EP0868762B1 - Configuration et methode concernant le filtrage de signaux - Google Patents
Configuration et methode concernant le filtrage de signaux Download PDFInfo
- Publication number
- EP0868762B1 EP0868762B1 EP96943451A EP96943451A EP0868762B1 EP 0868762 B1 EP0868762 B1 EP 0868762B1 EP 96943451 A EP96943451 A EP 96943451A EP 96943451 A EP96943451 A EP 96943451A EP 0868762 B1 EP0868762 B1 EP 0868762B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- resonator
- superconducting
- arrangement
- microstrip line
- filter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
- H01P1/201—Filters for transverse electromagnetic waves
- H01P1/203—Strip line filters
- H01P1/20309—Strip line filters with dielectric resonator
Definitions
- the present invention relates to superconducting filter arrangements, particularly notch filters or band reject filters which comprise a superconducting dielectric resonator and a waveguide arrangement such as e.g. a microstrip line.
- notch filters or band reject filters are within communications systems.
- a particular application of such relates to multichannel microwave communications systems which operate in high frequency bands in which the size of the components is highly important.
- the invention also relates to a method for filtering signals incoming to a receiving arrangement in a multichannel communication system.
- European Patent Application EP-A-0 567 407 discloses superconducting notch filters with a fixed frequency wherein half wavelength, high temperature superconducting microstrip resonators are parallel coupled to the main high temperature superconducting microstrip line.
- the substrates of the resonators have dielectric constants of about 10-25 at frequencies between 1-3 GHz.
- the length of the filters is then about 2-6 cm; the filters are thus very large and they are also expensive.
- tuneable (switchable) notch filters are required instead of fixed frequency notch filters e.g. in order to increase the flexibility of the system.
- US-A-4,834,498 shows a simple dielectric resonator. The resonator is passive and it is not itself tunable. To provide tunability additional tuning means are required such as a diod or similar. In other words, a separate biasing circuit is required. This considerably adds to the size of the arrangement. Furthermore, the device as such gets complex and the performance is not sufficiently high.
- WO 93/00720 a superconducting notch filter with a microstrip resonator which is not tunable itself is illustrated.
- optical means are used to provide tuning, which use semiconductor crystals in superconducting microstrip ring resonators coupled to the main superconducting microstrip.
- the dimensions of these arrangements are large and moreover the frequency tuning range is much too small.
- Both of the above mentioned documents show passive resonators and devices requiring a special bias network and additional tuning means which are coupled to a main microstrip line in the same way. The resonators cannot be in mechanical or electrical contact with the main microstrip line. If there is no coupling, there is no filter.
- both these devices need additional tuning means with a separate biasing circuit. That makes the designs large as well as complex. Furthermore, the electrical performance of the filter is negatively affected therethrough and it is also as such not as high as would be desired. E.g. for frequencies of about 1-3 GHz the devices as disclosed in these documents would be much too large and they cannot for example be used for telecommunication purposes.
- microwave devices can be made smaller if high dielectric constant non-linear dielectric materials such as for example Strontium Titanate (STO) are plated with superconductors such as e.g. Y-Ba-Cu-O (YBCO).
- STO Strontium Titanate
- superconductors such as e.g. Y-Ba-Cu-O (YBCO).
- WO 94/13028 discloses the use of thin single crystalline dielectric films in combination with high temperature superconductors which as such however produce too high microwave losses and moreover such devices cannot be made small enough.
- a method for filtering signals incoming to for example receiving arrangements in a multichannel microwave communication system operating at high frequencies is needed through which intermittent and interfering signals can be blanked out in an efficiant and reliable manner.
- a superconducting notch filter arrangement which comprises a resonator arranged on a microstrip line wherein the resonator is a parallel-plate resonator with a chip of a non-linear dielectric material on which superconductors are arranged.
- the resonator is connected to connecting means of a microstrip line or a strip of the microstrip line in such a way that an ohmic contact is provided.
