EP0873466B1 - Turbine shaft of a steam turbine with internal cooling - Google Patents

Turbine shaft of a steam turbine with internal cooling Download PDF

Info

Publication number
EP0873466B1
EP0873466B1 EP96946113A EP96946113A EP0873466B1 EP 0873466 B1 EP0873466 B1 EP 0873466B1 EP 96946113 A EP96946113 A EP 96946113A EP 96946113 A EP96946113 A EP 96946113A EP 0873466 B1 EP0873466 B1 EP 0873466B1
Authority
EP
European Patent Office
Prior art keywords
steam
line
turbine shaft
cooling
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96946113A
Other languages
German (de)
French (fr)
Other versions
EP0873466A1 (en
Inventor
Heinrich Oeynhausen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0873466A1 publication Critical patent/EP0873466A1/en
Application granted granted Critical
Publication of EP0873466B1 publication Critical patent/EP0873466B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines

Definitions

  • the invention relates to a turbine shaft of a steam turbine, especially for the combined recording of high pressure and Medium pressure blading, as well as a method for cooling the turbine shaft of a steam turbine.
  • the common Housing can have an inner housing and an outer housing, which are each horizontally divided and screwed together are.
  • the live steam state characterized by the high pressure steam can currently be around 170 bar and 540 ° C. In the course of increasing the efficiency, a live steam condition can occur of 270 bar and 600 ° C.
  • the High pressure steam can be in a central area of the turbine shaft the high-pressure blades are fed and flowed through this up to an outlet nozzle.
  • the so relaxed and cooled steam can be fed to a boiler and there again be heated.
  • the vapor state at the end of the high pressure part is hereinafter referred to as cold reheating and the Steam condition after leaving the boiler as a hot reheat designated.
  • the steam coming out of the boiler is fed to the medium pressure blading.
  • the steam state can be from 30 bar to 50 bar and 540 ° C, one Increase to a steam state of around 50 bar to 60 bar and 600 ° C is aimed for.
  • the previously used Materials for the production of corresponding turbine shafts and turbine housing in particular made of a chrome jet with 9 wt .-% to 12 wt .-% chromium, the requirements can cope with higher steam conditions, further investigations are needed.
  • the blades in the steam inflow area both the high pressure part and the medium pressure part can be made from a nickel base alloy his. Furthermore, constructive in the steam inflow area Measures to be taken using shaft shields the turbine shaft from direct contact is protected with the steam.
  • JP-OS 59 034 402 relates to a steam turbine, which a has hollow turbine shaft. Flows into the turbine shaft Steam, which serves to drive the turbine.
  • the steam turbine consists of a single turbine part, in the central area already partially relaxed steam inside flows into the turbine shaft. The steam flowing in there becomes split into two partial flows via a throttle, namely in a cold partial flow, in the direction of the steam inflow area is passed, and into a hot partial flow, which in Direction of the evaporation area is directed.
  • the object of the invention is a turbine shaft of a steam turbine to specify the high locally occurring in particular withstands long-term operational temperature loads.
  • Another object of the invention is to provide a method for Specify cooling of a turbine shaft of a steam turbine shaft.
  • a along an axis of rotation extending a jacket surface turbine shaft inside has a cooling line for Guidance of cooling steam in the direction of the axis of rotation, the cooling line with at least one discharge pipe leading to the jacket surface for guidance of cooling steam to the jacket surface and on the other hand with at least one inflow line for the inflow of cooling steam is connected into the cooling line, being on the jacket surface Recesses for receiving turbine blades are provided and the outflow line in a recess empties.
  • cooling steam in the direction of the axis of rotation through the Turbine shaft can be passed through and through the discharge line conductive to the surface of the jacket, so that both in high temperature loads Areas of the turbine shaft inside and can also be cooled on the surface of the jacket.
  • the cooling line can be inclined or opposite to the axis of rotation of these winding, being a transport of Cooling steam in the direction of the axis of rotation allows.
  • Farther is also a cooling system that can be anchored in the turbine shaft Blades, especially their blade feet, can be carried out. It is understood that depending on the manufacture of the cooling line the outflow line and the inflow line a part can represent the cooling line.
  • cooling lines can be provided, whereby the cooling lines are interconnected and each with one or more outflow lines or inflow lines can be connected. It is also possible Outflow lines adjacent in the direction of the axis of rotation to be arranged at predetermined intervals and with the cooling line connect to. Cooling heavily exposed to temperature Shaft sections can thus be carried out on pipelines, Housing bushings and integration into the turbine control respectively. This would be a high construction effort for example, when cooling a turbine shaft cold steam from the outside through the housing and the guide vanes through to the turbine shaft required to cover the jacket surface to cool the turbine shaft directly.
  • the turbine shaft according to the invention is particularly suitable for Design of a combined high-pressure and medium-pressure turbine shaft for a steam turbine with high-pressure blades as well as medium pressure blades. This especially because the steam inflow area of the medium pressure part of a steam turbine is a critical point in turbine design. As compared to the high-pressure part in the medium-pressure part as a result lower vapor pressures significantly higher volume flows and therefore larger shaft diameters and longer blades are required are, the thermomechanical stress of the Blade feet and the shaft in the medium pressure part larger than in the high pressure part.
  • the Turbine shaft according to the invention solved, in which the turbine shaft in the medium pressure part both inside, especially in the middle of the shaft, as well as on its surface, in particular in the area of the blade feet, through cooling steam is coolable.
  • the cooling steam from the high pressure part led through the cooling line into the medium pressure part, with a flow of steam already through the Pressure difference between the high pressure part and the medium pressure part he follows.
  • This pressure difference is between, for example the steam outlet area of the high pressure part and the Steam inlet area of the medium pressure part between 4 bar and 6 bar.
  • the cooling line is preferably a largely to the axis of rotation parallel bore, in particular a central one Hole is.
  • a cooling line designed as a bore is particularly simple and precise even afterwards in the turbine shaft produced.
  • the bore is preferably downstream the connection point with the outflow line, in particular closed by a stopper. This ensures that cooling steam flowing in through the inflow line completely through the discharge line from the turbine shaft can be brought out again.
  • a combined high-pressure medium-pressure tube shaft is the discharge line or the discharge lines near the blades of the steam inflow area of the medium pressure part, whereby cooling, especially the blade feet, this is particularly thermal loaded blades is guaranteed.
