EP0849529B1 - Ajutage d'entrée tangentiel - Google Patents

Ajutage d'entrée tangentiel Download PDF

Info

Publication number
EP0849529B1
EP0849529B1 EP19970310463 EP97310463A EP0849529B1 EP 0849529 B1 EP0849529 B1 EP 0849529B1 EP 19970310463 EP19970310463 EP 19970310463 EP 97310463 A EP97310463 A EP 97310463A EP 0849529 B1 EP0849529 B1 EP 0849529B1
Authority
EP
European Patent Office
Prior art keywords
fuel
combustion air
centerbody
cylindrical passage
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19970310463
Other languages
German (de)
English (en)
Other versions
EP0849529A3 (fr
EP0849529A2 (fr
Inventor
Timothy S. Snyder
William A. Sowa
Stephen K. Kramer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Technologies Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/771,408 external-priority patent/US5899076A/en
Priority claimed from US08/771,409 external-priority patent/US5896739A/en
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of EP0849529A2 publication Critical patent/EP0849529A2/fr
Publication of EP0849529A3 publication Critical patent/EP0849529A3/fr
Application granted granted Critical
Publication of EP0849529B1 publication Critical patent/EP0849529B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/002Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/30Arrangement of components
    • F05B2250/32Arrangement of components according to their shape
    • F05B2250/322Arrangement of components according to their shape tangential
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/07002Premix burners with air inlet slots obtained between offset curved wall surfaces, e.g. double cone burners

Definitions

  • This invention relates to low NOx premix fuel nozzles, and particularly to such nozzles for use in gas turbine engines.
  • NOx nitrous oxides
  • a linear array of orifices located on the outer scroll opposite the inner trailing edge injects fuel into the airflow at each inlet slot from a manifold to produce a uniform fuel air mixture before exiting into the combustor.
  • Further examples of a tangential entry fuel nozzle is shown in WO 96/19699 and WO 95/23316.
  • Premix fuel nozzles of this type have demonstrated low emissions of NOx relative to fuel nozzles of the prior art.
  • the nozzle experienced durability problems related to severe deterioration of the centerbody as a result of attachment of the flame to the centerbody.
  • the operational life of such nozzles when used in gas turbine engines has been limited.
  • What is needed is a method of combustion and a tangential entry nozzle that significantly reduces the tendency of the combustion flame to attach to the centerbody of a tangential entry nozzle, and tends to disgorge the flame if it does attach thereto.
  • the invention provides a method for burning fuel in the combustor of a gas turbine engine, as claimed in claim 1.
  • the invention provides a fuel nozzle as claimed in claim 3.
  • a method of combustion which prevents or reduces the tendency of the combustion flame to stabilise within a tangential entry nozzle is disclosed which comprises mixing fuel and air in a mixing zone within a fuel nozzle assembly, and combusting the mixture downstream of the throat of a combustor inlet port while isolating the combustion products from the mixed fuel and air within the nozzle at all operating conditions of the engine.
  • a tangential air entry fuel nozzle which has a longitudinal axis and two cylindrical-arc scrolls with the centerline of each offset from that of the other. Overlapping ends of these scrolls form an air inlet slot therebetween for the introduction of an air/fuel mixture into the fuel nozzle.
  • a combustor-end endplate has a central opening to permit air and fuel to exit into a combustor, while at the opposite end another endplate blocks the nozzle flow area.
  • the scrolls are secured between these endplates.
  • a frusto-conical centerbody is located between the scrolls coaxial with the axis.
  • the centerbody has a base which includes at least one air supply port extending therethrough, and first and second cylindrical members that have an internal passageway.
  • the frusto-conical member tapers towards, and terminates at a discharge orifice at the passageway of the first cylindrical member.
  • the passageway of the second cylindrical member is located within the frusto-conical member and has a diameter greater than the discharge orifice.
  • a fuel-lance that is coaxial with the axis and extends through the base and terminates within the second passageway provides fuel to the air flow in the centerbody.
  • a low NOx premix fuel nozzle 10 embodying the present invention includes a centerbody 12 within a scroll swirler 14.
  • the scroll swirler 14 includes first and second endplates 16,18, and the first endplate is connected to the centerbody 12 and is in spaced relation to the second endplate 18, which has a combustor inlet port 20 extending therethrough.
  • a plurality, and preferably two, cylindrical-arc scroll members 22, 24 extend from the first endplate 16 to the second endplate 18.
  • the scroll members 22, 24 are spaced uniformly about the longitudinal axis 26 of the nozzle 10 thereby defining a mixing zone 28 therebetween, as shown in Figure 2.
