EP0865059B1 - Circuit arrangement for energy saving operation of a relay - Google Patents

Circuit arrangement for energy saving operation of a relay Download PDF

Info

Publication number
EP0865059B1
EP0865059B1 EP97111431A EP97111431A EP0865059B1 EP 0865059 B1 EP0865059 B1 EP 0865059B1 EP 97111431 A EP97111431 A EP 97111431A EP 97111431 A EP97111431 A EP 97111431A EP 0865059 B1 EP0865059 B1 EP 0865059B1
Authority
EP
European Patent Office
Prior art keywords
relay
capacitor
current
circuit
voltage source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97111431A
Other languages
German (de)
French (fr)
Other versions
EP0865059A1 (en
Inventor
Josef Lelle
Hans-Peter Bauer
Alexander Meier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Schweiz AG
Original Assignee
Siemens Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Schweiz AG filed Critical Siemens Schweiz AG
Priority to US09/030,968 priority Critical patent/US6061226A/en
Priority to JP10058735A priority patent/JPH10261354A/en
Publication of EP0865059A1 publication Critical patent/EP0865059A1/en
Application granted granted Critical
Publication of EP0865059B1 publication Critical patent/EP0865059B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • H01H47/32Energising current supplied by semiconductor device
    • H01H47/325Energising current supplied by semiconductor device by switching regulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/02Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay
    • H01H47/04Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay for holding armature in attracted position, e.g. when initial energising circuit is interrupted; for maintaining armature in attracted position, e.g. with reduced energising current
    • H01H47/043Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay for holding armature in attracted position, e.g. when initial energising circuit is interrupted; for maintaining armature in attracted position, e.g. with reduced energising current making use of an energy accumulator

