EP0864811B1 - High performance pressure waves generator - Google Patents

High performance pressure waves generator Download PDF

Info

Publication number
EP0864811B1
EP0864811B1 EP98101586A EP98101586A EP0864811B1 EP 0864811 B1 EP0864811 B1 EP 0864811B1 EP 98101586 A EP98101586 A EP 98101586A EP 98101586 A EP98101586 A EP 98101586A EP 0864811 B1 EP0864811 B1 EP 0864811B1
Authority
EP
European Patent Office
Prior art keywords
pressure wave
wave source
source according
membrane
intensity pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98101586A
Other languages
German (de)
French (fr)
Other versions
EP0864811A2 (en
EP0864811A3 (en
Inventor
Harald Dipl.-Phys. Eizenhöfer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dornier Medtech Systems GmbH
Original Assignee
Dornier Medizintechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dornier Medizintechnik GmbH filed Critical Dornier Medizintechnik GmbH
Publication of EP0864811A2 publication Critical patent/EP0864811A2/en
Publication of EP0864811A3 publication Critical patent/EP0864811A3/en
Application granted granted Critical
Publication of EP0864811B1 publication Critical patent/EP0864811B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C15/00Apparatus in which combustion takes place in pulses influenced by acoustic resonance in a gas mass

Definitions

  • the invention relates to a high-performance pressure wave source for generation individual high-energy pressure waves that can be repeated at short intervals each by igniting a defined volume of a combustible Fluid mixture, according to the preamble of claim 1.
  • Relatively low power pressure and shock wave sources (around 10 to 100 mJ) are known in particular from medical technology, e.g. in the form of lithotripters.
  • Current versions usually work according to the electromagnetic Principle, whereby plane, focusable by means of a coil / membrane unit Pressure waves are generated.
  • a shock wave generator with a cross section expanded combustion chamber for generating detonation waves known from FR-A-1 378 962.
  • DE-OS 39 21 808 describes a device for focused shock wave treatment known from tumors, with different ways of generating shock waves, e.g. using an explosive gas mixture (see claim 10). However, there are no indications for the constructive realization of this Given principles.
  • Ignition also makes pressure waves flammable in reciprocating engines Fluid mixtures are generated, the ignition process being arbitrary in short time intervals is often repeatable.
  • the fluid mixture at least the air fraction, is highly compressed (factor> 10), the combustion is caused by electrical spark ignition or injecting the fuel. It is generally a "soft", not too fast combustion aimed for, as detonation-like Burning processes the engine components (pistons, connecting rods, bearings, etc.) mechanically would overload.
  • a transfer of this compression principle to others Pressure wave sources would be structurally and energetically relatively complex, i.e. little economical.
  • the object of the invention On the basis of the principle of Acceleration of combustion up to detonation is the object of the invention in being a high power pressure wave source with short pulse duration and good repetition rate, which is relatively simple, handy, robust and is inexpensive and which works safely, reliably and economically.
  • the pressure wave source comprises a combustion chamber in the form of a channel defined length with a cross-sectionally enlarged end.
  • the face The end of the wide channel end forms an acoustic transmission element Acting membrane, with a discharge device in the area is available for the exhaust gas.
  • the narrow end of the channel is used for feeding the mixture components and the ignition.
  • vortex generators are provided, which the burning process accelerate to detonation.
  • the geometric / volumetric Ratios is achieved that the majority of the mixture in the Area of the membrane is located, there burns off like an explosion and thus the Pressure wave generation causes.
  • any acoustically conductive medium e.g. solid, liquid, gel-like, rubber-like
  • Subclaims 2 to 9 contain preferred configurations of the high-performance pressure wave source according to the main claim.
  • the high-performance pressure wave source 1 - hereinafter simply referred to as pressure wave source 1 - consists largely of a tube 2 with a round cross-section which varies over the length and which forms both a load-bearing housing and a flow channel / combustion chamber 3.
  • the flow is from left to right, ie from the narrow to the trumpet-like widened tube end.
  • the narrow tube end is provided with a feed device 4 for the components of a combustible fluid mixture, here air and hydrogen (H 2 ), the feed being able to take place continuously or intermittently during operation.
  • the illustrated coaxial inflow of the components in the longitudinal direction of the pipe appears advantageous, but it is only one of many conceivable inflow variants.
  • the fluid mixture consists of at least one fuel and one oxidizer, and the combustion behavior can be influenced via the mixing ratio, ie the deviation from the stoichiometric ratio. With a view to complete combustion, the attitude should tend to the "lean" side. Mixtures with more than two components are also conceivable, for example in order to influence the combustion behavior, the exhaust gas composition or the thermal load.
  • the ignition device 5 works intermittently, with a high repetition rate (1 Hz or more) is aimed for. The most appropriate appears here electric spark ignition. Fast glow ignition may also be sufficient the requirements.
  • the required acceleration of the erosion is achieved by means of several vortex generators 6 to 9, ie an increasingly turbulent flow character. This means that the burn-up speed can be increased to values well above 1000 m / s with short, high pressure peaks (detonation).
  • the vortex generators 6 to 9 are designed, for example, as perforated screens with “tooth gaps” up to the tube wall. This can best be seen in the vortex generator 9, the central opening 10 of which is locally expanded in the form of a plurality of recesses 11 up to the tube wall. The smallest and the largest diameter of the vortex generator 9 are additionally indicated by dash-dotted lines.
  • the cross-sectional and thus the volume distribution within the combustion chamber 3 is selected so that a large proportion of the fluid mixture detonates burns, i.e. behind the "flame acceleration zone" located.
  • the trumpet-like shape shown with continuous cross-sectional expansion may be advantageous e.g. regarding the pressure wave propagation.
  • other wall contours are also conceivable, e.g. with kinks and step-like diameter jumps. It can be enough be, two cylindrical pieces of pipe with very different diameters to connect via a perforated screen-like wall (jump in diameter). Tapered or multi-step transitions can also be used.
  • combustion chamber cross sections do not have to be round either. square, rectangular or other geometries with and without corners are conceivable.
  • the "pressure wave trumpet” shown could be achieved by using square instead of round cross sections while maintaining the steady, exponential Cross-sectional expansion to a "pressure wave horn” modified become.
  • a large part of the volume of the combustion chamber burns off like a detonation, and that this volume part in Area of the membrane delimiting the combustion chamber at the end.
  • the ignition process and the flame acceleration process should be restrict to a volumetrically small part of the combustion chamber. It is the case that the combustion chamber is full before each ignition process Length filled with flammable fluid mixture, i.e. is rinsed.
  • a discharge device 12 is provided, here in the form of several, via the Scope of distributed outflow slots 13.
  • the outflow process should be as possible cause no lateral reaction forces on the pressure wave source 1.
  • the outflow slots 13 can also flaps, valves or other outflow organs be used.
  • the combustion chamber 3 membrane 14 that closes at the end has both separating as well as a transferring function. On the one hand, it protects adjacent ones Substances before the immediate effects of the combustion process (Heat, combustion products etc.), on the other hand it forms a lossy, acoustic transmission element for the generated shock waves.
  • the substance to be processed is either in physical contact with the membrane 14 Contact, or at least one other transmission medium, e.g. Gel, water or rubber, inserted between membrane and substance. The the latter, indirect contact is particularly given when the pressure waves generated are focused after the membrane.
  • a focusing device 15 in is shown in dash-dot lines Form of an acoustic lens indicated. Clarity was on the details for the sake of doing without.
  • the focusing device 15 or further focusing devices can only be detached with the Pressure wave source 1 connected, which corresponding connection options having.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

