EP0852659B1 - Sealing element for sealing a gap and gas turbine facility - Google Patents

Sealing element for sealing a gap and gas turbine facility Download PDF

Info

Publication number
EP0852659B1
EP0852659B1 EP96942252A EP96942252A EP0852659B1 EP 0852659 B1 EP0852659 B1 EP 0852659B1 EP 96942252 A EP96942252 A EP 96942252A EP 96942252 A EP96942252 A EP 96942252A EP 0852659 B1 EP0852659 B1 EP 0852659B1
Authority
EP
European Patent Office
Prior art keywords
sealing element
sealing
component
gap
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96942252A
Other languages
German (de)
French (fr)
Other versions
EP0852659A2 (en
Inventor
Mirko Milazar
Friedhelm TERSCHÜREN
Alfred Lienert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0852659A2 publication Critical patent/EP0852659A2/en
Application granted granted Critical
Publication of EP0852659B1 publication Critical patent/EP0852659B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/005Sealing means between non relatively rotating elements

Definitions

  • the invention relates to a sealing element for sealing a Gap, which between two thermally movable against each other Components with a respective opposite one another Component groove can be formed, especially in a gas turbine plant and a gas turbine system with sealing elements.
  • thermomechanical machines and chemical plants where different Fluids are used this may be necessary Keep fluids separate from one another within the systems.
  • thermal combustion plants Flow areas of hot combustion gases from flow areas to separate low-temperature cooling gases.
  • gas turbine plants with high turbine inlet temperatures, of, for example, over 1000 ° C thermal expansions occur of the individual components of the gas turbine system, so that to avoid high thermal stresses and cracking neighboring components partly through a gap are spaced from each other.
  • Such columns can be connections between flow areas of hot gases with flow areas represent cold gases. The influx of cold Reduce gas in the flow area of hot gases and thereby the temperature in the flow area of the hot In order not to lower gases, it is advantageous to seal the gaps.
  • each a gas turbine with an outer casing and a two-part Describing the inner housing is corresponding to the seal a gap between the two inner housings Sealing element with a cross section of an elongated C's specified. Is between the inner case and the outer case an annular gap is formed through which cooling fluid is passed. The hot gas flows to the drive inside the inner housing the gas turbine.
  • a gas turbine system is described in US Pat. No. 4,537,024, in the components of a nozzle structure with axial and radial sealing elements are sealed.
  • the sealing elements should prevent that flowing through the nozzle structure Hot gas reaches turbine areas outside the hot gas duct.
  • a sealing element can have approximately the shape in cross section have a compressed eight.
  • US Pat. No. 1,816,293 relates to the tight connection of two Superheated steam pipes. This vapor-tight connection is made by a tight screwing of two flanges.
  • the Flanges each have an annular sealing surface on that is serrated.
  • the teeth of the pressed together Sealing surfaces are deformed to have an increased sealing effect achieve.
  • a sealing ring inserted, which is toothed on both sides and by which the same sealing effect is achieved.
  • the object of the invention is a sealing element for sealing a gap that is thermally free between two against each other movable components can be formed, specify which an effective seal even in the event of thermal expansion of the components ensured.
  • Another task lies in the specification a gas turbine plant in which a hot gas-carrying area area leading from a cooling fluid, in particular cooling air is effectively sealed.
  • the first-mentioned object is achieved by a Sealing element for sealing a gap which between two thermally movable components with one respective mutually opposite component groove can be formed is solved, which is directed along a main line and in a cross section substantially perpendicular to the main line is directed along a center line, a first End and a second end opposite this and a has serrated between the ends of the central region is.
  • the sealing element By serrating the sealing element, it is the one hand Adaptable shape of each component groove, so that it is sealing abuts in each component groove, and on the other hand deformable is, causing thermal expansion of the components can follow. Thus, the gap continues to be sealed and inadmissible thermal stresses avoided.
  • the material of the sealing element is this for use at high temperatures of over 1000 ° C usable. It is therefore preferably suitable in a thermal Internal combustion engine, in particular a gas turbine system.
  • the sealing element is preferably in at least at the ends deformable in a direction substantially orthogonal to the center line. This ensures that a thermal Expansion of the component groove in the direction of the center line of the sealing element, the ends of this thermal expansion can follow and thus the sealing element tight in the component grooves is present without inadmissibly high thermal voltages cause. This is an almost backlash-free connection between the components and the sealing element. Due to the deformability of the sealing element is also still ensures the mobility of the components against each other.
  • the center line of the sealing element is preferably a center axis, so that the sealing element is essentially flat. It can be made from a substantially flat sheet with a predetermined Wall thickness simple and on an industrial scale with corrugated (serrated) surface can be produced.
  • the sealing element preferably has sealing grooves that face each other the center line at an angle of 50 ° are inclined up to 90 °.
  • the sealing grooves preferably run essentially towards the main line. Through the sealing grooves the sealing element receives a profile, which a deformability both orthogonally and in the direction the center line guaranteed. Especially with a non-orthogonal one Course of the sealing grooves, i.e. at an angle of inclination less than 90 ° from the center line, becomes deformable in the substantially orthogonal direction to the center line guaranteed.
  • the Angle of inclination of the sealing grooves at the ends is smaller than in The central region. This ensures that the sealing element especially at the ends protruding into the component grooves can follow the thermal expansion of the components well, so a particularly good seal is achieved.
  • the sealing element has a first surface and a second Surface that run between the ends and in Are opposite to each other with respect to the center line.
  • the the first surface is preferably serrated and the second Surface smooth.
  • the toothed surface preferably the cooling gas area and the smooth surface facing the hot gas area.
  • the sealing element preferably tapers from the central region towards the respective ends. Because the ends in a respective Project component groove and thermal expansion of the components against each other the gap between them is reduced, the sealing element penetrates with increasing temperatures further into a respective component groove. Through the Tapering towards the ends becomes with a rising temperature achieved that the sealing element is even closer in the respective Component groove rests and thus the sealing of the Gap is further improved.
  • the sealing element is preferably suitable for sealing a Gaps in a gas turbine plant with a hot gas Area and a cooling gas area to be sealed therefrom for cooling guide vanes of the gas turbine system. It is arranged so that it is on the one hand in a component groove of a first component, in particular a guide vane or a wall component of the gas turbine system, and on the other hand into a component groove adjacent to the first component second component, in particular a further guide vane or a wall component engages, wherein between the components a gap is formed.
  • the main axis of the gas turbine system is alternately guide vanes and blades arranged, the guide vanes with their guide vane plates on the housing of the gas turbine system are attached and between the vane and the Housing an area for guiding cooling gas is provided.
  • the cooling gas area borders each guide vane in the axial direction a wall component separating from the hot gas-carrying area the gas turbine plant.
  • Between this and in particular the vane plate is formed a gap that is preferably sealed by the sealing element.
  • In the circumferential direction of the gas turbine system are each guide vanes arranged and by a respective gap from each other spaced.
  • the wall components are in the area of the blades arranged, also by a corresponding Gap are spaced apart.
  • the column between neighboring ones Guide vanes and adjacent wall components are preferably sealed by a sealing element.
  • a sealing element is preferably also suitable for sealing of a gap between two components, the component grooves have, which itself away from the gap into the components rejuvenate.
  • the degree of rejuvenation, especially a corresponding one Bevel angle, is preferably the operating temperature adapted to the gas turbine plant.
  • a gas turbine plant Object achieved in that between each other in the circumferential direction neighboring components spaced apart by a gap, which is a hot gas area from a cooling fluid area separate, a sealing element with a serrated (corrugated) surface is inserted into corresponding grooves of the components.
  • the hot gas area becomes the normal during operation Gas turbine plant of hot gas (up to over 1000 ° C) and the Cooling fluid area is preferably flowed through by cooling air axially spaced components, vane plate and a wall component arranged opposite a rotor blade, by a hollow body, in particular dumbbell- or eight-shaped, sealing element sealed.
  • FIG 1 is directed along a major axis 14
  • Gas turbine system 22 shown. This shows in a housing 17 alternating guide vanes 12 and in the axial direction Blades 15 on.
  • the guide vanes 12 are along one Axis 18 directed perpendicular to the main axis 14 and along the circumference of the gas turbine system 22 arranged to form a circle.
  • the guide vanes 12 are via a respective guide vane plate 16 with the housing 17 of the gas turbine system 22 connected.
  • Adjacent guide vanes are located along the circumference 12 spaced from each other by a respective gap 5 (see Fig. 2), which means that they are largely free thermally can expand.
  • the guide vane plate 16 separates one the main axis 14 of the gas turbine system 22 formed hot gas area 11 from one between the guide vane plate 16 and the turbine housing 17 formed cooling gas region 8.
  • Die Rotor blades 15 are along a respective main axis 19 stretched, which are also substantially orthogonal to Main axis 14 of the gas turbine system are.
  • the blades 15 lie completely in the hot gas area 11.
  • This hot gas area 11 is formed by a plurality of wall components 13 along the circumference of the gas turbine plant 22 from the cooling air area 8 separated.
  • the wall components 13 are here in each case adjacent to the blades 15.
  • the wall components 13 are connected to the turbine housing 17. The clarity for the sake of being only one guide blade 12, a moving blade 15 and a wall component 13 are shown.
  • This gap 5 is through a Sealing element 1 sealed, thereby largely a flow of cooling gas from the cooling gas area 8 into the hot gas area 11 is prevented.
  • the guide vane 12 provides here a first component 2a and the wall part 13 a second component 2b.
  • the Cooling gas area 8 from the hot gas area 11 between adjacent ones Guide vanes 12 and wall components 13 and in the circumferential direction each have a seal between adjacent guide vanes 12 and accordingly between adjacent wall components 13th
  • FIG. 2 shows a cross section along the circumference of the Gas turbine plant 22 and in particular on an enlarged scale two adjacent components 2a, 2b, which are separated by a gap 5 are spaced from each other.
  • the components 2a, 2b can each two adjacent guide vanes 12, in particular guide vane plates 16, as well as two adjacent wall components 13.
  • a component groove 3a or 3b is provided in the components 2a, 2b is in the circumferential direction.
  • a component groove 3a or 3b is provided in the Component grooves 3a, 3b sealingly engage the gap 5 with a sealing element 1 with a toothed contour.
  • the sealing element 1 is along a main line 21 directed and points in the illustrated Cross section perpendicular to the main line 21 a first End 6a, a second end 6b and an intermediate one Middle area 10.
  • the sealing element 1 faces the cooling gas area 8 executes a plurality of sealing grooves 7 on, between adjacent sealing grooves 7 each a sealing tip (sealing tooth) 20 is formed, the sealing to the corresponding component groove 3a, 3b abuts. Because usually the pressure of the cooling gas is higher than the pressure of the hot gas The sealing element 1 is located in the hot gas-carrying region 11 with its smooth surface on the component grooves 3a, 3b, so that the sealing tips 20 from a mechanical load are largely relieving. This will wear the Sealing element 1 significantly reduced.
  • the hot gas-carrying area 11 is the smooth one Surface 9b and the cooling gas area 8 the profiled surface 9a with sealing grooves 7 and sealing tips in between 20 facing.
  • the sealing element 1 tapers from its central region 10 towards the respective ends 6a, 6b.
  • the component groove 3a also tapers from the gap 5 in the component 2a, the guide vane plate 16 into it.
  • the sealing grooves 7 have compared to a center line 4, which in particular a main axis 4a of the sealing element 1, one Angle of inclination ⁇ . This angle of inclination ⁇ is in the middle range at about 90 °, so that there the sealing grooves 7 in run essentially orthogonal to the center line 4.
  • a sealing element 1 with sealing grooves 7 is preferably used for Sealing a gap between adjacent guide vanes 12 or adjacent wall components 13 on the circumference of the gas turbine system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