Definitions

  • the invention relates to a circuit for the energy-saving operation of a relay referred to in the preamble of claim 1 Art.
  • GB-A-1 047 524 discloses a circuit according to the preamble of claim 1.
  • the invention has for its object to provide an electronic circuit that allows energy-saving operation of a relay and in which a component failure leads to shutdown of the relay.
  • the relay For a relay to switch from its OFF position to the ON position, the relay must be energized with a current I greater than a minimum current I min . After switching, the relay can be fed with a holding current I H , which is smaller than the minimum current I min . According to the invention, the relay is therefore supplied with a current I (t) whose amplitude depends on the time t.
  • the current through the relay is provided during a first time interval of a clock from a voltage source, the current charging a capacitor. In this case, the amplitude of the current decreases with increasing charging voltage across the capacitor.
  • the capacitor Before the amplitude is smaller than the minimum necessary hold current I H, min , during a second time interval of the clock, the capacitor is partially discharged again, the discharge current flows through the relay.
  • the clocked charging and discharging of the capacitor reduces the energy required to hold the relay in the ON position. As soon as the circuit that causes the clocking fails, the relay drops to the OFF position, which is required for safety
  • Fig. 1 shows a first electronic circuit with a relay 1, which is fed from a voltage source 2.
  • the voltage source 2 supplies a positive voltage with respect to the negative pole at the positive pole.
  • the circuit further comprises a capacitor 3, two diodes 4 and 5, two switching transistors 6 and 7 and a circuit part 8 for driving the switching transistors 6 and 7.
  • the wiring of the relay 1, the capacitor 3, the diodes 4, 5 and the switching transistors 6, 7 can be seen directly in FIG. If the relay 1 is in its OFF position, then the circuit part 8 controls the switching transistors 6 and 7 such that both switching transistors 6, 7 or at least the switching transistor 7 block.
  • the circuit part 8 For switching the relay 1 from the OFF position to the ON position and for holding the relay 1 in the ON position, the circuit part 8 alternately switches the switching transistor 6 or the switching transistor 7 to the conducting state, that is, the switching transistor after a predetermined timing 6 blocks when the switching transistor 7 conducts, and vice versa.
  • the circuit part 8 the Switching transistor 7 switches to the conductive state, then supplies the voltage source 2, a current I 1 , from the positive pole of the voltage source 2 to the positive pole of the capacitor 3 and the negative pole of the capacitor 3 via the diode 4, the relay 1 and the switching transistor 7 to the negative pole of Voltage source 2 flows.
  • the capacitor 3 is partially charged, which in turn causes the amplitude of the current I 1 (t) decreases with time t.
  • the circuit part 8 blocks the switching transistor 7 and switches the switching transistor 6 in the conductive state. Then, a current I 2 (t) flows from the positive pole of the capacitor 3 via the switching transistor 6, the relay 1 and the diode 5 to the negative pole of the capacitor 3. The current I 2 (t) discharges the capacitor 3 partially. Before now the amplitude of the current I 2 (t) is too small to hold the relay 1 in the ON position, the circuit part 8 blocks the switching transistor 6 and again switches the switching transistor 7 in the conducting state, whereupon the capacitor. 3 is charged again from the voltage source 2.
  • FIG. 2 shows, over time, the magnitude of the current I (t) flowing in the ON position through the relay 1 (FIG. 1).
  • the amount of current I (t) is always greater than the minimum necessary holding current I H, min.
  • This current peak can be supplied by a buffer, in particular an additional capacitor, which has been charged in advance by the voltage source 2 over a comparatively long period of time. Subsequently, the voltage across the relay 1 is reduced by the voltage across the capacitor 3.
  • the invention further has the advantage that the voltage source 2 is charged only during the charging, but not during the discharge of the capacitor 3. If a short circuit occurs in the switching transistor 7, then the capacitor 3 is charged and the current I 1 (t) decreases continuously.
  • the relay 1 switches to the OFF position. If a short circuit occurs in the switching transistor 6, then the capacitor 3 is discharged and the current I 2 (t) decreases continuously. As soon as the current I 2 (t) is less than a holding current I H , the relay 1 switches to the OFF position.
  • FIG. 3 shows a second electronic circuit in which a short circuit of both switching transistors 6 and 7 also causes the relay 1 to be switched off.
  • the switching transistors 6 and 7 are connected directly in series.
  • the circuit has a bridge rectifier formed from four diodes 9-12, in whose bridge branch the relay 1 is arranged.
  • the wiring of the capacitor 3, the bridge rectifier and the relay 1 is shown in FIG. 3.
  • the circuit part 8 controls the switching transistors 6 and 7 such that both or one of the switching transistors 6, 7 block.
  • the circuit part 8 turns again after a predetermined clock alternately the switching transistor 6 or the switching transistor 7 in the conductive state.
  • the switching transistor 7 permanently conducts because of a component error, then first the charging current I 1 (t) flows. Since the capacitor 3 charges, the amplitude of the charging current I 1 (t) decreases continuously. As soon as it is smaller than the minimum necessary holding current I H, min , the relay 1 drops and remains in its OFF position. If the switching transistor 6 permanently conducts because of a component failure then the capacitor 3 discharges until the relay 1 in turn drops because of too low current I 2 (t) and remains in its OFF position. If both switching transistors 6 and 7 are destroyed, for example as a result of overvoltage and permanently conduct, then the voltage source 2 is short-circuited and the relay 1 comes into its OFF position.
  • Fig. 4 shows a circuit based on the circuit shown in Fig. 3 and in which a further relay 14 is arranged in a kind of cascade.
  • the relay 14, a capacitor 15, a switching transistor 16 and diodes 17 - 19 assigned.
  • the circuit is controlled by a microcontroller 20.
  • the circuit part 8 has two transistors 21 and 22 and various resistors, a control input 23, two outputs for driving the switching transistors 6, 7 and a further output, which is connected via the diode 19 to the relay 14.
  • the wiring is shown in FIG. 4.
  • the microcontroller 20 controls the relay 1 via a connected to the control input 23 of the circuit part 8 output 24 dynamically: As long as the microcontroller 20 at the output 24 a negative, static potential leads, which is smaller than the potential of the negative pole of the voltage source 2, the locks Switching transistor 7 and the relay 1 is in its OFF position. Once the microcontroller 20 at the output 24, a square wave signal with the two voltage levels of 0V / -5V and the right one Clock frequency leads, alternately conduct the transistors 7, 21, 22 or 6 and and the relay 1 switches to the ON position.
  • the microcontroller 20 controls the relay 14 statically. If a negative voltage of -5 V is present at the output 25 of the microcontroller 20, then the transistor 16 is turned off and the relay 14 remains in the OFF position. Leads the microcontroller 20 at the output 25, the potential of the ground of 0V, then conducts the transistor 16 whenever, even if the switching transistor 6 conducts and the relay 14 enters the ON position.
  • the circuit has the peculiarity that the relay 14 is switched into its ON position only when the relay 1 is in its ON position. So as soon as a component error causes the relay 1 falls into its OFF position, the relay 14 also switches to the OFF position.
  • relay 14 and ev. Further relay has the advantage that the circuit part 8 is also used for these additional relay, so that the power consumption for the control of the relay can be kept very small. Because of the power-saving control of the 'relay 1 can be used as a voltage source 2 in particular a simple power supply.
  • Such circuits are suitable for use in automatic furnaces where, in normal operation, at least two safety relays are connected in series.
  • the energy consumption during operation of the relay could also be minimized by switching on the relay in series with the voltage source for a short time a second voltage source is switched on. Then twice as high a current flows when switched on at doubled voltage, i. four times the power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Relay Circuits (AREA)

Description

Die Erfindung betrifft einen Schaltung für den energiesparenden Betrieb eines Relais der im Oberbegriff des Anspruchs 1 genannten Art.The invention relates to a circuit for the energy-saving operation of a relay referred to in the preamble of claim 1 Art.

