EP0852563A1 - Separateur a courroie de retenue pour alimentateur - Google Patents

Separateur a courroie de retenue pour alimentateur

Info

Publication number
EP0852563A1
EP0852563A1 EP95933924A EP95933924A EP0852563A1 EP 0852563 A1 EP0852563 A1 EP 0852563A1 EP 95933924 A EP95933924 A EP 95933924A EP 95933924 A EP95933924 A EP 95933924A EP 0852563 A1 EP0852563 A1 EP 0852563A1
Authority
EP
European Patent Office
Prior art keywords
assembly
document
belt
path
documents
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95933924A
Other languages
German (de)
English (en)
Other versions
EP0852563A4 (fr
EP0852563B1 (fr
Inventor
Melvin T. Kerstein
Thomas Faber
David D. Filicicchia
Kenneth L. Guenther
Joseph Kalika
George K. Rabindran
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bell and Howell Co
Original Assignee
Bell and Howell Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bell and Howell Co filed Critical Bell and Howell Co
Priority claimed from PCT/US1995/012175 external-priority patent/WO1997011901A1/fr
Publication of EP0852563A1 publication Critical patent/EP0852563A1/fr
Publication of EP0852563A4 publication Critical patent/EP0852563A4/fr
Application granted granted Critical
Publication of EP0852563B1 publication Critical patent/EP0852563B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Definitions