- a parallel-plate resonator it can be arranged on top of a microstrip line, coupling is provided and the dimensions can be reduced. No special bias network is needed and no additional tuning means.
- the arrangement is particularly electrically tuneable, still more particularly through the application of a DC biasing voltage to the non-linear dielectricum of which the dielectric constant can be changed.
- a DC voltage is applied to normal conductors which may be arranged on the superconductors arranged on the dielectricum of the resonator.
- Advantageously contact means also denoted coupling means, are arranged to provide for dielectrical contact between the resonator and the microstrip line.
- the contact means are formed by the central strip of the microstrip line.
- a resonator comprises a rectangular (or some other shape) chip which is so oriented in relation to the microstrip line that the magnetic field lines of the microstrip line and the resonator substantially coincide in such a way that maximum inductive coupling is produced.
- the inductive coupling is particularly controlled or given by the relation between the resonator and microstrip line. Even more particularly the strength of the inductive coupling is given by the width of the central microstrip. To obtain the desired strength of coupling, the width can thus be given the value which provides the desired coupling.
- At least a portion of the lower plate of the parallel-plate resonator and/or the microstrip connecting means, for example the central strip, has/have a first width that is smaller than a second width in order to provide an increased inductive coupling.
- the resonator is a dual mode resonator or even more particularly it is a multimode resonator.
- asymmetry may for example comprise a cut away corner or a protrusion or anything else.
- the resonator may be arranged so as to form an angle with the main microstrip line. The angle may for example take the value of approximately 45°.
- the waveguiding arrangement may comprise a coplanar waveguide.
- the coupling strength is controlled by or given by the width of the central strip and of the coplanar waveguide slots.
- the tuning is advantageously provided (which relates to all embodiments) through the application of a DC biasing voltage which may be applied between the upper plate of the resonator and the coupling means, e.g. the central strip of the microstrip line.
- the area of the resonator may have a size between approximately 1 mm 2 -1 cm 2 .
- these values are merely given for exemplifying reasons, the resonator may also have other proportions, smaller as well as somewhat bigger.
- a method for filtering signals incoming to for example a receiving arrangement of a multichannel communication system or similar comprises the steps of: arranging a filter on the input side of a receiving arrangement, which filter comprises a parallel-plate resonator comprising a non-linear dielectricum on which superconductor plates are arranged, which is arranged on a waveguide, e.g. a microstrip line.
- the resonator and the waveguide arrangement are connected electrically in series through the use of coupling means.
- the coupling strength is given by how the resonator and the coupling means are arranged in relation to each other.
- a DC biasing voltage is applied to the resonator and the coupling means for frequency tuning.
- the steps are carried out so that intermittent interfering signals can be blanked out.
- a resonator is arranged on a waveguide arrangement.
- Fig 1 shows a first example of a parallel-plate resonator that can be used.
- the resonator 11 comprises a dielectrium 12 in the form of a rectangular chip of a non-linear dielectrium on both surfaces of which thin high temperature superconducting HTS films 13a, 13b are arranged.
- Magnetic coupling means or DC contact means are arranged in such a way that the filter rejection band and central frequency can be electrically controlled.
- the superconducting films or plates 13a, 13b may advantageously be partly or completely covered by normal conducting films 14,14 for example of Au thus forming ohmic contacts for DC biasing.
- the dielectric material comprises a non-linear dielectric bulk material since for bulk material the microwave losses are lower and the dielectric constant is higher than for example for thin dielectric films. Through the use of a non-linear dielectric material, electrical controlling is enabled.
- the microwave losses of for example Strontium Titanate, hereinafter referred to as STO are close to minimum at the temperature of liquid nitrogen, N liq which is discussed in "Dielectric properties of single crystals of Al 2 O 3 , LaAlO 3 , NdGaO 3 , SrTiO 3 and MgO at cryogenic temperatures", by Krupka et al., in IEEE Trans. Microwave Theory Techn., 1994, Vol. 42, pp. 1886-1890.