Die Erfindung betrifft eine Hochleistungs-Druckwellenquelle zur Erzeugung einzelner hochenergetischer, in kurzen Zeitabständen wiederholbarer Druckwellen jeweils durch Zündung eines definierten Volumens eines brennbaren Fluidgemisches, gemäß dem Oberbegriff des Patentanspruches 1.The invention relates to a high-performance pressure wave source for generation individual high-energy pressure waves that can be repeated at short intervals each by igniting a defined volume of a combustible Fluid mixture, according to the preamble of claim 1.

Druck- und Stoßwellenquellen mit relativ niedriger Leistung (etwa 10 bis 100 mJ) sind insbesondere aus der Medizintechnik bekannt, z.B. in Form von Lithotriptern. Aktuelle Versionen arbeiten in der Regel nach dem elektromagnetischen Prinzip, wobei mittels einer Spule-/Membran-Einheit ebene, fokussierbare Druckwellen erzeugt werden.Relatively low power pressure and shock wave sources (around 10 to 100 mJ) are known in particular from medical technology, e.g. in the form of lithotripters. Current versions usually work according to the electromagnetic Principle, whereby plane, focusable by means of a coil / membrane unit Pressure waves are generated.

Für nichtmedizinische, insbesondere industrielle Anwendungen besteht ein Bedarf nach einer wesentlich höheren Druckwellenenergie (etwa 50- bis 100-fach größer). Eine einfache Vergrößerung/Skalierung der bekannten elektromagnetischen Stoßwellenquellen ist wegen ihres schlechten Wirkungsgrades nicht sinnvoll.There is a need for non-medical, especially industrial applications after a significantly higher pressure wave energy (about 50 to 100 times greater). A simple enlargement / scaling of the known electromagnetic Shock wave sources are not because of their poor efficiency meaningful.

Ein Stoßwellengenerator mit einer sich im Querschnitt erweiterten Brennkammer zur Erzeugung von Detonationswellen ist aus FR-A-1 378 962 bekannt.A shock wave generator with a cross section expanded combustion chamber for generating detonation waves known from FR-A-1 378 962.

Aus der DE-OS 39 21 808 ist eine Vorrichtung zur fokussierten Stoßwellenbehandlung von Tumoren bekannt, mit verschiedenen Möglichkeiten zur Stoßwellenerzeugung, z.B. mittels eines explosiven Gasgemisches (siehe Anspruch 10). Es werden aber keine Hinweise zur konstruktiven Verwirklichung dieses Prinzips gegeben.DE-OS 39 21 808 describes a device for focused shock wave treatment known from tumors, with different ways of generating shock waves, e.g. using an explosive gas mixture (see claim 10). However, there are no indications for the constructive realization of this Given principles.

