EP0864438A1 - Recording material for the ink-jet process - Google Patents

Recording material for the ink-jet process Download PDF

Info

Publication number
EP0864438A1
EP0864438A1 EP19980103862 EP98103862A EP0864438A1 EP 0864438 A1 EP0864438 A1 EP 0864438A1 EP 19980103862 EP19980103862 EP 19980103862 EP 98103862 A EP98103862 A EP 98103862A EP 0864438 A1 EP0864438 A1 EP 0864438A1
Authority
EP
European Patent Office
Prior art keywords
recording material
film
recording
porous
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19980103862
Other languages
German (de)
French (fr)
Inventor
Klaus GÖTZEN
Axel Dr. Niemöller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sihl GmbH
Original Assignee
Sihl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sihl GmbH filed Critical Sihl GmbH
Publication of EP0864438A1 publication Critical patent/EP0864438A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M2205/00Printing methods or features related to printing methods; Location or type of the layers
    • B41M2205/36Backcoats; Back layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/502Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording characterised by structural details, e.g. multilayer materials
    • B41M5/504Backcoats
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/502Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording characterised by structural details, e.g. multilayer materials
    • B41M5/508Supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • B41M5/5218Macromolecular coatings characterised by inorganic additives, e.g. pigments, clays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • B41M5/5227Macromolecular coatings characterised by organic non-macromolecular additives, e.g. UV-absorbers, plasticisers, surfactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • B41M5/5236Macromolecular coatings characterised by the use of natural gums, of proteins, e.g. gelatins, or of macromolecular carbohydrates, e.g. cellulose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • B41M5/5254Macromolecular coatings characterised by the use of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • B41M5/5263Macromolecular coatings characterised by the use of polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • B41M5/5281Polyurethanes or polyureas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249978Voids specified as micro
    • Y10T428/24998Composite has more than two layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/254Polymeric or resinous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/3188Next to cellulosic
    • Y10T428/31895Paper or wood
    • Y10T428/31906Ester, halide or nitrile of addition polymer

Definitions

  • a film is also suitable as material for the substrate layer; it may be transparent, white or translucent and may consist, for example, of polyethylene glycol terephthalate (PET), polypropylene (PP), polyvinyl chloride (PVC), polyimide (PI) or polyethylene (PE).
  • PET polyethylene glycol terephthalate
  • PP polypropylene
  • PVC polyvinyl chloride
  • PI polyimide
  • PE polyethylene
  • the recording layer is preferably applied to the substrate layer in a thickness of from 3 to 60 g/m 2 ; if the substrate layer is a paper, a thickness of from 3 to 12 g/m 2 is preferred.
  • Two recording layers may be applied one on top of the other, it being possible to use organic pigments having different pore sizes.
  • the printed recording material from Example 3 When viewed in transmitted light on a light box, the printed recording material from Example 3 achieves high contrast and brilliant colors without the illuminating elements being visible.

Landscapes

  • Ink Jet Recording Methods And Recording Media Thereof (AREA)
  • Ink Jet (AREA)

Abstract

The invention relates to a recording material for the inkjet process, having a sheet-like substrate layer and at least one porous recording layer which is arranged on at least one side of the substrate layer and contains a binder combination comprising a film-forming plastics dispersion and a film-forming water-soluble polymer and from 30 to 90% by weight, based on the dry recording layer, of an organic pigment which consists of porous particles or of primary particles which form porous agglomerates and has a mean pore diameter of from 0.1 to 0.5 µm, an internal pore volume of from 1.0 to 4.0 cm3/g, an oil absorption (DBP) of from 200 to 350 ml/100 g and a mean diameter of the porous particles or of the porous agglomerates of from 1 to 30 µm, the weight ratio of pigment to binder being from 0.5:1 to 2:1. The recording material is particularly suitable for use with pigmented ink.