- the dielectric constant of STO is about 2000 at the temperature of N liq and it is strongly dependent on temperature and on applied electric DC fields.
- the resonator may advantageously comprise a non-linear bulk dielectric material 12 e.g. by STO which is covered by HTS films of e.g. YBCO.
- STO non-linear bulk dielectric material
- HTS films e.g. YBCO.
- the superconducting films or plates 13a, 13b of the parallel-plate resonator are made slightly smaller than the dielectric chip 12 in order to account for mechanical tolerences and for the provision of an improved ability of controlling the resonant frequency.
- the thickness of the superconducting plates 13a,13b exeeds the London penetration depth, the penetration depth being defined as the depth at which the field has decreased to 1/e of the value at the surface.
- Fig 2 shows a first embodiment of a tuneable notch filter 10 according to the invention.
- the resonator 11 of Fig 1 is arranged on a waveguiding arrangement 15 in the form of a microstrip line.
- the resonator 11 is in this embodiment connected to or attached to the central strip 18 of the microstrip line 15 wherein said central strip 18 acts as the contact means or couplings means providing ohmic contact between the lower plate 13b of the parallel-plate resonator 11 and the microstrip line 15.
- No special bias network, no additional tuning means are required.
- the microstrip line 15 comprises a substrate e.g. of Al or any other known dielectricum for ⁇ w-strips.
- the ground plane 17 comprises e.g. Cu, Au or anything similar having normal conductivity.
- the ground plane 17 and the central strip 18 comprise HTS films.
- the parallel-plate resonator chip 11 is so arranged in relation to the microstrip line 15 that the magnetic field lines of the microstrip 18 and the resonator 11 substantially coincide (c.f. Fig 3) thus ensuring a high degree of inductive coupling, or more precisely maximum inductive coupling.
- the width of the central microstrip 18 determines the coupling strength between the resonator 11 and the microstrip line 15 and thus the coupling strength can be controlled through choosing the appropriate width.
- the width can in advantageous embodiments be approximately in the range between 0,5-1 mm, but it can also have a smaller or larger width.
- a series resonant circuit is introduced into the microstrip line 15 which then acts as a band reject filter, i.e. a notch filter for input microwave signals.
- Connection means 19, 19 are provided through which a DC biasing voltage can be applied between the microstrip and the upper plate 13a of the parallel-plate resonator 11.
- electrical tuning is provided and the DC biasing voltage applied to the non-linear dielectric 12 changes the dielectric constant thereof and thus the resonant frequency of the parallel-plate resonator 11.
- One of the resonator plates is advantageously in mechanical or electrical contact with the main microstrip line.
- the main microstrip is advantageously used as a bias terminal for DC-biasing. This is in contrast to e.g. US-A-4,835,498 and WO-A-93/00720, wherein the resonator could not be in contact with a main microstrip line.
- temperature controlled tuning can be applied either in addition to the electrical tuning or as an alternative thereto.
- Optical or mechanical (e.g. via piezoelectric means) tuning can of course also be used.
- Fig 3 is a cross-sectional view of the notch filter 10 as illustrated in Fig 2. It shows how the resonator 11 is arranged on the central microstrip 18 of the microstrip line 15.
- H denotes the magnetic field lines of the resonator and of the microstrip line. As discussed above, the magnetic field lines substantially coincide thus providing a high degree of coupling between the resonator 11 and the microstrip line 15.
- Fig 4 schematically shows an equivalent circuit of the notch filter 10 as illustrated in Figs 2 and 3 above.
- Z 0 indicates the impedance of the microstrip whereas the dashed line is the circuit representation of the resonator 11.
- the resonator is a STO resonator plated with YBCO films as discussed above and the dielectricum in this particular embodiment has the dimensions 2.5 x 2.5 x 0.5 mm 3 .
