EP0853514B1 - Systems and methods for making decorative shaped metal cans - Google Patents

Systems and methods for making decorative shaped metal cans Download PDF

Info

Publication number
EP0853514B1
EP0853514B1 EP96932253A EP96932253A EP0853514B1 EP 0853514 B1 EP0853514 B1 EP 0853514B1 EP 96932253 A EP96932253 A EP 96932253A EP 96932253 A EP96932253 A EP 96932253A EP 0853514 B1 EP0853514 B1 EP 0853514B1
Authority
EP
European Patent Office
Prior art keywords
body blank
mould
parts
blank
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96932253A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP0853514A1 (en
Inventor
Mark W. Hartman
Zeev W. Shore
James J. Tang
Anton A. Aschberger
Michael R. Gogola
William O. Irvine
Ralph J. Trnka
Richard O. Wahler
Robert A. Winkless
Richard Mark Orlando Golding
David A. Harvey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Crown Packaging Technology Inc
Original Assignee
Crown Cork and Seal Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/551,073 external-priority patent/US5746080A/en
Priority claimed from GBGB9603110.9A external-priority patent/GB9603110D0/en
Priority claimed from GBGB9604784.0A external-priority patent/GB9604784D0/en
Priority claimed from US08/683,575 external-priority patent/US5832766A/en
Application filed by Crown Cork and Seal Technologies Corp filed Critical Crown Cork and Seal Technologies Corp
Publication of EP0853514A1 publication Critical patent/EP0853514A1/en
Application granted granted Critical
Publication of EP0853514B1 publication Critical patent/EP0853514B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/16Making hollow objects characterised by the use of the objects
    • B21D51/26Making hollow objects characterised by the use of the objects cans or tins; Closing same in a permanent manner
    • B21D51/2646Of particular non cylindrical shape, e.g. conical, rectangular, polygonal, bulged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/16Making hollow objects characterised by the use of the objects
    • B21D51/26Making hollow objects characterised by the use of the objects cans or tins; Closing same in a permanent manner