Das Dokument " GB-A-1 047 524 " offenbart eine Schaltung gemäß dem Oberbegriff des Patentanspruchs 1.The document " GB-A-1 047 524 discloses a circuit according to the preamble of claim 1.

Der Erfindung liegt die Aufgabe zugrunde, eine elektronische Schaltung vorzuschlagen, die einen energiesparenden Betrieb eines Relais ermöglicht und bei der ein Bauteilfehler zum Abschalten des Relais führt.The invention has for its object to provide an electronic circuit that allows energy-saving operation of a relay and in which a component failure leads to shutdown of the relay.

Die Erfindung ist im Anspruch 1 gekennzeichnet. Weiterbildungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.The invention is characterized in claim 1. Further developments of the invention will become apparent from the dependent claims.

Damit ein Relais von seiner AUS-Stellung in die EIN-Stellung schaltet, muss das Relais mit einem Strom I gespeist werden, der grösser als ein Mindeststrom Imin ist. Nach dem Schalten kann das Relais mit einem Haltestrom IH gespeist werden, der kleiner als der Mindeststrom Imin ist. Gemäss der Erfindung wird das Relais deshalb mit einem Strom I(t) gespeist, dessen Amplitude von der Zeit t abhängt. Der Strom durch das Relais wird während eines ersten Zeitintervalles eines Taktes von einer Spannungsquelle geliefert, wobei der Strom einen Kondensator auflädt. Dabei nimmt die Amplitude des Stromes mit zunehmender Ladespannung über dem Kondensator ab. Bevor die Amplitude kleiner als der minimal nötige Haltestrom IH,min ist, wird während eines zweiten Zeitintervalles des Taktes der Kondensator wieder teilweise entladen, wobei der Entladestrom über das Relais fliesst. Durch das getaktete Laden und Entladen des Kondensators verkleinert sich der Energiebedarf zum Halten des Relais in der EIN-Stellung. Sobald die Schaltung ausfällt, die das Takten bewirkt, fällt das Relais in die AUS-Stellung, was z.B. bei sicherheitsrelevanten Anwendungen erforderlich ist.For a relay to switch from its OFF position to the ON position, the relay must be energized with a current I greater than a minimum current I min . After switching, the relay can be fed with a holding current I H , which is smaller than the minimum current I min . According to the invention, the relay is therefore supplied with a current I (t) whose amplitude depends on the time t. The current through the relay is provided during a first time interval of a clock from a voltage source, the current charging a capacitor. In this case, the amplitude of the current decreases with increasing charging voltage across the capacitor. Before the amplitude is smaller than the minimum necessary hold current I H, min , during a second time interval of the clock, the capacitor is partially discharged again, the discharge current flows through the relay. The clocked charging and discharging of the capacitor reduces the energy required to hold the relay in the ON position. As soon as the circuit that causes the clocking fails, the relay drops to the OFF position, which is required for safety-relevant applications, for example.

Nachfolgend werden Ausführungsbeispiele der Erfindung anhand der Zeichnung näher erläutert.Embodiments of the invention will be explained in more detail with reference to the drawing.

Es zeigen:

Fig. 1
eine erste stromsparende Schaltung zum Betrieb eines Relais,
Fig. 2
den zeitlichen Verlauf des durch das Relais fliessenden Stromes,
Fig. 3
eine zweite stromsparende Schaltung zum Betrieb des Relais, und
Fig. 4
eine stromsparende Schaltung zum Betrieb mehrerer Relais.
Show it:
Fig. 1
a first power-saving circuit for operating a relay,
Fig. 2
the time course of the current flowing through the relay,
Fig. 3
a second power-saving circuit for operating the relay, and
Fig. 4
a power-saving circuit for operating multiple relays.