Description

The present invention relates to a recording material for the inkjet process, in particular for use with solvent-based pigmented inks.
The inkjet process is now a widely used printing process since it can be carried out using relatively simple printers without noise and with high quality, in particular in the case of color printing. In the inkjet process, droplets of a recording fluid, the ink, are applied to the recording material by various techniques (for example continuous method, drop-on-demand method, such as piezoelectric or bubble jet method). With increasing improvement of the mode of operation of inkjet printers, increasingly high requirements are being set for the recording materials. The recording produced by means of inkjet processes is required to have, for example, high resolution, high color density, sufficient ink gradations and good smear resistance, as well as water resistance and lightfastness.
A recording material for the inkjet process consists as a rule of a substrate and an ink-receptive or recording layer arranged thereon. The recording layer frequently consists of a pigment/binder mixture. In addition to increasing the whiteness of the material, the pigments serve for retention of the colorants from the ink on the surface of the sheet.
European Patent 0 445 327 relates to a recording material having a glossy surface for the inkjet process, comprising a polyolefin-coated base paper and an ink-receptive layer which contains a mixture of gelatine and starch as binder. In one embodiment, the ink-receptive layer additionally contains not more than 5.9% by weight of a porous organic pigment which is a reactive urea/formaldehyde condensate containing methylol groups. The printed images produced have good color density and high abrasion resistance. Although the images are also described as "water-resistant", this "water resistance" is by no means sufficient for the use of the recording material outdoors since the ink-receptive layer itself consists for the most part of water-soluble or water-swellable components. Furthermore, the coating is not highly porous and is suitable only for aqueous inks.
U.S. Patent 4 877 686 describes a recording sheet for inkjet printing which consists of an opaque base sheet and a coating which contains a polyhydroxylic polymer gelled with boric acid or a boric acid derivative, as a binder, and a filler. Inter alia, melamine/formaldehyde pigments are mentioned as possible fillers. Images produced on this recording sheet consist of circular uniform dots.
U.S. Patent 5 081 470 discloses a recording medium for the inkjet process, comprising a substrate and an ink-receptive layer which contains at least 60% by weight of a pigment of a magnesium compound, and a binder. Binders which may be used are water-soluble polymers and water-dispersible polymers alone or in combination. In addition to the magnesium-containing pigments, organic pigments may, inter alia, additionally be present for increasing the ink absorption. The recorded image has good stability, in particular to discoloration, and high optical density.
WO 93/04870 relates to a transparent image-recording element for the inkjet process, which consists of a substrate and an ink-receptive layer, the ink-receptive layer containing a vinylpyrrolidone, disperse polyester particles having a diameter of less than 1 µm, a homopolymer or copolymer of an alkylene oxide, a polyvinyl alcohol, a surfactant and from 0.5 to 1.5% by weight of inert particles having a diameter of 3-25 µm. The inert particles may be organic particles, such as, for example, polymer beads. The ink-receptive layer is capable of controlling the dot size, and the recorded image has improved optical density.
U.S. Patent 4 460 637 discloses an inkjet recording sheet having a support and one or more ink-receptive layers thereon, the ink-receptive layer consisting of a binder and agglomerates of 1-50 µm in average diameter produced by agglomerating primary particles of not more than 0.20 µm in average diameter. The pore radius distribution curve of the pores which are present between the primary particles, i.e. within the agglomerates, has a maximum at 0.05 µm or less. In addition to inorganic pigments, synthetic organic pigments are also mentioned as suitable primary particles. The recorded image is characterized by high ink density and luminous colors and is suitable for multicolor printing.
The abovementioned recording materials are suitable for use with inks which contain soluble dyes. However, for pigmented inks which have, inter alia, the advantage that the images produced therewith are lightfast and hence suitable for outdoor use, no optimal recording materials are known to date. Water-based pigmented inks, solvent-based pigmented inks and wax-based pigmented inks (fusible inks) are known.
It is therefore the object of the present invention to provide, for the inkjet process, a recording material which, with pigmented inks, in particular solvent-based inks and wax inks, gives water-resistant images of good quality and stability, which are also suitable for outdoors.
The object is achieved by a recording material for the inkjet process, having a sheet-like substrate layer and at least one porous recording layer which is arranged on at least one side of the substrate layer and contains a binder combination comprising a film-forming plastics dispersion and a film-forming water-soluble polymer and from 30 to 90% by weight, based on the dry recording layer, of an organic pigment which consists of porous particles or of primary particles which form porous agglomerates and has a mean pore diameter of from 0.1 to 0.5 µm, an internal pore volume of from 1.0 to 4.0 cm3/g, an oil absorption (DBP) of from 200 to 350 ml/100 g and a mean diameter of the porous particles or of the porous agglomerates of from 1 to 30 µm, the weight ratio of pigment to binder being from 0.5:1 to 2:1.
