EP0861576B1 - Generateur de flux de plasma d'arc de configuration fermee - Google Patents

Generateur de flux de plasma d'arc de configuration fermee Download PDF

Info

Publication number
EP0861576B1
EP0861576B1 EP96934315A EP96934315A EP0861576B1 EP 0861576 B1 EP0861576 B1 EP 0861576B1 EP 96934315 A EP96934315 A EP 96934315A EP 96934315 A EP96934315 A EP 96934315A EP 0861576 B1 EP0861576 B1 EP 0861576B1
Authority
EP
European Patent Office
Prior art keywords
chambers
plasma
jets
generator according
electrode chambers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96934315A
Other languages
German (de)
English (en)
Other versions
EP0861576A1 (fr
Inventor
Pavel Koulik
Vladimir Enguelcht
Rudolph Konavko
Anatolii Saitshenko
Mikhail Samsonov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TePla AG
Original Assignee
IST Instant Surface Tech SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IST Instant Surface Tech SA filed Critical IST Instant Surface Tech SA
Publication of EP0861576A1 publication Critical patent/EP0861576A1/fr
Application granted granted Critical
Publication of EP0861576B1 publication Critical patent/EP0861576B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/44Plasma torches using an arc using more than one torch

Definitions

  • the present invention relates to a flow generator closed configuration arc plasma.
  • Plasma technology and especially devices allowing the creation of a configuration flow closed may be used in the processing of surfaces (sterilization, cleaning, pickling, modification, coating and film deposition) of monolithic materials and dispersed, as well as for obtaining and processing chemicals, electronics, automotive, metallurgy, chemicals, industry food, medicine and many other areas again.
  • this known plasma generator is due to the specific configuration of the plasma flow. Indeed, this one has the shape of a plasma funnel, which allows introduction and processing (processing) by the plasma of different products in different forms (gaseous, liquid or solid) and allows you to use this generator with high efficiency for sterilization of surfaces, their cleaning, stripping, modification and also the film recovery deposit.
  • the disadvantage of the generator according to the prior art is that the plasma flow always has a reduced dimension, determined by the diameter of the resulting plasma flow. But he is many applications for which a stream of larger plasma would be useful, provided of course the closed configuration of the flow is kept because it allows to have a central temperature zone uniform or lowered.
  • the purpose of the present invention is to provide a closed configuration arc flow generator according to the preamble of claim 1, the section, perpendicular to the direction of flow, has a elongated shape (plasma curtain) with a central area of uniform or lowered temperature.
  • the invention relates to a flow generator arc plasma, closed configuration, comprising electrode chambers working in pairs and generating plasma jets, and a magnetic device for orienting jets arranged outside the electrode chambers, each pair of chambers having an anode and a cathode and being connected to a direct current source, the plasma jets generated being traversed by the current and oriented in space using an external magnetic field generated by said magnetic orientation device and directed so that the plasma jets from the chambers converge and form a common plasma flow with a central area of uniform or lowered temperature, said generator having at least three pairs of electrode chambers as above and said chambers being arranged the relative to each other so that the whole presents symmetry without all the rooms being placed on the same circle, the generator generating a flow of common plasma of closed configuration, having a shape elongated with a central zone of uniform temperature or lowered in relation to the peripheral zone resulting from the convergence of at least six plasma jets.
  • the magnetic device determining the orientation of plasma jets can be composed, for each pair of electrode chambers, three sections of conductor magnetic, two of which are arranged perpendicularly to the plasma jets and the third between the plasma jets.
  • the electrode chambers can be arranged in two groups, the two groups of chambers can be arranged in parallel rows, and the rows can be rectilinear.
  • the electrodes of the same group, respectively of the same row, of chambers are all of the same polarity, the electrode chambers of the same group, respectively of the same row, which can be made of a single block, in one piece.