- the waveguide arrangement comprises a 50 Ohm copper microstrip on a 0.5 mm aluminium substrate. Of course this is only one example and other materials can be used, the dimensions can be different etc.
- Fig 5 shows a diagram of the temperature dependence of the center frequency of a notch filter having the above mentioned dimensions and no biasing voltage is applied.
- FIG 6a an alternate embodiment of a notch filter 20 is illustrated.
- the microstrip line 25 comprises a substrate for example of Al. On one of its surfaces e.g. a copper microstrip 27 is arranged whereas on the other side of the substrate a central microstrip 28 is arranged.
- the central microstrip 28 forms the contact means or the connection means between the resonator 21 and the microstrip line 25.
- an inductive loading is provided through a second section 23b 2 of the lower resonator plate 23b having a smaller width then a first section 23b 1 .
- the microstrip 28 is provided with a second section 28b the width of which is smaller than the width of the first section 28a.
- Figs 6b and 6c are longitudinal views seen from above of the lower plate of the resonator and the microstrip respectively, the arrangement which is illustrated in Fig 6a indicating the portions 23b 2 and 28b each having a smaller width.
- Fig 7 very schematically illustrates a two-pole notch filter.
- a resonator 31 (e.g. as discussed under reference to previous embodiments) is arranged on a microstrip line 35.
- One of the corners of the upper superconducting film 33a is cut away; thus producing an asymmetry in the resontor. 32 indicates the dielectricum. Since one of the corners of the upper superconducting film 33a is cut off, it is achieved that the resonator 31 can operate in a dual mode. Thus the width of the rejection band and its skirts can be adapted to the current needs.
- Fig 8 shows still a further embodiment of a two-pole notch filter 40.
- a resonator 41 (c.f. above) is arranged on the microstrip line 45 in such a way that it forms an angle with the microstrip line.
- the parallel-plate resonator 41 forms an angle of 45° with the main microstrip. Since an asymmetry is introduced, the resonator also in this case operates in dual mode. The angle does of course not have to be 45° but it can take a higher as well as a lower value; in principle any angle but 90°.
- the invention can in principle also be applied to multimode filters for example operating in three modes.
- Such an arrangement is illustrated in the at the same time filed Swedish Patent Application "Arrangements and methods relating to multiplexing/switching" having the same applicant, the subject matter of which is incorporated herein by reference.
- Fig 9 schematically illustrates yet another embodiment comprising a coplanar waveguide (CPW) tuneable notch filter 50, which also can be dual mode operating.
- a superconducting parallel-plate resonator 51 is attached to the central strip 58 of a coplanar waveguide (CPW) 55 in order to provide for a higher degree of design flexibility.
- the coupling strength and the wave impedance of the coplanar waveguide 55 is given by the width of the central strip 58 and the slots 59 of the CPW.
- the width of the central strip can take the values as discussed earlier under reference to Fig. 2 (which also applies to the other embodiments) but in this case the flexibility is even higher.
- the width is generally chosen depending on the substrate thickness.
- the invention is not limited to the shown embodiments but other materials can be used, for example it does not have to be a bulk dielectric material, in some cases also thin dielectric materials can be used.