  • the present invention relates to automated sorting apparatus used to rapidly handle and sort large volumes of documents, and specifically to an apparatus for separating single pieces of so-called "flat mail" from large groups of such mail, even in situations when the mail is randomly collated as to size and type.
  • Flat mail or "flats” are terms used to refer to mail other than normal letter-sized envelopes, and includes magazines, oversized envelopes, and thin mailer sheets which are folded over in half, thirds, or quarters, and fastened by a staple, tape or adhesive.
  • Presently, such mail requires a significant amount of handling by Postal Service personnel, due to the inability of commonly available automated mail handling equipment to quickly separate individual pieces of flat mail for reading and subsequent sorting.
  • Flats, as well as letter-sized envelopes, are usually fed in horizontal stacks of vertically oriented pieces to automated machinery, which separates or singulates individual pieces from the stack, positions each piece for manual or automatic reading of the Zip Code, and subsequent sorting of each piece to a bin corresponding to the Zip Code or a portion thereof, such as the last three digits. Regardless of whether the reading is done manually or automatically, the separation equipment must properly separate and position each document for fast and efficient reading without jamming. Also, the passage of "doubles", or two pieces temporarily stuck together, through the separation path is to be avoided.
  • the present invention provides a flat mail separator and singulation apparatus for high volume mail processing which meets the above-identified needs by receiving an array of shingled documents from a document feeder, holding the shingled array at an entrance nip, separating a single document from the shingled array and advancing the separated document in a vertical orientation along a document path at high velocity. Additionally, the present invention maintains the ability to separate documents while processing a high volume of mail by distributing the wear which typically occurs at certain locations in the separator device.
  • the present belt separator apparatus includes a moving first assembly for frictionally engaging and advancing one of the plurality of documents along a document conveying path, and a second assembly having a moving element for frictionally engaging and halting the advance of the remainder of the plurality of documents.
  • the first assembly and second assembly each include a plurality of belts, and are disposed in juxtaposition whereby the one document is gripped between the first assembly and second assembly and advanced along the path between the two assemblies under the influence of the first assembly.
  • the moving element of the second assembly includes an endless hold back belt forming an inner reach portion along the document conveying path for halting the advance of the remainder of the documents and an arrangement for continuously retrogressing portions of the endless belt through the inner reach portion to distribute wear of the endless belt along the entire length of the belt.
  • the belts of the moving and stationary elements are vertically spaced relative to each other such that they are interleaved, and contact the front and back surfaces, respectively, of the one document to provide a column strength to the one document over a substantial surface area as the document advances through the apparatus. In this manner, portions of the one document are prevented from being crimped between the first assembly and the second assembly element by denying the document lateral space where a crimp could form.
  • the apparatus preferably includes an accelerator mechanism for inducing a high velocity to the one document in the path after it has been separated from the shingled array.
  • the one document is subsequently passed to additional handling equipment. Once the first document of the shingled array is advanced along the path, each document of the array is similarly advanced seriatim.
  • a sensing mechanism is provided to monitor the number of documents in the apparatus and to control the document feeder appropriately to maintain a steady flow of shingled documents into the apparatus Brief Description of the Drawings
  • Fig. 1 is an overhead plan view of the belt separator of the invention
  • Fig. IA is a section taken along the line A-A of Fig. 1 and in the direction indicated generally;
  • Fig. IB is a section taken along the line B-B of Fig. 1 and the direction indicated generally;
  • Fig. IC is a section taken along the line C-C of Fig. 1 and in the direction indicated generally;
  • Fig. 2 is a front elevational view of the apparatus of Fig. 1 in partial section;
  • Fig. 3 is a section taken along the line of 3-3 of Fig. 1 and in the direction indicated generally;
  • Fig. 4 is a diagrammatic overhead plane view of a representative shingled array of four documents indicated at the entrance nip of the present apparatus.
  • the separator 10 includes a support frame 12 preferably having a configuration which facilitates integration with other conventional mail handling and sorting apparatus.
  • pieces of flat mail such as documents, flats, envelope or the like, generally designated at 14, are advanced in a left-to-right direction as seen from a front 16 of the separator 10.
  • a document feeder 18 is located just to the left of the apparatus 10 and is contemplated to be any one of various designs well known to skilled practitioners.
  • a preferred feeder 18 (best seen in Fig. 3) includes at least one conically shaped singling disk 20 which rotates axially in the direction indicated by arrow 22.
