EP0875107B1/de not_active Expired - Lifetime
- 1997-01-24 US US09/142,325 patent/US6584138B1/en not_active Expired - Lifetime
- 1997-01-24 WO PCT/EP1997/000338 patent/WO1997033391A1/de active IP Right Grant
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7395211B2 (en) | 2000-08-16 | 2008-07-01 | Dolby Laboratories Licensing Corporation | Modulating one or more parameters of an audio or video perceptual coding system in response to supplemental information |
DE10254470A1 (de) * | 2002-11-21 | 2004-06-17 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Vorrichtung und Verfahren zum Bestimmen einer Impulsantwort und Vorrichtung und Verfahren zum Vorführen eines Audiostücks |
DE10254470B4 (de) * | 2002-11-21 | 2006-01-26 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Vorrichtung und Verfahren zum Bestimmen einer Impulsantwort und Vorrichtung und Verfahren zum Vorführen eines Audiostücks |
Also Published As
Publication number | Publication date |
---|---|
US6584138B1 (en) | 2003-06-24 |
ATE184140T1 (de) | 1999-09-15 |
WO1997033391A1 (de) | 1997-09-12 |
EP0875107A1 (de) | 1998-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0875107B1 (de) | Codierverfahren zur einbringung eines nicht hörbaren datensignals in ein audiosignal, decodierverfahren, codierer und decodierer | |
DE69722187T2 (de) | Gleichzeitige übertragung von audio- und zusatzsignalen mit hilfe von wahrnehmungsgebundener kodierung | |
DE69838401T2 (de) | Verfahren und vorrichtung zur kodierung von tonsignalen, in dem am tonsignal eine unhörbare kode hinzugefügt wird, für verwendung in programmidentifikationssystemen | |
AT410047B (de) | Vorrichtung und verfahren zum einfügen von kodes in audiosignale und zum dekodieren | |
DE19640825C2 (de) | Codierer zur Einbringung eines nicht hörbaren Datensignals in ein Audiosignal und Decodierer zum decodieren eines nicht hörbar in einem Audiosignal enthaltenen Datensignals | |
DE69601465T2 (de) | Datenrundfunksystem unter verwendung der eigenschaften des menschlichen ohres | |
DE69333661T2 (de) | Verfahren und vorrichtung zur kodierung/dekodierung von gesendeten oder aufgezeichneten ausschnitten und überwachung der zuhörerreaktion darauf | |
DE10393776B4 (de) | Verfahren und Systeme zur Kodierung von mehreren Nachrichten in Audiodaten und zur Detektion derselben | |
DE69632340T2 (de) | Transport von versteckten daten nach komprimierung | |
DE69435093T2 (de) | Zuschauerermittlungssystem | |
DE10084633B3 (de) | Dekodieren von Informationen in Audiosignalen | |
Garcia | Digital watermarking of audio signals using a psychoacoustic auditory model and spread spectrum theory | |
DE68925638T2 (de) | Kabelfernseh-spreizspektrum-datenübertragungsgerät | |
DE69524674T2 (de) | Methode und vorrichtung zur audioinformationsubertragung mit gebrauch verschiedener ubertragungsweisen | |
EP0729678B1 (de) | Verfahren und einrichtung zur sprachverschleierung und -entschleierung bei der sprachübertragung | |
DE102008014311A1 (de) | Einbetter zum Einbetten eines Wasserzeichens in eine Informationsdarstellung, Detektor zum Detektieren eines Wasserzeichens in einer Informationsdarstellung, Verfahren, Computerprogramm und Informationssignal | |
DE60220307T2 (de) | Verfahren zur übertragung breitbandiger tonsignale über einen übertragungskanal mit verminderter bandbreite | |
DE102008014409A1 (de) | Einbetter zum Einbetten eines Wasserzeichens in eine Informationsdarstellung, Detektor zum Detektieren eines Wasserzeichens in einer Informationsdarstellung, Verfahren und Computerprogramm | |
DE602004009926T2 (de) | Vorrichtung und verfahren zum einbetten eines wasserzeichens unter verwendung von subbandfilterung | |
DE69331166T2 (de) | Übertragung von digitalen Breitbandsignalen | |
DE102013225031B4 (de) | Kommunikationsverfahren, und Kommunikationssystem | |
DE69830918T2 (de) | Verfahren und system zur empfangsseitigen auswertung der qualität eines digitalen signals z.b. eines digitalen ton- und bildsignals | |
DE19539538A1 (de) | Nicht hörbare Einfügung von Information in ein Audiosignal | |
EP1992136A2 (de) | Fm-simulcast-rundfunksignal, rundfunkübertragunssystem und empfängereinrichtung dafür | |
EP1149480B1 (de) | Verfahren und vorrichtung zum einbringen von informationen in ein audiosignal und verfahren und vorrichtung zum ermitteln von in einem audiosignal eingebrachten informationen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19980811 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI NL PT SE |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
17Q | First examination report despatched |
Effective date: 19990112 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
ITF | It: translation for a ep patent filed | ||
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990901 Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990901 Ref country code: ES Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19990901 |
|
REF | Corresponds to: |
Ref document number: 184140 Country of ref document: AT Date of ref document: 19990915 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 59700389 Country of ref document: DE Date of ref document: 19991007 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19990924 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
ET | Fr: translation filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19991202 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWA Free format text: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.#LEONRODSTRASSE 54#80636 MUENCHEN (DE) -TRANSFER TO- FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.#HANSASTRASSE 27 C#80686 MUENCHEN (DE) |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20160121 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20160122 Year of fee payment: 20 Ref country code: DE Payment date: 20160119 Year of fee payment: 20 Ref country code: IE Payment date: 20160125 Year of fee payment: 20 Ref country code: CH Payment date: 20160121 Year of fee payment: 20 Ref country code: DK Payment date: 20160122 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20160121 Year of fee payment: 20 Ref country code: SE Payment date: 20160121 Year of fee payment: 20 Ref country code: BE Payment date: 20160121 Year of fee payment: 20 Ref country code: AT Payment date: 20160120 Year of fee payment: 20 Ref country code: GB Payment date: 20160122 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59700389 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MK Effective date: 20170123 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EUP Effective date: 20170124 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20170123 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MK9A |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK07 Ref document number: 184140 Country of ref document: AT Kind code of ref document: T Effective date: 20170124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20170124 Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20170123 |