  • the same group, respectively the same row of chambers contains electrodes of opposite polarities
  • the electrodes of the same group or of a same row can be arranged so as to respect, at less partially, an alternation of polarities.
  • the solution proposed by the present invention consists basically to provide the generator with at least one pair of chambers with electrodes (anodes and cathodes) in addition to the two pairs of electrode chambers (anodes and cathodes) of the known generator according to the document "Koulik", cited above.
  • the proposed plasma generator consists of at least six electrode chambers generating six plasma jets through which the current flows.
  • the orientation of the electrode chambers aims to create a plasma curtain and not, as according to the prior art, to form only a plasma funnel.
  • the orientation of the resulting plasma flow and on the other hand the determination of the shape of the flow are done using external magnetic fields. These magnetic fields are directed relative to the electrode chambers in such a way that the plasma jets, coming from the electrode chambers, form a common plasma flow symmetrical with respect to a given surface, and crossed by the currents coming from the electrode chambers (plasma curtain).
  • the arrangement of the electrode chambers in two rows can be done either so that, in each row, the anode and cathode chambers follow one another, that is to say the electrodes of the same row are all of the same type, that is to say all of the anodes or all of the cathodes.
  • the channels of the electrode chambers, crossed by the current are formed by copper diaphragms with seals sealing dielectrics.
  • the electrodes themselves (anode copper, tungsten cathode) are arranged at the entrance of current channels. All parts of the electrode chambers are cooled with water. Current channels are traversed by the gas forming the plasma.
  • the diameter of the electrodes and diaphragms, as well as their thickness and number are optimized to obtain high stability plasma jets.
  • the spatial orientation of the plasma jets is controlled by magnetic field. This orientation check aims to force the plasma jets to keep the given direction through the current channel.
  • plasma jets repel each other when they are opposite polarities, and they attract each other in the opposite case.
  • the mutual attraction of the jets causes the plasma jets at the ends of the row are substantially inclined towards the middle of the row.
  • the external magnetic field i.e. the control mentioned above, must, in such a case, act to compensate for this attraction and to restore the direction given to the plasma jets by the channel at current.
  • the plasma jets repel, causing a change in the distances between the different downstream jets electrode chambers, or slight differences in flow unavoidable gas and current between the different jets of plasma.
  • the device is observed magnetic jet control which contains, in the plane of jets, three sections of magnetic conductors with winding coils.
  • the direction of the current in the coils is given in accordance with the direction of action on plasma jets.
  • the size of the field can be chosen individually for each plasma jet, by variation of the current in the coils.
  • the magnetic device is installed separately for each pair of electrode chambers (anode and cathode).
  • the magnetic conductor, located between the plasma jets, can coincide with the chemical introduction system or the product treated in the plasma curtain.
  • the arrangement in rows of the rooms, with the same polarity for the whole row, requires more intense action on the jets from external magnetic fields (especially on end jets).
  • this arrangement has the advantage that the electrode chambers can be placed against each other, which decreases the distance between the jets and allows their junction in the area high plasma temperature.
  • the electrode chambers have a width of 2 cm and are placed one after the other. They are thus arranged in two parallel straight rows of constant polarity.
  • the generator has 50 pairs of electrode chambers. The current flowing through each pair of chambers is 50 A, the voltage is 100 V, the power of each jet being 5 kW, and the gas heating efficiency of 50%.
  • the plasma curtain, after joining the jets has a length of 1 m, width of 1 cm and total power from 125 kW.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)