  • the document feeder 18 receives horizontal stacks of vertically positioned flat mail pieces 14, each of which is oriented so that the addressed side faces the front 16 of the separator 10. Through the action of the disk 20 and a back up roller 24, the feeder 18 creates a shingled array 26 of the leading pieces or documents 14 of flat mail, designated 14a and 14b, respectively which are shingled so that the front most document 14a is advanced at a faster velocity that the subsequent document 14b in the shingled array. Although only three shingled documents 14 are depicted in Fig. 1; it will be appreciated the additional documents are normally provided in the array.
  • the shingled array 26 encounters the separator 10 by being advanced into a path 28 defined by a moving first assembly 30 and a second assembly 34.
  • An entrance portion 36 of the path 28 is wedge or triangular shaped as viewed from above, due to the relative distances between corresponding portions of the first assembly 30 and second assembly 34. To the right of the entrance portion 36, and beginning at an entrance nip 38, the path 28 is generally linear through the rest of the separator 10.
  • the moving first assembly 30 is designed for frictionally engaging and individually advancing each one of the documents 14 in the shingled array 26 along the path 28, while the second assembly 34 is designed for supporting each advanced document 14a, and also for frictionally engaging and halting the advance of the remaining documents, represented by the documents 14b, such that only one document at a time is passed through the separator 10.
  • the second assembly 34 provides the normal force to hold the document 14a against the first assembly 30 causing the document to advance through the separator 10.
  • the first assembly 30 preferably includes a pair of document drive belts 40, which are made of resilient, durable material and preferably have a textured outer surface 44 to enhance friction contact between the belts 40 and the documents 14. Although only two drive belts 40 are provided, depending on the application and size of the apparatus 10, additional drive belts are contemplated.
  • the drive belts 40 are disposed in vertically spaced, parallel orientation relative to each other around a first or outer drive spindle 46, a second or inner drive spindle 48, three idler spindles respectively designated 50, 52 and 54, and tensioning roller assembly 56.
  • the outer drive spindle 46 has a pair of vertically spaced drive rollers 58
  • the inner drive spindle 48 has a correspondingly spaced pair of drive rollers 60
  • each of the idler spindles 50, 52, 54 has a correspondingly spaced pair of idler rollers 62.
  • the tensioning roller assembly 56 also has a correspondingly spaced pair of idler rollers 64.
  • the belts 40 of the first assembly 30 thus define a vertical contact surface for engaging a front surface 66 of each of the documents 14.
  • a motor 68 drives the outer drive spindle 46 and inner drive spindle through a drive belt 72 so that the drive belts 40 follow a clockwise movement indicated by the arrows 70.
  • idler spindle 50 is mounted more closely adjacent the path 28 than spindle 52 to extend the central position of belts 40 outward as they pass adjacent the second assembly 34, thereby increasing the frictional contact between the belts 40 and the documents 14 as the documents pass through this point of the separator 10.
  • the idler spindle 54 is linearly and spatially displaced and slightly offset forwardly from spindle 52 to define the generally triangular shaped entrance portion 36.
  • the first assembly 30 is at a first, relatively distant position relative to the second assembly 34, while at the spindles 48, 50, 52 the first assembly and second assembly are in closely adjacent relationship to each other.
  • a spacer roller 73 may be placed about spindle 54 between the rollers 62.
  • the spindles 50, 52, 54 are mounted to the frame 12 by brackets 74 equipped with bearings 76 as are well known to skilled practitioners.
  • the tensioning roller assembly 56 selectively adjusts and maintains the tension of the drive belts 40.
  • Each of the idler rollers 64 are mounted to one end of a corresponding pivot arm 78 with the other ends of the pivot arms pivotally mounted to a vertical post 80 which is fixedly attached to the support frame 12. Attached to the frame 12 and located along the length of the pivot arms 78 is a vertical stub post 84.
  • a positioning bolt 86 for each of the pivot arms 78 is threaded through the member 84 with the end of the bolts contacting the pivot arms to selectively pivot the pivot arms and force the idler rollers 64 against the drive belts 40 to selectively tension the drive belts 40.
  • a locking nut 88 may be threaded about the positioning bolt 86 to lock the position of the bolt once the desired tension in the drive belts 40 is achieved.
  • the second assembly 34 includes an endless holdback belt 90 with an inner reach 94 extending generally along the path 28.
  • the belt 90 is driven so that the inner reach 94 moves from right to left as viewed in Fig. 1, in a direction opposite the direction of advancement of the singulated document 14a or in a retrogressing direction.
  • the belt 90 moves at a slow speed such as approximately 6 inches per minute.
  • the second assembly 34 also includes a vertical plate 96 located on the left in Fig.l and vertical plate 98 located along the right in Fig. 1.
  • Each of the vertical plates 96, 98 is secured to the support frame 12 and has an inner end 96a and 98a located closely adjacent the path 28.
  • the left plate 96 is angled relative to the path 28 so that the inner end 96a is upstream of the outer end 96b.
  • the right plate 98 is angled opposite to the left plate 96 with the inner end 98a downstream of the outer end 98b.
  • a pair of stationary hold back belts 100, 102 are mounted horizontally and extend from the left plate 96 to the right plate 98, facing the front 16 the separator 10 in a generally vertically spaced relationship relative to each other.
  • a first end 104 is wrapped around the inner end 96a of the left support plate 96 to avoid creasing or folding and is secured to the rear side 106 of the plate 96.