  • the inflow line preferably connects like the outflow line the jacket surface with the cooling line.
  • Cooling steam in particular steam from a steam turbine, from the Shell surface at one end of the turbine shaft through the Inside the turbine shaft in the middle of the Turbine shaft feasible.
  • This is particularly the case with a combined High-pressure and medium-pressure turbine shaft advantageous, because steam from the steam outlet area of the high pressure part feasible in the steam inflow area of the medium pressure part is.
  • the inflow line and / or the outflow line are or is preferably a substantially radial bore.
  • Drilling is easy even after the turbine shaft has been manufactured executable, such a hole precisely with a formed as an axial bore cooling line can be connected. Diameter of a hole and number of several holes for the inflow line and the outflow line are aligned the amount of steam intended for cooling.
  • the turbine shaft has recesses on the jacket surface to accommodate turbine blades, the discharge line opens into one of these recesses.
  • the recesses can be slightly larger than the feet of each Blade should be designed so that there is a corresponding Foot and the turbine shaft forms a space in the steam can flow in to cool the blade root.
  • This space can also be formed by channels connected to the The discharge line and / or are connected to each other.
  • the turbine shaft is cooled by Inside in the area of the high-pressure part, in the area between the high-pressure part and the medium-pressure part Shaft seal and in the particularly stressed steam inflow area of the medium pressure part including the blade feet the first row of blades of the medium pressure part given.
  • the turbine shaft is therefore preferably suitable for a steam turbine in which the high pressure part and the medium pressure part are housed in a common housing.
  • the discharge line opens into the steam inflow area of the medium-pressure blades, so that in this area both Cooling of the turbine shaft as well as the blades included the blade feet are made.
  • the inflow line connects preferably the steam outlet area of the high-pressure blades with the cooling line, causing steam from the steam outlet area of the high pressure part through the inside of the Turbine shaft in the medium pressure part is feasible.
  • the on a method of cooling a turbine shaft is for a turbine shaft, which are both the high pressure blades and the medium pressure blades carries, solved by the fact that steam the steam area of the high pressure blades, i.e. from the High pressure part, through the inside of the turbine shaft led to the steam inflow area of the medium pressure blades becomes.
  • the steam flow inside the turbine shaft can be suitably dimensioned accordingly Cooling line, which is designed in particular as a bore is to be regulated so that even over a wide range Adequate cooling is guaranteed.
  • FIG 1 is an extending along an axis of rotation 2
  • Turbine shaft 1 shown which in one Inner housing 21 surrounding outer housing 22 is arranged is.
  • the turbine shaft 1 has a central region 28, which includes a shaft seal 24 with the inner housing 21.
  • the middle region is on the left 28 of the high pressure part 23 of the steam turbine.
  • Right of the middle area 28 is the medium pressure part 25 of the steam turbine.
  • the high pressure part 23 with the high pressure blading 13 has a directly adjoining the shaft seal 24
  • High pressure steam inflow area 27 from the inflowing High pressure steam through a steam area 17 of the high pressure blading 13 flows and through a steam outlet area 16 the outer housing 22 to a not shown Boiler in which reheating takes place leaves.
  • the reheated steam 6 arrives again into the outer housing 22 and the inner housing 21. He flows through to the right onto the steam inflow region 15 of the medium pressure part 25 subsequent medium pressure blading 14.
  • the medium-pressure blading 14 closes an outflow nozzle 26 through which the steam 6 to a Low pressure steam turbine, not shown, is feasible.
  • the described flow of steam 6 is by flow arrows 29 marked.
  • the turbine shaft 1 has a central axis of rotation 2 coinciding bore 5a on through the medium pressure part 25 through through the high pressure part 23 enough.
  • the central bore 5a is in the steam outlet area 16 of the high pressure part 23 with a jacket surface 3 of the Turbine shaft 1 through a plurality of inflow lines 8 connected.
  • the inflow lines 8 are radial bores 8a executed, causing "cold" steam from the high pressure part 23 can flow into the central bore 5a.
  • the central one Bore 5a is still in a medium pressure part 25 in the area the first row of blades with a plurality of Outflow lines 7 connected. These discharge lines 7 extend each of recesses 10 of the jacket surface 3 for receiving barrel blades 11 to the central bore 5a.
  • the discharge lines 7 are also essentially radially extending bores 7a. Downstream of the discharge lines 7 is the central bore 5a through a plug 9 tightly closed. The between the discharge lines 7 and forms the inflow lines 8 lying part of the bore 5a thus a cooling line 5 through which steam 6 from the high pressure part 23 into the steam inflow region 15 of the medium pressure part 25 streams.
  • This vapor 6 has a significantly lower one Temperature than that flowing into the steam inflow region 15 reheated steam, so that effective cooling of the first rows of blades of the medium pressure part 25 and the Shell surface 3 guaranteed in the area of these blade rows is.
  • FIG. 2 shows the steam inflow area on an enlarged scale 15 of the medium pressure part 25.
  • the recesses 10 of the turbine shaft 1 are each corresponding blades 11 with blades their blade feet 18 arranged.
  • the recesses 10 have each around the blade feet 18 channels 20, the Channels 20 on the one hand with the radially extending to the axis of rotation 2
  • Outflow lines 7 and on the other hand, each with one Stub 12 are connected.
  • the stub 12 leads from the recess 10 to the jacket surface 3, so that the Branch line 12 is opposite a guide vane 19 of the steam turbine.
  • the from the high pressure part 23 through the discharge lines 7 flowing steam 6 enters the channels 20 of the Recesses 10 and thus cools each in a corresponding Recess 10 arranged blade feet 18.
  • the steam 6 flows from the channels 20 through a respective branch line 12 to the jacket surface 3 of the turbine shaft 1 and cools thus also the jacket surface 3 between each other in the direction Blade 11 adjacent the axis of rotation 11.
  • the invention is characterized by a turbine shaft, which both the blades of a high pressure part as also the blades of a medium pressure part of a steam turbine wearing.
  • the turbine shaft has at least one cooling line on which with at least one inflow line the high pressure part and at least via an outflow line connected to the steam inflow area of the medium pressure part is.
  • the inflow line, the cooling line and the outflow line form a pipe system inside the turbine shaft, through which "cold" steam from the high pressure part too the thermomechanically highly stressed steam inflow area of the medium pressure part is feasible. This is done without high design effort cooling both the blades, especially the blade feet, as well as the surface the turbine shaft in the particularly heavily used Steam inflow area of the medium pressure part.