Die Fig. 1 zeigt eine erste elektronische Schaltung mit einem Relais 1, die aus einer Spannungsquelle 2 gespeist ist. Die Spannungsquelle 2 liefert am Pluspol eine gegenüber dem Minuspol positive Spannung. Die Schaltung weist weiter einen Kondensator 3, zwei Dioden 4 und 5, zwei Schalttransistoren 6 und 7 und ein Schaltungsteil 8 zur Ansteuerung der Schalttransistoren 6 und 7 auf. Die Verdrahtung des Relais 1, des Kondensators 3, der Dioden 4, 5 und der Schalttransistoren 6, 7 ist direkt der Fig. 1 zu entnehmen. Befindet sich das Relais 1 in seiner AUS-Stellung, dann steuert das Schaltungsteil 8 die Schalttransistoren 6 und 7 derart an, dass beide Schalttransistoren 6, 7 oder wenigstens der Schalttransistor 7 sperren. Zum Schalten des Relais 1 von der AUS-Stellung in die EIN-Stellung und zum Halten des Relais 1 in der EIN-Stellung schaltet das Schaltungsteil 8 nach einem vorgegebenen Takt abwechslungsweise den Schalttransistor 6 oder den Schalttransistor 7 in den leitenden Zustand, d.h. der Schalttransistor 6 sperrt, wenn der Schalttransistor 7 leitet, und umgekehrt. Wenn das Schaltungsteil 8 den Schalttransistor 7 in den leitenden Zustand schaltet, dann liefert die Spannungsquelle 2 einen Strom I1, der vom Pluspol der Spannungsquelle 2 zum Pluspol des Kondensators 3 und vom Minuspol des Kondensators 3 über die Diode 4, das Relais 1 und den Schalttransistor 7 zum Minuspol der Spannungsquelle 2 fliesst. Dabei wird der Kondensator 3 teilweise aufgeladen, was wiederum bewirkt, dass die Amplitude des Stromes I1(t) mit der Zeit t abnimmt. Bevor nun die Amplitude des Stromes I1(t) zu klein wird, um das Relais 1 in der EIN-Stellung halten zu können, sperrt das Schaltungsteil 8 den Schalttransistor 7 und schaltet den Schalttransistor 6 in den leitenden Zustand. Dann fliesst ein Strom I2(t) vom Pluspol des Kondensators 3 über den Schalttransistor 6, das Relais 1 und die Diode 5 zum Minuspol des Kondensators 3. Der Strom I2(t) entlädt den Kondensator 3 teilweise. Bevor nun die Amplitude der Stromes I2(t) zu klein wird, um das Relais 1 in der EIN-Stellung halten zu können, sperrt das Schaltungsteil 8 den Schalttransistor 6 und schaltet wieder den Schalttransistor 7 in den leitenden Zustand, worauf der Kondensator 3 wieder von der Spannungsquelle 2 aufgeladen wird. Dieses periodische Auf- und Entladen des Kondensators 3 erfolgt solange, wie das Relais 1 in der EIN-Stellung gehalten werden soll. Die Fig. 2 zeigt im zeitlichen Verlauf den Betrag des Stromes I(t), der in der EIN-Stellung durch das Relais 1 (Fig. 1) fliesst. Der Betrag des Stromes I(t) ist immer grösser als der minimal nötige Haltestrom IH,min. Beim Einschalten des Relais 1 wird kurzzeitig ein relativ grosser Strom benötigt, da der Kondensator 3 vollständig entladen ist und die ganze Versorgungsspannung am Relais 1 anliegt. Diese Stromspitze kann von einem Puffer, insbesondere einem zusätzlichen Kondensator, geliefert werden, der vorgängig von der Spannungsquelle 2 über einen vergleichsweise langen Zeitraum aufgeladen wurde. Anschliessend ist die Spannung über dem Relais 1 um die Spannung über dem Kondensator 3 vermindert. Man kann die Schaltung somit auch als sogenannte Stepdown-Schaltung ansehen. Sie bietet den Vorteil, dass als Spannungsquelle 2 ein Netzteil verwendet werden kann, das eine vergleichsweise hohe Spannung von z.B. 54 V, aber im zeitlichen Mittel nur wenig Strom liefern kann. Die Stepdown-Wandlung der Spannung bewirkt zudem, dass nur im Relais Verlustleistung entsteht. Die Leistung zum Betrieb des Relais 1 verringert sich typisch auf einen Viertel der Leistung bei herkömmlicher Beschaltung.Fig. 1 shows a first electronic circuit with a relay 1, which is fed from a voltage source 2. The voltage source 2 supplies a positive voltage with respect to the negative pole at the positive pole. The circuit further comprises a capacitor 3, two diodes 4 and 5, two switching transistors 6 and 7 and a circuit part 8 for driving the switching transistors 6 and 7. The wiring of the relay 1, the capacitor 3, the diodes 4, 5 and the switching transistors 6, 7 can be seen directly in FIG. If the relay 1 is in its OFF position, then the circuit part 8 controls the switching transistors 6 and 7 such that both switching transistors 6, 7 or at least the switching transistor 7 block. For switching the relay 1 from the OFF position to the ON position and for holding the relay 1 in the ON position, the circuit part 8 alternately switches the switching transistor 6 or the switching transistor 7 to the conducting state, that is, the switching transistor after a predetermined timing 6 blocks when the switching transistor 7 conducts, and vice versa. When the circuit part 8 the Switching transistor 7 switches to the conductive state, then supplies the voltage source 2, a current I 1 , from the positive pole of the voltage source 2 to the positive pole of the capacitor 3 and the negative pole of the capacitor 3 via the diode 4, the relay 1 and the switching transistor 7 to the negative pole of Voltage source 2 flows. In this case, the capacitor 3 is partially charged, which in turn causes the amplitude of the current I 1 (t) decreases with time t. Before now the amplitude of the current I 1 (t) is too small to hold the relay 1 in the ON position, the circuit part 8 blocks the switching transistor 7 and switches the switching transistor 6 in the conductive state. Then, a current I 2 (t) flows from the positive pole of the capacitor 3 via the switching transistor 6, the relay 1 and the diode 5 to the negative pole of the capacitor 3. The current I 2 (t) discharges the capacitor 3 partially. Before now the amplitude of the current I 2 (t) is too small to hold the relay 1 in the ON position, the circuit part 8 blocks the switching transistor 6 and again switches the switching transistor 7 in the conducting state, whereupon the capacitor. 3 is charged again from the voltage source 2. This periodic charging and discharging of the capacitor 3 takes place as long as the relay 1 is to be kept in the ON position. FIG. 2 shows, over time, the magnitude of the current I (t) flowing in the ON position through the relay 1 (FIG. 1). The amount of current I (t) is always greater than the minimum necessary holding current I H, min. When switching on the relay 1, a relatively large current is required for a short time, since the capacitor 3 is completely discharged and the whole supply voltage is applied to the relay 1. This current peak can be supplied by a buffer, in particular an additional capacitor, which has been charged in advance by the voltage source 2 over a comparatively long period of time. Subsequently, the voltage across the relay 1 is reduced by the voltage across the capacitor 3. You can also view the circuit as a so-called stepdown circuit. It has the advantage that can be used as a power source 2, a power supply that can deliver a comparatively high voltage of eg 54 V, but on average over time little power. The stepdown conversion of the voltage also causes only in the relay power loss occurs. The power to operate the relay 1 typically reduces to a quarter of the power in conventional wiring.