  • a second end 108 of each belt 100, 102 is wrapped around the inner end 98a of the right plate 98 and is secured to one end of a biasing spring 110.
  • each of the biasing springs 110 is attached to a hook bolt 112 which is fixedly anchored to a vertical support post 114 attached to the support frame 12.
  • the springs 110 maintain a predetermined tension on the belts 100, 102 which keeps them taught, yet provides slack when the force of spring 110 is overcome, such as when a thick document is advanced along the path 28.
  • idler rollers 116 interdisposed between the belts 100, 102 and journaled to the inner end 96a of the left plate 96 and inner end 98a of the right plate 98 are idler rollers 116.
  • the idler rollers 116 support the moving belt 90 to form the ends 118a, 118b of the inner reach portion 94.
  • the moving belt 90 also extends around a drive spindle 120 and five idler spindles 122, 124, 126, 128 and 130.
  • the drive spindle 120 has a roller 134 and the idler spindles 122, 124, 126, 128 and 130 have idler rollers 136.
  • the idler spindles 122, 124, 126, 128 130, and drive spindle 120 are generally alternately disposed on the left and right sides of the second assembly 34 to lengthen the total length of the moving belt 90 relative to the length of the inner reach 94.
  • a motor 138 drives the drive spindle 120 to rotate in the clockwise direction thereby moving the belt 90 in the direction of arrow 139 and continuously retrogresses the portion of the belt 90 forming the inner reach 94 and pulling that portion out of the path of the documents to distribute the wear over the entire length of the belt 90.
  • the upper and lower stationary belts 100, 102 define a vertical plane which is substantially parallel to the plane defined by the drive belts 40 along the path 28.
  • the idler roller 116, rotatably mounted to the left plate 96 is disposed within a notch 140 formed in the inner end 96a of the plate 96 so that the left end 118a of the inner reach 94 is slightly recessed from the plane defined by belts 100, 102.
  • the idler roller 116, rotatably mounted to the right plate 98 is disposed so that the moving belt 90 is between and is substantially vertically aligned with the stationary upper and lower belts 100, 102.
  • the coefficient of friction ( ⁇ ) of the upper and lower belts 100, 102 is preferably less than the ⁇ of the middle moving belt 90 thus making it easier for the document to glide along the upper and lower belts compared to the moving belt .
  • the differential in ⁇ between the upper and lower stationary belts 100, 102 and the middle belt 90 is useful due to the fact that these belts perform three basic functions: a) they offer a lateral normal force for the drive belts 40 to work against; b) they constrain and support pieces of flat mail 14 with a column strength so they cannot roll or be folded, bent or crumpled; and c) they provide a hold back force so that "doubles" or two documents temporarily stuck together will not proceed past the nip 38 (Fig. 1) .
  • the moving drive belts 40 have a higher ⁇ on the outer surface 44 than the highest ⁇ of the stationary belts 100, 102 and moving belt 90. This relationship is important to enable the drive belts 40 to overcome the holding force of the hold back belts 90, 100, 102 and to advance documents along the path 28.
  • the upper and lower stationary belts 100, 102 are preferably composed of a slick material with a very low coefficient of friction.
  • the slick material may be nylon or a teflon coated material or the like.
  • the wear caused by the frictional rubbing of the documents 14a on the hold back belt 90 is distributed over the length of the belt 90 by moving the belt around the drive spindle 120 and idler spindles 122, 124, 126,128, 130 so that the portion of the belt forming the inner reach 94 is changed. Also, to provide a long length of the hold back belt 90 for distribution of the wear, the belt is wound around the drive spindle 120 and idler spindles 124, 126, 128 and 130 alternately disposed on the left and right sides of the second assembly 34, as seen in Fig. 1.
  • the second assembly 34 may include a rotary brush 148 which brushes the surface of the belt 90 after the belt has travelled through the inner reach portion 94.
  • the rotary brush 148 may be driven by a motor 149 and is preferably disposed opposite idler spindle 122 with the corresponding idler roller 136 offering a lateral normal force to work against.
  • One of the idler spindles 128 is rotatably mounted on one end of a pivot arm 150 with the other end of the pivot arm secured to the frame 12.
  • the pivot arm 150 is biased by a spring 152 attached to the outer end 96b of the left support plate 96.
  • the spring maintains a predetermined tension on the belt 90 which keeps the belt taught, yet provides slack when the force of the spring is overcome, such as when a thick document is advanced along the path 28.
  • the idler spindles 122, 124, 126 and 128 are rotatably mounted to the frame 12 by bearings 158 housed in the frame 12 as is well known to skilled practitioners.
  • an accelerator roller assembly is positioned to engage individual flat documents 14, and initially the document 14a, in the path 28 to complete the separation from the shingled array 26.
  • the accelerator roller assembly 160 is provided to increase the velocity of the lead document 14a to be processed by additional handling equipment such as a high speed conveying apparatus 162.
  • the accelerator roller assembly 160 includes two opposing pairs of driven or powered rollers which straddle the path to form a nip 164.
  • the first pair of driven rollers 168 are mounted on a spindle 169 within the inner drive spindle 48.
  • the driven rollers 168 may be driven by two different driven mechanisms.
  • the driven rollers 168 may be driven through a one way clutch and gear ratio connection between spindle 179 and the inner drive spindle 48 so that rotation of the idler rollers 60 by movement of the drive belts also drives the accelerator rollers 168 at a slightly higher rotational speed than the rollers 60.