Abstract

A turbine shaft, in particular for a combined high-pressure/intermediate-pressure steam turbine accommodated in a common casing and a method of cooling a turbine shaft of a steam turbine. The turbine shaft has a cooling line in its interior for guiding cooling steam. The cooling line is connected on one side to an outflow line and on the other side to an inflow line. Steam cooling of the turbine shaft of a combined high-pressure/intermediate-pressure steam turbine can thereby be achieved by feeding steam from the high-pressure part through the inflow line to the intermediate-pressure part and through the outflow line.

Description

Die Erfindung betrifft eine Turbinenwelle einer Dampfturbine, insbesondere zur kombinierten Aufnahme der Hochdruck- und Mitteldruck-Beschaufelung, sowie ein Verfahren zur Kühlung der Turbinenwelle einer Dampfturbine.The invention relates to a turbine shaft of a steam turbine, especially for the combined recording of high pressure and Medium pressure blading, as well as a method for cooling the turbine shaft of a steam turbine.

Zur Steigerung des Wirkungsgrades einer Dampfturbine trägt die Verwendung von Dampf mit höheren Drücken und Temperaturen bei. Die Verwendung von Dampf mit einem solchen Dampfzustand stellt erhöhte Anforderung an die entsprechende Dampfturbine. Bei einer Dampfturbine der unteren bis mittleren Leistungsgröße, beispielsweise von 300 MW bis 600 MW, eignet sich eine kombinierte Hoch- und Mitteldruck-Turbine. Hierbei werden von der Turbinenwelle sowohl die Hochdruck-Laufschaufeln als auch die Mitteldruck-Lauf schaufeln aufgenommen. Die Turbinenwelle ist in einem einzigen Gehäuse untergebracht, welches die zugeordneten Leitschaufeln aufweist. Ein Vorteil einer Dampfturbine, bei der die Hoch- und Mitteldruck-Beschaufelung in einem gemeinsamen Gehäuse angeordnet sind, liegt beispielsweise trotz einer komplizierten Bauweise in einer kürzeren Gesamtlänge sowie dem Wegfall eines Lagers. Das gemeinsame Gehäuse kann ein Innengehäuse und ein Außengehäuse aufweisen, welche jeweils horizontal geteilt und miteinander verschraubt sind. Der durch den Hochdruck-Dampf gekennzeichnete Frischdampfzustand kann bei derzeit etwa 170 bar und 540 °C liegen. Im Zuge der Steigerung des Wirkungsgrades kann ein Frischdampfzustand von 270 bar und 600 °C angestrebt werden. Der Hochdruck-Dampf kann in einem Mittelbereich der Turbinenwelle der Hochdruck-Beschaufelung zugeführt werden und durchströmt diese bis zu einem Austrittsstutzen. Der so entspannte und abgekühlte Dampf kann einem Kessel zugeführt und dort erneut aufgeheizt werden. Der Dampfzustand am Ende des Hochdruck-Teils wird im Folgenden als kalte Zwischenüberhitzung und der Dampfzustand nach Verlassen des Kessels als heiße Zwischenüberhitzung bezeichnet. Der aus dem Kessel austretende Dampf wird der Mitteldruck-Beschaufelung zugeführt. Der Dampfzustand kann bei 30 bar bis 50 bar und 540 °C liegen, wobei eine Steigerung auf einen Dampfzustand von etwa 50 bar bis 60 bar und 600 °C angestrebt wird. Inwieweit die bisher eingesetzten Materialien zur Herstellung entsprechender Turbinenwellen und Turbinengehäuse, insbesondere aus einem Chromstrahl mit 9 Gew.-% bis 12 Gew.-% Anteil an Chrom, den Anforderungen bei höheren Dampfzuständen gerecht werden können, bedürfte weitere Untersuchungen. Die Laufschaufeln im Dampfeinströmbereich sowohl des Hochdruck-Teils als auch des Mitteldruck-Teils können aus einer Nickelbasislegierung hergestellt sein. Weiterhin können im Dampfeinströmbereich konstruktive Maßnahmen durchgeführt sein, bei denen über Wellenabschirmungen die Turbinenwelle vor einem unmittelbaren Kontakt mit dem Dampf geschützt ist. Contributes to increasing the efficiency of a steam turbine the use of steam at higher pressures and temperatures at. The use of steam with such a steam condition places increased demands on the corresponding steam turbine. In the case of a steam turbine of the lower to medium capacity, for example from 300 MW to 600 MW, one is suitable combined high and medium pressure turbine. Here are from the turbine shaft both the high pressure blades as well the medium pressure barrel blades were added. The turbine shaft is housed in a single housing, which the assigned Has guide vanes. An advantage of a steam turbine where the high and medium pressure blading in are arranged in a common housing, for example despite a complicated construction in a shorter one Total length and the elimination of a bearing. The common Housing can have an inner housing and an outer housing, which are each horizontally divided and screwed together are. The live steam state characterized by the high pressure steam can currently be around 170 bar and 540 ° C. In the course of increasing the efficiency, a live steam condition can occur of 270 bar and 600 ° C. The High pressure steam can be in a central area of the turbine shaft the high-pressure blades are fed and flowed through this up to an outlet nozzle. The so relaxed and cooled steam can be fed to a boiler and there again be heated. The vapor state at the end of the high pressure part is hereinafter referred to as cold reheating and the Steam condition after leaving the boiler as a hot reheat designated. The steam coming out of the boiler is fed to the medium pressure blading. The steam state can be from 30 bar to 50 bar and 540 ° C, one Increase to a steam state of around 50 bar to 60 bar and 600 ° C is aimed for. To what extent the previously used Materials for the production of corresponding turbine shafts and turbine housing, in particular made of a chrome jet with 9 wt .-% to 12 wt .-% chromium, the requirements can cope with higher steam conditions, further investigations are needed. The blades in the steam inflow area both the high pressure part and the medium pressure part can be made from a nickel base alloy his. Furthermore, constructive in the steam inflow area Measures to be taken using shaft shields the turbine shaft from direct contact is protected with the steam.

Die JP-OS 59 034 402 betrifft eine Dampfturbine, welche eine hohle Turbinenwelle aufweist. In die Turbinenwelle strömt Dampf ein, welcher zum Antrieb der Turbine dient. Die Dampfturbine besteht aus einer einzigen Teilturbine, in deren Mittelbereich bereits teilweise entspannter Dampf in das Innere der Turbinenwelle einströmt. Der dort einströmende Dampf wird über eine Drossel in zwei Teilströme aufgespalten, nämlich in einen kalten Teilstrom, der in Richtung des Dampfeinströmbereiches geleitet wird, und in einen heißen Teilstrom, der in Richtung des Abdampfbereiches geleitet wird. JP-OS 59 034 402 relates to a steam turbine, which a has hollow turbine shaft. Flows into the turbine shaft Steam, which serves to drive the turbine. The steam turbine consists of a single turbine part, in the central area already partially relaxed steam inside flows into the turbine shaft. The steam flowing in there becomes split into two partial flows via a throttle, namely in a cold partial flow, in the direction of the steam inflow area is passed, and into a hot partial flow, which in Direction of the evaporation area is directed.

Aufgabe der Erfindung ist es, eine Turbinenwelle einer Dampfturbine anzugeben, die insbesondere lokal auftretenden hohen betrieblichen Temperaturbelastungen langzeitstabil standhält. Eine weitere Aufgabe der Erfindung ist es, ein Verfahren zur Kühlung einer Turbinenwelle einer Dampfturbinenwelle anzugeben.The object of the invention is a turbine shaft of a steam turbine to specify the high locally occurring in particular withstands long-term operational temperature loads. Another object of the invention is to provide a method for Specify cooling of a turbine shaft of a steam turbine shaft.

Erfindungsgemäß wird die auf einer Turbinenwelle einer Dampfturbine gerichtete Aufgabe dadurch gelöst, daß eine sich entlang einer Rotationsachse erstreckende eine Manteloberfläche habende Turbinenwelle in ihrem Inneren eine Kühlleitung zur Führung von Kühldampf in Richtung der Rotationsachse aufweist, wobei die Kühlleitung einerseits mit zumindest einer an die Manteloberfläche führende Abströmleitung zur Führung von Kühldampf an die Manteloberfläche und andererseits mit zumindest einer Zuströmleitung zur Zuströmung von Kühldampf in die Kühlleitung hinein verbunden ist, wobei an der Manteloberfläche Ausnehmungen zur Aufnahme von Turbinenlaufschaufeln vorgesehen sind und die Abströmleitung in einer Ausnehmung mündet.According to the invention on a turbine shaft of a steam turbine task solved in that a along an axis of rotation extending a jacket surface turbine shaft inside has a cooling line for Guidance of cooling steam in the direction of the axis of rotation, the cooling line with at least one discharge pipe leading to the jacket surface for guidance of cooling steam to the jacket surface and on the other hand with at least one inflow line for the inflow of cooling steam is connected into the cooling line, being on the jacket surface Recesses for receiving turbine blades are provided and the outflow line in a recess empties.