Definitions

  • This invention relates generally to the field of consumer packaging, and more specifically to metal cans, such as the steel and aluminum cans that are commonly used for packaging soft drinks, other beverages, food and aerosol products.
  • Metal cans for soft drinks, other beverages and other materials are of course in wide use in North America and throughout the world.
  • U.S. -A-3,224,239 to Hansson discloses a system and process for using pneumatic pressure to reshape cans. This process utilized a piston to force compressed air into a can that is positioned within a mold. The compressed air caused the can wall to flow plastically until it assumed the shape of the mold.
  • a method according to the preamble of claim 1 is known from document EP-A- 0 521 637.
  • a can body blank or preform 10 is the body of a two-piece can, which is preferably formed by the well-known drawing and ironing process.
  • Can body blank 10 includes a substantially cylindrical sidewall surface 12, a bottom 14, and necked upper portion 16. Alternatively, the upper portion of cylindrical sidewall 12 could be straight.
  • the can body blank 10 must be washed after the drawing and ironing process, and then must be dried prior to being sent to the decorator.
  • the drying process typically is performed at a temperature of about 250 degrees Fahrenheit (which is about 121 degrees Celsius). According to one aspect of this invention, the drying is performed at a higher temperature than is ordinary to partially anneal at least selected portions of the can body blank 10.
  • a heat source 18 is schematically depicted, which is preferably part of the dryer assembly, but could be at any point in the apparatus prior to the molding unit.
  • can body blank 10 is formed of aluminum and the partial annealing is accomplished at a temperature range as defined in claim 1 and a most preferred temperature of about 475 degrees Fahrenheit (about 246 degrees Celsius). This is in contrast to true annealing, which would be at temperatures over 650 degrees Fahrenheit (about 353 degrees Celsius).
  • the purpose of the partial annealing is to give the can body blank 10 enough ductility to be formed into a shaped can 20, such as is shown in Figure 2 of the drawings, but greater toughness than would be possible if the can body blank were fully annealed.
  • the partial annealing could be performed in an oven such as the lacquer or decorator oven, rather than in the dryer.
  • can body blank 10 could be fabricated from steel instead of aluminum.
  • the preferred temperature range for partial annealing would be substantially within the range of 1112 degrees Fahrenheit (600 degrees Celsius) to about 1472 degrees Fahrenheit (800 degrees Celsius). More preferably, the partial annealing would be performed at approximately 1382 degrees Fahrenheit (750 degrees Celsius).
  • can body 20 includes a bottom 26, a shaped sidewall 22 that is shaped to substantially deviate from the standard cylindrical can body shape, such as the shape of can body blank 10.
  • the shaped sidewall 22 includes areas, such as ribs 30 and grooves 32, where accentuation of such deviations from the cylindrical shape might be desired.
  • Decoration is provided on the external surface of the shaped sidewall 22 in a manner that will accentuate those areas of the sidewall where accentuation of the deviation from the cylindrical shape is desired.
  • a first type of decoration which may be a lighter color
  • a second type of decoration 36 which may be a darker color
  • a synergistic visual effect can be obtained that would be impossible to obtain alone by shaping the can or by decorating the can.
  • shaped sidewall 22 also has a flat area 28, where writing or a label might be applied, and is closed by a can end 24, which is applied in the traditional double seaming process.
  • can body blank 10 after the partial annealing by the heat source 18 at the drying station, can body blank 10 will be transported to a decorator, where the distinctive decoration will be applied while the can body blank 10 is still in its cylindrical configuration. Markers might also be applied during the decorating process that can be used for registration of the decoration to the mold contours during subsequent forming steps, which will be described in greater detail below.
  • apparatus 38 which, according to the preferred embodiment of the invention, is provided to manufacture a shaped can 20 of the type that is depicted in Figure 2.
  • apparatus 38 includes a mold 40 having a mold wall 46 that defines a mold cavity 42 conforming to the desired final shape of the shaped can body 20.
  • the mold 40 is of the split wall type and the mold wall 46 will include inwardly extending portions 48 that are less in diameter than the diameter D b of the cylindrical sidewall 12 of the can body blank 10 depicted by the dotted lines in Figure 7b.