Die Erfindung bietet weiter den Vorteil, dass die Spannungsquelle 2 nur während des Aufladens, nicht aber während des Entladens des Kondensators 3 belastet wird. Tritt beim Schalttransistor 7 ein Kurzschluss auf, dann wird der Kondensator 3 aufgeladen und der Strom I1(t) nimmt kontinuierlich ab.The invention further has the advantage that the voltage source 2 is charged only during the charging, but not during the discharge of the capacitor 3. If a short circuit occurs in the switching transistor 7, then the capacitor 3 is charged and the current I 1 (t) decreases continuously.

Sobald der Strom I1(t) kleiner als ein Haltestrom IH ist, schaltet das Relais 1 in die AUS-Stellung. Tritt beim Schalttransistor 6 ein Kurzschluss auf, dann wird der Kondensator 3 entladen und der Strom I2(t) nimmt kontinuierlich ab. Sobald der Strom I2(t) kleiner als ein Haltestrom IH ist, schaltet das Relais 1 in die AUS-Stellung.As soon as the current I 1 (t) is less than a holding current I H , the relay 1 switches to the OFF position. If a short circuit occurs in the switching transistor 6, then the capacitor 3 is discharged and the current I 2 (t) decreases continuously. As soon as the current I 2 (t) is less than a holding current I H , the relay 1 switches to the OFF position.

Die Fig. 3 zeigt eine zweite elektronische Schaltung, bei der auch ein Kurzschluss beider Schalttransistoren 6 und 7 ein Abschalten des Relais 1 bewirkt. Die Schalttransistoren 6 und 7 sind direkt in Reihe geschaltet. Die Schaltung weist einen aus vier Dioden 9-12 gebildeten Brückengleichrichter auf, in dessen Brückenzweig das Relais 1 angeordnet ist. Die Verdrahtung des Kondensators 3, des Brückengleichrichters und des Relais 1 ist der Fig. 3 zu entnehmen. Zum Halten des Relais 1 in seiner AUS-Stellung steuert das Schaltungsteil 8 die Schalttransistoren 6 und 7 derart an, dass beide oder einer der Schalttransistoren 6, 7 sperren. Zum Schalten des Relais 1 von der AUS-Stellung in die EIN-Stellung und zum Halten des Relais 1 in der EIN-Stellung schaltet das Schaltungsteil 8 wiederum nach einem vorgegebenen Takt abwechslungsweise den Schalttransistor 6 oder den Schalttransistor 7 in den leitenden Zustand. Wenn der Schalttransistor 6 leitet, dann fliesst der Ladestrom I1(t) vom Pluspol der Spannungsquelle 2 über den Schalttransistor 6 zum Pluspol des Kondensators 3 und vom Minuspol des Kondensators 3 über die Diode 9, das Relais 1 und die Diode 10 zum Minuspol der Spannungsquelle 2. Wenn der Schalttransistor 7 leitet, dann fliesst der Entladestrom I2(t) vom Pluspol des Kondensators 3 über den Schalttransistor 7, die Diode 11, das Relais 1 und die Diode 12 zum Minuspol des Kondensators 3.FIG. 3 shows a second electronic circuit in which a short circuit of both switching transistors 6 and 7 also causes the relay 1 to be switched off. The switching transistors 6 and 7 are connected directly in series. The circuit has a bridge rectifier formed from four diodes 9-12, in whose bridge branch the relay 1 is arranged. The wiring of the capacitor 3, the bridge rectifier and the relay 1 is shown in FIG. 3. To hold the relay 1 in its OFF position, the circuit part 8 controls the switching transistors 6 and 7 such that both or one of the switching transistors 6, 7 block. For switching the relay 1 from the OFF position to the ON position and for holding the relay 1 in the ON position, the circuit part 8 turns again after a predetermined clock alternately the switching transistor 6 or the switching transistor 7 in the conductive state. When the switching transistor 6 conducts, then flows the charging current I 1 (t) from the positive pole of the voltage source 2 via the switching transistor 6 to the positive terminal of the capacitor 3 and the negative terminal of the capacitor 3 via the diode 9, the relay 1 and the diode 10 to the negative terminal of Voltage source 2. When the switching transistor 7 conducts, then the discharge current I 2 (t) flows from the positive pole of the capacitor 3 via the switching transistor 7, the diode 11, the relay 1 and the diode 12 to the negative pole of the capacitor. 3