- the form of the resonator can be of different kinds as well as the waveguiding means can take a number of different forms and it does not necessarily have to be a central strip of a microstrip line that forms the coupling means.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Claims (30)
- Structure de filtre réjecteur ou coupe-bande supraconducteur (10; 20; 30; 40; 50) comprenant un résonateur diélectrique supraconducteur (11; 21; 31; 41; 51) et une structure de guide d'ondes (15, 25; 35; 45; 55) comprenant une ligne micro-ruban à laquelle le résonateur est connecté,
caractérisée
en ce que le résonateur (11; 21; 31; 41; 51) est un résonateur à lames parallèles formé par un matériau diélectrique non linéaire (12; 22; 32) sur lequel sont disposées des lames supraconductrices (13a, 13b; 23a, 23b; 33a), et en ce que la structure de guide d'ondes comprend une ligne micro-ruban à laquelle l'une des lames du résonateur est connectée par l'intermédiaire de moyens de contact ou de moyens de couplage (18; 28; 58), le résonateur (11; 21; 31; 41; 51) étant connecté à ces moyens de contact (18; 28; 58) de la structure de guide d'ondes de manière qu'un contact électrique soit établi, et en ce que la structure de filtre est accordable en fréquence. - Structure de filtre supraconducteur (10; 20; 30; 40; 50) selon la revendication 1,
caractérisée
en ce qu'elle est accordable de façon électrique. - Structure de filtre supraconducteur selon la revendication 2,
caractérisée
en ce qu'une tension continue de polarisation est directement ou indirectement appliquée, par l'intermédiaire de moyens de connexion (19, 19), aux lames du diélectrique non linéaire, pour changer sa constante diélectrique. - Structure de filtre supraconducteur selon la revendication 3,
caractérisée
en ce que des conducteurs normaux sont disposés sur les faces extérieures du résonateur, c'est-à-dire sur les supraconducteurs, et en ce qu'une tension continue de polarisation leur est appliquée. - Filtre réjecteur supraconducteur selon l'une quelconque des revendications précédentes,
caractérisé
en ce que l'une des lames de résonateur est connectée électriquement ou couplée magnétiquement à la ligne micro-ruban. - Structure de filtre supraconducteur selon l'une quelconque des revendications précédentes,
caractérisée
en ce que les moyens de contact (18; 28; 58) comprennent un ruban central de la ligne micro-ruban, et en ce que le résonateur est connecté à ce ruban central. - Structure de filtre réjecteur supraconducteur selon l'une quelconque des revendications précédentes,
caractérisée
en ce que le résonateur à lames parallèles (11; 21; 31; 41; 51) comprend une puce pratiquement rectangulaire. - Structure de filtre réjecteur supraconducteur selon la revendication 7,
caractérisée
en ce que la puce de résonateur est orientée par rapport à la ligne micro-ruban de façon à obtenir un couplage inductif maximal. - Structure de filtre réjecteur supraconducteur selon la revendication 8,
caractérisée
en ce que la puce de résonateur est orientée par rapport à la ligne micro-ruban (15; 25) de façon que les lignes de champ magnétique du micro-ruban et des résonateurs coïncident pratiquement. - Structure de filtre réjecteur supraconducteur selon l'une quelconque des revendications précédentes,
caractérisée
en ce que le couplage inductif entre le résonateur et la ligne micro-ruban est donné par la relation entre le résonateur et le micro-ruban, et en ce qu'il est donné par la relation entre leurs dimensions physiques. - Structure de filtre réjecteur supraconducteur selon la revendication 10,
caractérisée
en ce que la force du couplage inductif est donnée par la largeur des moyens de contact, par exemple la ligne micro-ruban centrale (18; 28; 58). - Structure de filtre réjecteur supraconducteur selon l'une quelconque des revendications précédentes,
caractérisée