The invention pertains to a sealing element (1) for sealing a gap (5) which can form between two components (2a, 2b) liable to move relative to one another as a result of thermal action and each provided with an opposing groove (3a, 3b). The sealing element (1) in one cross-section is substantially perpendicular to a main line (21) along a median line (4). It has a first end (6a), a second end (6b) opposite the first end, and a central region (10) between the two ends, and is provided with teeth. The sealing element (1) is especially suitable for use in sealing a gap (5) between guide vanes (12) at high temperatures in a gas-turbine facility (22) as a means of preventing gas flow from a cool gas region (8) to a hot gas region (11).

Description

Die Erfindung betrifft ein Dichtelement zur Dichtung eines Spaltes, welcher zwischen zwei thermisch gegeneinander beweglichen Bauteilen mit einer jeweiligen einander gegenüberliegenden Bauteilnut bildbar ist, insbesondere in einer Gasturbinenanlage sowie eine Gasturbinenanlage mit Dichtelementen.The invention relates to a sealing element for sealing a Gap, which between two thermally movable against each other Components with a respective opposite one another Component groove can be formed, especially in a gas turbine plant and a gas turbine system with sealing elements.

In industriellen Anlagen, insbesondere thermomechanischen Maschinen und chemischen Anlagen, bei denen unterschiedliche Fluide verwendet werden, kann es erforderlich sein, diese Fluide innerhalb der Anlagen voneinander getrennt zu halten. Beispielsweise sind in thermischen Verbrennungskraftanlagen Strömungsbereiche heißer Verbrennungsgase von Stromungsbereichen niedertemperaturiger Kühlgase dichtend zu trennen. Bei Gasturbinenanlagen mit hohen Turbineneintrittstemperaturen, von beispielsweise über 1000 °C, treten thermische Dehnungen der einzelnen Komponenten der Gasturbinenanlage auf, so daß zur Vermeidung hoher thermischer Spannungen und von Rißbildungen benachbarte Komponenten teilweise durch einen Spalt voneinander beabstandet sind. Solche Spalte konnen Verbindungen zwischen Stromungsbereichen heißer Gase mit Stromungsbereichen kalter Gase darstellen. Um das Einstromen von kaltem Gas in den Strömungsbereich der heißen Gase zu verringern und dadurch die Temperatur in dem Strömungsbereich der heißen Gase nicht zu erniedrigen, ist es vorteilhaft, die Spalte abzudichten.In industrial plants, especially thermomechanical machines and chemical plants where different Fluids are used, this may be necessary Keep fluids separate from one another within the systems. For example, in thermal combustion plants Flow areas of hot combustion gases from flow areas to separate low-temperature cooling gases. at Gas turbine plants with high turbine inlet temperatures, of, for example, over 1000 ° C, thermal expansions occur of the individual components of the gas turbine system, so that to avoid high thermal stresses and cracking neighboring components partly through a gap are spaced from each other. Such columns can be connections between flow areas of hot gases with flow areas represent cold gases. The influx of cold Reduce gas in the flow area of hot gases and thereby the temperature in the flow area of the hot In order not to lower gases, it is advantageous to seal the gaps.

In der US-PS 3,341,172 und der US-PS 2,991,045, die jeweils eine Gasturbine mit einem Außengehäuse und einem zweigeteilten Innengehäuse beschreiben, ist dementsprechend zur Dichtung eines Spaltes zwischen den beiden Innengehäusen ein Dichtelement mit einem Querschnitt eines langgestreckten C's angegeben. Zwischen dem Innengehäuse und dem Außengehäuse ist eine Ringspalt gebildet, durch den Kühlfluid geführt wird. Innerhalb des Innengehäuses strömt das Heißgas zum Antrieb der Gasturbine.In U.S. Patent 3,341,172 and U.S. Patent 2,991,045, each a gas turbine with an outer casing and a two-part Describing the inner housing is corresponding to the seal a gap between the two inner housings Sealing element with a cross section of an elongated C's specified. Is between the inner case and the outer case an annular gap is formed through which cooling fluid is passed. The hot gas flows to the drive inside the inner housing the gas turbine.