Wenn der Schalttransistor 7 wegen eines Bauteilfehlers permanent leitet, dann fliesst zunächst der Ladestrom I1(t). Da sich dabei der Kondensator 3 auflädt, nimmt die Amplitude des Ladestroms I1(t) kontinuierlich ab. Sobald sie kleiner ist als der minimal nötige Haltestrom IH,min, fällt das Relais 1 ab und bleibt in seiner AUS-Stellung. Wenn der Schalttransistor 6 wegen eines Bauteilfehlers permanent leitet dann entlädt sich der Kondensator 3, bis das Relais 1 wiederum wegen zu geringem Strom I2(t) abfällt und in seiner AUS-Stellung bleibt. Wenn beide Schalttransistoren 6 und 7 beispielsweise infolge Überspannung zerstört werden und permanent leiten, dann ist die Spannungsquelle 2 kurzgeschlossen und das Relais 1 gelangt in seine AUS-Stellung.If the switching transistor 7 permanently conducts because of a component error, then first the charging current I 1 (t) flows. Since the capacitor 3 charges, the amplitude of the charging current I 1 (t) decreases continuously. As soon as it is smaller than the minimum necessary holding current I H, min , the relay 1 drops and remains in its OFF position. If the switching transistor 6 permanently conducts because of a component failure then the capacitor 3 discharges until the relay 1 in turn drops because of too low current I 2 (t) and remains in its OFF position. If both switching transistors 6 and 7 are destroyed, for example as a result of overvoltage and permanently conduct, then the voltage source 2 is short-circuited and the relay 1 comes into its OFF position.

In anderer Betrachtungsweise könnte man auch sagen, dass in der EIN-Stellung des Relais im Verbindungspunkt 13 der beiden Schalttransistoren 6 und 7 ein Wechselstrom erzeugt wird, welcher über den Kondensator 3 entkoppelt, über den durch die Dioden 9 - 12 gebildeten Brückengleichrichter gleichgerichtet und dem Relais 1 zugeführt wird. In der AUS-Stellung des Relais 1 liegt am Verbindungspunkt 13 hingegen eine Gleichspannung und der Kondensator 3 verhindert, dass ein Strom durch das Relais 1 fliessen kann.In another perspective, one could also say that in the ON position of the relay in the connection point 13 of the two switching transistors 6 and 7, an alternating current is generated, which decoupled via the capacitor 3, rectified by the diodes 9 - 12 formed bridge rectifier and the Relay 1 is supplied. In the OFF position of the relay 1 is located at the connection point 13, however, a DC voltage and the capacitor 3 prevents a current through the relay 1 can flow.

Die Fig. 4 zeigt eine Schaltung, die auf der in der Fig. 3 dargestellten Schaltung basiert und bei der ein weiteres Relais 14 in einer Art Kaskade angeordnet ist. Dem Relais 14 sind ein Kondensator 15, ein Schalttransistor 16 und Dioden 17 - 19 zugeordnet. Die Schaltung wird von einem Mikrocontroller 20 gesteuert. Das Schaltungsteil 8 weist zwei Transistoren 21 und 22 und diverse Widerstände, einen Steuereingang 23, zwei Ausgänge zum Ansteuern der Schalttransistoren 6, 7 und einen weiteren Ausgang auf, der über die Diode 19 mit dem Relais 14 verbunden ist. Die Verdrahtung ist der Fig. 4 zu entnehmen.Fig. 4 shows a circuit based on the circuit shown in Fig. 3 and in which a further relay 14 is arranged in a kind of cascade. The relay 14, a capacitor 15, a switching transistor 16 and diodes 17 - 19 assigned. The circuit is controlled by a microcontroller 20. The circuit part 8 has two transistors 21 and 22 and various resistors, a control input 23, two outputs for driving the switching transistors 6, 7 and a further output, which is connected via the diode 19 to the relay 14. The wiring is shown in FIG. 4.