The invention furthermore relates to a process for the production of a single-color or multicolor resistant recording by application of pigmented solvent-containing or wax-like ink(s) to above-mentioned recording material.
Preferred embodiments of the invention are described in the subclaims.
The binder in the recording layer according to the invention consists of a combination of a film-forming plastics dispersion and of a film-forming water-soluble polymer.
The polymer of the film-forming plastics dispersion preferably has a glass transition temperature of from -10°C to +70°C, more preferably from -5 to +30°C. All film-forming plastics dispersions which are usually used as binders in recording layers, for example dispersions of polyurethane, polyvinyl acetate, polyvinyl acetate copolymers, styrene/butadiene copolymers, styrene/butadiene/acrylonitrile terpolymers, styrene/(meth)acrylate copolymers, (meth)acrylic polymers, ethylene/(meth)acrylic acid copolymers, ethylene and vinyl chloride copolymers and mixtures thereof, may be used in the binder combination. The polymer of the film-forming plastics dispersion is preferably used in an amount of from 5 to 60% by weight, more preferably from 30 to 50% by weight, based in each case on the dry recording layer.
The other component of the binder combination is a film-forming water-soluble polymer. Here too, all water-soluble polymers whose use as binders in recording layers is known may in principle be used, but the water-soluble polymer is preferably crosslinkable via hydroxyl groups. Suitable examples include polyvinyl alcohol, water-soluble methacrylates containing hydroxyl groups and copolymers thereof, water-soluble cellulose derivatives, such as, for example, hydroxyethylcellulose, and water-soluble starch derivatives and mixtures thereof. The water-soluble polymer is preferably used in an amount of from 5 to 60% by weight, more preferably from 10 to 30% by weight, based in each case on the dry recording layer.
In addition to the binder combination, the recording layer may additionally contain a suitable crosslinking agent in order to increase the water resistance of the coating. Suitable crosslinking agents are, for example, glyoxal, glyoxal resins, melamine/formaldehyde resins, urea/formaldehyde resins, polyisocyanates, polyepoxides and polyaziridines. The crosslinking agent is preferably used in an amount of from 1 to 20% by weight, based on the dry recording layer, from 2 to 7% by weight being particularly preferred.
The recording layer contains, as an essential component, an organic pigment which consists of porous particles or of small primary particles which form porous agglomerates, the porous particles or porous agglomerates having a mean diameter of from 1 to 30 µm, preferably from 1 to 15 µm, a mean pore diameter of from 0.1 to 0.5 µm, preferably from 0.3 to 0.4 µm, an internal pore volume of from 1.0 to 4.0 cm3/g, preferably from 2 to 3 cm3/g and an oil absorption (DBP (dibutyl phthalate)) of from 200 to 350 ml/100 g, preferably from 290 to 300 ml/100 g. The organic pigment may be, for example, a polyamide copolymer, a crosslinked polystyrene resin, a urea/formaldehyde resin or a melamine/formaldehyde resin. A melamine/ formaldehyde resin having up to 2% by weight of reactive methylol groups is preferred. If the organic pigment consists of porous agglomerates of primary particles, the mean diameter of these primary particles is preferably from 0.05 to 0.3 µm, more preferably from 0.10 to 0.15 µm.
A particularly advantageous embodiment of the present invention contains an organic pigment which consists of a urea/formaldehyde condensate with on average about 0.6% by weight of reactive methylol groups and has primary particles of a size from 0.1 to 0.15 µm which form agglomerates having a mean particle size of about 6 µm. The porous agglomerates have an internal pore volume of about 2.7 cm3/g and an average diameter (as assumed capillary) of from 0.3 to 0.4 µm. The oil absorption (DBP) is from 290 to 300 cm3/100 g and the specific surface area is 20 ± 3 m2/g (BET method). The nitrogen content is about 33% by weight and the organic pigment has a positive zeta potential in a pH range from 4.5 to 7.5.
Depending on the use of the recording material, the weight ratio of pigment to binder in the recording layer may be varied in the range from 0.5:1 to 2:1. The pigment/binder ratio can be used to adjust not only the mechanical strength of the coating, for example with regard to scratch resistance, abrasion resistance or water resistance, but also the size of the ink dot. Ink dots which are as small as possible or as large as possible or ink dot sizes which are optimally adapted to the mechanical resolution and the ink drop volume are required, depending on the use. As a rule, the ink dots are larger the smaller the amount of binder used, i.e. the larger the pigment/binder ratio.
In addition to the components already mentioned, the recording layer may contain further auxiliary agents, such as, for example, fungicides, dyes, inorganic pigments, lubricants, dispersants, antifoams and optical brighteners.