en ce que dans le but d'augmenter le couplage inductif entre le résonateur (21) et la ligne micro-ruban (25), la lame inférieure (23b) du résonateur à lames parallèles et/ou les moyens de connexion de micro-ruban comprennent chacun une seconde partie (23b2; 28b) ayant une largeur qui est inférieure à celle d'une première partie de largeur (23b1; 28a), respectivement. - Structure de filtre réjecteur supraconducteur (30; 40) selon l'une quelconque des revendications précédentes,
caractérisée
en ce que le résonateur (31; 41) est un résonateur fonctionnant selon deux modes, et en ce que la structure de filtre comprend un filtre à deux pôles. - Structure de filtre réjecteur supraconducteur (33, 40) selon la revendication 13
caractérisée
en ce que le résonateur (31; 41) comprend une asymétrie pour procurer le fonctionnement selon deux modes. - Structure de filtre réjecteur supraconducteur (30) selon la revendication 14,
caractérisée
en ce que l'asymétrie comprend un coin coupé d'une lame (32a) du résonateur, une partie en saillie ou une caractéristique similaire. - Structure de filtre réjecteur supraconducteur (40) selon la revendication 13,
caractérisée
en ce que le résonateur (41) est disposé de façon à former un angle avec la ligne micro-ruban (45) principale. - Structure de filtre réjecteur supraconducteur selon la revendication 16,
caractérisée
en ce que le résonateur (41) forme un angle d'environ 45° avec la ligne micro-ruban principale (45). - Structure de filtre réjecteur supraconducteur (50) selon l'une quelconque des revendications 1 - 17,
caractérisée
en ce que la structure de guide d'ondes est un guide d'ondes coplanaire (55). - Structure de filtre réjecteur supraconducteur (50) selon la revendication 18,
caractérisée
en ce que la force de couplage entre le résonateur (51) et le guide d'ondes coplanaire (55) est donnée par la largeur du ruban central (58) et celle des rainures (59, 59) du guide d'ondes coplanaire (55). - Structure de filtre supraconducteur selon l'une quelconque des revendications précédentes,
caractérisée
en ce qu'une tension de polarisation continue est appliquée par l'intermédiaire de moyens de connexion (19, 19) entre la lame supérieure (14) du résonateur (11) et les moyens de couplage (18), par exemple le ruban central. - Filtre coupe-bande ou réjecteur supraconducteur (10; 20; 30; 40; 50) pour l'utilisation par exemple dans des systèmes de communication multicanaux fonctionnant dans des bandes de haute fréquence, comprenant une structure de guide d'ondes (15, 25; 35; 45; 55) et au moins un résonateur (11; 21; 31; 41; 51),
caractérisé
en ce que le résonateur (11; 21; 31; 41; 51) est un résonateur à lames parallèles comprenant un matériau diélectrique non linéaire (12; 22; 32) sur lequel sont disposées des lames supraconductrices, et en ce que la structure de guide d'ondes (15; 25; 35; 45; 55) comprend une ligne micro-ruban comprenant des moyens de contact ou des moyens de couplage (18; 28; 58), le résonateur étant disposé par rapport à la structure de guide d'ondes de façon qu'un circuit résonnant série soit établi pour former ainsi le filtre, et en ce qu'il existe des moyens de connexion (19) par l'intermédiaire desquels le filtre peut être accordé en fréquence. - Filtre selon la revendication 21,
caractérisé
en ce qu'une tension de polarisation continue est appliquée par l'intermédiaire des moyens de connexion (19). - Filtre selon la revendication 21 ou 22,
caractérisé
en ce que la ligne micro-ruban comprend une ligne micro-ruban principale et un micro-ruban central (18; 28; 58) formant les moyens de couplage. - Filtre selon l'une quelconque des revendications 21 - 23,
caractérisé
en ce que le résonateur (11; 21; 31; 41; 51) comprend un matériau massif diélectrique non linéaire revêtu des lames supraconductrices (14; 24a, 24b), consistant avantageusement en supraconducteurs à température élevée. - Filtre (30; 40) selon l'une quelconque des revendications 21 - 24,
caractérisé
en ce que le résonateur (31; 41) est un résonateur à deux modes ou multimode. - Filtre (31; 41) selon l'une quelconque des revendications 21 - 25,
caractérisé
en ce qu'il consiste en un filtre réjecteur à deux pôles. - Filtre (10; 20; 30; 40; 50) selon l'une quelconque des revendications 21 - 26,
caractérisé
