EP0866291B1 - Kompressionswärmepumpe oder Kompressionskältemaschine und Regelungsverfahren dafür - Google Patents

Kompressionswärmepumpe oder Kompressionskältemaschine und Regelungsverfahren dafür Download PDF

Info

Publication number
EP0866291B1
EP0866291B1 EP98104767A EP98104767A EP0866291B1 EP 0866291 B1 EP0866291 B1 EP 0866291B1 EP 98104767 A EP98104767 A EP 98104767A EP 98104767 A EP98104767 A EP 98104767A EP 0866291 B1 EP0866291 B1 EP 0866291B1
Authority
EP
European Patent Office
Prior art keywords
sensor
compression
temperature
heat pump
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98104767A
Other languages
English (en)
French (fr)
Other versions
EP0866291A1 (de
Inventor
Andreas Bangheri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bangheri Andreas
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0866291A1 publication Critical patent/EP0866291A1/de
Application granted granted Critical
Publication of EP0866291B1 publication Critical patent/EP0866291B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/063Feed forward expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser

Definitions

  • the invention relates to a compression heat pump or compression refrigeration machine according to the preamble of claim 1.
  • the invention further relates to a Method for controlling such a compression heat pump or compression refrigeration machine.
  • Devices according to the preamble of claim 1 are from DE-OS 43 03 533 and WO 96/24016. With these, the regulation is primarily also based on the evaporator superheat temperature, as a secondary
  • the control parameter is also the hot gas temperature, i.e. the temperature of the Refrigerant measured in the area between the compressor and condenser, whereby at an inadmissibly high hot gas temperature, the expansion valve is opened further and the hot gas temperature is thereby lowered.
  • a disadvantage of the known control of the expansion valve based on the evaporator superheating temperature is that the temperature differences used for the control are only very small, so that the regulation is usually only very rough takes place because of a more precise regulation that the facility becomes too expensive would lead.
  • the object of the invention is a compression heat pump or compression refrigerator to provide the type mentioned at the outset, which without price increases allows the apparatus to control the expansion valve much more precisely. According to the invention, this is achieved by a compression heat pump or a compression refrigerator with the features of claim 1.
  • the device according to the invention is therefore to regulate the expansion valve arranged next to the first in the area between the compressor and the condenser Temperature sensor provided a second sensor that detects a value that is a direct one Represents a measure of the condensation temperature. Taking a direct measure for that Condensation temperature is understood to mean that for a given apparatus Arrangement from the value recorded by the second sensor without using further measured variables reflecting the current state of the system at least approximately the condensation temperature can be determined.
  • the second sensor designed as a pressure sensor and in the high-pressure area of the refrigerant circuit thus arranged in the area between the compressor and expansion valve. From the dated The pressure recorded by the sensor will directly maintain the condensation temperature.
  • the second sensor as a temperature sensor and to be placed directly on the capacitor, in an area of the same, in which, as far as possible, approximately the condensation temperature under all operating conditions appropriate temperature is present.
  • the second sensor is one in the flow line of the heating circuit arranged temperature sensor.
  • the one recorded by this sensor Temperature deviates only a few degrees Kelvin from the condensation temperature and can use a correction factor in the condensation temperature can be converted.
  • the controlled variable varies significantly more than with a control
  • the expansion valve can be regulated based on the evaporator superheating temperature in the device according to the invention without large apparatus Additional effort can be carried out much more precisely.
  • Controlled variable the difference between the two determined by the two sensors Temperature values used.
  • the refrigerant circuit of the compression heat pump shown schematically in FIG. 1 comprises an evaporator 1, a compressor 2, a condenser 3 and an expansion valve 4.
  • the refrigerant is evaporated in the evaporator, one Amount of heat 5 is absorbed by the environment. That compressed by the compressor 2 Hot gas condenses in the condenser designed as a heat exchanger, wherein an amount of heat 6 is given to the heating circuit 7.
  • An optimal efficiency of the compression heat pump is achieved if that Refrigerant in the evaporator 1 is overheated as little as possible.
  • a small amount of non-evaporated refrigerant is irrelevant since the compressor is cooled by suction gas Compressor is formed, i.e. Engine heat is drawn to the intake gas emitted, remnants of coolant are evaporated.
  • the refrigerant however not heated enough when liquid refrigerant gets into the compressor oil and the oil in the compressor starts to foam. In this case, the supply of Refrigerant in the evaporator 1 is reduced by throttling the expansion valve 4 become.
  • a control device 8 is provided, which is connected to a temperature sensor 9 and a second sensor 10.
  • the first sensor 9 is used to record the hot gas temperature of the refrigerant in the area between the compressor 2 and the condenser 3.
  • the second sensor 10 is arranged in the high pressure area, which extends from the compressor 2 to the expansion valve 4, and is designed as a pressure sensor.
  • the value of the pressure detected by the second sensor 10 corresponds to the condensation pressure of the refrigerant in the condenser 3 and can be converted directly into the condensation temperature in the condenser.
  • the actual value of the controlled variable is determined in the control device 8 from the difference between the temperatures determined by the two sensors.
  • the expansion valve 4 is opened further by the control device 8.
  • the control device 8 As a result, more refrigerant flows through the evaporator, which results in a lower vaporization superheating temperature of the gaseous refrigerant in the suction gas line 11 and thus also a lower hot gas temperature of the refrigerant in the area between the compressor 2 and the condenser 3, the change in the vaporization superheating temperature being substantially less is than the change in hot gas temperature.
  • the target value of the difference between the hot gas temperature determined by the first sensor 9 and the condensation temperature determined via the second sensor 10 becomes dependent on the condensation temperature determined via the second sensor 10 set, preferably proportional to this.
  • the reasons for introducing such a dependency are different Amounts of heat at different condensation temperatures in the condenser 3 must be dissipated and the resulting different requirements to the capacitor.
  • the hot gas is initially in one in the condenser in the first heating zone (e.g. from 70 to 50 ° C), then in a condensation zone condensed (e.g.
  • the second sensor 10 is designed as a temperature sensor and in the flow line 13 of the Heating circuit 7 is arranged in the region of the heat exchanger outlet.
  • the second Sensor 10 recorded temperature differs from the condensation temperature only by a few degrees Kelvin and can be entered into this by means of a constant Correction factor (which essentially depends on the refrigerant used and on the Dimensioning of the heat exchanger depends) can be converted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Description