The recording layer according to the invention is water-resistant, with the result that the recording material is suitable in particular also for applications outdoors.
The sheet-like substrate layer of the recording material according to the invention, on which at least one porous recording layer is applied to at least one side, may consist of different materials.
A suitable substrate material is paper having a basis weight of from 50 to 250 g/m2, optionally also containing wet strength agents. Paper may contain a filler such as calcium carbonate, kaolin or an organic pigment, porous organic pigments also being suitable and it being possible to use the same pigments as in the recording layer. The filler content is preferably not more than 25% by weight, based on dry matter. Papers having a surface smoothness of from 20 to 200 Bekk·s, internal and/or surface sizing with known sizes and a Cobb degree of sizing of from 2 to 100 g/m2 in 60 s are particularly preferred. The back of the paper may be provided with the porous recording layer, like the front, or may have a barrier layer against solvents, for example comprising a plastics dispersion, or a coating for lay-flat properties, for example comprising polyvinyl chloride or soluble starch derivatives. Except when recycled paper is used, the whiteness of the paper should be as high as possible.
In addition to paper, a film is also suitable as material for the substrate layer; it may be transparent, white or translucent and may consist, for example, of polyethylene glycol terephthalate (PET), polypropylene (PP), polyvinyl chloride (PVC), polyimide (PI) or polyethylene (PE).
Synthetic or semisynthetic papers with or without cellulose fibers, such as, for example, those sold under the brands PRETEX®, NEOBOND® and TYVEK®, are also suitable.
A laminated material comprising paper and film may also be used for the substrate layer.
Depending on the intended use of the recording material, a pressure sensitive adhesive coating or a silicone paper may be applied to the back of the substrate layer.
The recording layer is preferably applied to the substrate layer in a thickness of from 3 to 60 g/m2; if the substrate layer is a paper, a thickness of from 3 to 12 g/m2 is preferred. Two recording layers may be applied one on top of the other, it being possible to use organic pigments having different pore sizes.
The recording layer is applied to the substrate material by means of a conventional coating method, but preferably from aqueous dispersion by roller application with metering, for example by means of a knife coater, air brush, nozzle coating, doctor blade or reverse roll coating. As already mentioned, the coating may be applied twice, also as a coating on both sides. The recording layer is then dried, preferably at from 50 to 120°C in a hot-air dryer.
The recording material according to the invention is particularly suitable for the use with pigmented, preferably solvent-containing or waxy fusible ink. The single-color or multicolor recording produced using pigmented ink or a plurality of inks in different colors is water-resistant. Butyl acetate, higher aliphatic straight-chain or branched hydrocarbons (C8 to C20), higher aliphatic straight-chain or branched alcohols (C10 to C20), lower alcohols and glycols and mixtures thereof are particularly suitable as solvents for the pigmented ink. The ink viscosity for use in a printer having piezoelectric printing heads (amounts of ink from about 30 to 60 pl/drop) is preferably from 6 to 30 mPa·s and the surface tension from 20 to 45 mN/m. The mean diameter of the pigment particles in the ink is preferably in the range from 30 to 180 nm, it being possible for oligomers or polymers chemically bonded to the pigment surface and having affinity to the solvent to be present as stabilizers. Conventional colorants for the pigmented ink have the CMYK colors cyan, magenta, yellow and black or spot colors (special colors). Suitable colorants are finely divided carbon black, Pigment Blue 15, Pigment Red 23, Pigment Red 122, Pigment Yellow 14 and Pigment Yellow 128 (according to the Color Index).
A print produced with a pigmented ink in the inkjet process on the recording material according to the invention consists of very small dots of defined size and therefore has high brilliance and crispness. The recording is lightfast and water-resistant and has high abrasion resistance and aging resistance, even after prolonged action of water, and is therefore particularly suitable for outdoor uses. A further advantage is the short drying time of the ink on the recording material according to the invention.
The advantageous properties of the recording material according to the invention are partly due to the fact that the special pigments in the recording layer permit exact fixing of the colored pigments of the ink. The very high color brilliance of the recordings on the recording material according to the invention is due, inter alia, to the fact that the solvent or the wax of the ink penetrates into those pores of the pigment which have a mean pore diameter of from 0.1 to 0.5 µm and thus makes the recording layer optically transparent.