Description

La présente invention concerne un générateur de flux de plasma d'arc de configuration fermée.
La technologie des plasmas et particulièrement les dispositifs permettant la création d'un flux de configuration fermée peut-être utilisée dans les processus de traitement des surfaces (stérilisation, nettoyage, décapage, modification, dépôt de revêtements et de films) des matériaux monolithes et dispersés, ainsi que pour l'obtention et le traitement de produits chimiques, dans les domaines de l'électronique, de l'automobile, de la métallurgie, de la chimie, de l'industrie alimentaire, de la médecine et dans bien d'autres domaines encore.
On connaít un tel dispositif de création d'un flux de plasma d'arc de configuration fermée présentant une zone centrale, de température uniforme ou surbaissée. Ce dispositif est illustré dans le document "Bases de la réalisation de la méthode de traitement dynamique par plasma des surfaces solides", Koulik P. P. et autres, "Plasmokhimia 1987", Moscou 1987, part 2, pp. 58 à 96, ainsi que dans la demande de brevet FR 2 678 467.
Les documents cités ci-dessus décrivent un dispositif qui contient deux paires de chambres à électrodes (cathodes et anodes), connectées par paire à des sources de courant continu. Les paramètres des canaux de plasma des chambres à électrodes (cathodes et anodes) correspondent aux données de publiées dans le document "Le plasmatron à deux jets", Genbaïev G. G. et Enguelsht V. S., Frounze, 1983.
Quand les chambres à électrodes sont mises sous tension deux arcs s'allument et forment quatre jets de plasma traversés par le courant. L'orientation dans l'espace des jets de plasma s'effectue à l'aide de champs magnétiques extérieurs dirigés par rapport aux chambres à électrodes de telle manière que les jets de plasma issus des chambres à électrodes convergent et forment un flux commun de plasma symétrique axialement, traversé par les courants (entonnoir de plasma) dont la section, perpendiculairement à l'axe de symétrie du flux, présente une zone de température uniforme ou surbaissée par rapport à la partie périphérique du flux.
C'est dans cette zone que, axialement, sont injectés, par un canal ou des canaux axiaux concentriques, la ou les composantes, gazeuses, dispersées, ou sous forme monolythique, pour leur transformation dans l'entonnoir de plasma, avant leur utilisation.
L'intérêt de ce générateur de plasma connu est dû à la configuration spécifique du flux de plasma. En effet, celui-ci a la forme d'un entonnoir de plasma, ce qui permet l'introduction et le traitement (la transformation) par le plasma de différents produits sous différentes formes (gazeuses, liquides ou solides) et permet d'utiliser ce générateur avec haute efficacité pour la stérilisation des surfaces, leur nettoyage, décapage, modification et aussi le dépôt de recouvrement de films.
L'inconvénient du générateur selon l'art antérieur est que le flux de plasma a toujours une dimension réduite, déterminée par le diamètre du flux de plasma résultant. Or il est de nombreuses applications pour lesquelles un flux de plasma de dimensions plus importante serait utile, pour autant bien sûr que la configuration fermée du flux soit conservée car elle permet d'avoir une zone centrale de température uniforme ou surbaissée.
Le but de la présente invention est de proposer un générateur de flux d'arc de configuration fermée selon le préambule de la revendication 1, dont la section, perpendiculairement à la direction du flux, a une forme allongée (rideau de plasma) présentant une zone centrale de température uniforme ou surbaissée.
A cette fin, l'invention concerne un générateur de flux de plasma d'arc, de configuration fermée, comportant des chambres à électrodes travaillant par paire et générant des jets de plasma, et un dispositif magnétique d'orientation des jets disposé à l'extérieur des chambres à électrodes, chaque paire de chambres ayant une anode et une cathode et étant connectée à une source de courant continu, les jets de plasma générés étant traversés par le courant et orientés dans l'espace à l'aide d'un champ magnétique externe généré par ledit dispositif magnétique d'orientation et dirigé de manière que les jets de plasma issus des chambres convergent et forment un flux de plasma commun présentant une zone centrale de température uniforme ou surbaissée, ledit générateur comportant au moins trois paires de chambres à électrodes telles que ci-dessus et lesdites chambres étant disposées les unes par rapport aux autres de façon que l'ensemble présente une symétrie sans pour autant que toutes les chambres soient placées sur un même cercle, le générateur engendrant un flux de plasma commun de configuration fermée, ayant une forme allongée présentant une zone centrale de température uniforme ou surbaissée par rapport à la zone périphérique résultant de la convergence d'au moins six jets de plasma.