Auch bei Hubkolbenmotoren werden Druckwellen durch Zünden brennbarer Fluidgemische erzeugt, wobei der Zündvorgang in kurzen Zeitabständen beliebig oft wiederholbar ist. Das Fluidgemisch, zumindest der Luftanteil, wird stark verdichtet (Faktor > 10), die Verbrennung wird durch elektrische Funkenzündung oder Einspritzen des Brennstoffes eingeleitet. Dabei wird generell eine "weiche", nicht zu schnelle Verbrennung angestrebt, da detonationsartige Brennvorgänge die Motorbauteile (Kolben, Pleuel, Lager etc.) mechanisch überlasten würden. Eine Übertragung dieses Verdichtungsprinzips auf andere Druckwellenquellen wäre konstruktiv und energetisch relativ aufwendig, d.h. wenig wirtschaftlich.Ignition also makes pressure waves flammable in reciprocating engines Fluid mixtures are generated, the ignition process being arbitrary in short time intervals is often repeatable. The fluid mixture, at least the air fraction, is highly compressed (factor> 10), the combustion is caused by electrical spark ignition or injecting the fuel. It is generally a "soft", not too fast combustion aimed for, as detonation-like Burning processes the engine components (pistons, connecting rods, bearings, etc.) mechanically would overload. A transfer of this compression principle to others Pressure wave sources would be structurally and energetically relatively complex, i.e. little economical.

Es ist bekannt, Wasserstoff-Luft-Gemische bei atmospärischem Druck zu zünden und die zunächst langsame, laminare Verbrennung (Deflagration) mit geringer Druckerhöhung durch strömungstechnische Maßnahmen (Wirbelerzeuger/Strömungshindemisse) über eine schnelle turbulente Verbrennung bis hin zur Detonation mit hohen Druckspitzen zu beschleunigen. Dieses Prinzip wird versuchstechnisch genutzt, um die möglicherweise bei Kernkraftwerksunfällen (Kernschmelzen, Wasserstofffreisetzung) auftretenden Verhältnisse und Belastungen im Reaktorgebäude zu simulieren. Siehe hierzu die Zeitschrift "NACHRICHTEN"-Forschungszentrum Karlsruhe Jahrgang 28 2-3/96 Seiten 175 bis 191. Zu diesem Zweck wurden große rohrförmige bzw. kanalartige Verbrennungskammern mit 12 m und 70 m Länge und mit variablen, strömungstechnisch wirksamen Einbauten/Geometrien errichtet, wobei die kleinere Anlage (FZK) in Deutschland, die größere (RUT) in Rußland steht.It is known to ignite hydrogen-air mixtures at atmospheric pressure and the initially slow, laminar combustion (deflagration) with less Pressure increase through fluidic measures (vortex generator / flow obstacle) through rapid turbulent combustion up to accelerate towards detonation with high pressure peaks. This principle is used for experimental purposes in order to avoid possible accidents at nuclear power plants (Meltdown, hydrogen release) occurring conditions and Simulate loads in the reactor building. See the magazine "NEWS" Research Center Karlsruhe Year 28 2-3 / 96 pages 175 to 191. For this purpose, large tubular or channel-like Combustion chambers with a length of 12 m and 70 m and with variable, fluidic effective internals / geometries, the smaller Plant (FZK) in Germany, the larger (RUT) in Russia.

Ausgehend von dem dort in großen Dimensionen verwirklichten Prinzip der Verbrennungsbeschleunigung bis zur Detonation besteht die Aufgabe der Erfindung darin, eine Hochleistungs-Druckwellenquelle mit kurzer Pulsdauer und guter Wiederholrate zu schaffen, welche relativ einfach, handlich, robust und preiswert ist und welche sicher, zuverlässig und wirtschaftlich arbeitet.On the basis of the principle of Acceleration of combustion up to detonation is the object of the invention in being a high power pressure wave source with short pulse duration and good repetition rate, which is relatively simple, handy, robust and is inexpensive and which works safely, reliably and economically.

Diese Aufgabe wird durch die im Anspruch 1 gekennzeichneten Merkmale gelöst, in Verbindung mit den gattungsbildenden Merkmalen in dessen Oberbegriff. This object is characterized by the features in claim 1 solved, in connection with the generic features in its generic term.

Die Druckwellenquelle umfaßt eine Verbrennungskammer in Form eines Kanales definierter Länge mit einem querschnittsmäßig erweiterten Ende. Den Stirnseitigen Abschluß des weiten Kanalendes bildet eine als akustisches Übertragungselement fungierende Membran, wobei in deren Bereich eine Abführeinrichtung für das Abgas vorhanden ist. Das enge Kanalende dient der Zufuhr der Gemischkomponenten sowie der Zündung. Zwischen dem engen und dem weiten Kanalende sind Wirbelerzeuger vorgesehen, welche den Abbrandvorgang bis zur Detonation beschleunigen. Durch die geometrischen/volumetrischen Verhältnisse wird erreicht, daß der Großteil des Gemisches sich im Bereich der Membran befindet, dort detonationsartig abbrennt und somit die Druckwellenerzeugung bewirkt. Mit der Membran kann im Einsatzfall ein beliebiges, akustisch leitendes Medium (z.B. fest, flüssig, gelartig, gummiartig) in Kontakt stehen. Es können sich auch Elemente zur Fokussierung der von der Membran ausgehenden Druckwellen anschließen.The pressure wave source comprises a combustion chamber in the form of a channel defined length with a cross-sectionally enlarged end. The face The end of the wide channel end forms an acoustic transmission element Acting membrane, with a discharge device in the area is available for the exhaust gas. The narrow end of the channel is used for feeding the mixture components and the ignition. Between the narrow and the Wide channel end vortex generators are provided, which the burning process accelerate to detonation. Through the geometric / volumetric Ratios is achieved that the majority of the mixture in the Area of the membrane is located, there burns off like an explosion and thus the Pressure wave generation causes. With the membrane, any acoustically conductive medium (e.g. solid, liquid, gel-like, rubber-like) in Are in contact. There may also be elements to focus the of the Connect diaphragm outgoing pressure waves.