Die Erfindung betrifft eine Kompressionswärmepumpe oder Kompressionskältemaschine nach dem Oberbegriff des Anspruchs 1. Weiters betrifft die Erfindung ein Verfahren zur Regelung einer solchen Kompressionswärmepumpe oder Kompressionskältemaschine.
Bei bekannten Kompressionswärmepumpen oder Kompressionskältemaschinen, welche ein regelbares Expansionsventil aufweisen, wird dieses in Abhängigkeit von der Verdampfungs-Überhitzungstemperatur geregelt, welche von einem Temperaturfühler im Bereich zwischen Verdampfer und Verdichter erfaßt wird.
Einrichtungen gemäß dem Oberbegriff des Anspruchs 1 sind aus der DE-OS 43 03 533 und der WO 96/24016 bekannt. Bei diesen wird zwar die Regelung primär ebenfalls anhand der Verdampfer-Überhitzungstemperatur durchgeführt, als sekundärer Regelparameter wird aber zusätzlich die Heißgastemperatur, d.h. die Temperatur des Kältemittels im Bereich zwischen Verdichter und Kondensator gemessen, wobei bei einer unzulässig hohen Heißgastemperatur das Expansionsventil weiter geöffnet wird und die Heißgastemperatur dadurch abgesenkt wird.
Nachteilig an der bekannten Regelung des Expansionsventils anhand der Verdampfer-Überhitzungstemperatur ist es, daß die für die Regelung herangezogenen Temperaturunterschiede nur sehr gering sind, sodaß die Regelung normalerweise nur sehr grob erfolgt, da eine genauere Regelung zu einer zu starken Verteuerung der Einrichtung führen würde.
Aufgabe der Erfindung ist es, eine Kompressionswärmepumpe oder Kompressionskältemaschine der eingangs genannten Art bereitzustellen, welche ohne Verteuerung der Apparatur eine wesentlich genauere Regelung des Expansionsventils ermöglicht. Erfindungsgemäß gelingt dies durch eine Kompressionswärmepumpe oder Kompressionskältemaschine mit den Merkmalen des Anspruchs 1.
Bei der erfindungsgemäßen Einrichtung ist also zur Regelung des Expansionsventils neben dem ersten im Bereich zwischen Verdichter und Kondensator angeordneten Temperaturfühler ein zweiter Fühler vorgesehen, der einen Wert erfaßt, der ein direktes Maß für die Kondensationstemperatur darstellt. Unter einem direkten Maß für die Kondensationstemperatur wird dabei verstanden, daß bei gegebener apparativer Anordnung aus dem vom zweiten Fühler erfaßten Wert ohne Hinzuziehung von weiteren den momentanen Zustand des Systems wiedergebenden Meßgrößen zumindest annähernd die Kondensationstemperatur ermittelbar ist.
In einem ersten bevorzugten Ausführungsbeispiel der Erfindung ist der zweite Fühler als Druckaufnehmer ausgebildet und im Hochdruckbereich des Kältemittelkreislaufs also im Bereich zwischen Verdichter und Expansionsventil angeordnet. Aus dem vom Fühler aufgenommenen Druck wird direkt die Kondensationstemperatur erhalten.
Denkbar und möglich wäre es auch, den zweiten Fühler als Temperaturfühler auszubilden und direkt am Kondensator anzuordnen, und zwar in einem Bereich desselben, in dem möglichst unter allen Betriebsbedingungen eine etwa der Kondensationstemperatur entsprechende Temperatur vorliegt.
In einem weiteren bevorzugten Ausführungsbeispiel der Erfindung, wenn es sich bei der erfindungsgemäßen Einrichtung um eine Wärmepumpe handelt, bei der der Kondensator als Wärmetauscher ausgebildet ist, ist der zweite Fühler ein in der Verlaufleitung des Heizkreises angeordneter Temperaturfühler. Die von diesem Fühler aufgenommene Temperatur weicht nur um wenige Grad Kelvin von der Kondensationstemperatur ab und kann über einen Korrekturfaktor in die Kondensationstemperatur umgerechnet werden.
Da bei einer Regelung des Expansionsventils anhand der Heißgastemperatur und der Kondensationstemperatur die Regelgröße wesentlich stärker variiert als bei einer Regelung anhand der Verdampfer-Überhitzungstemperatur kann die Regelung des Expansionsventils bei der erfindungsgemäßen Einrichtung ohne großen apparativen Mehraufwand wesentlich genauer durchgeführt werden. Vorteilhafterweise wird als Regelgröße die Differenz zwischen den beiden über die beiden Fühler ermittelten Temperaturwerten verwendet.
Weitere Vorteile und Einzelheiten der Erfindung werden im folgenden anhand der beiliegenden Zeichnung erläutert.
In dieser zeigt
die Fig. 1
eine schematische Darstellung eines ersten Ausführungsbeispieles einer erfindungsgemäßen Kompressionswärmepumpe und
die Fig. 2
eine schematische Darstellung eines zweiten Ausführungsbeispieles einer erfindungsgemäßen Kompressionswärmepumpe.