Durch eine im Inneren der Turbinenwelle verlaufende Kühlleitung ist Kühldampf in Richtung der Rotationsachse durch die Turbinenwelle hindurch führbar und durch die Abströmleitung an die Manteloberfläche leitbar, so daß sowohl in stark temperaturbelasteten Bereichen die Turbinenwelle in ihrem Inneren als auch an der Manteloberfläche kühlbar ist. Die Kühlleitung kann gegenüber der Rotationsachse geneigt oder gegenüber dieser gewunden verlaufen, wobei sie einen Transport von Kühldampf in Richtung der Rotationsachse ermöglicht. Weiterhin ist auch eine Kühlung der in der Turbinenwelle verankerbaren Laufschaufeln, insbesondere deren Schaufelfüße, durchführbar. Es versteht sich, daß je nach Herstellung der Kühlleitung die Abströmleitung und die Zuströmleitung einen Teil der Kühlleitung darstellen können. Weiterhin versteht es sich, daß mehr als eine Kühlleitung vorgesehen sein kann, wobei die Kühlleitungen untereinander in Verbindung stehen und jeweils mit einer oder mehreren Abströmleitungen bzw. Zuströmleitungen verbunden sein können. Es ist ebenfalls möglich, in Richtung der Rotationsachse benachbarte Abströmleitungen in vorgebbaren Abständen anzuordnen und mit der Kühlleitung zu verbinden. Eine Kühlung stark temperaturbelasteter Wellenabschnitte kann somit ohne erheblichen Aufwand an Rohrleitungen, Gehäuse-Durchführungen und Einbindung in die Turbinenregelung erfolgen. Dieser hohe konstruktive Aufwand wäre beispielsweise bei einer Kühlung einer Turbinenwelle mittels kaltem Dampf von außen durch das Gehäuse und die Leitschaufeln hindurch bis zur Turbinenwelle erforderlich, um die Manteloberfläche der Turbinenwelle direkt zu kühlen.Through a cooling line running inside the turbine shaft is cooling steam in the direction of the axis of rotation through the Turbine shaft can be passed through and through the discharge line conductive to the surface of the jacket, so that both in high temperature loads Areas of the turbine shaft inside and can also be cooled on the surface of the jacket. The cooling line can be inclined or opposite to the axis of rotation of these winding, being a transport of Cooling steam in the direction of the axis of rotation allows. Farther is also a cooling system that can be anchored in the turbine shaft Blades, especially their blade feet, can be carried out. It is understood that depending on the manufacture of the cooling line the outflow line and the inflow line a part can represent the cooling line. Furthermore, it understands themselves that more than one cooling line can be provided, whereby the cooling lines are interconnected and each with one or more outflow lines or inflow lines can be connected. It is also possible Outflow lines adjacent in the direction of the axis of rotation to be arranged at predetermined intervals and with the cooling line connect to. Cooling heavily exposed to temperature Shaft sections can thus be carried out on pipelines, Housing bushings and integration into the turbine control respectively. This would be a high construction effort for example, when cooling a turbine shaft cold steam from the outside through the housing and the guide vanes through to the turbine shaft required to cover the jacket surface to cool the turbine shaft directly.

Die erfindungsgemäße Turbinenwelle eignet sich besonders zur Ausgestaltung einer kombinierten Hochdruck- und Mitteldruck-Turbinenwelle für eine Dampfturbine mit Hochdruck-Laufschaufeln sowie Mitteldruck-Laufschaufeln. Dies insbesondere, da der Dampfeinströmbereich des Mitteldruck-Teiles einer Dampfturbine eine kritische Stelle bei der Turbinenauslegung ist. Da im Vergleich zum Hochdruck-Teil im Mitteldruck-Teil infolge niedrigerer Dampfdrücke deutlich höhere Volumenströme und damit größere Wellendurchmesser und längere Schaufeln erforderlich sind, ist die thermomechanische Beanspruchung der Laufschaufelfüße und der Welle im Mitteldruck-Teil größer als im Hochdruck-Teil. Da zudem im Hochdruck- und Mitteldruck-Teil jeweils ähnliche Temperaturen herrschen sind die Werkstoffkennwerte der Turbinenwelle, wie beispielsweise Zeitstandfestigkeit und Kerbschlagzähigkeit, ebenfalls ähnlich, wodurch aufgrund der höheren thermomechanischen Belastungen des Mitteldruck-Teiles dieser als kritischer als der Hochdruck-Teil zu bewerten ist. Diese Problematik wird durch die erfindungsgemäße Turbinenwelle gelöst, in dem die Turbinenwelle im Mitteldruck-Teil sowohl in ihrem Inneren, besonders in der Wellenmitte, als auch an ihrer Manteloberfläche, insbesondere im Bereich der Laufschaufelfüße, durch Kühldampf kühlbar ist. Vorzugsweise wird der Kühldampf aus dem Hochdruck-Teil durch die Kühlleitung in den Mitteldruck-Teil geführt, wobei eine Strömung des Dampfes bereits durch den Druckunterschied zwischen Hochdruck-Teil und Mitteldruck-Teil erfolgt. Dieser Druckunterschied beträgt beispielsweise zwischen dem Dampfaustrittsbereich des Hochdruck-Teils und dem Dampfeintrittsbereich des Mitteldruck-Teils zwischen 4 bar und 6 bar. Durch entsprechende Bemessung des Querschnittes der Kühlleitung ist die Dampfströmung so regulierbar, daß auch über einen weiten Leistungsbereich der Dampfturbine eine ausreichende Kühlleistung gewährleistet ist.The turbine shaft according to the invention is particularly suitable for Design of a combined high-pressure and medium-pressure turbine shaft for a steam turbine with high-pressure blades as well as medium pressure blades. This especially because the steam inflow area of the medium pressure part of a steam turbine is a critical point in turbine design. As compared to the high-pressure part in the medium-pressure part as a result lower vapor pressures significantly higher volume flows and therefore larger shaft diameters and longer blades are required are, the thermomechanical stress of the Blade feet and the shaft in the medium pressure part larger than in the high pressure part. Since also in the high pressure and medium pressure part Similar temperatures prevail are the material parameters the turbine shaft, such as creep rupture strength and impact strength, also similar, whereby due to the higher thermomechanical loads of the medium pressure part this is more critical than the high pressure part is to be assessed. This problem is solved by the Turbine shaft according to the invention solved, in which the turbine shaft in the medium pressure part both inside, especially in the middle of the shaft, as well as on its surface, in particular in the area of the blade feet, through cooling steam is coolable. Preferably, the cooling steam from the high pressure part led through the cooling line into the medium pressure part, with a flow of steam already through the Pressure difference between the high pressure part and the medium pressure part he follows. This pressure difference is between, for example the steam outlet area of the high pressure part and the Steam inlet area of the medium pressure part between 4 bar and 6 bar. By appropriate dimensioning of the cross section the cooling line, the steam flow is adjustable so that also over a wide power range of the steam turbine sufficient cooling capacity is guaranteed.

Die Kühlleitung ist vorzugsweise eine weitgehend zur Rotationsachse parallele Bohrung, die insbesondere eine zentrale Bohrung ist. Eine als Bohrung ausgebildete Kühlleitung ist besonders einfach und exakt auch nachträglich in der Turbinenwelle herstellbar. Die Bohrung ist vorzugsweise stromab der Verbindungsstelle mit der Abströmleitung, insbesondere durch einen Stopfen, verschlossen. Hierdurch ist gewährleistet, daß durch die Zuströmleitung einströmendes Kühldampf vollständig durch die Abströmleitung aus der Turbinenwelle wieder herausführbar ist. Bei einer kombinierten Hochdruck-Mitteldruck-Tubinenwelle liegt die Abströmleitung bzw. liegen die Abströmleitungen in der Nähe der Laufschaufeln des Dampfeinströmbereiches des Mitteldruck-Teils, wodurch eine Kühlung, insbesondere der Schaufelfüße, dieser besonders thermisch belasteten Laufschaufeln gewährleistet ist.The cooling line is preferably a largely to the axis of rotation parallel bore, in particular a central one Hole is. A cooling line designed as a bore is particularly simple and precise even afterwards in the turbine shaft produced. The bore is preferably downstream the connection point with the outflow line, in particular closed by a stopper. This ensures that cooling steam flowing in through the inflow line completely through the discharge line from the turbine shaft can be brought out again. With a combined high-pressure medium-pressure tube shaft is the discharge line or the discharge lines near the blades of the steam inflow area of the medium pressure part, whereby cooling, especially the blade feet, this is particularly thermal loaded blades is guaranteed.