In der US-PS 4,537,024 ist eine Gasturbinenanlage beschreiben, bei der Komponenten einer Düsenstruktur mit axialen und radialen Dichtelementen gedichtet sind. Die Dichtelemente sollen verhindern, daß durch die Düsenstruktur strömendes Heißgas in Turbinenbereiche außerhalb des Heißgaskanals gelangt. Ein Dichtelement kann im Querschnitt in etwa die Form einer gestauchten Acht aufweisen.A gas turbine system is described in US Pat. No. 4,537,024, in the components of a nozzle structure with axial and radial sealing elements are sealed. The sealing elements should prevent that flowing through the nozzle structure Hot gas reaches turbine areas outside the hot gas duct. A sealing element can have approximately the shape in cross section have a compressed eight.

Die US-PS 1,816,293 betrifft das dichte Verbinden zweier Heißdampfleitungen. Diese dampfdichte Verbindung wird durch ein festes Verschrauben zweier Flansche hergestellt. Die Flansche weisen jeweils eine kreisringförmige Dichtfläche auf, die gezahnt ist. Die Zähne der aneinandergepreßten Dichtflächen werden verformt, um eine erhöhte Dichtwirkung zu erzielen. Alternativ oder zusätzlich wird zwischen die Flansche ein Dichtring eingefügt, der beidseitig gezahnt ist und durch den die gleiche Dichtwirkung erzielt wird.US Pat. No. 1,816,293 relates to the tight connection of two Superheated steam pipes. This vapor-tight connection is made by a tight screwing of two flanges. The Flanges each have an annular sealing surface on that is serrated. The teeth of the pressed together Sealing surfaces are deformed to have an increased sealing effect achieve. Alternatively or additionally, between the flanges a sealing ring inserted, which is toothed on both sides and by which the same sealing effect is achieved.

Aufgabe der Erfindung ist es, ein Dichtelement zur Dichtung eines Spaltes, welcher zwischen zwei thermisch frei gegeneinander beweglichen Bauteilen bildbar ist, anzugeben, welches eine wirksame Dichtung auch bei Warmeausdehnungen der Bauteile gewahrleistet. Eine weitere Aufgabe liegt in der Angabe einer Gasturbinenanlage, bei der ein heißgasführender Bereich von einem Kühlfluid, insbesondere Kühlluft, führenden Bereich wirksam abgedichtet ist.The object of the invention is a sealing element for sealing a gap that is thermally free between two against each other movable components can be formed, specify which an effective seal even in the event of thermal expansion of the components ensured. Another task lies in the specification a gas turbine plant in which a hot gas-carrying area area leading from a cooling fluid, in particular cooling air is effectively sealed.

Erfindungsgemäß wird die erstgenannte Aufgabe durch ein Dichtelement zur Dichtung eines Spaltes, welcher zwischen zwei thermisch gegeneinander beweglichen Bauteilen mit einer jeweiligen einander gegenüberliegenden Bauteilnut bildbar ist, gelöst, welches entlang einer Hauptlinie gerichtet ist und in einem im wesentlichen zur Hauptlinie senkrechten Querschnitt entlang einer Mittellinie gerichtet ist, ein erstes Ende und ein diesem gegenüberliegendes zweites Ende sowie ein zwischen den Enden liegenden Mittelbereich hat und gezahnt ist.According to the invention, the first-mentioned object is achieved by a Sealing element for sealing a gap which between two thermally movable components with one respective mutually opposite component groove can be formed is solved, which is directed along a main line and in a cross section substantially perpendicular to the main line is directed along a center line, a first End and a second end opposite this and a has serrated between the ends of the central region is.

Durch eine Zahnung des Dichtelementes ist es einerseits der Form der jeweiligen Bauteilnut anpaßbar, so daß es dichtend in jeder Bauteilnut anliegt, und andererseits deformierbar ist, wodurch es einer thermischen Ausdehnung der Bauteile folgen kann. Somit werden weiterhin der Spalt abgedichtet und unzulässige thermische Spannungen vermieden. Je nach Art der Zahnung und Wahl des Werkstoffes des Dichtelementes ist dieses für einen Einsatz bei hohen Temperaturen von über 1000 °C verwendbar. Es eignet sich somit bevorzugt in einer thermischen Verbrennungskraftmaschine, insbesondere einer Gasturbinenanlage.By serrating the sealing element, it is the one hand Adaptable shape of each component groove, so that it is sealing abuts in each component groove, and on the other hand deformable is, causing thermal expansion of the components can follow. Thus, the gap continues to be sealed and inadmissible thermal stresses avoided. Depending on the type of Teeth and choice of the material of the sealing element is this for use at high temperatures of over 1000 ° C usable. It is therefore preferably suitable in a thermal Internal combustion engine, in particular a gas turbine system.

Vorzugsweise ist das Dichtelement zumindest an den Enden in einer Richtung im wesentlichen orthogonal zur Mittellinie deformierbar. Hierdurch wird erreicht, daß bei einer thermischen Ausdehnung der Bauteilnut in Richtung der Mittellinie des Dichtelementes die Enden dieser thermischen Ausdehnung folgen können und somit das Dichtelement dicht in den Bauteilnuten anliegt, ohne unzulassig hohe thermische Spannungen hervorzurufen. Hierdurch ist eine nahezu spielfreie Verbindung zwischen den Bauteilen und dem Dichtelement gegeben. Durch die Deformierbarkeit des Dichtelementes ist zudem weiterhin die Beweglichkeit der Bauteile gegeneinander gewahrleistet.The sealing element is preferably in at least at the ends deformable in a direction substantially orthogonal to the center line. This ensures that a thermal Expansion of the component groove in the direction of the center line of the sealing element, the ends of this thermal expansion can follow and thus the sealing element tight in the component grooves is present without inadmissibly high thermal voltages cause. This is an almost backlash-free connection between the components and the sealing element. Due to the deformability of the sealing element is also still ensures the mobility of the components against each other.

Die Mittellinie des Dichtelementes ist vorzugsweise eine Mittelachse, so daß das Dichtelement im wesentlichen eben ist. Es kann aus einem im wesentlichen ebenen Blech mit vorgegebener Wandstärke einfach und in großtechnischem Maßstab mit geriffelter (gezahnter) Oberflache hergestellt werden. The center line of the sealing element is preferably a center axis, so that the sealing element is essentially flat. It can be made from a substantially flat sheet with a predetermined Wall thickness simple and on an industrial scale with corrugated (serrated) surface can be produced.

Vorzugsweise hat das Dichtelement Dichtungsnuten, die gegenüber der Mittellinie jeweils um einen Neigungwinkel von 50° bis 90° geneigt sind. Die Dichtungsnuten verlaufen bevorzugt im wesentlichen in Richtung der Hauptlinie. Durch die Dichtungsnuten erhält das Dichtelement eine Profilierung, welche eine Deformierbarkeit sowohl orthogonal als auch in Richtung der Mittellinie gewährleistet. Insbesondere bei einem nichtorthogonalen Verlauf der Dichtungsnuten, d.h. bei einem Neigungswinkel von weniger als 90° gegenüber der Mittellinie, wird eine Deformierbarkeit in Richtung im wesentlichen orthogonal zur Mittellinie gewährleistet. Vorzugsweise ist der Neigungswinkel der Dichtungsnuten an den Enden kleiner als im Mittelbereich. Hierdurch ist erreicht, daß das Dichtungselement an den in die Bauteilnuten hineinragenden Enden besonders gut den Wärmedehnungen der Bauteile folgen kann, wodurch eine besonders gute Abdichtung erreicht ist.The sealing element preferably has sealing grooves that face each other the center line at an angle of 50 ° are inclined up to 90 °. The sealing grooves preferably run essentially towards the main line. Through the sealing grooves the sealing element receives a profile, which a deformability both orthogonally and in the direction the center line guaranteed. Especially with a non-orthogonal one Course of the sealing grooves, i.e. at an angle of inclination less than 90 ° from the center line, becomes deformable in the substantially orthogonal direction to the center line guaranteed. Preferably, the Angle of inclination of the sealing grooves at the ends is smaller than in The central region. This ensures that the sealing element especially at the ends protruding into the component grooves can follow the thermal expansion of the components well, so a particularly good seal is achieved.