  • the clutch connection allows the accelerator rollers 168 to be rotated independently of the idler rollers 136 by a suitable drive means such as a motor 170 through a drive belt 172 extending about spindle 169.
  • the rollers 168 are vertically spaced on the spindle 48 to provide the accelerated document with further column support, while being horizontally aligned so as not to interfere with the drive belts 40 or the hold back belts 90, 100, 102.
  • the circumferential surfaces of the rollers 168 project into the document path 28 farther than the outer surface 44 of the drive belts 40 as the drive belts extend about the idler rollers 60, to engage the front surface 16 of the document. This arrangement is preferred to prevent the drive belts 40 from engaging and holding back the document 14 when the accelerator rotors 168 are driven by the motor 170 and the drive belts 40 are stationary.
  • a second pair of accelerator drive rotors 174 include an upper accelerator roller 176 mounted to an upper spindle 178 and a lower roller 180 mounted to a lower spindle 182.
  • the upper spindle 178 and lower spindle 182 are respectively mounted to one end of corresponding pivot arms 184 and 186.
  • the other end of the upper and lower pivot arms 184, 186 are pivotally mounted to vertical spindle 188 and biased by springs 190 for engagement at the nip 164 as well known in the art.
  • the accelerator rollers 176, 180 are driven by the motor 170 through extension of drive belts 191 about the accelerator spindle 169, a pair of idler rollers 192 and spindle 188.
  • the rotation of spindle 188 rotates pullies 196, drive belts 198 and accelerator rollers 176, 178.
  • the separator apparatus 10 is also preferably provided with a sensor system, generally designated 200, for monitoring the presence of documents 14 in the path 28 so that a relatively constant flow of documents is advanced along the path.
  • a sensor system generally designated 200
  • the sensor system 200 may take many forms is as well known to skilled practioners, in the preferred embodiment the system includes a set of two (2) photocells 202 and 204 which are connected to control module, shown diagrammatically at 212.
  • the module 212 is also connected to a set of sensors shown diagrammatically at 206 and a control element (not shown) for the document feeder 18.
  • the photo cell 202 is preferably located in the high speed conveying apparatus 102 and straddles or throws the beam across the path 28 to detect a gap or spacing between documents. Such gap is indicative of a lack of documents 14 in the path 28 and a signal generated by the photo cell 202 triggers a command by the control module 212 to activate the drive motor 170 to drive the accelerator roller assembly 160.
  • a signal by the photocell triggers a command by the control module to deactivate motor 170 and cease driving the accelerator rollers 168, 174.
  • the photo cell 204 is preferably located at the nip 164 formed by the accelerator roller assembly 160 and is also positioned to straddle the path 28.
  • the beam is interrupted which generates a signal to the control module 212 to deactivate the motor 168 stopping the drive belts 40 from advancing documents to the accelerator roller assembly 160.
  • the beam is not interrupted and the drive belts 40 engage and transport document 14a to the accelerator roller assembly 168.
  • the photo cells 206 and may include a plurality of photocells are preferably located from the document feeder to the entrance nip 38.
  • the photo cells 206 are positioned to straddle the path 28 and in dependence on whether the photo cells 206 are blocked and the drive belts are activated or stationary, the control module 212 activates or deactivates the document feeder 18.
  • the sensor system 200 will result in intermittent operation of the feeder 18 and resulting intermittent feeding of documents 14 onto the path 28.
  • the flow of documents along the path 28 will be relatively uniform.
  • other equivalent sensing devices commonly known in the art including, but not limited to encoders may be positioned in operational relationship to the separator 10 to achieve the above identified relatively constant flow of documents through the separator 10.
  • a transport roller assembly is generally designated at 216 and is positioned to engage flat documents being advanced by the accelerator roller assembly 160 and transport the documents through the space or gap between the singulator 10 and high speed conveying apparatus 102.
  • the transport roller assembly 216 is mounted just to the right of the accelerator roller assembly 160, however, other mounting positions are contemplated.
  • the transport roller assembly includes a driver roller 218 and an idler roller 220 which straddles the path 28 to form nip 224.
  • the driver roller 218 is attached to a spindle 226 and the roller and spindle are mounted to a pivot arm 228 pivotally secured to the frame 12.
  • the arm is biased for engagement at the nip 224 by a spring (not shown) as is well known in the art.
  • the driver roller 218 is driven by a drive belt 230 and pulley 232 which is driven by a drive means (not shown) forming a part of the high speed conveying apparatus 102.
  • the idler roller 220 is rotatably mounted to an "L" shaped bracket 236 and extends through a notch 238 (Fig. IB) formed in the right vertical support plate 98.
  • the bracket 236 is rotatably mounted to a vertical rod 240.
  • a spring 242 is attached to the bracket 236 with the other end of the spring operatively attached to hook post 112.
  • Each shingled array 26 includes a forward most lead document 14a which is moving faster than subsequent document as it reaches the entrance nip 38.
  • the front surface 66 of the document 14a would be engaged by the outer surface 44 of both drive belts 40. Since the ⁇ of the surface 44 is greater than the ⁇ between the first document 14a and the second document 14b, the document 14a is pulled forward toward the entrance nip 38 by the belts 40.