  • the mold wall 46 will also include a number of outwardly extending portions that are greater in diameter than the diameter D b of the sidewall 12 of the can body blank 10.
  • the inwardly extending portions 48 tend to compress the cylindrical sidewall 12 of the can body blank 10 to the position 12' shown by the solid lines in Figure 7b, while the sidewall 12 of the can body blank 10 must be expanded to conform to the outwardly extending portions 50 of the mold wall 46.
  • the perimeter of the cylindrical sidewall remains a constant length when compressed in this manner so the perimeter of the cylindrical compressed sidewall 12' is the same length as the circumference of the sidewall 12 of the can body blank 10.
  • the mold unit 40 has three die parts 82, 46 and 84 which comprise neck ring, mold side wall and base support, respectively.
  • the die parts are separated from each other by gaps or "split lines" 86 and 88.
  • the base support die 84 is made in two parts, with a central part 90 supporting the base dome of the can body.
  • the neck ring 82 provides simple support to the necked portion of the can body.
  • Vent holes 49 are provided (see Figures 4 and 5) to allow trapped air to escape during forming.
  • a pair of seal and support rings 92, 94 and a rubber sealing ring 96 are provided to seal the top edge of the container body.
  • a space saving mandrel 98 passes through the center of the seal and support rings 92, 94, 96 to a position just above the base support dome 84.
  • the mandrel 98 supplies air to the cavity of a can body within the cavity 42 via a central bore 100 and radial passages 102.
  • the apparatus further includes an upper piston and a lower piston 104, 106 which together apply a load to both ends of the can in the mould cavity 42.
  • Lower piston 106 is moveable upwards by structure of a pressurized air supply which is fed to the piston via passage 108.
  • the upper piston is moveable downwards by structure of a pressurized air supply which is fed to the piston via passages 110 and 112.
  • the passage 110 is connected to the central bore 100 of the mandrel 98 so that the upper piston and can cavity share a common air supply.
  • the common air supply is split for the piston 104 and cavity at the junction of the air passage 112 and the central mandrel bore 100, within the piston 104 so as to minimize losses and to maintain the same pressure supplied to the cavity and piston.
  • means are provided to control the flow rate of air supplied to each piston and the cavity. Cavity pressure and piston pressure can therefore be closely controlled.
  • FIG. 6 A schematic circuit diagram which shows how air is supplied to the pistons and can cavity is shown in figure 6.
  • the upper piston 104 and seal and support rings 92,94 are shown schematically as a single unit 114.
  • the base support 84,90 and lower piston 106 are shown as a single unit 116.
  • Units 114 and 116 and neck ring 82 are movable, whereas the side wall die 46 of the mold is shown fixed.
  • the circuit comprises two pressure supplies.
  • Pressure supply 118 supplies pressurised air to the top piston 104 and cavity of the can within the mold cavity 42.
  • Pressure supply 120 supplies pressurised air to the lower piston 106 only.
  • the two supplies each comprise pressure regulators 122,124, reservoirs 126,128, blow valves 130,132 and exhaust valves 134,136.
  • the lower pressure supply 120 includes a flow regulator 138.
  • the upper pressure supply 118 may also include a flow regulator, although it is not considered essential to be able to adjust the flow in both supplies. Reservoirs 126, 128 prevent a high drop in supply pressure during the process.
  • high pressure air of around 30 bar is introduced to the can cavity and to drive the top of the can.
  • the air pressure to drive the bottom piston 106 is typically around 50 bar, depending on the piston area.
  • the air pressure within the mold cavity 42 provides the force which is required to expand the can body blank outwards but also applies an unwanted force to the neck and base of the can which leads to longitudinal tension in the can side wall.
  • the two pistons are thus used to drive the top and the bottom of the can, providing a force which counteracts this tension in the can side wall.
  • the pressure of the air supplied to the pistons is critical in avoiding failure of the can during forming due to either splitting or wrinkling. Splitting will occur if the tension in the can side wall is not sufficiently counteracted by the piston pressure, since the pressure in the pistons is too low. Conversely, the pressure of the air supplied should not be so high that this will lead to the formation of ripples in the side wall.