Das Dichtelement hat eine erste Oberflache und eine zweite Oberfläche, die jeweils zwischen den Enden verlaufen und in Bezug auf die Mittellinie einander gegenüberliegend sind. Die erste Oberfläche ist vorzugsweise gezahnt und die zweite Oberflache glatt ausgeführt. In einer Gasturbinenanlage mit einem Kuhlgasbereich und einem heißgasführenden Bereich ist die gezahnte Oberfläche vorzugsweise dem Kuhlgasbereich und die glatte Oberfläche dem Heißgasbereich zugewandt. Dies hat den Vorteil, daß bei einem höheren Druck in dem Kühlgasbereich als in dem heißgasführenden Bereich das Dichtelement während eines Betriebes der Gasturbinenanlage auf der glatten, der zweiten Oberfläche aufliegt. Somit sind die zwischen benachbarten Dichtungsnuten liegenden Dichtspitzen nahezu keinem Verschleiß ausgesetzt, und es ist eine zuverlässige und gute Abdichtung über eine lange Zeitdauer gewährleistet.The sealing element has a first surface and a second Surface that run between the ends and in Are opposite to each other with respect to the center line. The the first surface is preferably serrated and the second Surface smooth. In a gas turbine plant with a cooling gas area and a hot gas carrying area the toothed surface preferably the cooling gas area and the smooth surface facing the hot gas area. this has the advantage that at a higher pressure in the cooling gas area than in the hot gas-carrying area, the sealing element during operation of the gas turbine plant on the smooth, of the second surface. So they are between adjacent sealing grooves almost lying sealing tips not exposed to wear and tear and it is reliable and ensures good sealing over a long period of time.

Das Dichtelement verjüngt sich vorzugsweise von dem Mittelbereich hin zu den jeweiligen Enden. Da die Enden in eine jeweilige Bauteilnut hineinragen und bei einer thermischen Ausdehnung der Bauteile gegeneinander der Spalt zwischen ihnen verkleinert wird, dringt das Dichtelement bei steigenden Temperaturen weiter in eine jeweilige Bauteilnut ein. Durch die Verjüngung zu den Enden hin wird bei einer steigenden Temperatur erreicht, daß das Dichtelement noch dichter in der jeweiligen Bauteilnut anliegt und somit die Abdichtung des Spaltes weiter verbessert wird.The sealing element preferably tapers from the central region towards the respective ends. Because the ends in a respective Project component groove and thermal expansion of the components against each other the gap between them is reduced, the sealing element penetrates with increasing temperatures further into a respective component groove. Through the Tapering towards the ends becomes with a rising temperature achieved that the sealing element is even closer in the respective Component groove rests and thus the sealing of the Gap is further improved.

Das Dichtelement eignet sich bevorzugt für die Abdichtung eines Spaltes in einer Gasturbinenanlage mit einem heißgasführenden Bereich und einem hiervon abzudichtenden Kuhlgasbereich zur Kühlung von Leitschaufeln der Gasturbinenanlage. Es ist hierbei so angeordnet, daß es einerseits in eine Bauteilnut eines ersten Bauteils, insbesondere einer Leitschaufel oder eines Wandbauteils der Gasturbinenanlage, und andererseits in eine Bauteilnut eines an das erste Bauteil angrenzenden zweiten Bauteils, insbesondere einer weiteren Leitschaufel oder eines Wandbauteils, eingreift, wobei zwischen den Bauteilen ein Spalt gebildet ist. In Richtung der Hauptachse der Gasturbinenanlage sind abwechselnd Leitschaufeln und Laufschaufeln angeordnet, wobei die Leitschaufeln mit ihren Leitschaufelplatten an dem Gehäuse der Gasturbinenanlage befestigt sind und zwischen der Leitschaufel und dem Gehäuse ein Bereich zur Führung von Kühlgas vorgesehen ist. In axialer Richtung grenzt an jede Leitschaufel den Kuhlgasbereich von dem heißgasführenden Bereich trennend ein Wandbauteil der Gasturbinenanlage an. Zwischen diesem und insbesondere der Leitschaufelplatte ist ein Spalt gebildet, der bevorzugt durch das Dichtelement abgedichtet wird. In Umfangsrichtung der Gasturbinenanlage sind jeweils Leitschaufeln angeordnet und durch einen jeweiligen Spalt voneinander beabstandet. Im Bereich der Laufschaufeln sind die Wandbauteile angeordnet, die ebenfalls durch einen entsprechenden Spalt voneinander beabstandet sind. Die Spalte zwischen benachbarten Leitschaufeln und benachbarten Wandbauteilen sind bevorzugt durch ein Dichtelement abgedichtet. The sealing element is preferably suitable for sealing a Gaps in a gas turbine plant with a hot gas Area and a cooling gas area to be sealed therefrom for cooling guide vanes of the gas turbine system. It is arranged so that it is on the one hand in a component groove of a first component, in particular a guide vane or a wall component of the gas turbine system, and on the other hand into a component groove adjacent to the first component second component, in particular a further guide vane or a wall component engages, wherein between the components a gap is formed. Towards the The main axis of the gas turbine system is alternately guide vanes and blades arranged, the guide vanes with their guide vane plates on the housing of the gas turbine system are attached and between the vane and the Housing an area for guiding cooling gas is provided. The cooling gas area borders each guide vane in the axial direction a wall component separating from the hot gas-carrying area the gas turbine plant. Between this and in particular the vane plate is formed a gap that is preferably sealed by the sealing element. In the circumferential direction of the gas turbine system are each guide vanes arranged and by a respective gap from each other spaced. The wall components are in the area of the blades arranged, also by a corresponding Gap are spaced apart. The column between neighboring ones Guide vanes and adjacent wall components are preferably sealed by a sealing element.

Für eine wirkungsvolle Abdichtung selbst bei einem Anfahren, d.h. Aufheizen der Gasturbinenanlage, sowie bei einem Abfahren mit einem Abkühlen der Gasturbinenanlage sind die Dichtelemente an ihren Enden mit einem geringen Übermaß gegenüber den Bauteilnuten, in die sie eingefügt werden, ausgebildet. Hierdurch wird unabhängig von der momentan herrschenden Temperatur in der Gasturbinenanlage und der Temperaturdifferenz zwischen dem Kühlgasbereich und dem heißgasführenden Bereich eine wirksame Abdichtung der Spalte erzielt.For an effective seal even when starting off, i.e. Heating up the gas turbine system and during a shutdown when the gas turbine system cools down, the sealing elements opposite at their ends with a slight excess the component grooves into which they are inserted. This makes it independent of the current temperature in the gas turbine plant and the temperature difference between the cooling gas area and the hot gas carrying area effective sealing of the gaps achieved.

Bevorzugt eignet sich ein Dichtelement ebenfalls zur Abdichtung eines Spaltes zwischen zwei Bauteilen, die Bauteilnuten aufweisen, die von dem Spalt weg in die Bauteile hinein sich verjüngen. Der Grad der Verjüngung, insbesondere ein entsprechender Abschragungswinkel, ist vorzugsweise der Betriebstemperatur der Gasturbinenanlage angepaßt.A sealing element is preferably also suitable for sealing of a gap between two components, the component grooves have, which itself away from the gap into the components rejuvenate. The degree of rejuvenation, especially a corresponding one Bevel angle, is preferably the operating temperature adapted to the gas turbine plant.