The high quality of the prints produced on the recording material according to the invention by means of inkjet processes using pigmented ink makes the recording material suitable for a very wide range of applications, for example for photographic and graphic images, for example in the areas of advertising and trade fair design (posters), for presentations (substrate material: white film) and for outdoor uses (billboard paper, high wet strength), of course also depending on the substrate material used. Special applications are covered by back-lit films (substrate material: translucent or transparent film), which are to be viewed from the printed side or from the back in the case of reversed print, pressure sensitive adhesive films (substrate material: e.g. PVC film with pressure sensitive adhesive coating and silicone paper on the back) for adhesive bonding of various surfaces outdoors, for example for advertising, signs and labels, and papers having high water resistance (substrate material synthetic or semisynthetic paper) for safety applications, building plans and cards and for stretched tapes (for example of Tyvek®) which are put up as advertising surfaces outdoors.
The invention is now to be illustrated with reference to a few examples.
Example 1: Production of a recording material according to the invention having paper as a substrate layer
A base paper having a basis weight of 90 g/m2, 12% by weight of calcium carbonate as filler, a surface size comprising modified starch, a Cobb degree of sizing of 20 g/m2 in 60 s and a surface smoothness of 80 Bekk·s is coated on one side by means of a rotating doctor blade with a uniform, dull coating of the following composition:
Composition of the recording layer:
Water 180 g
Pergopak® M2 30 g
Mowiol® 28/99 80 g of a 10% strength by weight solution
Vinnapas® DPN 36 40 g of a 52% strength by weight dispersion
Glyoxal 4 g
Optical brightener 0.2 g
Nonionic crosslinking agent 0.5 g
The dry coat obtained after drying at 90°C in a drying oven amounts to 7.0 g/m2, determined by weighing uncoated and coated paper and calculating the difference.
Example 2: Production of a recording material according to the invention, having white PVC film as a substrate layer
A white flexible PVC film coated on one side with a pressure sensitive adhesive and laminated with silicone paper is coated on the opposite side, by means of a knife coater, with a uniform, dull coating having the composition shown in Example 1, only 140 g of water being used instead of 180 g of water.
The dry coat obtained after drying at 90°C in a drying oven amounts to 45 g/m2, determined by weighing uncoated and coated film and calculating the difference. The recording layer adheres firmly to the substrate film and is scratch-resistant.
Example 3: Production of a recording material according to the invention, having transparent PET film as a substrate layer
A transparent PET film antistatic on one side is coated on the opposite side, by means of a knife coater, with a uniform, dull coating having the composition shown in Example 1, only 140 g of water being used instead of 180 g of water.
The dry coat obtained after drying at 90°C in a drying oven amounts to 60 g/m2, determined by weighing uncoated and coated film and calculating the difference. The recording layer adheres firmly to the substrate film, is scratch-resistant and imparts an opacity of 0.45, measured according to ISO 2471 with a transmitted light densitometer TD 528 from McBeth, to the recording material obtained.
Example 4: Printing on the recording materials from Examples 1 to 3
The recording materials obtained in Examples 1 to 3 are printed in color by means of an inkjet printer having piezoelectric printing heads (EPSON Stylus Color) using an ink which essentially comprises an organic solvent of high-boiling aliphatics (Isopar® V from Esso) and organic colored pigments in the colors cyan, magenta, yellow and black. Brilliant, high-contrast and crisp colored images are obtained in each case. The ink is absorbed instantaneously into the recording layer, the colored pigments being fixed essentially in the layer so that smearing directly after printing is not possible. The color contrast of the recording, measured as optical density, is more than 1.0 for all primary colors (measured using a reflected light densitometer RD 920 from McBeth). After the prints had been stored for 24 h in cold water and dried again in air at room temperature, no substantial differences can be found relative to the original print. The printed image is thus water resistant.
The recording material from Example 1 is alternatively printed with wax inks, similarly good results being obtained. Wax-containing pigmented ink in the colors cyan, magenta, yellow and black are applied by means of inkjet heads which operate according to the piezoelectric principle, using a printer of the type DisplayMaker Express from LaserMaster. In an aftertreatment step, the recording material with the ink is heated to about 95°C in order to achieve a brilliant printed image and good adhesion. During this procedure, the ink penetrates into the recording layer and partly also into the substrate paper. Brilliant, high-contrast and crisp color images whose scratch resistance is substantially improved compared with an uncoated paper are obtained. The printed image is water-resistant according to the test method described above.
Owing to the colored pigments in the inks used, all prints have high resistance to UV irradiation, in contrast to prints comprising inks which contain soluble dyes. Thus, only small changes in the colors and color contrast are found on irradiation for 144 hours using a Suntester from Haereus.
The printed recording material from Example 2 can be adhesively bonded to any desired smooth surfaces after the silicon paper has been peeled off.
When viewed in transmitted light on a light box, the printed recording material from Example 3 achieves high contrast and brilliant colors without the illuminating elements being visible.