Die Zuströmleitung verbindet vorzugsweise wie die Abströmleitung die Manteloberfläche mit der Kühlleitung. Hierdurch ist Kühldampf, insbesondere Dampf einer Dampfturbine, von der Manteloberfläche an einem Ende der Turbinenwelle durch das Innere der Turbinenwelle hindurch in den Mittelbereich der Turbinenwelle führbar. Dies ist besonders bei einer kombinierten Hochdruck- und Mitteldruck-Turbinenwelle vorteilhaft, da somit Dampf aus dem Dampfaustrittsbereich des Hochdruck-Teils in den Dampfeinströmbereich des Mitteldruck-Teils führbar ist.The inflow line preferably connects like the outflow line the jacket surface with the cooling line. This is Cooling steam, in particular steam from a steam turbine, from the Shell surface at one end of the turbine shaft through the Inside the turbine shaft in the middle of the Turbine shaft feasible. This is particularly the case with a combined High-pressure and medium-pressure turbine shaft advantageous, because steam from the steam outlet area of the high pressure part feasible in the steam inflow area of the medium pressure part is.

Die Zuströmleitung und/oder die Abströmleitung sind bzw. ist vorzugsweise eine im wesentlichen radiale Bohrung. Eine solche Bohrung ist einfach auch nach Herstellung der Turbinenwelle ausführbar, wobei eine solche Bohrung präzise mit einer als axiale Bohrung ausgebildeten Kühlleitung verbindbar ist. Durchmesser einer Bohrung und Anzahl mehrerer Bohrungen für die Zuströmleitung sowie die Abströmleitung richten sich nach der zur Kühlung vorgesehenen Dampfmenge.The inflow line and / or the outflow line are or is preferably a substantially radial bore. Such Drilling is easy even after the turbine shaft has been manufactured executable, such a hole precisely with a formed as an axial bore cooling line can be connected. Diameter of a hole and number of several holes for the inflow line and the outflow line are aligned the amount of steam intended for cooling.

Die Turbinenwelle weist an der Manteloberfläche Ausnehmungen zur Aufnahme von Turbinenlaufschaufeln auf, wobei die Abströmleitung in eine dieser Ausnehmungen mündet. Die Ausnehmungen können dabei etwas größer als die Füße der jeweiligen Laufschaufel ausgeführt sein, so daß sich zwischen einem entsprechenden Fuß und der Turbinenwelle ein Raum ausbildet, in den Dampf zur Kühlung des Laufschaufelfußes einströmen kann. Dieser Raum kann auch durch Kanäle gebildet sein, die mit der Abströmleitung und/oder untereinander in Verbindung stehen. Von einer Ausnehmung, in die eine Abströmleitung mündet, führt vorzugsweise eine Stichleitung zur Manteloberfläche der Turbinenwelle. Hierdurch wird neben der Kühlung der Schaufelfüße zusätzlich eine Kühlung der Manteloberfläche und damit der Turbinenwelle von außen erreicht. Dies ist besonders im Dampfeinströmbereich des Mitteldruck-Teils einer kombinierten Hochdruck-Mitteldruck-Turbinenwelle vorteilhaft. Hierdurch ist eine Kühlung der Turbinenwelle von Innen im Bereich des Hochdruck-Teils, im Bereich einer zwischen dem Hochdruck-Teil und dem Mitteldruck-Teil liegenden Wellendichtung sowie in dem besonders beanspruchten Dampfeinströmbereich des Mitteldruck-Teils einschließlich der Schaufelfüße der ersten Laufschaufelreihe des Mitteldruck-Teils gegeben. Die Turbinenwelle eignet sich somit vorzugsweise für eine Dampfturbine, bei der der Hochdruck-Teil und der Mitteldruck-Teil in einem gemeinsamen Gehäuse untergebracht sind. Die Abströmleitung mündet im Dampfeinströmbereich der Mitteldruck-Laufschaufeln, so daß in diesem Bereich sowohl eine Kühlung der Turbinenwelle als auch der Lauf schaufeln inklusive der Laufschaufelfüße erfolgt. Die Zuströmleitung verbindet vorzugsweise den Dampfaustrittsbereich der Hochdruck-Laufschaufeln mit der Kühlleitung, wodurch Dampf aus dem Dampfaustrittsbereich des Hochdruck-Teils durch das Innere der Turbinenwelle in den Mitteldruck-Teil führbar ist.The turbine shaft has recesses on the jacket surface to accommodate turbine blades, the discharge line opens into one of these recesses. The recesses can be slightly larger than the feet of each Blade should be designed so that there is a corresponding Foot and the turbine shaft forms a space in the steam can flow in to cool the blade root. This space can also be formed by channels connected to the The discharge line and / or are connected to each other. From a recess into which an outflow pipe opens, preferably a stub leads to the jacket surface the turbine shaft. This will in addition to the Cooling the blade feet additionally cooling the jacket surface and thus reached the turbine shaft from the outside. This is especially in the steam inflow area of the medium pressure part a combined high-pressure medium-pressure turbine shaft advantageous. As a result, the turbine shaft is cooled by Inside in the area of the high-pressure part, in the area between the high-pressure part and the medium-pressure part Shaft seal and in the particularly stressed steam inflow area of the medium pressure part including the blade feet the first row of blades of the medium pressure part given. The turbine shaft is therefore preferably suitable for a steam turbine in which the high pressure part and the medium pressure part are housed in a common housing. The discharge line opens into the steam inflow area of the medium-pressure blades, so that in this area both Cooling of the turbine shaft as well as the blades included the blade feet are made. The inflow line connects preferably the steam outlet area of the high-pressure blades with the cooling line, causing steam from the steam outlet area of the high pressure part through the inside of the Turbine shaft in the medium pressure part is feasible.

Die auf ein Verfahren zur Kühlung einer Turbinenwelle einer Dampfturbine gerichtete Aufgabe wird für eine Turbinenwelle, welche sowohl die Hochdruck-Laufschaufeln als auch die Mitteldruck-Laufschaufeln trägt, dadurch gelöst, daß Dampf aus dem Dampfbereich der Hochdruck-Laufschaufeln, d.h. aus dem Hochdruck-Teil, durch das Innere der Turbinenwelle hindurch zum Dampfeinströmbereich der Mitteldruck-Laufschaufeln geführt wird. Die Dampfströmung im Inneren der Turbinenwelle kann hierbei durch geeignete Dimensionierung einer entsprechenden Kühlleitung, welche insbesondere als Bohrung ausgeführt ist, so reguliert werden, daß auch über einen weiten Leistungsbereich eine ausreichende Kühlung gewährleistet ist. The on a method of cooling a turbine shaft Steam turbine directed task is for a turbine shaft, which are both the high pressure blades and the medium pressure blades carries, solved by the fact that steam the steam area of the high pressure blades, i.e. from the High pressure part, through the inside of the turbine shaft led to the steam inflow area of the medium pressure blades becomes. The steam flow inside the turbine shaft can be suitably dimensioned accordingly Cooling line, which is designed in particular as a bore is to be regulated so that even over a wide range Adequate cooling is guaranteed.

Da auch im Teillastbereich der Dampfturbine eine Druckdifferenz zwischen dem Hochdruck-Teil und dem Mitteldruck-Teil gegeben ist, ist eine einwandfreie Funktionsfähigkeit des Verfahrens auch im Teillastbereich gewährleistet. Durch eine als axiale, vorzugsweise zentrale, Bohrung ausgeführte Kühlleitung steigen die tangentialen Spannungen im Inneren der Turbinenwelle gegebenenfalls auf etwa das Doppelte im Vergleich zu einer Turbinenwelle ohne Bohrung an. Diese gegebenenfalls vorhandene höhere Beanspruchung der Turbinenwelle wird allerdings durch die deutlich verbesserten Materialeigenschaften aufgrund der Innenkühlung der Turbinenwelle wieder kompensiert.Since there is also a pressure difference in the partial load range of the steam turbine between the high pressure part and the medium pressure part is there is perfect functionality the process also guaranteed in the partial load range. By one designed as an axial, preferably central, bore Cooling line, the tangential stresses inside increase the turbine shaft, if necessary, to about double in Comparison to a turbine shaft without a bore. This if necessary existing higher loads on the turbine shaft is due to the significantly improved material properties due to the internal cooling of the turbine shaft compensated again.