Erfindungsgemäß wird die auf eine Gasturbinenanlage gerichtete Aufgabe dadurch gelöst, daß zwischen einander in Umfangsrichtung benachbarte durch einen Spalt beabstandete Bauteile, die einen Heißgasbereich von einem Kühlfluidbereich trennen, ein Dichtelement mit gezahnter (geriffelter) Oberfläche in entsprechende Nuten der Bauteile eingefügt ist. Der Heißgasbereich wird während des normalen Betriebes der Gasturbinenanlage von Heißgas (bis über 1000 °C) und der Kühlfluidbereich von Kühlluft durchströmt Vorzugsweise sind in axialer Richtung beabstandete Bauteile, Leitschaufelplatte und ein einer Laufschaufel gegenüber angeordnetes Wandbauteil, durch ein als Hohlkörper ausgebildetes, insbesondere hantel- oder achtförmiges, Dichtelement abgedichtet.According to the invention is directed to a gas turbine plant Object achieved in that between each other in the circumferential direction neighboring components spaced apart by a gap, which is a hot gas area from a cooling fluid area separate, a sealing element with a serrated (corrugated) surface is inserted into corresponding grooves of the components. The The hot gas area becomes the normal during operation Gas turbine plant of hot gas (up to over 1000 ° C) and the Cooling fluid area is preferably flowed through by cooling air axially spaced components, vane plate and a wall component arranged opposite a rotor blade, by a hollow body, in particular dumbbell- or eight-shaped, sealing element sealed.

Anhand des in der Zeichnung dargestellten Ausführungsbeispiels werden das Dichtelement und die Gasturbinenanlage näher erläutert. In den Figuren sind mit gleichen Bezugszeichen jeweils identische oder wirkungsgleiche Teile gekennzeichnet, so daß die Bedeutung eines Teils gegebenenfalls nur einmal erläutert wird. Es zeigen

FIG 1
einen Ausschnitt eines Langsschnitts durch eine Gasturbinenanlage und
FIG 2 bis 4
einen Querschnitt durch ein Dichtelement in einer Gasturbinenanlage.
The sealing element and the gas turbine system are explained in more detail using the exemplary embodiment shown in the drawing. In the figures, identical or functionally identical parts are identified with the same reference numerals, so that the meaning of a part is possibly only explained once. Show it
FIG. 1
a section of a longitudinal section through a gas turbine system and
2 to 4
a cross section through a sealing element in a gas turbine system.

In FIG 1 ist eine entlang einer Hauptachse 14 gerichtete Gasturbinenanlage 22 dargestellt. Diese weist in einem Gehäuse 17 in axialer Richtung abwechselnd Leitschaufeln 12 und Laufschaufeln 15 auf. Die Leitschaufeln 12 sind entlang einer Achse 18 senkrecht zur Hauptachse 14 gerichtet und entlang des Umfanges der Gasturbinenanlage 22 einen Kreis bildend angeordnet. Die Leitschaufeln 12 sind über eine jeweilige Leitschaufelplatte 16 mit dem Gehäuse 17 der Gasturbinenanlage 22 verbunden. Entlang des Umfanges sind benachbarte Leitschaufeln 12 durch einen jeweiligen Spalt 5 voneinander beabstandet (s. Fig 2), wodurch diese sich weitgehend frei thermisch ausdehnen können. Die Leitschaufelplatte 16 trennt einen um die Hauptachse 14 der Gasturbinenanlage 22 gebildeten Heißgasbereich 11 von einem zwischen der Leitschaufelplatte 16 und dem Turbinengehäuse 17 gebildeten Kühlgasbereich 8. Die Laufschaufeln 15 sind entlang einer jeweiligen Hauptachse 19 gestreckt, die ebenfalls im wesentlichen orthogonal zur Hauptachse 14 der Gasturbinenanlage stehen. Die Laufschaufeln 15 liegen vollständig in dem Heißgasbereich 11. Dieser Heißgasbereich 11 wird durch eine Mehrzahl von Wandbauteilen 13 entlang des Umfanges der Gasturbinenanlage 22 von dem Kühlluftbereich 8 getrennt. Die Wandbauteile 13 sind hierbei jeweils den Laufschaufeln 15 benachbart. Die Wandbauteile 13 sind mit dem Turbinengehäuse 17 verbunden. Der Übersichtlichkeit halber ist jeweils nur eine Leitschaufel 12, eine Laufschaufel 15 und ein Wandbauteil 13 dargestellt. In axialer Richtung ist ein jeweiliges Wandbauteil 13 von einer jeweiligen Leitschaufel 12, insbesondere der Leitschaufelplatte 16 durch einen Spalt 5 beabstandet. Dieser Spalt 5 ist durch ein Dichtelement 1 abgedichtet, wodurch weitgehend eine Stromung von Kühlgas aus dem Kühlgasbereich 8 in den Heißgasbereich 11 hinein verhindert wird. Die Leitschaufel 12 stellt hierbei ein erstes Bauteil 2a und das Wandteil 13 ein zweites Bauteil 2b dar. In Umfangsrichtung erfolgt somit eine Abdichtung des Kühlgasbereichs 8 von dem Heißgasbereich 11 zwischen benachbarten Leitschaufeln 12 und Wandbauteilen 13 und in Umfangsrichtung jeweils eine Abdichtung zwischen benachbarten Leitschaufeln 12 und entsprechend zwischen benachbarten Wandbauteilen 13.In FIG 1 is directed along a major axis 14 Gas turbine system 22 shown. This shows in a housing 17 alternating guide vanes 12 and in the axial direction Blades 15 on. The guide vanes 12 are along one Axis 18 directed perpendicular to the main axis 14 and along the circumference of the gas turbine system 22 arranged to form a circle. The guide vanes 12 are via a respective guide vane plate 16 with the housing 17 of the gas turbine system 22 connected. Adjacent guide vanes are located along the circumference 12 spaced from each other by a respective gap 5 (see Fig. 2), which means that they are largely free thermally can expand. The guide vane plate 16 separates one the main axis 14 of the gas turbine system 22 formed hot gas area 11 from one between the guide vane plate 16 and the turbine housing 17 formed cooling gas region 8. Die Rotor blades 15 are along a respective main axis 19 stretched, which are also substantially orthogonal to Main axis 14 of the gas turbine system are. The blades 15 lie completely in the hot gas area 11. This hot gas area 11 is formed by a plurality of wall components 13 along the circumference of the gas turbine plant 22 from the cooling air area 8 separated. The wall components 13 are here in each case adjacent to the blades 15. The wall components 13 are connected to the turbine housing 17. The clarity for the sake of being only one guide blade 12, a moving blade 15 and a wall component 13 are shown. In axial Direction is a respective wall component 13 from a respective one Guide vane 12, in particular guide vane plate 16 spaced by a gap 5. This gap 5 is through a Sealing element 1 sealed, thereby largely a flow of cooling gas from the cooling gas area 8 into the hot gas area 11 is prevented. The guide vane 12 provides here a first component 2a and the wall part 13 a second component 2b. In the circumferential direction, the Cooling gas area 8 from the hot gas area 11 between adjacent ones Guide vanes 12 and wall components 13 and in the circumferential direction each have a seal between adjacent guide vanes 12 and accordingly between adjacent wall components 13th