Der Kältemittelkreislauf der in der Fig. 1 schematisch dargestellten Kompressionswärmepumpe umfaßt einen Verdampfer 1, einen Verdichter 2, einen Kondensator 3 und ein Expansionsventil 4. Im Verdampfer wird das Kältemittel verdampft, wobei eine Wärmemenge 5 von der Umgebung aufgenommen wird. Das vom Verdichter 2 komprimierte Heißgas kondensiert in dem als Wärmetauscher ausgebildeten Kondensator, wobei eine Wärmemenge 6 an den Heizkreislauf 7 abgegeben wird.
Ein optimaler Wirkungsgrad der Kompressionswärmepumpe wird erreicht, wenn das Kältemittel im Verdampfer 1 möglichst wenig überhitzt wird. Eine geringe Menge von nichtverdampftem Kältemittel ist dabei unerheblich, da der Verdichter als sauggasgekühlter Kompressor ausgebildet ist, d.h. Motorwärme wird an das angesaugte Gas abgegeben, wobei Reste von Kühlmittel verdampft werden. Das Kältemittel wird aber zuwenig erwärmt, wenn flüssiges Kältemittel in das Öl des Kompressors gelangt und das Öl im Kompressor aufzuschäumen beginnt. In diesem Fall muß die Zufuhr von Kältemittel in den Verdampfer 1 durch Drosselung des Expansionsventils 4 verringert werden.
Zur exakten Regelung des Expansionsventils 4 ist eine Regeleinrichtung 8 vorgesehen, die mit einem Temperaturfühler 9 und einem zweiten Fühler 10 verbunden ist. Der erste Fühler 9 dient zur Erfassung der Heißgastemperatur des Kältemittels im Bereich zwischen Verdichter 2 und Kondensator 3. Der zweite Fühler 10 ist im Hochdruckbereich, der vom Verdichter 2 bis zum Expansionsventil 4 reicht, angeordnet und ist als Druckaufnehmer ausgebildet. Der vom zweiten Fühler 10 erfaßte Wert des Druckes entspricht dem Kondensationsdruck des Kältemittels im Kondensator 3 und kann direkt in die Kondensationstemperatur im Kondensator umgewandelt werden. Der Istwert der Regelgröße wird in der Regeleinrichtung 8 aus der Differenz zwischen den von den beiden Fühlern ermittelten Temperaturen bestimmt. Liegt dieser Istwert beispielsweise über einem vorgegebenen Sollwert, so wird das Expansionsventil 4 von der Regeleinrichtung 8 weiter geöffnet. Dadurch strömt mehr Kältemittel durch den Verdampfer, was eine geringere Verdampfungs-Überhitzungstemperatur des gasförmigen Kältemittels in der Sauggasleitung 11 und damit auch eine geringere Heißgastemperatur des Kältemittels im Bereich zwischen Verdichter 2 und Kondensator 3 zur Folge hat, wobei die Änderung der Verdampfungs-Überhitzungstemperatur wesentlich geringer ist als die Änderung der Heißgastemperatur.
Der Sollwert der Differenz zwischen der vom ersten Fühler 9 ermittelten Heißgastemperatur und der über den zweiten Fühler 10 ermittelten Kondensationstemperatur wird dabei in Abhängigkeit von der über den zweiten Fühler 10 ermittelten Kondensationstemperatur eingestellt, vorzugsweise proportional zu dieser. Beispielsweise beträgt der Sollwert der Temperaturdifferenz bei einer Kondensationstemperatur von 25°C 17 K, während er bei einer Kondensationstemperatur von 50°C 25 K beträgt. Der Grund für die Einführung einer solchen Abhängigkeit sind die unterschiedlichen Wärmemengen, die bei unterschiedlichen Kondensationstemperaturen im Kondensator 3 abgeführt werden müssen und die daraus folgenden unterschiedlichen Anforderungen an den Kondensator. Im Kondensator wird ja das Heißgas zunächst in einer ersten Enthitzungszone enthitzt (z.B. von 70 auf 50°C), anschließend in einer Kondensationszone kondensiert (z.B. bei 50°C) und schließlich in einer Unterkühlungszone unterkühlt (z.B. von 50 auf 46°C). Bei niedrigen Temperaturen liegt eine hohe Leistung am Kondensator 3 an und durch einen geringeren Sollwert der Temperaturdifferenz wird die Kondensationszone vergrößert (auf Kosten der Enthitzungszone), während sie bei höheren Temperaturen, bei denen eine niedrigere Leistung anliegt, mittels eines größeren Sollwertes der Temperaturdifferenz verkleinert wird (und die Enthitzungszone vergrößert).
Der einzige Unterschied des Ausführungsbeispieles nach Fig. 2 besteht darin, daß der zweite Fühler 10 als Temperaturfühler ausgebildet ist und in der Vorlaufleitung 13 des Heizkreises 7 im Bereich des Wärmetauscherausgangs angeordnet ist. Die vom zweiten Fühler 10 aufgenommene Temperatur unterscheidet sich von der Kondensationstemperatur nur um wenige Grad Kelvin und kann in diese mittels eines konstanten Korrekturfaktors (der im wesentlichen vom verwendeten Kältemittel und von der Dimensionierung des Wärmetauschers abhängt) umgerechnet werden.