  • the balance between the can cavity pressure and the piston pressure is preferably maintained at all times throughout the forming cycle so that the rate of pressure rise in the cavity and behind the pistons should be balanced throughout the cycle, particularly when the can wall yields.
  • the rate of pressure rise can be controlled by the flow regulator 138 or by adjusting the supply pressure via the pressure regulators 122,124.
  • the apparatus may be operated in one of three different ways.
  • the apparatus may be operated so as to simply move the mold parts toward another without exerting any force on the can body. This will reduce the gaps 86, 88 in the mold unit 40 as the can body shrinks longitudinally during the expansion process, and will reduce but not necessarily neutralize axial tensile stress created in the sidewall of the can body during expansion.
  • a slight longitudinal or axial force is applied to the can body which is substantially equal to the axial tensile stress in the can body sidewall, thus balancing such stress and protecting the can body from consequential weakening and possible splitting.
  • a third mode of operation would be to provide an even greater pressure to drive the outer mold parts toward one another in order to apply an axially compressive force to the can body that would be greater than what would be necessary to cancel the tensile stress in the sidewall during operation.
  • a net compressive force is believed to be preferable provided that such a force does not lead to the formation of wrinkles.
  • the blow valves 130,132 are first opened. It is possible to have a short delay between the opening times of the blow valves if required to obtain a better match between the piston and cavity pressures but there will then need to be a higher rate of pressure rise for one circuit in order to maintain this balance. A delay can also be used to compensate for different pipe lengths, maintaining a pressure balance at the time of forming.
  • the upper supply 118 is split for the piston 104 and cavity as close as possible to the piston 104 as described above in reference to Figure 3.
  • the apparatus is designed so that, at the latest, when each piston reaches its maximum travel the can is fully reshaped and the gaps 86, 88 are not closed up at the end. Closing of the gaps can lead to splitting of the can due to excessive tension in the side wall in the same way as does limiting movement of the pistons before full expansion has occurred. However, the final gap should not be excessive since any witness mark on the side wall becomes too apparent, although removal of sharp edges at the split lines alleviates this problem.
  • valves 134 and 136 are closed throughout the actual forming process. It is important that both supplies are vented simultaneously since the compressive force applied by the pistons to balance the cavity pressure (longitudinal tension) may be greater than the axial strength of the can so that uneven exhausting leads to collapse of the can.
  • the can body blank 10 is preferably positioned within the mold cavity 42 and its interior space is sealed into communication with a source of pressurized fluid, as described above.
  • the cavity 42 is designed so as to impart a slight compression to the can body blank 10 as it is inserted therein. This is preferably accomplished by forming the mold assembly elements into halves 52, 54, shown in Figure 4 that are split so as to be closeable about the can body blank prior to pneumatic expansion of the can body blank 10.
  • the precompression that is effected by the closing of the mold halves 52, 54 is performed to deflect the sidewall 12 of the can body blank 10 radially inwardly by a distance of R in that is within the range of about 0.1 to about 1.5 millimeters. More preferably, this distance R in is within the range of 0.5 to about 0.75 millimeters.
  • the distance R out by which cylindrical sidewall 12 is radially expanded outwardly to form the outermost portions of the shaped sidewall 22 is preferably within the range of about 0.1 to about 5.0 millimeters. A most preferable range for distance R out is about 0.5 to 3.0 millimeters. Most preferably, R out is about 2 millimeters.
  • a certain amount of annealing or partial annealing may be useful, particularly in the case of aluminum can bodies, to obtain the necessary ductility for the expansion step.
  • the more complete the annealing the less strong and tough the shaped can 20 will ultimately be.
  • the amount of actual radial expansion necessary to achieve the desired pattern is reduced. Accordingly, the amount of annealing that needs to be applied to the can body blank 10 is also reduced.
  • the precompression step then, allows the desired pattern to be superimposed on the shaped can 20 with a minimum of annealing and resultant strength loss, thus permitting the cylindrical sidewall 12 of the can body blank 10 to be formed as thinly as possible for this type of process.