Claims (13)

  1. A recording material for the inkjet process, having a sheet-like substrate layer and at least one porous recording layer which is arranged on at least one side of the substrate layer and contains a binder combination comprising a film-forming plastics dispersion and a film-forming water-soluble polymer and from 30 to 90% by weight, based on the dry recording layer, of an organic pigment which consists of porous particles or of primary particles which form porous agglomerates and has a mean pore diameter of from 0.1 to 0.5 µm, an internal pore volume of from 1.0 to 4.0 cm3/g, an oil absorption (DBP) of from 200 to 350 ml/100 g and a mean diameter of the porous particles or of the porous agglomerates of from 1 to 30 µm, the weight ratio of pigment to binder being from 0.5:1 to 2:1.
  2. The recording material as claimed in claim 1, wherein the polymer of the film-forming plastics dispersion of the binder combination has a glass transition temperature of from -10°C to +70°C.
  3. The recording material as claimed in claim 2, wherein the film-forming plastics dispersion of the binder combination is selected from dispersions of polyurethane, polyvinyl acetate, polyvinyl acetate copolymers, styrene/butadiene copolymers, styrene/butadiene/acrylonitrile terpolymers, styrene/ (meth)acrylate copolymers, (meth)acrylic polymers, ethylene/(meth)acrylic acid copolymers, ethylene and vinyl chloride copolymers and mixtures thereof.
  4. The recording material as claimed in any of claims 1 to 3, wherein the film-forming water-soluble polymer of the binder combination is selected from polyvinyl alcohol, water-soluble (meth)acrylates containing hydroxyl groups and copolymers thereof, water-soluble cellulose and starch derivatives and mixtures thereof.
  5. The recording material as claimed in any of claims 1 to 4, wherein the recording layer additionally contains a crosslinking agent selected from glyoxal, glyoxal resins, melamine/formaldehyde resins, urea/formaldehyde resins, polyisocyanates, polyepoxides and polyaziridines.
  6. The recording material as claimed in any of claims 1 to 5, wherein the recording layer contains from 5 to 60% by weight of the film-forming plastics dispersion, from 5 to 60% by weight of the film-forming water-soluble polymer and from 1 to 22% by weight of the crosslinking agent, based in each case on the dry recording layer.
  7. The recording material as claimed in any of claims 1 to 6, wherein the organic pigment is a polyamide copolymer, a crosslinked polystyrene resin, a urea/formaldehyde resin or a melamine/formaldehyde resin.
  8. The recording material as claimed in claim 7, wherein the organic pigment is a melamine/formaldehyde resin and contains up to 2% by weight of reactive methylol groups.
  9. The recording material as claimed in any of claims 1 to 8, wherein the mean diameter of the porous particles or porous agglomerates is from 1 to 10 µm.
  10. The recording material as claimed in claim 9, wherein the organic pigment forms porous agglomerates of primary particles having a mean diameter of from 0.05 to 0.3 µm.
  11. The recording material as claimed in any of claims 1 to 10, wherein the porous recording layer contains further auxiliary agents selected from fungicides, dyes, inorganic pigments, lubricants, dispersants, antifoams and optical brighteners.
  12. The recording material as claimed in any of claims 1 to 11, wherein the substrate layer is a paper, optionally containing wet strength agents, a synthetic paper with or without cellulose fibers, a film or a laminated material comprising paper and film, a pressure sensitive adhesive coating and a silicone paper optionally being applied to the back of the substrate layer.
  13. A process for the production of single-color or multicolor resistant recording by application of pigmented solvent-containing or waxy ink(s) to the recording material as claimed in any of claims 1 to 12.
EP19980103862 1997-03-10 1998-03-05 Recording material for the ink-jet process Withdrawn EP0864438A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19709735 1997-03-10
DE19709735A DE19709735A1 (en) 1997-03-10 1997-03-10 Inkjet recording material