Die Unteransprüche 2 bis 9 beinhalten bevorzugte Ausgestaltungen der Hochleistungs-Druckwellenquelle nach dem Hauptanspruch.Subclaims 2 to 9 contain preferred configurations of the high-performance pressure wave source according to the main claim.

Die Erfindung wird anschließend anhand der Zeichnung noch näher erläutert.The invention will be explained in more detail with reference to the drawing.

Diese zeigt in stark vereinfachter, perspektivischer Darstellung - mit Blickrichtung von rechts nach links im spitzen Winkel auf die Zeichenebene - einen Längsmittelschnitt durch eine Hochleistungs-Druckwellenquelle.This shows in a very simplified perspective view - with a view from right to left at an acute angle to the drawing plane - one Longitudinal center section through a high-performance pressure wave source.

Die Hochleistungs-Druckwellenquelle 1 - im folgenden vereinfacht nur Druckwellenquelle 1 genannt - besteht großteils aus einem Rohr 2 mit über die Länge variierendem, rundem Querschnitt, welches sowohl ein tragendes Gehäuse als auch einen Strömungskanal/eine Verbrennungskammer 3 bildet. Die Durchströmung erfolgt von links nach rechts, d.h. vom engen zum trompetenartig erweiterten Rohrende. Das enge Rohrende ist mit einer Zuführeinrichtung 4 für die Komponenten eines brennbaren Fluidgemisches, hier Luft und Wasserstoff (H2), versehen, wobei die Zufuhr im Betrieb kontinuierlich oder intermittierend erfolgen kann. Die dargestellte, koaxiale Zuströmung der Komponenten in Rohrlängsrichtung erscheint vorteilhaft, sie ist aber nur eine von vielen denkbaren Zuströmvarianten. Wichtig ist in jedem Fall, daß schnell und auf kurzem Weg ein möglichst homogenes Fluidgemisch erzeugt wird. Das Fluidgemisch besteht mindestens aus einem Brennstoff und einem Oxidator, wobei das Abbrandverhalten über das Mischungsverhältnis, d.h. die Abweichung vom stöchiometrischen Verhältnis, beeinflußbar ist. Im Hinblick auf eine vollständige Verbrennung sollte die Einstellung zur "mageren" Seite hin tendieren. Gemische mit mehr als zwei Komponenten sind ebenfalls denkbar, beispielsweise um das Abbrandverhalten, die Abgaszusammensetzung oder die thermische Belastung zu beeinflussen.The high-performance pressure wave source 1 - hereinafter simply referred to as pressure wave source 1 - consists largely of a tube 2 with a round cross-section which varies over the length and which forms both a load-bearing housing and a flow channel / combustion chamber 3. The flow is from left to right, ie from the narrow to the trumpet-like widened tube end. The narrow tube end is provided with a feed device 4 for the components of a combustible fluid mixture, here air and hydrogen (H 2 ), the feed being able to take place continuously or intermittently during operation. The illustrated coaxial inflow of the components in the longitudinal direction of the pipe appears advantageous, but it is only one of many conceivable inflow variants. In any case, it is important that a fluid mixture that is as homogeneous as possible is generated quickly and in a short way. The fluid mixture consists of at least one fuel and one oxidizer, and the combustion behavior can be influenced via the mixing ratio, ie the deviation from the stoichiometric ratio. With a view to complete combustion, the attitude should tend to the "lean" side. Mixtures with more than two components are also conceivable, for example in order to influence the combustion behavior, the exhaust gas composition or the thermal load.

Die Zündeinrichtung 5 arbeitet intermittierend, wobei eine hohe Wiederholrate (1 Hz oder mehr) angestrebt wird. Am zweckmäßigsten erscheint hier eine elektrische Funkenzündung. Möglicherweise genügt auch eine schnelle Glühzündung den Anforderungen.The ignition device 5 works intermittently, with a high repetition rate (1 Hz or more) is aimed for. The most appropriate appears here electric spark ignition. Fast glow ignition may also be sufficient the requirements.

Mit mäßiger, d.h. wirtschaftlicher Zündenergie läßt sich zunächst nur eine sehr niedrige Abbrandgeschwindigkeit von beispielsweise 0,15 m/s erzeugen, welche noch keine nutzbaren Druckwellen hervorrufen kann. Die erforderliche Beschleunigung des Abbrandes wird mittels mehrerer Wirbelerzeuger 6 bis 9, d.h. einen zunehmend turbulenten Strömungscharakter, erreicht. Damit läßt sich die Abbrandgeschwindigkeit auf Werte weit über 1000 m/s mit kurzen, hohen Druckspitzen (Detonation) steigern. Im vorliegenden Fall sind die Wirbelerzeuger 6 bis 9 beispielsweise als Lochblenden mit "Zahnlücken" bis zur Rohrwand ausgeführt. Am besten ist dies beim Wirbelerzeuger 9 zu erkennen, dessen zentrische Öffnung 10 örtlich in Form mehrerer Aussparungen 11 bis zur Rohrwand erweitert ist. Der kleinste und der größte Durchmesser des Wirbelerzeugers 9 sind zusätzlich strichpunktiert angedeutet. With moderate, ie economical, ignition energy, only a very low burn-up speed of, for example, 0.15 m / s can initially be generated, which cannot yet produce usable pressure waves. The required acceleration of the erosion is achieved by means of several vortex generators 6 to 9, ie an increasingly turbulent flow character. This means that the burn-up speed can be increased to values well above 1000 m / s with short, high pressure peaks (detonation). In the present case, the vortex generators 6 to 9 are designed, for example, as perforated screens with “tooth gaps” up to the tube wall. This can best be seen in the vortex generator 9, the central opening 10 of which is locally expanded in the form of a plurality of recesses 11 up to the tube wall. The smallest and the largest diameter of the vortex generator 9 are additionally indicated by dash-dotted lines.