Der Mikrocontroller 20 steuert das Relais 1 über einen mit dem Steuereingang 23 des Schaltungsteils 8 verbundenen Ausgang 24 dynamisch an: Solange der Mikrocontroller 20 am Ausgang 24 ein negatives, statisches Potential führt, das kleiner als das Potential des Minuspols der Spannungsquelle 2 ist, sperrt der Schalttransistor 7 und das Relais 1 befindet sich in seiner AUS-Stellung. Sobald der Mikrocontroller 20 am Ausgang 24 ein Rechtecksignal mit den beiden Spannungsniveaus von 0V/-5V und der richtigen Taktfrequenz führt, leiten abwechslungsweise die Transistoren 7, 21, 22 oder 6 und und das Relais 1 schaltet in die EIN-Stellung.The microcontroller 20 controls the relay 1 via a connected to the control input 23 of the circuit part 8 output 24 dynamically: As long as the microcontroller 20 at the output 24 a negative, static potential leads, which is smaller than the potential of the negative pole of the voltage source 2, the locks Switching transistor 7 and the relay 1 is in its OFF position. Once the microcontroller 20 at the output 24, a square wave signal with the two voltage levels of 0V / -5V and the right one Clock frequency leads, alternately conduct the transistors 7, 21, 22 or 6 and and the relay 1 switches to the ON position.

Über einen Ausgang 25 steuert der Mikrocontroller 20 das Relais 14 statisch an. Liegt am Ausgang 25 des Mikrocontrollers 20 eine negative Spannung von -5V, dann sperrt der Transistor 16 und das Relais 14 bleibt in der AUS-Stellung. Führt der Mikrocontroller 20 am Ausgang 25 das Potential der Masse von 0V, dann leitet der Transistor 16 immer dann, wenn auch der Schalttransistor 6 leitet und das Relais 14 gelangt in die EIN-Stellung.Via an output 25, the microcontroller 20 controls the relay 14 statically. If a negative voltage of -5 V is present at the output 25 of the microcontroller 20, then the transistor 16 is turned off and the relay 14 remains in the OFF position. Leads the microcontroller 20 at the output 25, the potential of the ground of 0V, then conducts the transistor 16 whenever, even if the switching transistor 6 conducts and the relay 14 enters the ON position.

Die Schaltung weist die Besonderheit auf, dass das Relais 14 erst dann in seine EIN-Stellung schaltbar ist, wenn das Relais 1 in seiner EIN-Stellung ist. Sobald also ein Bauteilfehler dazu führt, dass das Relais 1 in seine AUS-Stellung fällt, schaltet auch das Relais 14 in die AUS-Stellung.The circuit has the peculiarity that the relay 14 is switched into its ON position only when the relay 1 is in its ON position. So as soon as a component error causes the relay 1 falls into its OFF position, the relay 14 also switches to the OFF position.

Die Möglichkeit der Kaskadierung des Relais 14 und ev. weiterer Relais bietet den Vorteil, dass das Schaltungsteil 8 für diese zusätzlichen Relais mitverwendet wird, so dass der Energieverbrauch für die Ansteuerung der Relais sehr klein gehalten werden kann. Wegen der stromsparenden Ansteuerung der ' Relais 1 kann als Spannungsquelle 2 insbesondere ein einfaches Netzteil verwendet werden.The possibility of cascading the relay 14 and ev. Further relay has the advantage that the circuit part 8 is also used for these additional relay, so that the power consumption for the control of the relay can be kept very small. Because of the power-saving control of the 'relay 1 can be used as a voltage source 2 in particular a simple power supply.

Solche Schaltungen eignen sich zur Verwendung in Feuerungsautomaten, wo im ordnungsgemässen Betrieb wenigstens zwei Sicherheitsrelais in Reihe geschaltet sind.Such circuits are suitable for use in automatic furnaces where, in normal operation, at least two safety relays are connected in series.

Der Energieverbrauch beim Betrieb des Relais könnte auch dadurch minimiert werden, dass zum Einschalten des Relais in Reihe zur Spannungsquelle kurzzeitig eine zweite Spannungsquelle zugeschaltet wird. Dann fliesst beim Einschalten bei verdoppelter Spannung ein doppelt so grosser Strom, d.h. die vierfache Leistung.The energy consumption during operation of the relay could also be minimized by switching on the relay in series with the voltage source for a short time a second voltage source is switched on. Then twice as high a current flows when switched on at doubled voltage, i. four times the power.