Claims (7)

  1. Kompressionswärmepumpe oder Kompressionskältemaschine mit einem Kältemittelkreislauf, der einen Verdampfer (1), einen Verdichter (2), einen Kondensator (3) und ein regelbares Expansionsventil (4) umfaßt, welches von einer Regeleinrichtung (8) angesteuert wird, die mit einem im Bereich zwischen Verdichter (2) und Kondensator (3) angeordneten Temperaturfühler (9) und einem zweiten Fühler (10) verbunden ist, dadurch gekennzeichnet, daß der zweite Fühler (10) einen Wert erfaßt, der ein direktes Maß für die Kondensationstemperatur im Kondensator (3) darstellt.
  2. Kompressionswärmepumpe oder Kompressionskältemaschine nach Anspruch 1, dadurch gekennzeichnet, daß der zweite Fühler (10) ein Druckaufnehmer ist und im Hochdruckbereich des Kältemittelkreislaufes zwischen Verdichter (2) und Expansionsventil (4) angeordnet ist.
  3. Kompressionswärmepumpe oder Kompressionskältemaschine nach Anspruch 1, dadurch gekennzeichnet, daß der Kondensator (3) der Kompressionswärmepumpe als Wärmetauscher zur Übertragung der vom Kältemittel abgegebenen Wärme (6) auf ein Heizmittel eines Heizkreises (7) ausgebildet ist und der zweite Fühler (10) als Temperaturfühler ausgebildet ist, der in der Vorlaufleitung (13) des Heizkörpers, vorzugsweise im Bereich des Wärmetauscherausganges, angeordnet ist.
  4. Kompressionswärmepumpe oder Kompressionskältemaschine nach Anspruch 1, dadurch gekennzeichnet, daß der zweite Fühler (10) ein Temperaturfühler ist und am Kondensator (3) angeordnet ist.
  5. Verfahren zur Regelung einer Kompressionswärmepumpe oder Kompressionskältemaschine nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Regelgröße aus der Differenz zwischen der vom ersten Fühler (9) erfaßten Temperatur und einer Temperatur, die dem vom zweiten Fühler (10) erfaßten Wert entspricht und ein direktes Maß für die Kondensationstemperatur im Kondensator darstellt, gebildet wird.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß der Sollwert der Regelgröße von dem vom zweiten Fühler (10) erfaßten Wert abhängig ist, vorzugsweise mit steigendem vom zweiten Fühler erfaßten Wert zunimmt.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß der Sollwert der Regelgröße etwa proportional zu dem vom zweiten Fühler (10) ermittelten Wert ist.
EP98104767A 1997-03-18 1998-03-17 Kompressionswärmepumpe oder Kompressionskältemaschine und Regelungsverfahren dafür Expired - Lifetime EP0866291B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT46797 1997-03-18
AT46797 1997-03-18
AT467/97 1997-03-18