Anhand der Ausführungsbeispiele der Zeichnung werden die Turbinenwelle sowie das Verfahren zur Kühlung der Turbinenwelle näher beschrieben. Es zeigen:

FIG 1
einen Längsschnitt durch eine kombinierte Hochdruck-Mitteldruck-Turbine in einem Gehäuse mit einer Turbinenwelle und
FIG 2
einen Ausschnitt der Turbinenwelle im Dampfeinströmbereich des Mitteldruck-Teils
The turbine shaft and the method for cooling the turbine shaft are described in more detail using the exemplary embodiments in the drawing. Show it:
FIG. 1
a longitudinal section through a combined high-pressure medium-pressure turbine in a housing with a turbine shaft and
FIG 2
a section of the turbine shaft in the steam inflow area of the medium pressure part

In FIG 1 ist eine sich entlang einer Rotationsachse 2 erstreckende Turbinenwelle 1 dargestellt, welche in einem ein Innengehäuse 21 umschließenden Außengehäuse 22 angeordnet ist. Die Turbinenwelle 1 weist einen Mittelbereich 28 auf, der mit dem Innengehäuse 21 eine Wellendichtung 24 beinhaltet. Gemäß der FIG 1 schließt sich links an den Mittelbereich 28 der Hochdruck-Teil 23 der Dampfturbine an. Rechts des Mittelbereiches 28 liegt der Mitteldruck-Teil 25 der Dampfturbine. Der Hochdruck-Teil 23 mit der Hochdruck-Beschaufelung 13 hat einen unmittelbar an die Wellendichtung 24 anschließenden Hochdruck-Dampfeinströmbereich 27 von dem einströmender Hochdruck-Dampf durch einen Dampfbereich 17 der Hochdruck-Beschaufelung 13 strömt und durch einen Dampfaustrittsbereich 16 das Außengehäuse 22 zu einem nichtdargestellten Kessel, in dem eine Zwischenüberhitzung stattfindet, verläßt. Über einen Dampfeinströmbereich 15 des Mitteldruck-Teils 25, welcher sich unmittelbar rechts der Wellendichtung 24 an diese anschließt, gelangt der zwischenüberhitzte Dampf 6 wieder in das Außengehäuse 22 und das Innengehäuse 21 hinein. Er durchströmt eine sich rechts an den Dampfeinströmbereich 15 des Mitteldruck-Teils 25 anschließende Mitteldruck-Beschaufelung 14. An die Mitteldruck-Beschaufelung 14 schließt sich ein Abströmstutzen 26 an, durch welchen der Dampf 6 zu einer nicht dargestellten Niederdruck-Dampfturbine führbar ist. Die beschriebene Strömung des Dampfes 6 ist durch Strömungspfeile 29 gekennzeichnet.In FIG 1 is an extending along an axis of rotation 2 Turbine shaft 1 shown, which in one Inner housing 21 surrounding outer housing 22 is arranged is. The turbine shaft 1 has a central region 28, which includes a shaft seal 24 with the inner housing 21. According to FIG. 1, the middle region is on the left 28 of the high pressure part 23 of the steam turbine. Right of the middle area 28 is the medium pressure part 25 of the steam turbine. The high pressure part 23 with the high pressure blading 13 has a directly adjoining the shaft seal 24 High pressure steam inflow area 27 from the inflowing High pressure steam through a steam area 17 of the high pressure blading 13 flows and through a steam outlet area 16 the outer housing 22 to a not shown Boiler in which reheating takes place leaves. Via a steam inflow region 15 of the medium pressure part 25, which is directly to the right of the shaft seal 24 then the reheated steam 6 arrives again into the outer housing 22 and the inner housing 21. He flows through to the right onto the steam inflow region 15 of the medium pressure part 25 subsequent medium pressure blading 14. The medium-pressure blading 14 closes an outflow nozzle 26 through which the steam 6 to a Low pressure steam turbine, not shown, is feasible. The described flow of steam 6 is by flow arrows 29 marked.

Die Turbinenwelle 1 weist eine zentrale mit der Rotationsachse 2 zusammenfallende Bohrung 5a auf, die durch den Mitteldruck-Teil 25 bis durch den Hochdruck-Teil 23 hindurch reicht. Die zentrale Bohrung 5a ist im Dampfaustrittsbereich 16 des Hochdruck-Teils 23 mit einer Manteloberfläche 3 der Turbinenwelle 1 durch eine Mehrzahl von Zuströmleitungen 8 verbunden. Die Zuströmleitungen 8 sind als radiale Bohrungen 8a ausgeführt, wodurch "kalter" Dampf aus dem Hochdruck-Teil 23 in die zentrale Bohrung 5a einströmen kann. Die zentrale Bohrung 5a ist weiterhin in einem Mitteldruck-Teil 25 im Bereich der ersten Laufschaufelreihen mit einer Mehrzahl von Abströmleitungen 7 verbunden. Diese Abströmleitungen 7 erstrecken sich jeweils von Ausnehmungen 10 der Manteloberfläche 3 zur Aufnahme von Lauf schaufeln 11 zu der zentralen Bohrung 5a. Die Abströmleitungen 7 sind ebenfalls im wesentlichen radial verlaufende Bohrungen 7a. Stromab der Abströmleitungen 7 ist die zentrale Bohrung 5a durch einen Stopfen 9 dicht verschlossen. Der zwischen den Abströmleitungen 7 und den Zuströmleitungen 8 liegende Teil der Bohrung 5a bildet somit eine Kühlleitung 5, durch die Dampf 6 von dem Hochdruck-Teil 23 in den Dampfeinströmbereich 15 des Mitteldruck-Teils 25 strömt. Dieser Dampf 6 hat eine deutlich niedrigere Temperatur als der in den Dampfeinströmbereich 15 einströmende zwischenüberhitzte Dampf, so daß eine wirksame Kühlung der ersten Laufschaufelreihen des Mitteldruck-Teils 25 sowie der Manteloberfläche 3 im Bereich dieser Laufschaufelreihen gewährleistet ist.The turbine shaft 1 has a central axis of rotation 2 coinciding bore 5a on through the medium pressure part 25 through through the high pressure part 23 enough. The central bore 5a is in the steam outlet area 16 of the high pressure part 23 with a jacket surface 3 of the Turbine shaft 1 through a plurality of inflow lines 8 connected. The inflow lines 8 are radial bores 8a executed, causing "cold" steam from the high pressure part 23 can flow into the central bore 5a. The central one Bore 5a is still in a medium pressure part 25 in the area the first row of blades with a plurality of Outflow lines 7 connected. These discharge lines 7 extend each of recesses 10 of the jacket surface 3 for receiving barrel blades 11 to the central bore 5a. The discharge lines 7 are also essentially radially extending bores 7a. Downstream of the discharge lines 7 is the central bore 5a through a plug 9 tightly closed. The between the discharge lines 7 and forms the inflow lines 8 lying part of the bore 5a thus a cooling line 5 through which steam 6 from the high pressure part 23 into the steam inflow region 15 of the medium pressure part 25 streams. This vapor 6 has a significantly lower one Temperature than that flowing into the steam inflow region 15 reheated steam, so that effective cooling of the first rows of blades of the medium pressure part 25 and the Shell surface 3 guaranteed in the area of these blade rows is.