en ce que le résonateur (11; 21; 31; 41; 51) comprend une puce ayant une aire comprise approximativement entre 1 mm2 - 1 cm2 à des fréquences d'environ 0, 1 - 2 GHz. - Procédé pour filtrer des signaux arrivant par exemple à une structure de réception dans un système de communication multicanal, comprenant les étapes suivantes :on dispose un filtre du côté d'entrée de la structure de réception, ce filtre comprenant un résonateur à lames parallèles constitué par un matériau diélectrique non linéaire sur lequel sont disposées des lames supraconductrices, et qui est disposé sur une structure de guide d'ondes, des moyens de contact étant placés entre ce résonateur et cette structure de guide d'ondes, par exemple une ligne micro-ruban, pour établir un couplage en série du résonateur et de la ligne micro-ruban,on dispose mutuellement le résonateur et les moyens de couplage de façon à obtenir la force de couplage nécessaire,on applique une tension de polarisation continue entre le résonateur et les moyens de contact pour l'accord de fréquence,
- Procédé selon la revendication 28, comprenant l'étape qui consiste à donner au filtre la force de couplage désirée en donnant aux moyens de contact ou aux moyens de couplage, par exemple sous la forme d'un micro-ruban central, des dimensions par rapport au résonateur telles que la force de couplage désirée soit obtenue, et dans lequel le résonateur comprend un matériau diélectrique non linéaire massif revêtu de pellicules de supraconducteur à température élevée.
- Utilisation d'une structure de filtre réjecteur ou coupe-bande supraconducteur selon l'une quelconque des revendications 1 - 27 pour filtrer des signaux arrivant à une structure de réception dans un système de communication multicanal, pour empêcher que des signaux brouilleurs soient reçus dans la structure de réception.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE9504530A SE507751C2 (sv) | 1995-12-19 | 1995-12-19 | Anordning och förfarande avseende filtrering av signaler |
SE9504530 | 1995-12-19 | ||
PCT/SE1996/001688 WO1997023012A1 (fr) | 1995-12-19 | 1996-12-18 | Configuration et methode concernant le filtrage de signaux |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0868762A1 EP0868762A1 (fr) | 1998-10-07 |
EP0868762B1 true EP0868762B1 (fr) | 2001-07-25 |
Family
ID=20400636
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96943451A Expired - Lifetime EP0868762B1 (fr) | 1995-12-19 | 1996-12-18 | Configuration et methode concernant le filtrage de signaux |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP0868762B1 (fr) |
JP (1) | JP2000502231A (fr) |
DE (1) | DE69614142T2 (fr) |
ES (1) | ES2159774T3 (fr) |
SE (1) | SE507751C2 (fr) |
WO (1) | WO1997023012A1 (fr) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2866979A1 (fr) * | 2004-02-27 | 2005-09-02 | Centre Nat Rech Scient | Composants supraconducteurs en couches minces a inductance accordable, procede de realisation et dispositifs incluant de tels composants |
JP4572900B2 (ja) * | 2005-01-11 | 2010-11-04 | 株式会社村田製作所 | 誘電体共振器装置、発振器装置および送受信装置 |
JP4707650B2 (ja) | 2006-03-30 | 2011-06-22 | 富士通株式会社 | 超伝導フィルタデバイス |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2616594B1 (fr) * | 1987-06-09 | 1989-07-07 | Thomson Csf | Dispositif filtrant hyperfrequence accordable a resonateur dielectrique, et applications |
US5328893A (en) * | 1991-06-24 | 1994-07-12 | Superconductor Technologies, Inc. | Superconducting devices having a variable conductivity device for introducing energy loss |
JPH05299712A (ja) * | 1992-04-22 | 1993-11-12 | Sumitomo Electric Ind Ltd | マイクロ波部品 |
US5496796A (en) * | 1994-09-20 | 1996-03-05 | Das; Satyendranath | High Tc superconducting band reject ferroelectric filter (TFF) |
-
1995
- 1995-12-19 SE SE9504530A patent/SE507751C2/sv not_active IP Right Cessation
-
1996
- 1996-12-18 EP EP96943451A patent/EP0868762B1/fr not_active Expired - Lifetime
- 1996-12-18 ES ES96943451T patent/ES2159774T3/es not_active Expired - Lifetime
- 1996-12-18 DE DE69614142T patent/DE69614142T2/de not_active Expired - Fee Related