  • Each scroll member 22, 24 has a radially inner surface which faces the longitudinal axis 26 and defines a surface of partial revolution about a centerline 32, 34.
  • surface of partial revolution means a surface generated by rotating a line less than one complete revolution about one of the centerlines 32, 34.
  • Each scroll member 22 is in spaced relation to the other scroll member 24, and the centerline 32, 34 of each of the scroll members 22, 24 is located within the mixing zone 28, as shown in Figure 2.
  • each of the centerlines 32, 34 is parallel, and in spaced relation, to the longitudinal axis 26, and all of the centerlines 32, 34 are located equidistant from the longitudinal axis 26, thereby defining inlet slots 36, 38 extending parallel to the longitudinal axis 26 between each pair of adjacent scroll members 22, 24 for introducing combustion air 40 into the mixing zone 28.
  • Combustion supporting air 42 from the compressor passes through the inlet slots 36, 38 formed by the overlapping ends 44, 50, 48, 46 of the scroll members 22, 24 with offset centerlines 32, 34.
  • Each of the scroll members 22, 24 further includes a fuel conduit 52, 54 for introducing fuel into the combustion air 40 as it is introduced into the mixing zone 28 through one of the inlet slots 36, 38.
  • a first fuel supply line (not shown), which may supply either a liquid or gas fuel, but preferably gas, is connected to each of the fuel conduits 52, 54.
  • the combustor inlet port 20, which is coaxial with the longitudinal axis 26, is located immediately adjacent the combustor 56 to discharge the fuel and combustion air from the present invention into the combustor 56, where combustion of the fuel and air takes place.
  • the centerbody 12 has a base 58 that has at least one, and preferably a plurality, of air supply ports 60, 62 extending therethrough, and the base 58 is perpendicular to the longitudinal axis 26 extending therethrough.
  • the centerbody 12 also has an internal passageway 64 that is coaxial with the longitudinal axis 26 and discharges into the combustor inlet port 20.
  • the air passing through the internal passageway 64 which is preferably co-rotating with the combustion air entering through the inlet slots 36,38 but may be counter-rotating, may or may not be fuelled.
  • the internal passageway 64 includes a first cylindrical passage 66 having a first end 68 and a second end 70, and a second cylindrical passage 72 of greater diameter than the first cylindrical passage 66 and likewise having a first end 74 and a second end 76.
  • the second cylindrical passage 72 communicates with the first cylindrical passage 66 through a tapered passage 78 having a first end 80 that has a diameter equal to the diameter of the first cylindrical passage 66, and a second end 82 that has a diameter equal to the diameter of the second cylindrical passage 72.
  • Each of the passages 66, 72, 78 is coaxial with the longitudinal axis 26, and the first end 80 of the tapered passage 78 is integral with the second end 70 of the first cylindrical passage 66, while the second end 82 of the tapered passage 78 is integral with the first end 74 of the second cylindrical passage 72.
  • the first cylindrical passage 66 includes a discharge orifice 68 that is circular and coaxial with the longitudinal axis 26, and is located at the first end 68 of the first cylindrical passage 66.
  • both fuel and combustion air flow through the centerbody 12
  • the present invention in other embodiments may be used with a centerbody that flows either fuel, combustion air or neither fuel nor air.
  • the radially outer surface 84 of the centerbody 12 includes a frustum portion 86, which defines the outer surface of a frustum that is coaxial with the longitudinal axis 26 and flares toward the base 58, and a curved portion 88 which is integral with the frustum portion 86 and preferably defines a portion of the surface generated by rotating a circle, which is tangent to the frustum portion 86 and has a center which lies radially outward thereof, about the longitudinal axis 26.
  • the frustum portion 86 terminates at the plane within which the discharge orifice 68 is located, the diameter of the base (not to be confused with the base 58 of the centerbody) of the frustum portion 86 is 2.65 times greater than the diameter of the frustum portion 86 at the apex thereof, and the height 90 of the frustum portion 86 (the distance between the plane in which the base of the frustum portion 86 is located and the plane in which the apex of the frustum portion 86 is located) is approximately 1.90 times the diameter of the frustum portion 86 at the base thereof.
  • the curved portion 88 which is located between the base 58 and the frustum portion 86, provides a smooth transitional surface that directs and turns axially combustion air 40 entering the tangential entry nozzle 10 adjacent the base 58.
  • the internal passageway 64 is located radially inward from the radially outer surface 84 of the centerbody 12, the frustum portion 86 is coaxial with the longitudinal axis 26, and the centerbody 12 is connected to the base 58 such that the frustum portion 86 tapers toward, and terminates at the discharge orifice 68 of the first cylindrical passage 66.