  • the second document 14b and any other documents in the array 26 engage hold back belts 90, 100, 102 of the second or hold back assembly 34.
  • the document feeder 18 pushes the array 26 toward the entrance nip 38. Since the document 14a is traveling along the path 26 at a greater velocity than the remainder of the array 26, it reaches the nip 38 first, and then is advanced into the portion 144 of the moving first assembly under the influence of belt 40.
  • the disposition of the drive belts 40 and the hold back belts 90, 100, 102 defines substantially vertical, opposer planar contact surfaces which extend over a substantial planar area relative to the front surface 66 and rear surface 146 expectively, of the document 14a being contacted by the moving belts 40 to move the document along the path 28.
  • both the drive belts and moving and stationary hold back belts combine to provide column strength to the documents 14 held therebetween as the documents are advanced along the path. This column support prevents each document from being bent, rolled, crumpled or otherwise damaged during the separation process for retaining each document in a confined spaced during advancement.
  • the hold back belts 90, 100, 102 conform to the shape of the document array 26 due to the biased mounting of the belts 100, 102 and the extension of the belt 90 about the idler spindle 130 mounted on the biased pivot arm 150.
  • These mounting arrangements provide the hold back belts 90, 100, 102 with the necessary slack to conform to documents of varying thicknesses.
  • the document occupies a significant portion of the lateral space between the moving first assembly 30 and the hold back assembly 34.
  • the position of the drive belts 40 ensures a positive engagement of the document between the first and second assemblies 30 and 34.
  • the drive belts 40 extend rearwardly across the path 28 into the plane defined by the hold back belts 90, 100, 102.
  • the positioning of the idler roller 62 mounted on spindle 52 provides a normal force which exerts a pressure on the held back document 14b which causes it to be engaged by the moving hold back belt 90.
  • This belt preferably has a higher ⁇ than the hold back belts 100, 102 and exerts a holding force on the document 14b, as well as any other documents in the array 26, as illustrated in Fig. 4.
  • the retrogressive movement of belt 90 is slow enough to prevent the moving of the array 26 out of the nip 38 during separation of the documents 14.
  • the placement of the spindle 50 closer to the path 28 than spindle 52 with both spindles having generally equal size rollers forces belts 40 toward hold back belts 90, 100, 102 to provide additional normal force along the operative length of belts 40 at portion 144 of the first assembly 30. This prevents slack in belts 40 between nip 38 and the drive roller 60, and maintains belts 40 in engagement with document 14a.
  • the rear surface 146 of the document rubs along the hold back belts 90, 100, 102.
  • the dragging of the document 14a creates little wear of the stationary hold back belts 100, 102 due to their low coefficient of friction ( ⁇ ) ; however, the dragging does generate a certain degree of wear on the hold back belt 90.
  • the dragging of the forward document 14a against the hold back belt 90 is primarily concentrated in or in close proximity to the portion 144 of the first assembly and with the high volume of documents typically being separated in the singulator 10, even a small degree of wear may eventually generate a wear area on the belt 90.
  • the second assembly 34 creates a continuous movement of the belt 90 in the direction of arrow 139 to continuously retrogress the length of belt forming the belt portion which extends along the path 28 to distribute the wear over the entire length of belt.
  • the moving drive belts 40 contact the front surface of document 14b and overcome the holding force of the hold back belt 90 to advance the document 14b into the path 28 in the same manner as the document 14a.
  • Each document 14 in the shingled array 26 will be similarly advanced seriatim through the separator 10 until, with the passage of the last document, a gap is sensed by the photocells 206 to trigger the feeder 18 to advance another array 26 to the entrance nip 38.
  • Documents 14 can be continually or intermediately fit through separator 10 depending upon the requirements of the equipment downstream of the separator. Referring to Figs. 1 and IC, an additional feature of the separator 10 is shown.
  • This feature relates to the distributing of the contact between the hold back belt 90 and the document 14a along the length of the document particularly when thick documents are being separated by the separator 10. It is believed that when a thick document 14a is separated and passes through the portion 144 between the entrance nip 38 and accelerator roller assembly 160, the contact force between hold back belt 90 and document 14a becomes concentrated at the forward and rearward edges of the document . Such a concentrated force may cause a high degree of wear on the belt 90.
  • the separator 10 includes a biasing roller, indicated at 260.
  • the assembly 260 includes a roller 262 composed of a material which may be compressed and offer a biasing force opposing the compression.
  • the roller 262 is mounted on spindle 264 such that the outer circumferential surface of the roller contacts the rear surface of the moving belt 90, as viewed from the front 16 of the separator 10. As the belt 90 is retrogressed through the document path 28, the roller 262 may rotate about the spindle to maintain contact with the belt 90, but offer little resistance to its movement. When a thick document 14a passes through the portion 144 and pushes the belt 90 rearward, the roller 262 contacts the rear surface and presses the belt 90 against the document 14a so that the contact force is distributed.