  • the mold wall may be formed of a porous material so as to allow air trapped between the sidewall of the can body blank and the mold wall to escape during operation, although vent holes will probably still be required.
  • porous steel which is commercially available from AGA in Leydig, Sweden.
  • pressure monitor 69 For purposes of quality monitoring and control, fluid pressure within the mold cavity 46 is monitored during and after the expansion process by structure of a pressure monitor 69, shown schematically in Figure 5.
  • Pressure monitor 69 is of conventional construction. If the can body develops a leak during the expansion process, or if irregularities in the upper flange or neck of the can creates a bad seal with the gas probe, pressure within the mold cavity will drop much faster in the mold chamber 46 than would otherwise be the case. Pressure monitor 69 will sense this, and will indicate to an operator that the can body might be flawed.
  • pressure within the mold chamber could be made high enough to form the can body into, for example, a beading-type pattern wherein a number of circumferential ribs are formed on the container.
  • a second method and apparatus for manufacturing a metallic can body that is shaped distinctively in order to enhance its visual presentation to consumers is disclosed in Figures 7 and 9 of the drawings.
  • a third embodiment is depicted in Figures 8 and 9 of the drawings.
  • a distinctively shaped metallic can body is manufactured by providing a can body blank, such as the can body blank 10 shown in Figure 1, that has a sidewall 12 of substantially constant diameter, then radially deforming the can body blank 10 in selective areas by selected amounts to achieve an intermediate can body 74 that is radially modified, but is still symmetrical about its access, and then superimposing a preselected pattern of mechanical deformations onto the intermediate can body 74.
  • a beading apparatus 62 of the type that is well known in this area of technology includes an anvil 66 and a beading tool 64.
  • a beading apparatus 62 is used to radially deform the can body blank 10 into the radially modified intermediate can body 74 shown in Figure 9.
  • the intermediate can body 74 as may be seen in Figure 9, has no deformations thereon that have an axial component, and is substantially cylindrical about the access of the can body 74.
  • a knurling tool 76 is then used to superimpose the preselected pattern of mechanical deformations, in this case ribs and grooves, onto the intermediate can body, making it possible to produce a shaped can 20 of the type that is shown in Figure 2.
  • a spinning unit 68 is used to deform the cylindrical sidewall 12 of the can body blank 10 radially into the intermediate can body 74.
  • Spinning unit 68 includes, as is well known in the technology, a mandrel 70 and a shaping roller 72 that is opposed to the mandrel 70.
  • the knurling step shown in Figure 9 is preferably performed on the so formed intermediate can body 74 in a manner that is identical to that described above.
  • the intermediate can body 74 produced by either the method shown in Figure 7 or that shown in Figure 8 could, alternatively, be placed in a pneumatic expansion die or mold unit 40 of the type that is shown in Figures 3-5. Intermediate can body 74 would then be expanded in a manner that is identical to that described above in order to achieve the shaped can 20.
  • the can body blank 10 is also preferably partially annealed by the heat source 18 during the drying process, but, preferably, to a lesser extent than that in the first described embodiment.
  • the annealing for the second and third methods described above is performed at a temperature that is within the range of about 375 degrees Fahrenheit (about 190 degrees Celsius) to about 425 degrees Fahrenheit (about 218 degrees Celsius).
  • the methods described with reference to Figures 7 and 8 thus require less annealing than that described with respect to the previous embodiment, meaning that a stronger shaped can 20 is possible at a given weight or wall thickness, or that the weight of the shaped can 20 can be reduced with respect to that produced by the first described method.
  • Disadvantages of the second and third methods include more machinery and greater mechanical complexity, as well as more wear and tear on the cans, spoilage and possible decoration damage as a result of the additional mechanical processing and handling.
  • can body blank 10 could be formed by alternative processes, such as a draw-redraw process, a draw-thin-redraw process, or by a three-piece welded or cemented manufacturing process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Stackable Containers (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)
EP96932253A 1995-10-02 1996-09-17 Systems and methods for making decorative shaped metal cans Expired - Lifetime EP0853514B1 (en)