FIG 2 zeigt im vergrößerten Maßstab den Dampfeinströmbereich 15 des Mitteldruck-Teils 25. In die Ausnehmungen 10 der Turbinenwelle 1 sind jeweils entsprechende Lauf schaufeln 11 mit ihren Schaufelfüßen 18 angeordnet. Die Ausnehmungen 10 weisen jeweils um die Schaufelfüße 18 herum Kanäle 20 auf, wobei die Kanäle 20 einerseits mit den radial zur Rotationsachse 2 verlaufenden Abströmleitungen 7 und andererseits mit jeweils einer Stichleitung 12 verbunden sind. Die Stichleitung 12 führt von der Ausnehmung 10 zur Manteloberfläche 3, so daß der Stichleitung 12 eine Leitschaufel 19 der Dampfturbine gegenüberliegt. Der aus dem Hochdruck-Teil 23 durch die Abströmleitungen 7 strömende Dampf 6 gelangt in die Kanäle 20 der Ausnehmungen 10 und kühlt somit die jeweils in einer entsprechenden Ausnehmung 10 angeordneten Schaufelfüße 18. Der Dampf 6 strömt von den Kanälen 20 durch eine jeweilige Stichleitung 12 an die Manteloberfläche 3 der Turbinenwelle 1 und kühlt somit auch die Manteloberfläche 3 zwischen einander in Richtung der Rotationsachse 2 benachbarten Lauf schaufeln 11.2 shows the steam inflow area on an enlarged scale 15 of the medium pressure part 25. In the recesses 10 of the turbine shaft 1 are each corresponding blades 11 with blades their blade feet 18 arranged. The recesses 10 have each around the blade feet 18 channels 20, the Channels 20 on the one hand with the radially extending to the axis of rotation 2 Outflow lines 7 and on the other hand, each with one Stub 12 are connected. The stub 12 leads from the recess 10 to the jacket surface 3, so that the Branch line 12 is opposite a guide vane 19 of the steam turbine. The from the high pressure part 23 through the discharge lines 7 flowing steam 6 enters the channels 20 of the Recesses 10 and thus cools each in a corresponding Recess 10 arranged blade feet 18. The steam 6 flows from the channels 20 through a respective branch line 12 to the jacket surface 3 of the turbine shaft 1 and cools thus also the jacket surface 3 between each other in the direction Blade 11 adjacent the axis of rotation 11.

Die Erfindung zeichnet sich durch eine Turbinenwelle aus, welche sowohl die Laufschaufeln eines Hochdruck-Teils als auch die Laufschaufeln eines Mitteldruck-Teils einer Dampfturbine trägt. Die Turbinenwelle weist zumindest eine Kühlleitung auf, welche über zumindest eine Zuströmleitung mit dem Hochdruck-Teil und zumindest über eine Abströmleitung mit dem Dampfeinströmungsbereich des Mitteldruck-Teils verbunden ist. Die Zuströmleitung, die Kühlleitung sowie die Abströmleitung bilden ein Leitungssystem im Inneren der Turbinenwelle, durch welches "kalter" Dampf aus dem Hochdruck-Teil zu dem thermomechanisch hochbeanspruchten Dampfeinströmbereich des Mitteldruck-Teils führbar ist. Hierdurch erfolgt ohne hohen konstruktiven Aufwand eine Kühlung sowohl der Laufschaufeln, insbesondere der Laufschaufelfüße, als auch der Oberfläche der Turbinenwelle in dem besonders stark beanspruchten Dampfeinströmbereich des Mitteldruck-Teils.The invention is characterized by a turbine shaft, which both the blades of a high pressure part as also the blades of a medium pressure part of a steam turbine wearing. The turbine shaft has at least one cooling line on which with at least one inflow line the high pressure part and at least via an outflow line connected to the steam inflow area of the medium pressure part is. The inflow line, the cooling line and the outflow line form a pipe system inside the turbine shaft, through which "cold" steam from the high pressure part too the thermomechanically highly stressed steam inflow area of the medium pressure part is feasible. This is done without high design effort cooling both the blades, especially the blade feet, as well as the surface the turbine shaft in the particularly heavily used Steam inflow area of the medium pressure part.

Claims (11)

  1. Turbine shaft (1) for a steam turbine, which turbine shaft is directed along an axis of rotation (2), has an outer surface area (3) and in its interior (4) possesses a cooling line (5) for carrying cooling steam (6) in the direction of the axis of rotation (2), the cooling line (5) being connected, on the one hand, to at least one outflow line (7), leading onto the outer surface area (3), for carrying cooling steam (6) onto the outer surface area (3) and, on the other hand, to at least one inflow line (8) for the inflow of cooling steam (6) into the cooling line (5), recesses (10) for the reception of turbine moving blades (1) being provided on the outer surface area (3), and the outflow line (7) issuing in a recess (10).
  2. Combined high-pressure/medium-pressure turbine shaft (1) of a steam turbine with high-pressure moving blades (13) and medium-pressure moving blades (14), which turbine shaft is directed along an axis of rotation (2), has an outer surface area (3) and in its interior (4) possesses a cooling line (5) for carrying cooling steam (6) in the direction of the axis of rotation (2), the cooling line (5) being connected, on the one hand, to at least one outflow line (7), leading onto the outer surface area (3), for carrying cooling steam (6) onto the outer surface area (3) and, on the other hand, to at least one inflow line (8) for the inflow of cooling steam (6) into the cooling line (5), the outflow line (7) issuing into a steam inflow region (15) of the medium-pressure moving blades (14).
  3. Turbine shaft (1) according to Claim 2, which on the outer surface area (3) has recesses (10) for reception of turbine moving blades (1), the outflow line (7) issuing in a recess (10).
  4. Turbine shaft (1) according to one of the preceding claims, in which the cooling line (5) is a bore (5a) essentially parallel to the axis of rotation (2).
  5. Turbine shaft (1) according to Claim 4, in which the cooling line (5) is a central bore (5a).
  6. Turbine shaft (1) according to Claim 4 or 5, the bore (5a) being closed downstream of the outflow line (7), in particular by means of a plug (9).
  7. Turbine shaft (1) according to one of the preceding claims, in which the inflow line (8) extends from the outer surface area (3) to the cooling line (5).
  8. Turbine shaft (1) according to one of the preceding claims, in which the inflow line (8) and/or the outflow line (7) are/is an essentially radial bore (8a, 7a).
  9. Turbine shaft (1) according to Claim 7, in which the recess (10) having an outflow line (7) is connected to the outer surface area (3) additionally via a branch line (12).
  10. Turbine shaft (1) according to one of Claims 2 to 9, the inflow line (8) issuing in a steam outlet region (15) of the high-pressure moving blades (14).
  11. Method for cooling a turbine shaft (1) of a steam turbine, the turbine shaft (1) carrying both the high-pressure moving blades (13) and the medium-pressure moving blades (14), and steam (6) being led out of the steam region (17) of the high-pressure moving blades (14) through the interior (4) of the turbine shaft (1) to the steam inflow region (15) of the medium-pressure moving blades (14).
EP96946113A 1996-01-11 1996-12-20 Turbine shaft of a steam turbine with internal cooling Expired - Lifetime EP0873466B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19600821 1996-01-11
DE19600821 1996-01-11
PCT/DE1996/002490 WO1997025521A1 (en) 1996-01-11 1996-12-20 Turbine shaft of a steam turbine with internal cooling

Publications (2)