Abstract

Un équipement de séparation et de transport de documents comprend un premier ensemble (30) comportant des courroies mobiles (40) destinées à entrer en contact à friction avec l'un des documents et à le faire avancer le long d'un parcours, et un deuxième ensemble (34) comportant des courroies fixes (100, 102), et qui déplace en sens opposé une partie d'une courroie sans fin (90) le long du trajet, pour entrer en contact à friction avec le reste des documents et les maintenir. Le mouvement inverse de la courroie sans fin (90) répartit sur toute sa longueur l'usure subie du fait de l'entrée en contact avec les documents et de leur maintien. Les courroies mobiles (40) du premier ensemble (30) et les courroies (100, 102, 90) du deuxième ensemble (34) sont disposées en juxtaposition relative; le document en question est saisi entre le premier ensemble (30) et le deuxième (34), et déplacé vers l'avant sur le parcours, sous l'action du premier ensemble (30).
EP95933924A 1995-09-25 1995-09-25 eparatuer à courroie de retenue pour alimentateur Expired - Lifetime EP0852563B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1995/012175 WO1997011901A1 (fr) 1994-06-20 1995-09-25 Separateur a courroie de retenue pour alimentateur

Publications (3)

Publication Number Publication Date
EP0852563A1 true EP0852563A1 (fr) 1998-07-15
EP0852563A4 EP0852563A4 (fr) 2000-05-24
EP0852563B1 EP0852563B1 (fr) 2002-01-30

Family

ID=22249819

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95933924A Expired - Lifetime EP0852563B1 (fr) 1995-09-25 1995-09-25 eparatuer à courroie de retenue pour alimentateur

Country Status (3)

Country Link
EP (1) EP0852563B1 (fr)
AU (1) AU3640095A (fr)
DE (1) DE69525266T2 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4085929A (en) * 1977-01-04 1978-04-25 Nippon Electric Co., Ltd. Paper feeder including auxiliary belts for improving paper feeding
JPS6010271A (ja) * 1983-06-29 1985-01-19 Fuji Xerox Co Ltd 複写機用原稿搬送装置
JPS6017779A (ja) * 1983-07-12 1985-01-29 Fuji Xerox Co Ltd 複写機の清掃装置
US5074540A (en) * 1990-11-05 1991-12-24 Pitney Bowes Inc. Document singulating apparatus
US5244198A (en) * 1992-04-28 1993-09-14 Green Ronald J Gate forming member for sheet feeding apparatus
US5257777A (en) * 1991-10-31 1993-11-02 Joseph Kalika Belt separator for document singulation
US5456457A (en) * 1994-06-20 1995-10-10 Bell & Howell Company High speed separator with movable hold back belt for high speed flats feeder