Die optimale Anzahl und Geometrie der Wirbelerzeuger ist voraussichtlich experimentell zu ermitteln. Nach Passieren des letzten Wirbelerzeugers sollte die Verbrennung jedenfalls Detonationscharakter haben.The optimal number and geometry of the vortex generators is likely to be experimental to investigate. After passing the last vortex generator, the In any case, combustion has the character of a detonation.

Die Querschnitts- und damit die Volumenverteilung innerhalb der Verbrennungskammer 3 ist so gewählt, daß ein großer Anteil des Fluidgemisches detonationsartig verbrennt, d.h. sich hinterhalb der "Flammenbeschleunigungszone" befindet.The cross-sectional and thus the volume distribution within the combustion chamber 3 is selected so that a large proportion of the fluid mixture detonates burns, i.e. behind the "flame acceleration zone" located.

Die dargestellte, trompetenartige Form mit stetiger Querschnittserweiterung, z.B. gemäß einer Exponentialfunktion, kann vorteilhaft sein, z.B. hinsichtlich der Druckwellenausbreitung. Es sind aber auch andere Wandkonturen vorstellbar, z.B. mit Knicken und stufenartigen Durchmessersprüngen. Es kann ausreichend sein, zwei zylindrische Rohrstücke mit stark unterschiedlichem Durchmesser über eine lochblendenartige Wand (Durchmessersprung) zu verbinden. Auch kegelige oder mehrfach gestufte Übergänge können anwendbar sein.The trumpet-like shape shown with continuous cross-sectional expansion, e.g. according to an exponential function, may be advantageous e.g. regarding the pressure wave propagation. However, other wall contours are also conceivable, e.g. with kinks and step-like diameter jumps. It can be enough be, two cylindrical pieces of pipe with very different diameters to connect via a perforated screen-like wall (jump in diameter). Tapered or multi-step transitions can also be used.

Die Verbrennungskammerquerschnitte müssen auch nicht rund sein. Quadratische, rechteckige oder andere Geometrien mit und ohne Ecken sind vorstellbar.The combustion chamber cross sections do not have to be round either. square, rectangular or other geometries with and without corners are conceivable.

Die dargestellte "Druckwellentrompete" könnte durch die Verwendung von quadratischen statt runden Querschnitten unter Beibehaltung der stetigen, exponentiellen Querschnittserweiterung zu einem "Druckwellenhorn" modifiziert werden. Letztlich ist wichtig, daß ein großer Teil des Volumens der Verbrennungskammer detonationsartig abbrennt, und daß dieser Volumensteil sich im Bereich der die Verbrennungskammer stimseitig begrenzenden Membran befindet. Der Zündvorgang und der Flammenbeschleunigungsvorgang sollen sich auf einen volumetrisch kleinen Teil der Verbrennungskammer beschränken. Dabei ist es so, daß vor jedem Zündvorgang die Verbrennungskammer in voller Länge mit brennbarem Fluidgemisch gefüllt, d.h. gespült wird. The "pressure wave trumpet" shown could be achieved by using square instead of round cross sections while maintaining the steady, exponential Cross-sectional expansion to a "pressure wave horn" modified become. Ultimately it is important that a large part of the volume of the combustion chamber burns off like a detonation, and that this volume part in Area of the membrane delimiting the combustion chamber at the end. The ignition process and the flame acceleration process should be restrict to a volumetrically small part of the combustion chamber. It is the case that the combustion chamber is full before each ignition process Length filled with flammable fluid mixture, i.e. is rinsed.

Für die bei der Verbrennung entstehenden Abgase ist im Bereich der Membran 14 eine Abführeinrichtung 12 vorgesehen, hier in Form mehrerer, über den Umfang verteilter Abströmschlitze 13. Der Abströmvorgang sollte möglichst keine seitlichen Reaktionskräfte auf die Druckwellenquelle 1 hervorrufen. Anstelle der Abströmschlitze 13 können auch Klappen, Ventile oder andere Ausströmorgane verwendet werden.For the exhaust gases generated during combustion is in the area of the membrane 14, a discharge device 12 is provided, here in the form of several, via the Scope of distributed outflow slots 13. The outflow process should be as possible cause no lateral reaction forces on the pressure wave source 1. Instead of the outflow slots 13 can also flaps, valves or other outflow organs be used.