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
US467995P 1995-10-02 1995-10-02
US4679P 1995-10-02
US54242295A 1995-11-16 1995-11-16
US08/551,073 US5746080A (en) 1995-10-02 1995-12-12 Systems and methods for making decorative shaped metal cans
US551073 1995-12-12
GB9603110 1996-02-14
GBGB9603110.9A GB9603110D0 (en) 1996-02-14 1996-02-14 Reshaping of containers
GB9604784 1996-03-06
GBGB9604784.0A GB9604784D0 (en) 1996-03-06 1996-03-06 Reshaping of containers
US62179596A 1996-03-22 1996-03-22
US08/683,575 US5832766A (en) 1996-07-15 1996-07-15 Systems and methods for making decorative shaped metal cans
US683575 1996-07-15
PCT/US1996/014913 WO1997012705A1 (en) 1995-10-02 1996-09-17 Systems and methods for making decorative shaped metal cans
US542422 2000-04-04

Publications (2)

Publication Number Publication Date
EP0853514A1 EP0853514A1 (en) 1998-07-22
EP0853514B1 true EP0853514B1 (en) 2001-10-31

Family

ID=27562928

Family Applications (3)

Application Number Title Priority Date Filing Date
EP96932253A Expired - Lifetime EP0853514B1 (en) 1995-10-02 1996-09-17 Systems and methods for making decorative shaped metal cans
EP96932252A Expired - Lifetime EP0853513B1 (en) 1995-10-02 1996-09-17 Systems and methods for making decorative shaped metal cans
EP96932254A Expired - Lifetime EP0853515B1 (en) 1995-10-02 1996-09-17 Systems and methods for making decorative shaped metal cans