FIG 2 zeigt einen Querschnitt entlang des Umfanges der Gasturbinenanlage 22 und insbesondere in vergrößertem Maßstab zwei benachbarte Bauteile 2a, 2b, die durch einen Spalt 5 voneinander beabstandet sind. Die Bauteile 2a, 2b konnen jeweils zwei benachbarte Leitschaufeln 12, insbesondere Leitschaufelplatten 16, sowie zwei einander benachbarte Wandbauteile 13 sein. In den Bauteilen 2a, 2b ist jeweils in Umfangsrichtung eine Bauteilnut 3a bzw. 3b vorgesehen. In die Bauteilnuten 3a, 3b greift den Spalt 5 dichtend ein Dichtelement 1 mit gezahnter Kontur ein. Das Dichtelement 1 ist entlang einer Hauptlinie 21 gerichtet und weist in dem dargestellten Querschnitt senkrecht zur Hauptlinie 21 ein erstes Ende 6a, ein zweites Ende 6b und einen dazwischenliegenden Mittelbereich 10 auf. Das Dichtelement 1 weist zu dem Kühlgasbereich 8 hingerichtet eine Mehrzahl von Dichtungsnuten 7 auf, wobei zwischen benachbarten Dichtungsnuten 7 jeweils eine Dichtspitze (Dichtzahn) 20 gebildet ist, die dichtend an die entsprechende Bauteilnut 3a, 3b anliegt. Da in der Regel der Druck des Kühlgases höher ist als der Druck des Heißgases in dem heißgasführenden Bereich 11 liegt das Dichtelement 1 mit seiner glatten Oberfläche an den Bauteilnuten 3a, 3b auf, so daß die Dichtspitzen 20 von einer mechanischen Belastung weitgehend entlastend sind. Hierdurch wird der Verschleiß des Dichtelementes 1 deutlich reduziert.2 shows a cross section along the circumference of the Gas turbine plant 22 and in particular on an enlarged scale two adjacent components 2a, 2b, which are separated by a gap 5 are spaced from each other. The components 2a, 2b can each two adjacent guide vanes 12, in particular guide vane plates 16, as well as two adjacent wall components 13. In the components 2a, 2b is in the circumferential direction a component groove 3a or 3b is provided. In the Component grooves 3a, 3b sealingly engage the gap 5 with a sealing element 1 with a toothed contour. The sealing element 1 is along a main line 21 directed and points in the illustrated Cross section perpendicular to the main line 21 a first End 6a, a second end 6b and an intermediate one Middle area 10. The sealing element 1 faces the cooling gas area 8 executes a plurality of sealing grooves 7 on, between adjacent sealing grooves 7 each a sealing tip (sealing tooth) 20 is formed, the sealing to the corresponding component groove 3a, 3b abuts. Because usually the pressure of the cooling gas is higher than the pressure of the hot gas The sealing element 1 is located in the hot gas-carrying region 11 with its smooth surface on the component grooves 3a, 3b, so that the sealing tips 20 from a mechanical load are largely relieving. This will wear the Sealing element 1 significantly reduced.

FIG 3 zeigt eine vergrößerte Darstellung des Dichtelementes 1 nach FIG 2. Dem heißgasführenden Bereich 11 ist die glatte Oberfläche 9b und dem Kühlgasbereich 8 die profilierte Oberfläche 9a mit Dichtungsnuten 7 und dazwischenliegenden Dichcspitzen 20 zugewandt. Das Dichtelement 1 verjüngt sich von seinem Mittelbereich 10 hin zu den jeweiligen Enden 6a, 6b. Die Bauteilnut 3a verjüngt sich ebenfalls von dem Spalt 5 in das Bauteil 2a, die Leitschaufelplatte 16 hinein. Die Dichtungsnuten 7 haben gegenüber einer Mittellinie 4, die insbesondere einer Hauptachse 4a des Dichtelementes 1 ist, einen Neigungswinkel α. Dieser Neigungswinkel α liegt im Mittelbereich bei ungefähr 90°, so daß dort die Dichtungsnuten 7 im wesentlichen orthogonal zur Mittellinie 4 verlaufen. Zum Ende 6a hin nimmt der Neigungswinkel α der Dichtungsnuten 7 ab, insbesondere kontinuierlich ab. Hierdurch ist eine Deformierbarkeit des Dichtelementes 1 bei einer thermischen Ausdehnung, insbesondere Stauchung der Bauteilnut 3a, gegeben. Das Dichtelement 1 führt somit bei einer thermischen Ausdehnung des Bauteils 2a und damit einer Stauchung der Bauteilnut 3a zu einer gleichbleibenden bzw. sogar verbesserten Abdichtung bei gering gehaltenen thermischen Spannungen. Ein Dichtelement 1 mit Dichtungsnuten 7 findet bevorzugt Anwendung zur Abdichtung eines Spaltes zwischen benachbarten Leitschaufeln 12 oder benachbarten Wandbauteilen 13 am Umfang der Gasturbinenanlage.3 shows an enlarged illustration of the sealing element 1 according to FIG. 2. The hot gas-carrying area 11 is the smooth one Surface 9b and the cooling gas area 8 the profiled surface 9a with sealing grooves 7 and sealing tips in between 20 facing. The sealing element 1 tapers from its central region 10 towards the respective ends 6a, 6b. The component groove 3a also tapers from the gap 5 in the component 2a, the guide vane plate 16 into it. The sealing grooves 7 have compared to a center line 4, which in particular a main axis 4a of the sealing element 1, one Angle of inclination α. This angle of inclination α is in the middle range at about 90 °, so that there the sealing grooves 7 in run essentially orthogonal to the center line 4. To the end 6a, the angle of inclination α of the sealing grooves 7 decreases, especially continuously. This makes it deformable the sealing element 1 in the case of thermal expansion, in particular compression of the component groove 3a. The Sealing element 1 thus leads to thermal expansion of the component 2a and thus a compression of the component groove 3a for a constant or even improved sealing with low thermal stresses. A sealing element 1 with sealing grooves 7 is preferably used for Sealing a gap between adjacent guide vanes 12 or adjacent wall components 13 on the circumference of the gas turbine system.

Claims (11)

  1. Sealing element (1) for sealing a gap (5) which may be formed between two components (2a, 2b) movable thermally relative to one another and each having a component groove (3a, 3b), the said sealing element being directed along a main line (21) and, in a cross-section essentially perpendicular to the main line (21), having a middle region (10) arranged between a first end (6a) and a second end (6b), characterized in that the middle region (10) has a first surface (9a) which is toothed.
  2. Sealing element (1) according to Claim 1, with a second surface (9b) which is located opposite the first surface (9b) in respect of the centre line (4) and which is smooth.
  3. Sealing element (1) according to Claim 1 or 2, with a plurality of sealing grooves (7) which are each inclined at an angle of inclination (α) of 50° to 90° relative to the centre line (4).
  4. Sealing element (1) according to Claim 3, in which the sealing grooves (7) are inclined so as to ascend towards the middle region (10).
  5. Sealing element (1) according to Claim 3 or 4, in which the sealing grooves (7) have a smaller angle of inclination (α) at the ends (6a, 6b) than in the middle region (10), the said angle of inclination (α) amounting particularly to 90° in the middle region.
  6. Sealing element (1) according to one of the preceding claims, which narrows from the middle region (10) towards the ends (6a, 6b).
  7. Sealing element (1) according to one of the preceding claims, in a gas turbine plant (22) with a hot-gas region (11) and with a cooling-gas region (8), to be sealed off from the latter, for the cooling of guide blades (12) of the gas turbine plant (22), the said sealing element engaging into a component groove (3a) of a first component (2a) and into a component groove (3b) of a second component (2b), in particular a guide blade (12) or a wall component (13), adjacent to the first component (2a), a gap (5) being formed between the components (2a, 2b).
  8. Sealing element (1) according to Claim 7, in which the end (6a, 6b) to be introduced into the respective component groove (3a, 3b) has a slight excess in relation to the component groove (3a, 3b).
  9. Sealing element (1) according to Claim 7 or 8, which engages into a component groove (3a, 3b) which narrows away from the gap (5) into the component (12, 13).
  10. Sealing element (1) according to Claim 7, 8 or 9, in which the first surface (9a) faces the cooling-gas region (8).
  11. Gas turbine plant (22) with a hot-gas region (11) and with a cooling-gas region (8), to be sealed off from the latter, for the cooling of guide blades (12), the regions (8, 11) being separated from one another by a plurality of components (2a, 2b) arranged in the circumferential direction and in the axial direction, and at least a first component (2a) and a second component (2b) being spaced in the circumferential direction by means of a gap (5) and each having a component groove (3a, 3b) which faces the gap (5), characterized in that a toothed sealing element (1) is arranged in the component groove (3a, 3b)so as to seal the gap.
EP96942252A 1995-09-29 1996-09-27 Sealing element for sealing a gap and gas turbine facility Expired - Lifetime EP0852659B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19536535 1995-09-29
DE19536535 1995-09-29
PCT/DE1996/001861 WO1997012125A2 (en) 1995-09-29 1996-09-27 Sealing element for sealing a gap and gas turbine facility

Publications (2)