Falls unverbrannte Restmengen an Brennstoff im Abgas enthalten sind, kann eine gezielte Nachverbrennung sinnvoll bzw. erforderlich sein. Die die Verbrennungskammer 3 stirnseitig abschließende Membran 14 hat sowohl eine trennende als auch eine übertragende Funktion. Einerseits schützt sie angrenzende Substanzen vor den unmittelbaren Auswirkungen des Verbrennungsvorganges (Hitze, Verbrennungsprodukte etc.), andererseits bildet sie ein verlustannes, akustisches Übertragungselement für die erzeugten Stoßwellen. Die zu bearbeitende Substanz steht entweder direkt mit der Membran 14 in körperlichem Kontakt, oder es ist mindestens ein weiteres Übertragungsmedium, z.B. Gel, Wasser oder Gummi, zwischen Membran und Substanz eingefügt. Die letztgenannte, indirekte Kontaktierung ist insbesondere dann gegeben, wenn die erzeugten Druckwellen nach der Membran fokussiert werden.If there are unburned residual amounts of fuel in the exhaust gas, targeted afterburning may be useful or necessary. The the combustion chamber 3 membrane 14 that closes at the end has both separating as well as a transferring function. On the one hand, it protects adjacent ones Substances before the immediate effects of the combustion process (Heat, combustion products etc.), on the other hand it forms a lossy, acoustic transmission element for the generated shock waves. The The substance to be processed is either in physical contact with the membrane 14 Contact, or at least one other transmission medium, e.g. Gel, water or rubber, inserted between membrane and substance. The the latter, indirect contact is particularly given when the pressure waves generated are focused after the membrane.

Im vorliegenden Beispiel ist strichpunktiert eine Fokussiereinrichtung 15 in Form einer akustischen Linse angedeutet. Auf Details wurde der Übersichtlichkeit halber verzichtet. Die Fokussiereinrichtung 15 oder weitere Fokussiereinrichtungen weden nur im Bedarsfall, als Anbauelemente, lösbar mit der Druckwellenquelle 1 verbunden, welche entsprechende Anschlußmöglichkeiten aufweist.In the present example, a focusing device 15 in is shown in dash-dot lines Form of an acoustic lens indicated. Clarity was on the details for the sake of doing without. The focusing device 15 or further focusing devices can only be detached with the Pressure wave source 1 connected, which corresponding connection options having.

Hinsichtlich der Anwendungsmöglichkeiten der Erfindung ist zu sagen, daß deren tatsächlicher Umfang jetzt noch nicht absehbar ist. Voraussichtlich können die meisten Substanzen von fest bis gasförmig behandelt werden. Insbesondere ist an Flüssigkeiten mit Feststoffbeimischung, an Stäube, Pulver und Granulate zu denken. Denkbare Wirkungen sind z.B. Homogenisieren, Zerkleinern, Beseitigen von Hohlräumen oder anderen "Fehlstellen", Auflösen von Ablagerungen, Verkrustungen etc. und somit das Reinigen von Oberflächen sowie vieles mehr. With regard to the possible applications of the invention, it can be said that the actual scope of which is not yet foreseeable. Probably can most substances are treated from solid to gaseous. In particular is on liquids with solids admixture, on dust, powder and Thinking granules. Possible effects are e.g. Homogenizing, crushing, Removing voids or other "missing parts", dissolving Deposits, incrustations etc. and thus the cleaning of surfaces and much more.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Hochleistungs-DruckwellenquelleHigh-pressure wave source
22
Rohrpipe
33
Verbrennungskammercombustion chamber
44
Zuführeinrichtungfeeding
55
Zündeinrichtungignition device
66
Wirbelerzeugervortex generators
77
""
88th
""
99
""
1010
Öffnungopening
1111
Aussparungrecess
1212
Abführeinrichtungremoval device
1313
AbströmschlitzAbströmschlitz
1414
Membranmembrane
1515
Fokussiereinrichtungfocusing

Claims (9)

  1. High-intensity pressure wave source for generating individual high-energy pressure waves repeatable at short intervals of time, on each occasion by igniting a defined volume of a combustible fluid mixture and by increasing its rate of burning up to detonation, with a channel of defined length expanded in cross-section towards one of its two ends and forming a combustion chamber (3), a feed device (4) for the components of the fluid mixture and an ignition device (5) in the area of the narrow channel end, a discharge device (12) for the exhaust gas in the area of the wide channel end, characterised by a membrane (14) sealing the wide channel end on the front side and forming an acoustic transmission element, together with a plurality of vortex generators (6 to 9) distributed over the channel length.
  2. High-intensity pressure wave source according to claim 1, characterised by arrangement for operation with lean to stoichiometric hydrogen-air mixture.
  3. High-intensity pressure wave source according to claim 1 or 2, characterised by a construction of the combustion chamber (3) as a pipe (2) expanded continuously towards the membrane (14), e.g. after the manner of a trumpet.
  4. High-intensity pressure wave source according to one or more of claims 1 to 3, characterised by a construction of the ignition device (5) as an electrical spark ignition device.
  5. High-intensity pressure wave source according to one or more of claims 1 to 4, characterised by a discharge device (12) in the form of a plurality of exhaust slits (13) in the area of the membrane edge.
  6. High-intensity pressure wave source according to one or more of claims 1 to 5, characterised by shutter-type vortex generators (6 to 9) with a central opening (10) and with a plurality of tooth gap-type recesses (11) continuing said opening (10) into the area of the channel wall in places.
  7. High-intensity pressure wave source according to claim 3, characterised by a pipe geometry, in which at least in the vicinity of the membrane (14) the pipe inner diameter increases exponentially in relation to the pipe longitudinal coordinate.
  8. High-intensity pressure wave source according to one or more of claims 1 to 7, characterised by a pulse length of the individual pressure waves generated of less than 100 microseconds and a repetition rate of at least one cycle per second.
  9. High-intensity pressure wave source according to one or more of claims 1 to 8, characterised by the possibility of adding one or more acoustic focussing devices (15) downstream of the membrane (14).
EP98101586A 1997-03-11 1998-01-30 High performance pressure waves generator Expired - Lifetime EP0864811B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19709918 1997-03-11
DE19709918A DE19709918C2 (en) 1997-03-11 1997-03-11 High performance pressure wave source