Publications (2)

Publication Number Publication Date
EP0866291A1 EP0866291A1 (de) 1998-09-23
EP0866291B1 true EP0866291B1 (de) 2002-08-14

Family

ID=3491393

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98104767A Expired - Lifetime EP0866291B1 (de) 1997-03-18 1998-03-17 Kompressionswärmepumpe oder Kompressionskältemaschine und Regelungsverfahren dafür

Country Status (3)

Country Link
EP (1) EP0866291B1 (de)
AT (1) ATE222344T1 (de)
DE (1) DE59805146D1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013004786A1 (de) 2013-03-20 2014-09-25 SKA GmbH Gesellschaft für Kältetechnik Kompressionswärmepumpe oder Kompressionskältemaschine sowie Verfahren zur Regelug derselben
DE102020122713A1 (de) 2020-08-31 2022-03-03 Andreas Bangheri Wärmepumpe und Verfahren zum Betreiben einer Wärmepumpe

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6318101B1 (en) * 2000-03-15 2001-11-20 Carrier Corporation Method for controlling an electronic expansion valve based on cooler pinch and discharge superheat
EP1148307B1 (de) * 2000-04-19 2004-03-17 Denso Corporation Wassererhitzer mit Wärmepumpe
CN1311205C (zh) * 2003-04-30 2007-04-18 Lg电子株式会社 控制室外机操作的装置及其方法
KR100827876B1 (ko) * 2003-05-15 2008-05-07 엘지전자 주식회사 실외기의 안전운전장치 및 방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3801711A1 (de) * 1988-01-21 1989-07-27 Linde Ag Verfahren zum betreiben einer kaelteanlage und kaelteanlage zur durchfuehrung des verfahrens
JPH05106922A (ja) * 1991-10-18 1993-04-27 Hitachi Ltd 冷凍装置の制御方式
DE4303533A1 (de) 1993-02-06 1994-08-11 Stiebel Eltron Gmbh & Co Kg Verfahren zur Begrenzung der Heißgastemperatur in einem Kältemittelkreislauf und Expansionsventil
US5551248A (en) 1995-02-03 1996-09-03 Heatcraft Inc. Control apparatus for space cooling system
EP0762064A1 (de) * 1995-09-08 1997-03-12 Fritz Ing. Weider Durchsatzregelung für das Kältemittel einer Wärmepumpe und Verfahren