Le dispositif magnétique déterminant l'orientation des jets de plasma peut être composé, pour chaque paire de chambres à électrodes, de trois tronçons de conducteur magnétique, deux desquels sont disposés perpendiculairement aux jets de plasma et le troisième entre les jets de plasma.
Les chambres à électrodes peuvent être disposées en deux groupes, les deux groupes de chambres pouvant être disposés selon des rangées parallèles, et les rangées pouvant être rectilignes.
Selon une variante, les électrodes d'un même groupe, respectivement d'une même rangée, de chambres sont toutes de la même polarité, les chambres à électrodes d'un même groupe, respectivement d'une même rangée, pouvant être réalisées d'un seul bloc, d'un seul tenant.
Selon une autre variante, un même groupe, respectivement une même rangée, de chambres contient des électrodes de polarités opposées, les électrodes d'un même groupe ou d'une même rangée pouvant être disposées de manière à respecter, au moins partiellement, une alternance des polarités.
La solution proposée par la présente invention consiste en gros à munir le générateur d'au moins une paire de chambres à électrodes (anodes et cathodes) en plus des deux paires de chambres à électrodes (anodes et cathodes) du générateur connu selon le document "Koulik", cité plus haut.
On décrit ci-après le générateur selon l'invention, en se fondant sur le dessin ou:
  • la figure 1 illustre le générateur selon l'invention, réalisé de manière que les chambres à électrodes sont disposées en deux rangées parallèles et rectilignes; les repères relatifs à la figure 1 sont les suivants:
  • 1. Chambres à électrodes
  • 2. Jets de plasma
  • 3. Flux résultant de plasma
  • 4. Zone du flux de plasma de température surbaissée
  • 5. Conducteurs magnétiques avec bobines d'enroulement
  • la figure 2 montre une chambre à électrode en forme de parallélépipède de faible largeur du générateur selon l'invention; et plus particulièrement les détails suivants, 2a. vue générale; 2b. à 2d. sections; les repères relatifs à la figure 2 sont les suivants:
  • 2. Jet de plasma
  • 7. Electrode
  • 8. Diaphragme
  • 9. Joint diélectrique d'étanchéité
  • 10. Canal de courant
  • 11. Canaux de refroidissement à eau
  • 12. Câble électrique d'alimentation
  • la figure 3 est une vue schématique illustrant l'orientation du dispositif de contrôle magnétique des jets de plasma, dans le plan des jets, selon l'invention; les repères relatifs à la figure 3 sont les suivants:
  • 1. Chambre à électrode (anode, cathode)
  • 2. Jets de plasma
  • 5. Conducteur magnétique
  • 6. Bobines d'enroulement
  • 13. Lignes magnétiques
En regard de la figure 1, on constate que les chambres à électrodes sont connectées, par paires (formées d'une anode avec une cathode) à des sources de courant. Le générateur de plasma proposé est formé d'au moins six chambres à électrodes générant six jets de plasma traversés par le courant.
L'orientation des chambres à électrodes vise à créer un rideau de plasma et non, comme selon l'art antérieur, à former seulement un entonnoir de plasma. Tout comme dans le document "Koulik" cité plus haut, d'une part l'orientation du flux de plasma résultant et d'autre part la détermination de la forme du flux, se font à l'aide de champs magnétiques extérieurs. Ces champs magnétiques sont dirigés par rapport aux chambres à électrodes de telle manière que les jets de plasmas, issus des chambres à électrodes, forment un flux commun de plasma symétrique par rapport à une surface donnée, et traversé par les courants issus des chambres à électrodes (rideau de plasma).
Différentes dispositions des chambres à électrodes sont possibles le long de surfaces de symétrie différentes : cône de section circulaire ou elliptique, plans parallèles, plan unique, etc. En fonction de cette disposition, on obtiendra des configurations diverses du flux de plasma, adaptables à différentes solutions pratiques, donc à différentes applications.
La disposition qui paraít mériter le plus d'attention est celle dans laquelle les chambres à électrodes sont placées en deux rangées parallèles, situées dans deux plans qui se coupent. Dans ce cas, il se forme un flux de plasma unique qui résulte de la convergence des zones initiales des jets de plasma issus des chambres à électrodes, dont la température est élevée et le flux de plasma résultant a la forme d'un rideau plat présentant une zone de température uniforme ou surbaissée dans sa partie médiane.