Publications (3)

Publication Number Publication Date
EP0864811A2 EP0864811A2 (en) 1998-09-16
EP0864811A3 EP0864811A3 (en) 1999-07-14
EP0864811B1 true EP0864811B1 (en) 2003-04-16

Family

ID=7822929

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98101586A Expired - Lifetime EP0864811B1 (en) 1997-03-11 1998-01-30 High performance pressure waves generator

Country Status (3)

Country Link
US (1) US6408614B1 (en)
EP (1) EP0864811B1 (en)
DE (2) DE19709918C2 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6324956B1 (en) * 2000-02-23 2001-12-04 Apti, Inc. Method and apparatus for neutralization of mines and obstacles
US6776256B2 (en) * 2001-04-19 2004-08-17 Schlumberger Technology Corporation Method and apparatus for generating seismic waves
US6662550B2 (en) * 2002-04-25 2003-12-16 Science Applications International Corporation Method and apparatus for improving the efficiency of pulsed detonation engines
DE10234144A1 (en) * 2002-07-26 2004-02-05 Dornier Medtech Gmbh lithotripter
EP1671627B8 (en) 2004-12-15 2010-04-07 Dornier MedTech Systems GmbH Improvement of cell therapy and tissue regeneration in patients with cardiovascular and neurological diseases by means of shockwaves
GB2426578A (en) 2005-05-27 2006-11-29 Thorn Security A flame detector having a pulsing optical test source that simulates the frequency of a flame
DE102005025660B4 (en) 2005-06-03 2015-10-15 Cosma Engineering Europe Ag Apparatus and method for explosion forming
DE102005037043C5 (en) * 2005-08-05 2017-12-14 Dornier Medtech Systems Gmbh Shock wave therapy device with image acquisition
BRPI0710274A2 (en) * 2006-04-17 2011-08-09 Soundblast Technologies Llc system and method for igniting a gaseous or dispersive fuel-oxidant mixture
CN101443680B (en) * 2006-04-17 2013-01-16 声霸技术有限公司 A system and method for ignition of a gaseous or dispersive fuel-oxidant mixture
US7882926B2 (en) * 2006-04-17 2011-02-08 Soundblast Technologies, Llc System and method for generating and directing very loud sounds
US8302730B2 (en) 2006-04-17 2012-11-06 Soundblast Technologies, Llc System and method for generating and controlling conducted acoustic waves for geophysical exploration
US8905186B2 (en) 2006-04-17 2014-12-09 Soundblast Technologies, Llc System for coupling an overpressure wave to a target media
US9116252B2 (en) * 2006-04-17 2015-08-25 Soundblast Technologies Llc System and method for coupling an overpressure wave to a target media
DE102006037742B4 (en) 2006-08-11 2010-12-09 Cosma Engineering Europe Ag Method and apparatus for explosion forming
DE102006037754B3 (en) 2006-08-11 2008-01-24 Cosma Engineering Europe Ag Procedure for the explosion forming, comprises arranging work piece in tools and deforming by means of explosion means, igniting the explosion means in ignition place of the tools using induction element, and cooling the induction element
DE102006056788B4 (en) 2006-12-01 2013-10-10 Cosma Engineering Europe Ag Closing device for explosion forming
DE102006060372A1 (en) 2006-12-20 2008-06-26 Cosma Engineering Europe Ag Workpiece for explosion reformation process, is included into molding tool and is deformed from output arrangement by explosion reformation
DE102007007330A1 (en) 2007-02-14 2008-08-21 Cosma Engineering Europe Ag Method and tool assembly for explosion forming
US7944776B2 (en) * 2007-05-11 2011-05-17 Lockheed Martin Corporation Engine and technique for generating an acoustic signal
DE102007023669B4 (en) 2007-05-22 2010-12-02 Cosma Engineering Europe Ag Ignition device for explosion forming
DE102007036196A1 (en) 2007-08-02 2009-02-05 Cosma Engineering Europe Ag Apparatus for supplying a fluid for explosion forming
DE102008006979A1 (en) 2008-01-31 2009-08-06 Cosma Engineering Europe Ag Device for explosion forming
US9217392B2 (en) 2011-12-12 2015-12-22 Curtis E. Graber Vortex cannon with enhanced ring vortex generation
WO2014123442A1 (en) * 2013-02-06 2014-08-14 Некоммерческое Партнерство По Научной, Образовательной И Инновационной Деятельности "Центр Импульсного Детонационного Горения" High-speed pulse detonation gas burner and method of functioning thereof
RU2015104630A (en) * 2013-02-06 2017-03-14 Некоммерческое партнерство по научной, образовательной и инновационной деятельности "Центр импульсно-детонационного горения" Device for turbulization and flame front acceleration
US9581704B2 (en) 2015-01-22 2017-02-28 Soundblast Technologies, Llc System and method for accelerating a mass using a pressure produced by a detonation
CN105750286B (en) * 2016-03-24 2018-11-09 杭州启明医疗器械有限公司 A kind of hand-held high-frequency vibration washer of embedded type medical instrument
WO2020003307A1 (en) * 2018-06-24 2020-01-02 Pdt Argo Ltd. Shock wave generator devices and systems