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP96932252A Expired - Lifetime EP0853513B1 (en) 1995-10-02 1996-09-17 Systems and methods for making decorative shaped metal cans
EP96932254A Expired - Lifetime EP0853515B1 (en) 1995-10-02 1996-09-17 Systems and methods for making decorative shaped metal cans

Country Status (14)

Country Link
EP (3) EP0853514B1 (es)
KR (3) KR19990063930A (es)
CN (3) CN1202844A (es)
AR (3) AR003716A1 (es)
AU (3) AU718654B2 (es)
BR (3) BR9610805A (es)
CA (3) CA2233672C (es)
DE (3) DE69616579T2 (es)
DK (3) DK0853515T3 (es)
ES (3) ES2160836T3 (es)
ID (1) ID17216A (es)
PL (3) PL183247B1 (es)
TR (3) TR199800614T2 (es)
WO (3) WO1997012706A1 (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7584639B2 (en) 2003-06-27 2009-09-08 Crebocan Ag Method and device for the production of a can body, and can body
US7954354B2 (en) 2006-06-26 2011-06-07 Alcoa Inc. Method of manufacturing containers
US8322183B2 (en) 2006-05-16 2012-12-04 Alcoa Inc. Manufacturing process to produce a necked container
US9327338B2 (en) 2012-12-20 2016-05-03 Alcoa Inc. Knockout for use while necking a metal container, die system for necking a metal container and method of necking a metal container

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5746080A (en) * 1995-10-02 1998-05-05 Crown Cork & Seal Company, Inc. Systems and methods for making decorative shaped metal cans
US5938389A (en) * 1996-08-02 1999-08-17 Crown Cork & Seal Technologies Corporation Metal can and method of making
GB9623364D0 (en) * 1996-11-09 1997-01-08 Metal Box Plc Reshaping of drawn and wall ironed containers
GB9726606D0 (en) * 1997-12-18 1998-02-18 Metal Box Plc Can shaping
ES2163954B1 (es) * 1998-08-07 2003-06-01 Suarez Carlos Infanzon Procedimiento para el fluidoconformado de recipientes metalicos, especialmente fabricados en acero inoxidable.
US20020162371A1 (en) * 2001-05-01 2002-11-07 Peter Hamstra Method of pressure-ram-forming metal containers and the like
CN1297410C (zh) * 2003-06-11 2007-01-31 私立逢甲大学 冲压罐的半色调变形图的制作方法
EP1586393B1 (en) * 2004-04-16 2007-09-19 Impress Group B.V. Method of shaping container bodies and corresponding apparatus
US7191032B2 (en) 2004-05-14 2007-03-13 Novelis Inc. Methods of and apparatus for forming hollow metal articles
US9365344B2 (en) 2004-06-17 2016-06-14 Caprosol Ag Method for the production of a can body, and can body
EP1724090B1 (en) 2005-05-19 2010-07-21 Mold-Masters (2007) Limited Injection nozzle with a thermal shroud and method of making the same
BRPI0702306A2 (pt) * 2007-05-21 2009-01-13 Vlademir Moreno processo de repuxamento para conformaÇço de embalagens metÁlicas com conformaÇço de prÉ-pestana, e equipamento de repuxamento para conformaÇço de embalagens metÁlicas com conformaÇço de prÉ-pestana
KR102101137B1 (ko) 2010-08-20 2020-04-14 알코아 유에스에이 코포레이션 성형 금속 용기 및 그 제작 방법
EP2502684A1 (en) * 2011-03-21 2012-09-26 Crown Packaging Technology Inc Apparatus for holding a container
MX348820B (es) * 2011-12-30 2017-06-30 Coca Cola Co Sistema y método para el conformado de un envase de bebida metálico utilizando moldeo por soplado.
GB201205243D0 (en) 2012-03-26 2012-05-09 Kraft Foods R & D Inc Packaging and method of opening
GB2511559B (en) 2013-03-07 2018-11-14 Mondelez Uk R&D Ltd Improved Packaging and Method of Forming Packaging
GB2511560B (en) 2013-03-07 2018-11-14 Mondelez Uk R&D Ltd Improved Packaging and Method of Forming Packaging
CN103272961B (zh) * 2013-06-19 2015-09-09 舟山市普陀博达机械制造有限公司 异形罐体扩径装置
CN103801620B (zh) * 2014-01-23 2016-03-02 深圳华特容器股份有限公司 一种铁皮方罐罐身成型模具
EP3140059B1 (en) * 2014-05-04 2019-07-03 Belvac Production Machinery, Inc. Systems and methods for electromagnetic forming of containers
US12103062B2 (en) 2014-05-04 2024-10-01 Belvac Production Machinery, Inc. Forming mold for reduction of parting lines
US10875073B2 (en) 2014-05-04 2020-12-29 Belvac Production Machinery, Inc. Systems and process improvements for high speed forming of containers using porous or other small mold surface features
US10486217B2 (en) * 2017-04-25 2019-11-26 Stolle Machinery Company, Llc Unitary body swing lever
DE102017118654B4 (de) 2017-08-16 2019-06-27 Schuler Pressen Gmbh Abstreckwerkzeuganordnung, Umformeinrichtung mit einer Abstreckwerkzeuganordnung sowie Verfahren zum Umformen eines napfförmigen Ausgangsteils
WO2019195083A1 (en) * 2018-04-03 2019-10-10 Belvac Production Machinery, Inc. Systems and process improvements for high speed forming of containers using porous or other small mold surface features
CN109719187B (zh) * 2019-02-03 2019-12-06 哈尔滨工业大学 一种非对称变径薄壁零件环向流动成形装置
CN114178411A (zh) * 2021-12-31 2022-03-15 潍坊倍力汽车零部件有限公司 一种减力式管件内高压成型模具