  • the base of the frustum portion 86 fits within a circle 92 inscribed in the mixing zone 28 and having its center 94 on the longitudinal axis 26.
  • the curved portion 88 must be cut to fit therein.
  • a ramp portion 96, 98 is left on the curved portion 88 where the curved portion 88 extends into each inlet slot 36, 38, and this portion is machined to form an aerodynamically shaped ramp 96, 98 that directs the air entering the inlet slot 36, 38 away from the base 58 and onto the curved portion 88 within the mixing zone 28.
  • an internal chamber 100 is located within the centerbody 12 between the base 58 and the second end 76 of the second cylindrical passage 72, which terminates at the chamber 100.
  • Air 102 is supplied to the chamber 100 through the air supply ports 60, 62 in the base 58 which communicate therewith, and the chamber 100, in turn, supplies air to the internal passageway 64 through the second end 76 of the second cylindrical passage 72.
  • the first endplate 16 has openings 104, 106 therein that are aligned with the air supply ports 60, 62 of the base 58 so as not to interfere with the flow of combustion air 102 from the compressor of the gas turbine engine.
  • a swirler 108 preferably of the radial inflow type known in the art, is coaxial with the longitudinal axis 26 and is located within the chamber 100 immediately adjacent the second end 76 of the second cylindrical passage 72 such that all air entering the internal passageway 64 from the chamber 100 must pass through the swirler 108.
  • the preferred embodiment also includes a fuel lance 110, which likewise is coaxial with the longitudinal axis 26, extends through the base 58, the chamber 100, and the swirler 108, and into the second cylindrical passage 72 of the internal passageway 64.
  • the larger diameter of the second cylindrical passage 72 accommodates the cross-sectional area of the fuel-lance 110, so that the flow area within the second cylindrical passage 72 is essentially equal to the flow area of the first cylindrical passage 66.
  • a second fuel supply line (not shown), which may supply either a liquid or gas fuel, is connected to the fuel lance 110 to supply fuel to an inner passage 112 within the fuel lance 110.
  • Fuel jets 114 are located in the fuel lance 110, and provide a pathway for fuel to exit from the fuel lance 110 into the internal passageway 64.
  • the combustor inlet port 20 is coaxial with the longitudinal axis 26 and includes a convergent surface 116 and a divergent discharge surface 118, and a throat 117 therebetween.
  • the discharge surface 118 extends to the exit plane 124 of the fuel nozzle and controls the amount of isolation between the premixed fuel and air and the combustion products thereof.
  • the convergent surface 116 and the divergent surface 118 are coaxial with the longitudinal axis 26, and the convergent surface 116 is located between the first endplate 16 and the divergent surface 118.
  • the convergent surface 116 is substantially conical in shape and tapers toward the divergent surface 118.
  • the divergent surface 118 extends between the intermediate or throat plane 120 and the combustor surface 122 of the combustor inlet port 20, which is perpendicular to the longitudinal axis 26, and defines the exit plane 124 of the fuel nozzle 10 of the present invention.
  • the discharge surface may be optimised from cylindrical, convergent or divergent, ie it can be cylindrical, convergent or divergent.
  • the convergent surface 116 terminates at the intermediate, or throat plane 120, where the diameter of the convergent surface 116 is equal to the diameter of the divergent surface 118.
  • the intermediate or throat plane 120 is located between the exit plane 124 and the discharge orifice 68 of the internal passageway 64, and the convergent surface 116 is located between the divergent surface 118 and the first endplate 16.
  • combustion air from the compressor of the gas turbine engine flows through the openings 104, 106 and the air supply ports 60, 62 in the base 58 and into the chamber 100 of the centerbody 12.
  • the combustion air exits the chamber 100 through the radial inflow swirler 108 and enters the internal passageway 64 with a substantial tangential velocity, or swirl, relative to the longitudinal axis 26.
  • this swirling combustion air passes the fuel lance 110, fuel (if the centerbody is fuelled), preferably in gaseous form, is sprayed from the fuel lance 110 into the internal passage 64 and mixes with the swirling combustion air.
  • the mixture of fuel and combustion air then flows from the second cylindrical passage 72 into the first cylindrical passage 66 through the tapered passage 78.
  • the mixture then proceeds down the length of the first cylindrical passage 66, exiting the first cylindrical passage 66 just short of, or at, the throat plane 120 of the combustor inlet port 20, providing a central stream of fuel air mixture.