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4085929A (en) * 1977-01-04 1978-04-25 Nippon Electric Co., Ltd. Paper feeder including auxiliary belts for improving paper feeding
JPS6010271A (ja) * 1983-06-29 1985-01-19 Fuji Xerox Co Ltd 複写機用原稿搬送装置
JPS6017779A (ja) * 1983-07-12 1985-01-29 Fuji Xerox Co Ltd 複写機の清掃装置
US5074540A (en) * 1990-11-05 1991-12-24 Pitney Bowes Inc. Document singulating apparatus
US5257777A (en) * 1991-10-31 1993-11-02 Joseph Kalika Belt separator for document singulation
US5244198A (en) * 1992-04-28 1993-09-14 Green Ronald J Gate forming member for sheet feeding apparatus
US5456457A (en) * 1994-06-20 1995-10-10 Bell & Howell Company High speed separator with movable hold back belt for high speed flats feeder

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 9, no. 127 (P-360), 31 May 1985 (1985-05-31) & JP 60 010271 A (FUJI XEROX KK), 19 January 1985 (1985-01-19) *
PATENT ABSTRACTS OF JAPAN vol. 9, no. 137 (P-363), 12 June 1985 (1985-06-12) & JP 60 017779 A (FUJI XEROX KK), 29 January 1985 (1985-01-29) *
See also references of WO9711901A1 *

Also Published As

Publication number Publication date
DE69525266D1 (de) 2002-03-14
DE69525266T2 (de) 2002-11-21
EP0852563A4 (fr) 2000-05-24
EP0852563B1 (fr) 2002-01-30
AU3640095A (en) 1997-04-17

Similar Documents

Publication Publication Date Title
JPS602115Y2 (ja) シ−ト処理装置
EP0906881B2 (fr) Appareil de séparation pour un système de traitement de courrier
US6270070B1 (en) Apparatus and method for detecting and correcting high stack forces
EP0003372B1 (fr) Dispositif d'alimentation pour séparer séquentiellement des documents, feuilles, coupons et analogues
CA2249482C (fr) Dispositif de poussee pour un systeme de traitement de courrier
EP0682635A1 (fr) Systeme d'alimentation pour distributeurs de billets de banque
US6267372B1 (en) Device for separating sheets in a pile
US5456457A (en) High speed separator with movable hold back belt for high speed flats feeder
US5257777A (en) Belt separator for document singulation
CA2131554C (fr) Empileuse d'articles en feuilles
JPH06504022A (ja) ペーパーシート送り装置
US5213318A (en) Signature gatherer with light detector misfeed sensors
EP0514441B1 (fr) Procede et appareil de distribution d'articles plats un par un a partir d'un empilage de ceux-ci
US4050690A (en) Document separator mechanism
US4560154A (en) Paper sheet feed-out device for a paper sheet counting apparatus
KR20070028242A (ko) 종이 시트 취출 장치
US5000088A (en) Document imprinting device
EP0852563B1 (fr) eparatuer à courroie de retenue pour alimentateur
JPS6218458B2 (fr)
US5730439A (en) Sheet feeder
JP2680981B2 (ja) 紙葉類搬送装置
US20040256788A1 (en) Feed Device for Stacks of Paper, Plastic Material or the Like
US5046713A (en) Document imprinting device
JPH0611972Y2 (ja) 紙葉類繰出し装置
JP2664555B2 (ja) シート材の送り装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980416

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

A4 Supplementary search report drawn up and despatched

Effective date: 20000406

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): DE FR GB IT NL

17Q First examination report despatched

Effective date: 20000828

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

RTI1 Title (correction)

Free format text: SEPARATOR WITH HOLD BACK BELT FOR FEEDER

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REF Corresponds to:

Ref document number: 69525266

Country of ref document: DE

Date of ref document: 20020314

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030924

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040925

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040925

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20060924

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20080401

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080926

Year of fee payment: 14

Ref country code: FR

Payment date: 20080917

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081031

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090925