La disposition des chambres à électrodes en deux rangées peut s'effectuer soit de manière que, dans chaque rangée, les chambres d'anode et de cathode se succèdent, soit que les électrodes d'une même rangée soient toutes du même type, c'est-à-dire toutes des anodes ou toutes des cathodes.
Les canaux des chambres à électrodes, traversés par le courant sont formés par des diaphragmes en cuivre avec joints diélectriques d'étanchéité. Les électrodes elles-mêmes (anode en cuivre, cathode en tungstène) sont disposées à l'entrée des canaux de courant. Toutes les pièces des chambres à électrodes sont refroidies à l'eau. Les canaux à courant sont parcourus par le gaz formant le plasma. Le diamètre des électrodes et des diaphragmes, ainsi que leur épaisseur et leur nombre sont optimisés pour obtenir des jets de plasma de haute stabilité.
L'orientation dans l'espace des jets de plasma est contrôlée par champ magnétique. Ce contrôle d'orientation vise à forcer les jets de plasma à conserver la direction donnée par le canal de courant.
Sous l'action de leurs champs magnétiques propres, les jets de plasma se repoussent mutuellement quand ils sont de polarités opposées, et ils s'attirent dans le cas inverse.
Quand les chambres à électrodes sont de même polarité dans une rangée, l'attraction mutuelle des jets (en l'absence de champs magnétiques extérieurs) fait que les jets de plasma aux extrémités de la rangée sont sensiblement inclinés vers le milieu du rang. Le champ magnétique extérieur, c'est à dire le contrôle dont il est question plus haut, doit, dans un tel cas, agir de manière à compenser cette attraction et à rétablir la direction donnée aux jets de plasma par le canal à courant.
Dans le cas où les polarités des jets d'un même rang sont alternées, les jets de plasma se repoussent, ce qui provoque un changement des distances entre les différents jets en aval des chambres à électrodes, ou de légères différences de débit de gaz et de courant inévitables entre les différents jets de plasma.
L'application de champs magnétiques externes permet de rendre aux jets de plasma des caractéristiques d'orientation souhaitable et corrige dans une large mesure les effets dus à leur voisinage. Dans tous les cas, la force magnétique doit être orientée dans le plan des jets de plasma, perpendiculairement à leur direction d'écoulement.
En regard de la figure 3, on observe le dispositif magnétique de contrôle des jets qui contient, dans le plan des jets, trois tronçons de conducteurs magnétiques avec des bobines d'enroulement. La direction du courant dans les bobines se donne en concordance avec la direction d'action sur les jets de plasma.
La grandeur du champ peut être choisie individuellement pour chaque jet de plasma, par variation du courant dans les bobines. Le dispositif magnétique est installé séparément pour chaque paire de chambres à électrodes (anode et cathode). Le conducteur magnétique, situé entre les jets de plasma, peut coïncider avec le système d'introduction du produit chimique ou du produit traité dans le rideau de plasma.
La disposition en rangées des chambres, avec alternance de polarité dans la rangée, simplifie le contrôle magnétique car les jets traversés par le courant compensent partiellement le champ magnétique propre (à l'exception des jets d'extrémités).
Néanmoins, vu le risque de court-circuit entre les chambres de polarité différentes, la distance entre elles doit être telle que ce court-circuit est exclu. Cela revient à augmenter la distance entre les jets de plasma et à éloigner l'endroit de leur convergence vers des zones de plus basse température.
La disposition en rangées des chambres, avec la même polarité pour toute la rangée, exige une action plus intense sur les jets de la part des champs magnétiques externes (surtout sur les jets d'extrémités). En revanche, cette disposition présente l'avantage que les chambres à électrodes peuvent être placées l'une contre l'autre, ce qui diminue la distance entre les jets et permet leur jonction dans la zone de haute température du plasma. En outre, il est possible dans ce cas de réaliser les chambres à électrodes en un seul bloc et les diaphragmes d'un seul corps. Cela aussi permet de diminuer la distance entre les jets.
Dans un exemple pratique plus précis de réalisation, les chambres à électrodes ont une largeur de 2 cm et sont placées à la suite l'une contre l'autre. Elles sont ainsi disposées en deux rangées rectilignes parallèles de polarité constante. Le générateur comporte 50 paires de chambre à électrodes. Le courant passant dans chaque paire de chambres est de 50 A, la tension est de 100 V, la puissance de chaque jet étant de 5 kW, et le rendement de l'échauffement du gaz de 50 %.
Le rideau de plasma, après la jonction des jets a une longueur de 1 m, une largeur de 1 cm et une puissance totale de 125 kW.