Claims (3)

  1. Circuit for operating a relay (1;14) having an OFF position and an ON position, with the relay (1:14) adopting the OFF position in the case of a component error of any element of the circuit, characterised in that a capacitor (3; 15) and two diodes (4, 5) or a bridge rectifier (8,9,10,11) composed of four diodes are assigned to the relay and that means (4,5,8;9,10,11,12,8) are available, which, in the ON position of the relay, connect the assigned capacitor (3;15), the relay (1;14) and a voltage source (2) in a predetermined clock such that in a first time interval of the clock, the voltage source (2) supplies a current, which flows through the relay (1; 14) and which partially charges the assigned capacitor (3;15) and that in a second time interval of the clock, the assigned capacitor (3;15) supplies the current, which flows through the relay (1;14), with the assigned capacitor (3;15) again partially discharging itself, with the power requirement to retain the relay in the ON position being reduced as a result of the clocked charging and discharging of the capacitor.
  2. Circuit according to claim 1, characterised in that a second relay (1; 14) is available, and that the second relay (14) can only then adopt the ON position if the first relay (1) is disposed in the ON position.
  3. Circuit according to claim 1 or 2, characterised in that the voltage source (2) is provided with a buffer, in particular a capacitor, so that it is able to supply a current over the short term, which is sufficient to switch the relay (1; 14) from its OFF position into its ON position.
EP97111431A 1997-03-13 1997-07-07 Circuit arrangement for energy saving operation of a relay Expired - Lifetime EP0865059B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/030,968 US6061226A (en) 1997-03-13 1998-02-26 Relay circuit with cyclical controlled capacitor
JP10058735A JPH10261354A (en) 1997-03-13 1998-03-11 Relay drive circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH60597 1997-03-13
CH605/97 1997-03-13

Publications (2)

Publication Number Publication Date
EP0865059A1 EP0865059A1 (en) 1998-09-16
EP0865059B1 true EP0865059B1 (en) 2007-09-05

Family

ID=4190867

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97111431A Expired - Lifetime EP0865059B1 (en) 1997-03-13 1997-07-07 Circuit arrangement for energy saving operation of a relay

Country Status (2)

Country Link
EP (1) EP0865059B1 (en)
DE (1) DE59712882D1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4565100A (en) * 1999-03-31 2000-10-16 Leopold Kostal Gmbh & Co. Kg Circuit for the pulse width-modulated control of an electrical consumer
CN102411314A (en) * 2011-06-21 2012-04-11 兰如根 Energy-saving controller
CN102904559A (en) * 2012-10-12 2013-01-30 兰如根 Energy-saving switch

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1047524A (en) * 1962-05-17 1966-11-09 Ass Elect Ind Improvements in circuits for energising current or voltage responsive devices
US3896346A (en) * 1972-11-21 1975-07-22 Electronic Camshaft Corp High speed electromagnet control circuit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP0865059A1 (en) 1998-09-16
DE59712882D1 (en) 2007-10-18

Similar Documents

Publication Publication Date Title
DE68913277T2 (en) Protection for power converters against voltage peaks.
DE10213254A1 (en) Load operating system and method therefor
DE19622803B4 (en) Circuit arrangement for high-pressure discharge lamp
EP0342693B1 (en) DC power supply system with a plurality of DC sources
EP1031903A2 (en) Circuit configuration supplying an energizing current
EP1299933B1 (en) Electronic circuit for an energy supply device, especially for a charging device for batteries
DE4403375A1 (en) Device and method for controlling an inductive load
EP0865059B1 (en) Circuit arrangement for energy saving operation of a relay
EP1046207A1 (en) Polarity reversal protection circuit for a final electronic power stage
DE10356089A1 (en) Circuit arrangement and method for controlling an inductive load
DE19736894A1 (en) Integrated driver circuit
DE102004007182B4 (en) Charge pump circuit
DE19946025A1 (en) Arrangement for electrical supply of drive circuit for clocked switching supply has charging circuit that connects capacitor to earth if supply blocked, charges capacitor if supply working
EP0798840B1 (en) Battery power supply
EP0696849A2 (en) Control apparatus with a circuit arrangement for its protection when the earth connection is interrupted
DE69020100T2 (en) Supply circuit for DC voltage regulators with voltage-increasing switching arrangement.
EP1078460A1 (en) Method and device for switching a field effect transistor
DE19701188A1 (en) Soft start circuit for self-oscillating drivers
DE3115682A1 (en) Battery-operated electronic apparatus with the voltage supply being protected for sub-functions
EP0581091B1 (en) Ballast for supplying high pressure discharge lamps in vehicles with a low-frequency square-wave voltage
WO2000024107A1 (en) Reverse polarity protection circuit for power output stage with at least one highside semiconductor switch
DE102004022800A1 (en) MOSFET gate driver circuit
EP0809295B1 (en) Mosfet with temperature protection
DE3532339C2 (en)
WO2020178334A1 (en) Controller for actuating a load and method for operating such a controller

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;RO;SI

17P Request for examination filed

Effective date: 19990316

AKX Designation fees paid

Free format text: CH DE FR GB IT LI NL

RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB IT LI NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS BUILDING TECHNOLOGIES AG

17Q First examination report despatched

Effective date: 20030811

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS SCHWEIZ AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59712882

Country of ref document: DE

Date of ref document: 20071018

Kind code of ref document: P

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070905

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070905

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080502

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140919

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59712882

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160202