Publications (1)

Publication Number Publication Date
EP0864438A1 true EP0864438A1 (en) 1998-09-16

Family

ID=7822803

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19980103862 Withdrawn EP0864438A1 (en) 1997-03-10 1998-03-05 Recording material for the ink-jet process

Country Status (3)

Country Link
US (1) US5989701A (en)
EP (1) EP0864438A1 (en)
DE (1) DE19709735A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1693223A2 (en) * 2005-02-16 2006-08-23 Konica Minolta Holdings, Inc. Ink-jet recording sheet
WO2012172172A1 (en) * 2011-06-14 2012-12-20 Teknologian Tutkimuskeskus Vtt Forming hidden patterns in porous substrates
EP3459753A1 (en) * 2017-09-21 2019-03-27 Mitsubishi HiTec Paper Europe GmbH Ink-jet recording material with metallic appearance

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2352681A (en) 1999-08-04 2001-02-07 Ilford Imaging Uk Ltd Ink jet printing method
GB2356374A (en) 1999-11-18 2001-05-23 Ilford Imaging Uk Ltd Printing process
DE10014351A1 (en) * 2000-03-24 2001-09-27 Mitsubishi Hitec Paper Flensbu Recording paper with different printable front and back coats, useful e.g. for producing ticket with preprint on back, has specified Cobb value and Bekk smoothness on back
JP3664476B2 (en) * 2000-03-30 2005-06-29 日本製紙株式会社 Inkjet recording medium
US6475602B1 (en) 2000-06-30 2002-11-05 Eastman Kodak Company Ink jet recording element
US6528147B1 (en) * 2000-06-30 2003-03-04 Eastman Kodak Company Ink jet printing method
US6599593B1 (en) 2000-09-14 2003-07-29 Hewlett-Packard Development Company, L.P. High efficiency print media products and methods for producing the same
EP1245401B1 (en) * 2001-03-30 2007-11-28 Eastman Kodak Company Ink jet recording element and printing method
US6554419B2 (en) * 2001-03-30 2003-04-29 Eastman Kodak Company Ink jet printing method
JP5121101B2 (en) * 2001-04-27 2013-01-16 キヤノン株式会社 Pigment ink and method for producing the same
US6659604B2 (en) * 2001-12-04 2003-12-09 Eastman Kodak Company Ink jet printing method
US7608338B2 (en) * 2002-06-13 2009-10-27 International Paper Company High brightness coating compositions and related products
FI20030976A (en) * 2003-06-30 2004-12-31 M Real Oyj Coated base paper and process for making coated base paper
EP1574353A3 (en) * 2004-03-09 2006-05-31 Fuji Photo Film Co., Ltd. Image-receiving material and ink jet recording method
US20070160832A1 (en) * 2005-07-22 2007-07-12 General Binding Corporation Laminate film having optical brightener
CN109016041B (en) 2011-08-26 2022-05-24 塞拉洛克创新股份有限公司 Method for producing a laminate and floor panel
US10369837B2 (en) 2012-04-30 2019-08-06 Valinge Innovation Ab Method for forming a decorative design on an element of a wood-based material
CN105452399A (en) * 2013-08-07 2016-03-30 阪田油墨股份有限公司 Nonaqueous inkjet ink composition and printed matter obtained using same
EP3683055B1 (en) 2013-10-23 2021-12-08 Ceraloc Innovation AB Floor panel
EP4019272B1 (en) 2014-01-24 2024-04-24 Ceraloc Innovation AB Method of forming a decorative layer of a building panel
CN105960332B (en) 2014-01-31 2018-05-11 塞拉洛克创新股份有限公司 The method of press figure image and the water-based ink for the digital printing in substrate in the substrate being attached on plate
KR20170083278A (en) * 2016-01-08 2017-07-18 한솔제지 주식회사 Quick drying sublimation transfer paper for textile printing
WO2017164806A1 (en) 2016-03-24 2017-09-28 Välinge Innovation AB A method for forming a décor on a substrate
JP2018044074A (en) * 2016-09-15 2018-03-22 ローランドディー.ジー.株式会社 Inkjet ink

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3237381A1 (en) * 1981-12-24 1983-07-14 Mitsubishi Paper Mills, Ltd., Tokyo INK JET RECORDING SHEET
EP0184529A1 (en) * 1984-12-05 1986-06-11 Aussedat-Rey Forgery-proof impression-writing support
EP0370441A2 (en) * 1988-11-21 1990-05-30 Kanzaki Paper Manufacturing Co., Ltd. Image-receiving sheet for thermal transfer printing with an intermediate layer containing fine particles of thermosetting resin and fine particles of polyolefin resin
EP0445327A1 (en) * 1990-03-07 1991-09-11 Felix Schoeller jr. Papierfabrik GmbH & Co. KG Recording medium for ink-jet printing
US5360780A (en) * 1991-12-26 1994-11-01 Kanzaki Paper Manufacturing Co., Ltd. Image-receiving sheet for thermal transfer printing with a layer containing aggregates of fine particles of thermoplastic resin
US5460874A (en) * 1994-09-30 1995-10-24 Minnesota Mining And Manufacturing Company Water-based coating compositions for imaging applications