  • Additional combustion air from the compressor of the gas turbine engine enters the mixing zone 28 through each of the inlet slots 36, 38.
  • Air entering the inlet slots 36, 38 immediately adjacent the base 58 is directed by the ramps 96, 98 onto the curved portion 88 within the mixing zone 28 of the scroll swirler 14.
  • Fuel, preferably gaseous fuel, supplied to the fuel conduits 52, 54 is sprayed into the combustion air passing through the inlet slots 36, 38 and begins mixing therewith. Due to the shape of the scroll members 22, 24, this mixture establishes an annular stream swirling about the centerbody 12, and the fuel/air mixture continues to mix as it swirls thereabout while progressing along the longitudinal axis 26 toward the combustor inlet port 20.
  • the swirl of the annular stream produced by the scroll swirler 14 is preferably co-rotational with the swirl of the fuel/air mixture in the first cylindrical passage 66, and preferably has an angular velocity at least as great as the angular velocity of the fuel/air mixture in the first cylindrical passage 66. Due to the shape of the centerbody 12, the axial velocity of the annular stream is maintained at speeds which prevent the combustor flame from migrating into the scroll swirler 14 and attaching to the outer surface 84 of the centerbody 12.
  • the swirling fuel/air mixture of the central stream is surrounded by the annular stream of the scroll swirler 14, and the two streams enter the throat 117 of the combustor inlet port 20 and flow radially inward of the convergent surface 116 and the divergent surface 118 until reaching the exit plane 124 of the combustion inlet port 20 downstream of the mixing zone 28, and then flowing into the flame zone adjacent the divergent surface 118 of the combustor inlet port 20.
  • the present invention significantly increases useful life of the centerbody 12 by significantly increasing the axial velocity of the fuel/air mixture swirling about the centerbody 12.
  • the increased axial velocity results from the curved portion 88, which prevents air entering the mixing zone 28 through the inlet slots 36, 38 immediately adjacent the base 58 from recirculating with little or no axial velocity, and the frustum portion 86, which maintains the axial velocity of the annular stream at speeds which prevent attachment of a flame to the centerbody 12, and tend to disgorge the flame if it does attach thereto.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)

Claims (9)

  1. Procédé de combustion de carburant dans la chambre de combustion d'un moteur à turbine présentant un type de prémélange de combustion, comprenant les étapes consistant à :
    fournir une coupelle rotative en spirale (14) présentant des première et seconde plaques d'extrémité (16, 18), ladite première plaque d'extrémité (16) dans une relation espacée par rapport à ladite seconde plaque d'extrémité (18) définissant une zone de mélange (28) entre lesdites plaques, ladite seconde plaque d'extrémité (18) présentant un orifice d'admission (20) de chambre de combustion s'étendant à travers cette dernière ;
    fournir un corps central (12) situé dans ladite zone de mélange (28) et présentant une surface extérieure radiale (84) qui diminue progressivement en direction de l'orifice d'admission (20) de la chambre de combustion et s'étend sensiblement le long de toute la longueur de ladite zone de mélange (28) ;
    introduire une première partie d'air de combustion de manière tangentielle dans ladite zone de mélange (28) de manière sensiblement continue le long de la longueur de celle-ci ;
    introduire une première partie de carburant dans ledit air de combustion lorsque ledit air de combustion est introduit dans ladite zone de mélange (28) ;
    mélanger ledit air de combustion et le carburant en brassant ledit air de combustion et le carburant autour dudit corps central (12) tout en écoulant ledit air de combustion et le carburant en direction dudit orifice d'entrée de la chambre de combustion (20) ;
    introduire une seconde partie d'air de combustion dans ladite première partie d'air de combustion de manière radiale à l'intérieur de celle-ci sur ledit orifice d'admission (20) de la chambre de combustion ;
    introduire une seconde partie d'air de combustion dans ladite première partie d'air de combustion de manière radiale à l'intérieur de celle-ci sur ledit orifice d'admission de la chambre de combustion (20), l'étape d'introduction d'une seconde partie d'air de combustion dans ladite première partie de manière radiale à l'intérieur de celle-ci sur ledit orifice d'entrée (20) de la chambre de combustion comprenant l'introduction d'une seconde partie d'air de combustion dans ledit corps central (12) ; et
    procéder à la combustion dudit carburant à l'extérieur de la dite zone de mélange, caractérisé par :
    l'introduction d'une seconde partie de carburant dans ladite seconde partie d'air de combustion dans ledit corps central (12), et
    le mélange de ladite seconde partie de carburant dans ladite seconde partie d'air de combustion dans ledit corps central (12).