- 1996-12-18 JP JP09522713A patent/JP2000502231A/ja active Pending
- 1996-12-18 WO PCT/SE1996/001688 patent/WO1997023012A1/fr active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
ES2159774T3 (es) | 2001-10-16 |
JP2000502231A (ja) | 2000-02-22 |
DE69614142D1 (de) | 2001-08-30 |
WO1997023012A1 (fr) | 1997-06-26 |
SE9504530D0 (sv) | 1995-12-19 |
DE69614142T2 (de) | 2001-11-15 |
SE9504530L (sv) | 1997-06-20 |
SE507751C2 (sv) | 1998-07-13 |
EP0868762A1 (fr) | 1998-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6463308B1 (en) | Tunable high Tc superconductive microwave devices | |
KR100907358B1 (ko) | 동조가능한 강유전체 공진 장치 | |
Fiedziuszko et al. | Dielectric materials, devices, and circuits | |
US6525630B1 (en) | Microstrip tunable filters tuned by dielectric varactors | |
Konishi | Novel dielectric waveguide components-microwave applications of new ceramic materials | |
EP0917236B1 (fr) | Ligne de transmission haute fréquence, résonateur diélectrique,filtre, duplexeur et dispositif de communication | |
US6216020B1 (en) | Localized electrical fine tuning of passive microwave and radio frequency devices | |
US6111485A (en) | Arrangement and method relating to filtering of signals | |
EP1265310B1 (fr) | Filtre a microrubans supraconducteurs | |
WO1994028592A1 (fr) | Circuits hyperfrequence accordables supraconducteurs/ferroelectriques a coefficient de temperature eleve | |
JP3071093B2 (ja) | 特性変調可能な超電導マイクロ波素子構造 | |
EP0567407B1 (fr) | Dispositif micro-ondes en matériau supraconducteur d'oxyde | |
US6114931A (en) | Superconducting arrangement with non-orthogonal degenerate resonator modes | |
US6187717B1 (en) | Arrangement and method relating to tunable devices through the controlling of plasma surface waves | |
EP0868762B1 (fr) | Configuration et methode concernant le filtrage de signaux | |
JPH08125415A (ja) | 可変型超伝導遅延線 | |
JP2898462B2 (ja) | 高周波フィルタ | |
EP0966056B1 (fr) | Filtre haute fréquence | |
Swanson et al. | An HTS end-coupled CPW filter at 35 GHz | |
US20040140861A1 (en) | High temperature superconducting mini-filter resonator configuration with low sensitivity to variations in substrate thickness and resonator patterning | |
JPH05160616A (ja) | 薄膜共振器 | |
Gevorgian et al. | Tunable superconducting band-stop filters | |
Cassinese et al. | Multi-stage dual-mode cross-slotted superconducting filters for telecommunication application | |
KR100186549B1 (ko) | 대역통과형 마이크로스트립라인의 대전력 전송용 초고주파 필터 | |
WO1997023013A1 (fr) | Agencements et methode concernant la commutation/le multiplexage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19980625 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE ES FI FR GB IT NL SE |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
17Q | First examination report despatched |
Effective date: 20001221 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FI FR GB IT NL SE |
|
REF | Corresponds to: |
Ref document number: 69614142 Country of ref document: DE Date of ref document: 20010830 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2159774 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20021127 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20021128 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20021129 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20021202 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20021211 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20021230 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20030109 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031218 Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031218 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031219 Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040701 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040701 |
|
EUG | Se: european patent has lapsed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20031218 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040831 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20040701 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20031219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051218 |