Publication Number Publication Date
EP0852659A2 EP0852659A2 (en) 1998-07-15
EP0852659B1 true EP0852659B1 (en) 2002-04-03

Family

ID=7773719

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96942252A Expired - Lifetime EP0852659B1 (en) 1995-09-29 1996-09-27 Sealing element for sealing a gap and gas turbine facility

Country Status (6)

Country Link
US (1) US5975844A (en)
EP (1) EP0852659B1 (en)
JP (1) JP3898225B2 (en)
DE (1) DE59609029D1 (en)
RU (1) RU2162556C2 (en)
WO (1) WO1997012125A2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2407641A1 (en) 2010-07-13 2012-01-18 Siemens Aktiengesellschaft Sealing element for sealing a gap and sealing arrangement
WO2014146954A1 (en) 2013-03-21 2014-09-25 Siemens Aktiengesellschaft Sealing element for sealing a gap
WO2014146955A1 (en) 2013-03-21 2014-09-25 Siemens Aktiengesellschaft Sealing element for sealing a gap
WO2014146866A1 (en) 2013-03-20 2014-09-25 Siemens Aktiengesellschaft Sealing element for sealing a gap and corresponding gas turbine
EP2915960A1 (en) 2014-03-07 2015-09-09 Siemens Aktiengesellschaft Sealing assembly for sealing a gap between two components lying flat next to each other at room temperature
EP2915959A1 (en) 2014-03-07 2015-09-09 Siemens Aktiengesellschaft Sealing assembly for sealing a gap between two components lying flat next to each other at room temperature
EP3000983A1 (en) 2014-09-29 2016-03-30 Siemens Aktiengesellschaft Sealing assembly for sealing a gap between two components that lay flat next to each other at the gap at room temperature and method for mounting and dismantling the same
EP4074941A1 (en) 2021-04-13 2022-10-19 Siemens Energy Global GmbH & Co. KG Sealing strip element and sealing arrangement comprising said sealing strip element
EP4137670A1 (en) 2021-08-19 2023-02-22 Siemens Energy Global GmbH & Co. KG Sealing device with displaceable abutment
WO2023020748A1 (en) 2021-08-19 2023-02-23 Siemens Energy Global GmbH & Co. KG Sealing device with displaceable abutment

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69818406T2 (en) * 1997-06-04 2004-07-01 Mitsubishi Heavy Industries, Ltd. GASKET STRUCTURE BETWEEN GAS TURBINE DISCS
DE50007554D1 (en) * 1999-03-24 2004-09-30 Siemens Ag Ladder and ladder crane for a flow machine, as well as a component for limiting a flow channel
EP1118806A1 (en) * 2000-01-20 2001-07-25 Siemens Aktiengesellschaft Thermally charged wall structure and method to seal gaps in such a structure
JP2002201913A (en) * 2001-01-09 2002-07-19 Mitsubishi Heavy Ind Ltd Split wall of gas turbine and shroud
US6568692B2 (en) * 2001-03-02 2003-05-27 Honeywell International, Inc. Low stress seal
GB0108398D0 (en) * 2001-04-04 2001-05-23 Siemens Ag Seal element for sealing a gap and combustion turbine having a seal element
US7080513B2 (en) * 2001-08-04 2006-07-25 Siemens Aktiengesellschaft Seal element for sealing a gap and combustion turbine having a seal element
GB2385642B (en) * 2001-12-22 2004-01-14 Alstom Membrane seals
DE10209295B4 (en) * 2002-03-01 2010-12-09 Alstom Technology Ltd. Gap seal in a gas turbine
US6733234B2 (en) 2002-09-13 2004-05-11 Siemens Westinghouse Power Corporation Biased wear resistant turbine seal assembly
US6883807B2 (en) 2002-09-13 2005-04-26 Seimens Westinghouse Power Corporation Multidirectional turbine shim seal
US7562880B2 (en) * 2004-02-09 2009-07-21 Siemens Energy, Inc. Seal usable between thermally movable components
JP4495481B2 (en) * 2004-02-18 2010-07-07 イーグル・エンジニアリング・エアロスペース株式会社 Sealing device
DE102004016467A1 (en) * 2004-03-31 2005-10-20 Alstom Technology Ltd Baden Gap seal for sealing a gap between two adjacent components
US20050242526A1 (en) * 2004-04-30 2005-11-03 Stefan Dahlke Hot gas seal
US8714565B1 (en) 2005-01-27 2014-05-06 Parker-Hannifim Corporation Seal
WO2006087267A1 (en) * 2005-02-15 2006-08-24 Alstom Technology Ltd Sealing element for use in turbomachinery
US7527472B2 (en) * 2006-08-24 2009-05-05 Siemens Energy, Inc. Thermally sprayed conformal seal
WO2008069607A2 (en) 2006-12-08 2008-06-12 Lg Electronics Inc. Complex washing machine and controlling method for the same
GB2449493B (en) * 2007-05-25 2009-08-12 Rolls Royce Plc Vibration damper assembly
US8206087B2 (en) 2008-04-11 2012-06-26 Siemens Energy, Inc. Sealing arrangement for turbine engine having ceramic components
US7824150B1 (en) * 2009-05-15 2010-11-02 Florida Turbine Technologies, Inc. Multiple piece turbine airfoil
US8322977B2 (en) * 2009-07-22 2012-12-04 Siemens Energy, Inc. Seal structure for preventing leakage of gases across a gap between two components in a turbine engine
US8585354B1 (en) * 2010-01-19 2013-11-19 Florida Turbine Technologies, Inc. Turbine ring segment with riffle seal
US9534500B2 (en) * 2011-04-27 2017-01-03 Pratt & Whitney Canada Corp. Seal arrangement for segmented gas turbine engine components
US8562000B2 (en) * 2011-05-20 2013-10-22 Siemens Energy, Inc. Turbine combustion system transition piece side seals
EP2538031A1 (en) * 2011-06-22 2012-12-26 Siemens Aktiengesellschaft Rotor with sealing element for a stationary gas turbine
US20130028713A1 (en) * 2011-07-25 2013-01-31 General Electric Company Seal for turbomachine segments
GB201117084D0 (en) * 2011-10-05 2011-11-16 Rolls Royce Plc Strip seals
DE102013205922B4 (en) * 2013-04-04 2016-09-29 MTU Aero Engines AG Apparatus and method for fastening sealing elements
US9581036B2 (en) 2013-05-14 2017-02-28 General Electric Company Seal system including angular features for rotary machine components
US9714580B2 (en) 2013-07-24 2017-07-25 United Technologies Corporation Trough seal for gas turbine engine
EP3039269B1 (en) * 2013-08-29 2020-05-06 United Technologies Corporation Gas turbine engine and assembly method
EP3047102B1 (en) 2013-09-16 2020-05-06 United Technologies Corporation Gas turbine engine with disk having periphery with protrusions
US10301958B2 (en) 2013-09-17 2019-05-28 United Technologies Corporation Gas turbine engine with seal having protrusions
US10550706B2 (en) * 2013-12-12 2020-02-04 United Technolgies Corporation Wrapped dog bone seal
WO2015105654A1 (en) 2014-01-08 2015-07-16 United Technologies Corporation Clamping seal for jet engine mid-turbine frame
US9719427B2 (en) * 2014-01-21 2017-08-01 Solar Turbines Incorporated Turbine blade platform seal assembly validation
US9416675B2 (en) * 2014-01-27 2016-08-16 General Electric Company Sealing device for providing a seal in a turbomachine
EP2907977A1 (en) * 2014-02-14 2015-08-19 Siemens Aktiengesellschaft Component that can be charged with hot gas for a gas turbine and sealing assembly with such a component
CN104929700B (en) * 2015-06-05 2016-03-16 赵军 The multi-section combined comb tooth of obturaging of a kind of screw type
US9810087B2 (en) 2015-06-24 2017-11-07 United Technologies Corporation Reversible blade rotor seal with protrusions
US10822988B2 (en) * 2015-12-21 2020-11-03 Pratt & Whitney Canada Corp. Method of sizing a cavity in a part
US10648479B2 (en) 2017-10-30 2020-05-12 United Technologies Corporation Stator segment circumferential gap seal
EP3667132A1 (en) * 2018-12-13 2020-06-17 Siemens Aktiengesellschaft Seal assembly for a split housing
FR3100274B1 (en) * 2019-09-04 2022-05-06 Safran Aircraft Engines Distributor for gas turbine