Claims (9)

  1. Générateur de flux de plasma d'arc, de configuration fermée, comportant des chambres à électrodes (1) travaillant par paire et générant des jets de plasma (2), et un dispositif magnétique d'orientation (5, 6) des jets disposé à l'extérieur des chambres à électrodes, chaque paire de chambres (1) ayant une anode et une cathode et étant connectée à une source de courant continu, les jets de plasma générés étant traversés par le courant et orientés dans l'espace à l'aide d'un champ magnétique externe généré par ledit dispositif magnétique d'orientation (5, 6) et dirigé de manière que les jets de plasma issus des chambres convergent et forment un flux de plasma commun (3) présentant une zone centrale de température uniforme ou surbaissée, caractérisé par le fait que le générateur comporte au moins trois paires de chambres à électrodes (1) telles que ci-dessus et en ce que lesdites chambres sont disposées les unes par rapport aux autres de façon que l'ensemble présente une symétrie sans pour autant que toutes les chambres soient placées sur un même cercle, le générateur engendrant un flux de plasma commun (3) de configuration fermée, ayant une forme allongée présentant une zone centrale (4) de température uniforme ou surbaissée par rapport à la zone périphérique résultant de la convergence d'au moins six jets de plasma.
  2. Générateur selon la revendication 1, caractérisé par le fait que le dispositif magnétique déterminant l'orientation des jets de plasma est composé, pour chaque paires de chambres à électrodes (1), de trois tronçons de conducteur magnétique (5), deux desquels sont disposés perpendiculairement aux jets de plasma et le troisième entre les jets de plasma.
  3. Générateur selon l'une des revendications précédentes caractérisé par le fait que les chambres à électrodes sont disposées en deux groupes.
  4. Générateur selon la revendication 3, caractérisé par le fait que les deux groupes de chambres sont disposés selon des rangées parallèles.
  5. Générateur selon la revendication 4, caractérisé par le fait que les rangées sont rectilignes.
  6. Générateur selon l'une des revendications 3 à 5, caractérisé par le fait que les électrodes d'un même groupe, respectivement d'une même rangée, de chambres sont toutes de la même polarité.
  7. Générateur selon l'une des revendications 3 à 5, caractérisé par le fait qu'un même groupe, respectivement une même rangée, de chambres contient des électrodes de polarités opposées.
  8. Générateur selon la revendication 7, caractérisé par le fait que les électrodes d'un même groupe ou d'une même rangée, sont disposées de manière à respecter, au moins partiellement, une alternance des polarités.
  9. Générateur selon les revendications 3 à 6, caractérisé par le fait que les chambres à électrodes d'un même groupe, respectivement d'une même rangée, sont réalisées d'un seul bloc, d'un seul tenant.
EP96934315A 1995-11-13 1996-11-12 Generateur de flux de plasma d'arc de configuration fermee Expired - Lifetime EP0861576B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CH321095 1995-11-13
CH3210/95 1995-11-13
CH321095 1995-11-13
PCT/CH1996/000403 WO1997018693A1 (fr) 1995-11-13 1996-11-12 Generateur de flux de plasma d'arc de configuration fermee

Publications (2)

Publication Number Publication Date
EP0861576A1 EP0861576A1 (fr) 1998-09-02
EP0861576B1 true EP0861576B1 (fr) 2000-09-06

Family

ID=4251042

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96934315A Expired - Lifetime EP0861576B1 (fr) 1995-11-13 1996-11-12 Generateur de flux de plasma d'arc de configuration fermee

Country Status (6)

Country Link
US (1) US6050215A (fr)
EP (1) EP0861576B1 (fr)
JP (1) JP2000500273A (fr)
DE (1) DE69610221T2 (fr)
ES (1) ES2152043T3 (fr)
WO (1) WO1997018693A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007019981A1 (de) * 2007-04-23 2008-11-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anode für die Bildung eines Plasmas durch Ausbildung elektrischer Bogenentladungen

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6949716B2 (en) 2000-11-10 2005-09-27 Apit Corp. S.A. Process for treating with an atmospheric plasma electrically conductive materials and a device therefor
FR2897748B1 (fr) * 2006-02-20 2008-05-16 Snecma Services Sa Procede de depot de barriere thermique par torche plasma

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2039566A5 (fr) * 1969-03-31 1971-01-15 Soudure Autogene Elect
BE763709A (fr) * 1971-03-03 1971-08-02 Soudure Autogene Elect Plasma en rideau.
US3940641A (en) * 1974-04-05 1976-02-24 Reynolds Metals Company Plasma jet electrode for magnetohydrodynamic generators
JPS5546266A (en) * 1978-09-28 1980-03-31 Daido Steel Co Ltd Plasma torch
WO1992012273A1 (fr) * 1990-12-26 1992-07-23 Inzhenerny Tsentr ''plazmodinamika'' Procede et dispositif de traitement de materiau au plasma