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB386908A (en) * 1932-08-16 1933-01-26 Marco Barbera Improvements in impulse and reaction engines
US4189026A (en) * 1954-01-13 1980-02-19 The United States Of America As Represented By The Secretary Of The Navy Underwater generation of low frequency sound
DE1233207B (en) * 1960-06-29 1967-01-26 Klein Hans Christof Device for the periodic generation of highly compressed working gas for thermal engines
US3249177A (en) * 1961-11-13 1966-05-03 Bolt Associates Inc Acoustic wave impulse generator repeater
FR1378962A (en) * 1963-10-02 1964-11-20 Bolkow Entwicklungen Kg Advanced sound generator
US3588801A (en) * 1968-11-07 1971-06-28 Willie B Leonard Impulse generator
GB1332154A (en) * 1970-04-30 1973-10-03 British Petroleum Co Burners having a pulsating mode of operation
CH574734A5 (en) * 1973-10-12 1976-04-30 Dornier System Gmbh
US4642611A (en) * 1983-10-14 1987-02-10 Koerner Andre F Sound engine
DE3704153A1 (en) * 1987-02-11 1988-08-25 Schubert Werner Therapeutic explosion-pressure surge device
DE3921808A1 (en) * 1989-07-03 1991-01-17 Schubert Werner Breaking up internal tumours using shock waves - involves gas bubbles to enhance effect in region of tumour
JPH07276632A (en) * 1994-04-12 1995-10-24 Sharp Corp Ink jet printer
US5430691A (en) * 1994-05-27 1995-07-04 Fridman; Igor Shock wave generator
US5864517A (en) * 1997-03-21 1999-01-26 Adroit Systems, Inc. Pulsed combustion acoustic wave generator

Also Published As

Publication number Publication date
US6408614B1 (en) 2002-06-25
DE59807921D1 (en) 2003-05-22
DE19709918A1 (en) 1998-09-24
EP0864811A2 (en) 1998-09-16
DE19709918C2 (en) 2001-02-01
EP0864811A3 (en) 1999-07-14

Similar Documents

Publication Publication Date Title
EP0864811B1 (en) High performance pressure waves generator
DE60209556T2 (en) DETONATION FLAME BARRIER WITH A SPIRALLY WRAPPED SURFACE GRILLE FOR GASES WITH SMALL BORDER SPLIT
DE10137683C2 (en) Method and device for influencing combustion processes in fuels
DE1085353B (en) Plasma accelerator for plasma generator
EP0250791A1 (en) Spark gap electrode tips with a different geometry
CH627097A5 (en)
EP2953739A1 (en) Method and device for cleaning interiors of tanks and systems
DE3020402A1 (en) METHOD AND DEVICE FOR REMOVING ALKALINE FROM A HOT GAS BY IONIZATION
DE3937215A1 (en) SPARK PLUG WITH HOLLOW, CYLINDRICAL MASS ELECTRODE AND IGNITION PROCESS WHEN USED
DE2436896A1 (en) SPARK PLUG
DE1237843B (en) Generator for hot gases, especially rocket engines, with a solid and a liquid propellant with hypergolic properties
DE2050058B2 (en) Actuator with a detonator
DE4321725A1 (en) Engine for spacecraft (space vehicles)
EP0402471A1 (en) Barrel of an installation for gas-detonation application of coatings
DE2758734A1 (en) METHOD FOR REDUCING THE GENERATION OF POLLUTANTS BY AN INDUSTRIAL ENGINE AND ITS IMPLEMENTATION
DE1916622A1 (en) Method and device for stamping a pipe or the like., In particular for stamping on a fitting
DE3782215T2 (en) ELECTRICAL DISCHARGE SYSTEM IN A LARGE VOLUME GAS.
DE1814561A1 (en) Spark generator for seismic unlocking
DE3937032C2 (en) Gas generator
DE4428791C1 (en) Surface hardening process for metal objects using ultrasonic waves
DE3903602C2 (en)
DE4422195C1 (en) Injection system for hybrid rocket propulsion unit
DE19649738C2 (en) High performance pressure wave source
DE102018123351A1 (en) Process and cleaning system for cleaning thermal systems
EP2766596A2 (en) Combustion chamber of an internal combustion chamber, method for igniting a fuel-air mixture and internal combustion chamber

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE FR GB NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19990811

AKX Designation fees paid

Free format text: BE DE FR GB NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DORNIER MEDTECH HOLDING INTERNATIONAL GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DORNIER MEDIZINTECHNIK GMBH

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DORNIER MEDIZINTECHNIK GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR GB NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030416

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59807921

Country of ref document: DE

Date of ref document: 20030522

Kind code of ref document: P

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: DORNIER MEDTECH SYSTEMS GMBH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030715

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: DORNIER MEDTECH SYSTEMS GMBH

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4C

Free format text: NOTIFICATION HAS NOW BEEN RECEIVED FROM THE EUROPEAN PATENT OFFICE THAT THE NAME OF THE APPLICANTS SHOULD HAVE BEEN RECORDED AS: DORNIER MEDTECH SYSTEMS GMBH THIS CORRECTION WILL BE PUBLISHED IN THE EUROPEAN PATENT BULLETIN NO. 03/28 OF 20030709.

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040131

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040119

BERE Be: lapsed

Owner name: *DORNIER MEDTECH SYSTEMS G.M.B.H.

Effective date: 20040131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070109

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070227

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070105

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131