Publication Number Publication Date
EP0873466A1 EP0873466A1 (en) 1998-10-28
EP0873466B1 true EP0873466B1 (en) 2002-11-20

Family

ID=7782539

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96946113A Expired - Lifetime EP0873466B1 (en) 1996-01-11 1996-12-20 Turbine shaft of a steam turbine with internal cooling

Country Status (8)

Country Link
US (1) US6010302A (en)
EP (1) EP0873466B1 (en)
JP (1) JP2000502775A (en)
KR (1) KR19990077142A (en)
AT (1) ATE228202T1 (en)
DE (1) DE59609893D1 (en)
ES (1) ES2187687T3 (en)
WO (1) WO1997025521A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3130767A1 (en) * 2015-08-14 2017-02-15 Siemens Aktiengesellschaft Combined high and intermediate pressure steam turbine

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2172905T3 (en) * 1997-06-27 2002-10-01 Siemens Ag TREE OF A STEAM TURBINE WITH INTERNAL REFRIGERATION, AS WELL AS PROCEDURE FOR THE REFRIGERATION OF A TURBINE TREE.
KR100536508B1 (en) * 1997-09-26 2005-12-14 지멘스 악티엔게젤샤프트 Housing for a fan, pump or compressor
EP0926316B1 (en) * 1997-12-24 2003-12-03 ALSTOM (Switzerland) Ltd Combined multi-pressure steam turbine
EP1378630A1 (en) * 2002-07-01 2004-01-07 ALSTOM (Switzerland) Ltd Steam turbine
US7488153B2 (en) * 2002-07-01 2009-02-10 Alstom Technology Ltd. Steam turbine
US8156757B2 (en) * 2006-10-06 2012-04-17 Aff-Mcquay Inc. High capacity chiller compressor
US8105032B2 (en) * 2008-02-04 2012-01-31 General Electric Company Systems and methods for internally cooling a wheel of a steam turbine
CA2717871C (en) * 2008-03-13 2013-08-13 Aaf-Mcquay Inc. High capacity chiller compressor
JP5433183B2 (en) 2008-08-07 2014-03-05 株式会社東芝 Steam turbine and steam turbine plant system
US8251643B2 (en) * 2009-09-23 2012-08-28 General Electric Company Steam turbine having rotor with cavities
CH701914A1 (en) * 2009-09-30 2011-03-31 Alstom Technology Ltd Steam turbine i.e. high pressure steam turbine, has piston seal arranged between rotor and stator, and release groove arranged at rotor, arranged in region of thrust balance piston and running in circumferential direction of rotor
US8591180B2 (en) * 2010-10-12 2013-11-26 General Electric Company Steam turbine nozzle assembly having flush apertures
US9297277B2 (en) 2011-09-30 2016-03-29 General Electric Company Power plant
US9151163B2 (en) * 2012-11-29 2015-10-06 Mtu Aero Engines Gmbh Turbomachine rotor disk
US9702261B2 (en) 2013-12-06 2017-07-11 General Electric Company Steam turbine and methods of assembling the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE527127C (en) * 1929-04-18 1931-06-16 E H Hans Holzwarth Dr Ing Impeller for internal combustion turbines
DE959868C (en) * 1953-07-17 1957-03-14 Schilling Estate Company Impeller arrangement for high-speed detonation combustion turbines
FR1143040A (en) * 1954-09-10 1957-09-25 Henschel & Sohn Gmbh Cooled turbine rotor for high gas temperatures
GB809268A (en) * 1955-12-31 1959-02-18 Oerlikon Maschf Improvements in or relating to turbines
US3189320A (en) * 1963-04-29 1965-06-15 Westinghouse Electric Corp Method of cooling turbine rotors and discs
US4571935A (en) * 1978-10-26 1986-02-25 Rice Ivan G Process for steam cooling a power turbine
JPS5934402A (en) * 1982-08-20 1984-02-24 Hitachi Ltd Rotor device of steam turbine
DE3310396A1 (en) * 1983-03-18 1984-09-20 Kraftwerk Union AG, 4330 Mülheim MD STEAM TURBINE IN SINGLE-FLOW CONSTRUCTION FOR A HIGH-TEMPERATURE STEAM TURBINE SYSTEM WITH INTERMEDIATE HEATING
DE4324034A1 (en) * 1993-07-17 1995-01-19 Abb Management Ag Gas turbine with a cooled rotor
DE4411616C2 (en) * 1994-04-02 2003-04-17 Alstom Method for operating a turbomachine
US5498131A (en) * 1995-03-02 1996-03-12 General Electric Company Steam turbine with thermal stress reduction system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3130767A1 (en) * 2015-08-14 2017-02-15 Siemens Aktiengesellschaft Combined high and intermediate pressure steam turbine
WO2017029055A1 (en) * 2015-08-14 2017-02-23 Siemens Aktiengesellschaft Combined high- and medium-pressure steam turbine

Also Published As

Publication number Publication date
DE59609893D1 (en) 2003-01-02
ATE228202T1 (en) 2002-12-15
ES2187687T3 (en) 2003-06-16
KR19990077142A (en) 1999-10-25
WO1997025521A1 (en) 1997-07-17
JP2000502775A (en) 2000-03-07
US6010302A (en) 2000-01-04
EP0873466A1 (en) 1998-10-28

Similar Documents

Publication Publication Date Title
EP0873466B1 (en) Turbine shaft of a steam turbine with internal cooling
EP0991850B1 (en) Internally cooled steam turbine shaft and method for cooling the same
EP0906494B1 (en) Turbine shaft and process for cooling it
EP1389690B1 (en) Screw interiorly cooled
DE60203959T2 (en) Air-cooled exhaust gas housing for a gas turbine
EP1774140B1 (en) Steam turbine, and method for the operation of a steam turbine
DE3421067C2 (en) Ultra-high pressure superheated steam turbine
DE19620828C1 (en) Steam turbine shaft incorporating cooling circuit
EP1780376A1 (en) Steam turbine
EP1111189B1 (en) Cooling air path for the rotor of a gas turbine engine
EP1245806B1 (en) Cooled gas turbine balde
DE3424138A1 (en) AIR STORAGE GAS TURBINE
WO2005068783A1 (en) Cooled blade for a gas turbine
EP0122872B1 (en) Medium pressure steam turbine for a high temperature steam plant with intermediate reheating
EP2078137A1 (en) Rotor for a turbo-machine
WO1998013584A1 (en) Method of compensating pressure loss in a cooling air guide system in a gas turbine plant
EP1577494A1 (en) Welded steam turbine shaft and its method of manufacture
EP0838595B1 (en) Blade support for a compressor
EP1206627A1 (en) Turbine and method for discharging leakage fluid
DE3248439A1 (en) GAS TURBINE ENGINE WITH COOLED SHOVEL TIPS
EP0891471B1 (en) Thrust-compensating process and device for turbomachines
DE60224744T2 (en) Method and device for arranging elements of a turbine nozzle according to the existing inlet conditions
DE60224746T2 (en) Steam piping structure of a gas turbine
DE2358160A1 (en) STEAM TURBINE HOUSING
EP1788191A1 (en) Steam turbine and method of cooling a steam turbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980713

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB IT LI NL PT SE

17Q First examination report despatched

Effective date: 20010104

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021120

REF Corresponds to:

Ref document number: 228202

Country of ref document: AT

Date of ref document: 20021215

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20021205

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021220

Year of fee payment: 7

Ref country code: ES

Payment date: 20021220

Year of fee payment: 7

REF Corresponds to:

Ref document number: 59609893

Country of ref document: DE

Date of ref document: 20030102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030217

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030220

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030307

Year of fee payment: 7

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030226

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2187687

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031220

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041029

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20031222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231