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007019981A1 (de) * 2007-04-23 2008-11-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anode für die Bildung eines Plasmas durch Ausbildung elektrischer Bogenentladungen
DE102007019981B4 (de) * 2007-04-23 2011-04-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anode für die Bildung eines Plasmas durch Ausbildung elektrischer Bogenentladungen

Also Published As

Publication number Publication date
EP0861576A1 (fr) 1998-09-02
DE69610221D1 (de) 2000-10-12
WO1997018693A1 (fr) 1997-05-22
JP2000500273A (ja) 2000-01-11
DE69610221T2 (de) 2001-04-26
US6050215A (en) 2000-04-18
ES2152043T3 (es) 2001-01-16

Similar Documents

Publication Publication Date Title
JP4339597B2 (ja) ダイポールイオン源
EP1496727B1 (fr) Accélérateur à plasma à dérive fermée d'électrons
EP1178134A1 (fr) Procédé et dispositif pour traiter des substrats métalliques au défilé par plasma
EP2201593B1 (fr) Procede de traitement de surface d'au moins une piece au moyen de sources elementaires de plasma par resonance cyclotronique electronique
FR2550681A1 (fr) Source d'ions a au moins deux chambres d'ionisation, en particulier pour la formation de faisceaux d'ions chimiquement reactifs
EP0711100B1 (fr) Dispositif de production d'un plasma permettant une dissociation entre les zones de propagation et d'absorption des micro-ondes
FR2702119A1 (fr) Dispositif d'excitation d'un plasma à la résonance cyclotronique électronique par l'intermédiaire d'un applicateur filaire d'un champ micro-onde et d'un champ magnétique statique.
FR2485863A1 (fr) Dispositif a plasma d'arc sous vide
FR2797372A1 (fr) Procede de production de plasmas elementaires en vue de creer un plasma uniforme pour une surface d'utilisation et dispositif de production d'un tel plasma
FR2838020A1 (fr) Dispositif de confinement de plasma
WO2014121831A1 (fr) Source de plasma
EP0861576B1 (fr) Generateur de flux de plasma d'arc de configuration fermee
EP3225083A1 (fr) Procede et dispositif de generation d'une pluralite de jets de plasma froid a pression atmospherique
FR2750622A1 (fr) Procede de traitement de surface par voie seche et dispositif pour la mise en oeuvre d'un tel procede
FR2589168A1 (fr) Appareil et son procede d'utilisation pour la formation de films minces assistee par plasma
EP3052438B1 (fr) Generateur d'ozone
JP7096551B2 (ja) 除電装置
EP0228318A1 (fr) Canon à électrons opérant par émission secondaire sous bombardement ionique
EP0908535B1 (fr) Procédé pour le décapage de la surface d'un substrat et installation pour la mise en oeuvre de ce procédé
EP1435800A1 (fr) Dispositif et procede de traitement par champ electrique pulse d'une substance contenantdes organismes indesirables
EP3560299B1 (fr) Réacteur plasma de dbd
EP0766649A1 (fr) Procede et dispositif destines a creer des champs electriques basse tension dans des solutions aqueuses
FR2615331A1 (fr) Laser
EP1094494A1 (fr) Procédé de production d'un plasma par décharges à barrière multipolaire de type capacitif, et dispositif pour la mise en oeuvre d'un tel procédé
US4225831A (en) CW Scalable donor-acceptor gas transfer laser

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980515

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR GB IT LI NL

17Q First examination report despatched

Effective date: 19981021

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI NL

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69610221

Country of ref document: DE

Date of ref document: 20001012

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: TEPLA AG

ITF It: translation for a ep patent filed

Owner name: ST. DR. CAVATTONI ING. A. RAIMONDI

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ABREMA AGENCE BREVETS ET MARQUES GANGUILLET & HUMP

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: TEPLA AG

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2152043

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010103

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20011106

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011109

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20011129

Year of fee payment: 6

Ref country code: FR

Payment date: 20011129

Year of fee payment: 6

Ref country code: CH

Payment date: 20011129

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011221

Year of fee payment: 6

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030603

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20030601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20031213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051112