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0218956A1 (en) * 1985-09-24 1987-04-22 Asahi Glass Company Ltd. Recording sheet
FR2598974B1 (en) * 1986-05-20 1990-04-27 Aussedat Rey SHEET FOR INK JET RECORDING AND PROCESS FOR ITS PREPARATION.
US4892787A (en) * 1987-08-10 1990-01-09 Am International, Inc. Coated paper for ink jet printing
US5411787A (en) * 1993-10-19 1995-05-02 Minnesota Mining And Manufacturing Company Water based transparent image recording sheet
US5747148A (en) * 1994-09-12 1998-05-05 Minnesota Mining And Manufacturing Company Ink jet printing sheet
JP2877740B2 (en) * 1994-10-27 1999-03-31 キヤノン株式会社 Recording medium, image forming method using the same, and printed matter
DE4446551C1 (en) * 1994-12-24 1996-03-14 Renker Gmbh & Co Kg Water-resistant recording material for ink-jet printing
EP0743193A1 (en) * 1995-05-18 1996-11-20 Canon Kabushiki Kaisha Printing medium and its use using inkjet printing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3237381A1 (en) * 1981-12-24 1983-07-14 Mitsubishi Paper Mills, Ltd., Tokyo INK JET RECORDING SHEET
EP0184529A1 (en) * 1984-12-05 1986-06-11 Aussedat-Rey Forgery-proof impression-writing support
EP0370441A2 (en) * 1988-11-21 1990-05-30 Kanzaki Paper Manufacturing Co., Ltd. Image-receiving sheet for thermal transfer printing with an intermediate layer containing fine particles of thermosetting resin and fine particles of polyolefin resin
EP0445327A1 (en) * 1990-03-07 1991-09-11 Felix Schoeller jr. Papierfabrik GmbH & Co. KG Recording medium for ink-jet printing
US5360780A (en) * 1991-12-26 1994-11-01 Kanzaki Paper Manufacturing Co., Ltd. Image-receiving sheet for thermal transfer printing with a layer containing aggregates of fine particles of thermoplastic resin
US5460874A (en) * 1994-09-30 1995-10-24 Minnesota Mining And Manufacturing Company Water-based coating compositions for imaging applications

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1693223A2 (en) * 2005-02-16 2006-08-23 Konica Minolta Holdings, Inc. Ink-jet recording sheet
EP1693223A3 (en) * 2005-02-16 2007-08-22 Konica Minolta Holdings, Inc. Ink-jet recording sheet
WO2012172172A1 (en) * 2011-06-14 2012-12-20 Teknologian Tutkimuskeskus Vtt Forming hidden patterns in porous substrates
RU2605057C2 (en) * 2011-06-14 2016-12-20 Текнологиан Туткимускескус Втт Ой Method of forming hidden patterns in porous substrate
US9868312B2 (en) 2011-06-14 2018-01-16 Teknologian Tutkimuskeskus Vtt Forming hidden patterns in porous substrates
EP3459753A1 (en) * 2017-09-21 2019-03-27 Mitsubishi HiTec Paper Europe GmbH Ink-jet recording material with metallic appearance

Also Published As

Publication number Publication date
DE19709735A1 (en) 1998-09-17
US5989701A (en) 1999-11-23

Similar Documents

Publication Publication Date Title
US5989701A (en) Recording material for the inkjet process
US6692799B2 (en) Materials and methods for creating waterproof, durable aqueous inkjet receptive media
CA2183723C (en) Ink jet recording material and producing process thereof
US6096440A (en) Recording medium
US6114022A (en) Coated microporous inkjet receptive media and method for controlling dot diameter
US6497480B1 (en) Ink jet printing method
EP1188573B1 (en) Recording material and recording method
US6514598B1 (en) Ink jet recording sheet and method
EP1228889B1 (en) Ink-receiving material and recording method
US6641875B2 (en) Ink jet recording element
US6723397B2 (en) Ink jet recording element
US6911239B2 (en) Recording material and method
JPH05124330A (en) Material for recording
EP1188574A2 (en) Recording material and recording method
WO2005082638A1 (en) Inkjet recording media with fusible bead layer
US6443570B1 (en) Ink jet printing method
JP2749814B2 (en) Inkjet recording method
JPH09193532A (en) Ink jet recording paper
JPH09156204A (en) Ink jet recording method
JPH09109544A (en) Recording sheet for ink jet
JP2001080201A (en) Recording sheet
JP2001270231A (en) Ink jet recording medium
MXPA98003460A (en) Sheet to print by jeting it
JPS62271784A (en) Color image forming method
JPH09234944A (en) Ink jet recording sheet

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

K1C1 Correction of patent application (title page) published

Effective date: 19980916

AKX Designation fees paid
RBV Designated contracting states (corrected)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19990317

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566