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013004786A1 (de) 2013-03-20 2014-09-25 SKA GmbH Gesellschaft für Kältetechnik Kompressionswärmepumpe oder Kompressionskältemaschine sowie Verfahren zur Regelug derselben
DE102020122713A1 (de) 2020-08-31 2022-03-03 Andreas Bangheri Wärmepumpe und Verfahren zum Betreiben einer Wärmepumpe

Also Published As

Publication number Publication date
ATE222344T1 (de) 2002-08-15
DE59805146D1 (de) 2002-09-19
EP0866291A1 (de) 1998-09-23

Similar Documents

Publication Publication Date Title
DE4430468C2 (de) Regeleinrichtung einer Kühlvorrichtung
DE4213011C2 (de) Kühlmittelkreislauf mit Steuerung einer Spareinrichtung
DE10300487B4 (de) Kühlvorrichtung sowie Thermostat mit einer solchen Kühlvorrichtung
EP0344397B1 (de) Klimaprüfkammer
DE4324510A1 (de) Verfahren und Vorrichtung zum Betreiben eines Kühlsystems
DE3229779C2 (de)
DE4202508A1 (de) Transportkuehlanlage
DE19916907A1 (de) Absorptionswärmepumpe und Verfahren zum Betrieb einer Absorptionswärmepumpe
DE1960975B2 (de) Kuehlvorrichtung fuer fluessigkeiten
EP0866291B1 (de) Kompressionswärmepumpe oder Kompressionskältemaschine und Regelungsverfahren dafür
DE19818627C5 (de) Verfahren zum Konditionieren von Luft durch Einstellen der Temperatur und Luftfeuchtigkeit in einem Klimatisierungsschrank mittels eines Kältekreislaufs und Kältekreislauf
DE102018111704B3 (de) Verfahren und Vorrichtung zur Verdampfungskühlung einer Kraftmaschine anhand der Temperatur und des Druckes eines Kühlmittels
AT522875B1 (de) Verfahren zur Regelung eines Expansionsventils
DE19832480A1 (de) Mit CO¶2¶ betreibbare Klimaanlage für ein Fahrzeug
DE4212162A1 (de) Einrichtung zur Kühlung des Elektromotors eines halbhermetischen Kältemittelverdichters
DE3442169A1 (de) Verfahren zum regeln eines kaeltekreisprozesses fuer eine waermepumpe oder eine kaeltemaschine und eine waermepumpe oder kaeltemaschine hierzu
DE102005044029B3 (de) Wärmepumpe
EP0762064A1 (de) Durchsatzregelung für das Kältemittel einer Wärmepumpe und Verfahren
EP1620684B1 (de) Verfahren zum regeln eines carnot-kreisprozesses sowie anlage zu seiner durchführung
DE102017208225A1 (de) Verfahren zur Regelung eines Kältemittelparameters auf der Hochdruckseite eines einen Kältemittelkreislauf durchströmenden Kältemittels, Kälteanlage für ein Fahrzeug sowie beheizbarer Niederdruck-Sammler für die Kälteanlage
DE4100749A1 (de) Regeleinrichtung fuer eine kuehlanlage
DE19620105A1 (de) Verfahren zum Betrieb einer Kälteanlage
DE60225877T2 (de) Begrenzungsverfahren des Verflüssigungsdruckes in einer Kältemaschine
EP1030135B1 (de) Verfahren zur geregelten Kühlung durch Verdampfen flüssigen Stickstoffs
WO2003106900A1 (de) Verfahren zum regeln eines carnot-kreisprozesses sowie anlage zu seiner durchführung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR IT LI

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19990317

AKX Designation fees paid

Free format text: AT CH DE FR IT LI

RBV Designated contracting states (corrected)

Designated state(s): AT CH DE FR IT LI

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010926

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BANGHERI, ANDREAS

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR IT LI

REF Corresponds to:

Ref document number: 222344

Country of ref document: AT

Date of ref document: 20020815

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KIRKER & CIE SA

REF Corresponds to:

Ref document number: 59805146

Country of ref document: DE

Date of ref document: 20020919

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030515

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20170323

Year of fee payment: 20

Ref country code: FR

Payment date: 20170323

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20170330

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170331

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170331

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59805146

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 222344

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180317