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL291159A (es) * 1962-08-17
US3757555A (en) * 1972-01-14 1973-09-11 Vermont Marble Co Can body expanding and flanging apparatus
GB8820585D0 (en) * 1988-08-31 1988-09-28 Metal Box Plc Pneumatic reshaping of cans
US4947667A (en) * 1990-01-30 1990-08-14 Aluminum Company Of America Method and apparatus for reforming a container
US5058408A (en) * 1990-01-30 1991-10-22 Aluminum Company Of America Method for partially annealing the sidewall of a container
GB2257073B (en) * 1991-07-04 1994-02-23 Cmb Foodcan Plc Apparatus and method for reshaping containers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7584639B2 (en) 2003-06-27 2009-09-08 Crebocan Ag Method and device for the production of a can body, and can body
US8322183B2 (en) 2006-05-16 2012-12-04 Alcoa Inc. Manufacturing process to produce a necked container
US7954354B2 (en) 2006-06-26 2011-06-07 Alcoa Inc. Method of manufacturing containers
US9327338B2 (en) 2012-12-20 2016-05-03 Alcoa Inc. Knockout for use while necking a metal container, die system for necking a metal container and method of necking a metal container

Also Published As

Publication number Publication date
EP0853515A1 (en) 1998-07-22
CA2233672A1 (en) 1997-04-10
AU7112296A (en) 1997-04-28
PL183247B1 (pl) 2002-06-28
PL183246B1 (pl) 2002-06-28
DE69614559T2 (de) 2001-11-22
EP0853513B1 (en) 2001-08-16
EP0853513A1 (en) 1998-07-22
DE69616578T2 (de) 2002-05-29
MX9802549A (es) 1998-11-30
MX9802550A (es) 1998-11-30
TR199800616T2 (xx) 1999-09-21
PL183248B1 (pl) 2002-06-28
DK0853513T3 (da) 2001-11-05
AU7112196A (en) 1997-04-28
DE69614559D1 (de) 2001-09-20
MX9802548A (es) 1998-11-30
TR199800615T1 (xx) 1998-06-22
CN1202844A (zh) 1998-12-23
CN1202843A (zh) 1998-12-23
EP0853515B1 (en) 2001-10-31
CA2233642A1 (en) 1997-04-10
AR003716A1 (es) 1998-09-09
KR19990063930A (ko) 1999-07-26
AR003715A1 (es) 1998-09-09
ES2163653T3 (es) 2002-02-01
CN1202842A (zh) 1998-12-23
AU2012797A (en) 1997-04-28
WO1997012705A1 (en) 1997-04-10
ID17216A (id) 1997-12-11
DE69616579T2 (de) 2002-05-29
EP0853514A1 (en) 1998-07-22
ES2160836T3 (es) 2001-11-16
WO1997012704A1 (en) 1997-04-10
DE69616579D1 (de) 2001-12-06
ES2163654T3 (es) 2002-02-01
CA2233642C (en) 2007-03-27
BR9610805A (pt) 1999-07-13
DE69616578D1 (de) 2001-12-06
DK0853514T3 (da) 2002-02-18
AR003717A1 (es) 1998-09-09
PL326035A1 (en) 1998-08-17
PL326036A1 (en) 1998-08-17
WO1997012706A1 (en) 1997-04-10
KR19990063929A (ko) 1999-07-26
AU719408B2 (en) 2000-05-11
BR9610795A (pt) 1999-07-13
KR19990063928A (ko) 1999-07-26
CA2233672C (en) 2006-06-06
DK0853515T3 (da) 2002-02-25
CA2233675C (en) 2007-11-20
TR199800614T2 (xx) 1998-07-21
CA2233675A1 (en) 1997-04-10
PL326034A1 (en) 1998-08-17
AU717400B2 (en) 2000-03-23
BR9610813A (pt) 1999-07-13
AU718654B2 (en) 2000-04-20

Similar Documents

Publication Publication Date Title
EP0853514B1 (en) Systems and methods for making decorative shaped metal cans
US5970767A (en) Systems and methods for making decorative shaped metal cans
US5622070A (en) Method of forming a contoured container
RU2283200C2 (ru) Способ и устройство для создания сужения открытого конца контейнера
US5960659A (en) Systems and methods for making decorative shaped metal cans
US4343173A (en) Double action cupper having improved can removal means
US5711178A (en) Die for use in die-necking of a metal can body and method using such a die
US4416140A (en) Can removal method for use with a double action cupper
US4562719A (en) Method for drawing heavy wall shells with a multi-step inside edge
US4509356A (en) Method and apparatus for drawing heavy wall shells
US5829290A (en) Reshaping of containers
MXPA98002548A (es) Sistemas y metodos para fabricar latas metalicas configuradas decorativas
MXPA98002550A (es) Sistemas y metodos para fabricar latas metalicas configuradas decorativas
MXPA98002549A (es) Sistemas y metodos para fabricar latas metalicas configuradas decorativas
EP0932461A1 (en) Reshaping of containers
WO2002038301A1 (en) Process for can manufacture
WO2000064609A1 (en) Method of forming a can body

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980330

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE DK ES FR GB GR IT NL SE

17Q First examination report despatched

Effective date: 20000221

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK ES FR GB GR IT NL SE

REF Corresponds to:

Ref document number: 69616578

Country of ref document: DE

Date of ref document: 20011206

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2163653

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20020400310

Country of ref document: GR

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69616578

Country of ref document: DE

Representative=s name: CALLIES, RAINER, DIPL.-PHYS. DR.RER.NAT., DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 69616578

Country of ref document: DE

Representative=s name: RAINER CALLIES, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150917

Year of fee payment: 20

Ref country code: DE

Payment date: 20150922

Year of fee payment: 20

Ref country code: ES

Payment date: 20150916

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20150923

Year of fee payment: 20

Ref country code: FR

Payment date: 20150922

Year of fee payment: 20

Ref country code: GR

Payment date: 20150915

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20150918

Year of fee payment: 20

Ref country code: IT

Payment date: 20150924

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20150917

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69616578

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

Effective date: 20160917

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20160916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20160916

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20161227

REG Reference to a national code

Ref country code: GR

Ref legal event code: MA

Ref document number: 20020400310

Country of ref document: GR

Effective date: 20160918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20160918