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1816293A (en) * 1925-09-30 1931-07-28 William F Oberhuber Method of making high pressure steam joints
US2991045A (en) * 1958-07-10 1961-07-04 Westinghouse Electric Corp Sealing arrangement for a divided tubular casing
US3341172A (en) * 1965-06-24 1967-09-12 Westinghouse Electric Corp Fluid machine casing sealing structure
GB1493913A (en) * 1975-06-04 1977-11-30 Gen Motors Corp Turbomachine stator interstage seal
US4537024A (en) * 1979-04-23 1985-08-27 Solar Turbines, Incorporated Turbine engines
JPS58185903A (en) * 1982-04-23 1983-10-29 Hitachi Ltd Steam turbine casing
US4452462A (en) * 1983-10-06 1984-06-05 Gray Tool Company Temperature resistant joint packing with E-shaped spring seal
US5058906A (en) * 1989-01-19 1991-10-22 Vetco Gray Inc. Integrally redundant seal
US5158430A (en) * 1990-09-12 1992-10-27 United Technologies Corporation Segmented stator vane seal
US5221096A (en) * 1990-10-19 1993-06-22 Allied-Signal Inc. Stator and multiple piece seal
US5374161A (en) * 1993-12-13 1994-12-20 United Technologies Corporation Blade outer air seal cooling enhanced with inter-segment film slot
US5586773A (en) * 1995-06-19 1996-12-24 General Electric Company Gas-path leakage seal for a gas turbine made from metallic mesh
US5509669A (en) * 1995-06-19 1996-04-23 General Electric Company Gas-path leakage seal for a gas turbine

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2407641A1 (en) 2010-07-13 2012-01-18 Siemens Aktiengesellschaft Sealing element for sealing a gap and sealing arrangement
WO2012007158A1 (en) 2010-07-13 2012-01-19 Siemens Aktiengesellschaft Sealing element for sealing a gap
WO2012007506A1 (en) 2010-07-13 2012-01-19 Siemens Aktiengesellschaft Seal arrangement for sealing a gap, and sealing element for this purpose
US9382846B2 (en) 2010-07-13 2016-07-05 Siemens Aktiengesellschaft Sealing element for sealing a gap
WO2014146866A1 (en) 2013-03-20 2014-09-25 Siemens Aktiengesellschaft Sealing element for sealing a gap and corresponding gas turbine
WO2014146954A1 (en) 2013-03-21 2014-09-25 Siemens Aktiengesellschaft Sealing element for sealing a gap
WO2014146955A1 (en) 2013-03-21 2014-09-25 Siemens Aktiengesellschaft Sealing element for sealing a gap
DE102013205031A1 (en) 2013-03-21 2014-09-25 Siemens Aktiengesellschaft Sealing element for sealing a gap
DE102013205028A1 (en) 2013-03-21 2014-09-25 Siemens Aktiengesellschaft Sealing element for sealing a gap
WO2015132013A1 (en) 2014-03-07 2015-09-11 Siemens Aktiengesellschaft Sealing arrangement for sealing a gap between two components which bear flat against one another on the gap side at room temperature
EP2915959A1 (en) 2014-03-07 2015-09-09 Siemens Aktiengesellschaft Sealing assembly for sealing a gap between two components lying flat next to each other at room temperature
WO2015132012A1 (en) 2014-03-07 2015-09-11 Siemens Aktiengesellschaft Turbine housing having a seal arrangement for sealing off a gap between two components which, at room temperature, bear areally against one another at the gap side
EP2915960A1 (en) 2014-03-07 2015-09-09 Siemens Aktiengesellschaft Sealing assembly for sealing a gap between two components lying flat next to each other at room temperature
CN106103905A (en) * 2014-03-07 2016-11-09 西门子股份公司 For sealing the sealing device at room temperature gap between two parts that clearance side flats against each other
US10202861B2 (en) 2014-03-07 2019-02-12 Siemens Aktiengesellschaft Sealing arrangement for sealing a gap between two components which bear flat against one another on the gap side at room temperature
EP3000983A1 (en) 2014-09-29 2016-03-30 Siemens Aktiengesellschaft Sealing assembly for sealing a gap between two components that lay flat next to each other at the gap at room temperature and method for mounting and dismantling the same
WO2016050640A1 (en) 2014-09-29 2016-04-07 Siemens Aktiengesellschaft Sealing arrangement for sealing a gap between two components lying with the gap sides flat against one another at room temperature and a method for assembling and disassembling same
EP4074941A1 (en) 2021-04-13 2022-10-19 Siemens Energy Global GmbH & Co. KG Sealing strip element and sealing arrangement comprising said sealing strip element
WO2022218735A1 (en) 2021-04-13 2022-10-20 Siemens Energy Global GmbH & Co. KG Sealing strip element and sealing arrangement comprising said sealing strip element
EP4137670A1 (en) 2021-08-19 2023-02-22 Siemens Energy Global GmbH & Co. KG Sealing device with displaceable abutment
WO2023020748A1 (en) 2021-08-19 2023-02-23 Siemens Energy Global GmbH & Co. KG Sealing device with displaceable abutment

Also Published As

Publication number Publication date
JPH11511535A (en) 1999-10-05
WO1997012125A2 (en) 1997-04-03
WO1997012125A3 (en) 1997-06-19
US5975844A (en) 1999-11-02
JP3898225B2 (en) 2007-03-28
DE59609029D1 (en) 2002-05-08
RU2162556C2 (en) 2001-01-27
EP0852659A2 (en) 1998-07-15

Similar Documents

Publication Publication Date Title
EP0852659B1 (en) Sealing element for sealing a gap and gas turbine facility
DE69937652T2 (en) Brush seal for a turbo machine
EP0906494B1 (en) Turbine shaft and process for cooling it
DE60201467T2 (en) Gas turbine combustor made of composite material with ceramic matrix
EP1664489B1 (en) Gas turbine comprising a ring-shaped sealing means
DE3520208C2 (en) Combustion device in a hot gas engine, in particular a Stirling engine
DE60212760T2 (en) Turbine with variable inlet geometry
DE3232925C2 (en)
DE19620828C1 (en) Steam turbine shaft incorporating cooling circuit
EP0856639A2 (en) Nozzle ring for a radial turbine
EP3548705B1 (en) Turbocharger
EP1418319A1 (en) Gas turbine
DE2812051A1 (en) RING SEAL FOR A GAS TURBINE ENGINE
DE3428892A1 (en) Vane and sealing gap optimization device for compressors of gas turbine power plants, in particular gas turbine jet power plants
DE3243422A1 (en) HOUSING FOR TURBO MACHINES
EP1022437A1 (en) Construction element for use in a thermal machine
EP1848904B1 (en) Sealing element for use in turbomachinery
EP0122872B1 (en) Medium pressure steam turbine for a high temperature steam plant with intermediate reheating
DE102010037844A1 (en) Fuel nozzle seal spacer and method for its installation
DE4017861A1 (en) CONDUCTING WREATH FOR A GAS TURBINE
EP1056931B1 (en) Sealing device and use of a sealing device
WO1989007194A1 (en) Turbine for an exhaust gas turbocharger
EP1118806A1 (en) Thermally charged wall structure and method to seal gaps in such a structure
DE602004001306T2 (en) External air sealing arrangement
EP1268981B1 (en) Turbine installation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980320

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE ES FR GB IT LI SE

17Q First examination report despatched

Effective date: 20001218

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59609029

Country of ref document: DE

Date of ref document: 20020508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020703

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020618

ET Fr: translation filed
ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021030

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030106

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150909

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150910

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150924

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20151120

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59609029

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20160926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20160926