  2. Procédé selon la revendication 1 dans lequel l'étape d'introduction d'une seconde partie d'air de combustion dans ladite première partie de manière radiale à l'intérieur de celle-ci sur ledit orifice d'entrée de la chambre de combustion (20) est précédée par l'étape consistant à :
    brasser ladite seconde partie d'air de combustion dans ledit corps central (12) à une vitesse angulaire sensiblement égale à la vitesse angulaire de la première partie.
  3. Ensemble d'injecteur de carburant destiné à être utilisé dans un moteur à turbine, comprenant :
    un corps central (12) comportant :
    un axe longitudinal (26),
    une base (58), et
    une surface extérieure radiale comprenant une partie en tronc de cône définissant la surface extérieure d'un cône qui est coaxial avec l'axe longitudinal et s'évase en direction de la base ;
    une coupelle rotative en spirale (14) présentant des première et seconde plaques d'extrémité (16, 18), ladite première plaque d'extrémité étant dans une relation espacée par rapport à ladite seconde plaque d'extrémité, ladite seconde plaque d'extrémité présentant un orifice d'admission (20) de chambre de combustion s'étendant à travers ladite chambre,
       au moins deux éléments en spirale d'arc cylindrique (22, 24), chaque élément en spirale définissant un corps de révolution partielle autour d'une ligne centrale (32, 34), chacun desdits éléments en spirale s'étendant depuis ladite première plaque d'extrémité jusqu'à la seconde plaque d'extrémité et étant espacé de manière uniforme autour de l'axe y définissant ainsi une zone de mélange (28), chacun desdits éléments en spirale étant en relation espacée par rapport à chacun des autres éléments en spirale, chacune desdites lignes centrales étant située dans ladite zone de mélange, chacune desdites lignes centrales en relation espacée par rapport à, équidistante de, et parallèle audit axe, définissant ainsi des fentes d'entrée (36, 38) s'étendant parallèlement audit axe entre chaque paire d'éléments en spirale adjacents permettant d'introduire l'air de combustion dans la zone de mélange, chacun desdits éléments en spirale comportant un conduit de carburant (52, 54) permettant d'introduire du carburant dans l'air de combustion introduit à travers une desdites fentes d'entrée ;
       dans lequel ladite base (58) est reliée à ladite plaque d'extrémité (16) et caractérisé en ce que ladite partie en tronc de cône (84) s'étend dans ledit orifice d'admission (20) de la chambre de combustion.
  4. Injecteur de carburant selon la revendication 3, dans lequel ledit corps central (12) présente une partie incurvée (88) qui est formée d'un seul tenant avec la partie en tronc de cône (86).
  5. Injecteur de carburant selon la revendication 4, dans lequel la partie incurvée (88) définit une partie de la surface générée par la rotation d'un cercle qui est tangent à une partie en tronc de cône et présente un centre qui repose de manière radiale à l'extérieur de celle-ci autour d'un axe longitudinal (26).
  6. Injecteur de carburant selon la revendication 3, 4 ou 5, dans lequel ladite base (58) présente au moins un orifice d'alimentation en air (60, 62) s'étendant à travers ladite base, et le corps central (12) comprend en outre une voie de passage interne (64) qui est coaxiale avec l'axe longitudinal (26) et communique avec ledit orifice d'alimentation en air, ladite voie de passage interne comprenant un orifice d'évacuation (68) qui est circulaire, coaxial avec ledit axe et situé à l'intérieur dudit orifice d'admission (20) de la chambre de combustion.
  7. Injecteur de carburant selon la revendication 6, dans lequel ledit corps central (12) comprend en outre une chambre interne (100) située entre ladite base (58) et ladite voie de passage interne (64), lesdits orifices d'alimentation en air (60, 62) communicant avec ladite voie de passage interne à travers ladite chambre.
  8. Injecteur de carburant selon la revendication 7, dans lequel ladite voie de passage interne (64) comprend un premier passage cylindrique (66), un second passage cylindrique (72), et un passage conique (78), chaque passage présentant une première extrémité (68, 74, 80) et une seconde extrémité (70, 76, 82), ledit second passage cylindrique présentant un diamètre plus grand que ledit premier passage cylindrique, ledit second passage cylindrique communicant avec ledit premier passage cylindrique à travers ledit passage conique, ladite première extrémité dudit passage conique étant formée d'un seul tenant avec ladite deuxième extrémité dudit premier passage cylindrique, ladite seconde extrémité dudit passage conique étant formée d'un seul tenant avec ladite première extrémité dudit second passage cylindrique, ladite première extrémité dudit passage conique présentant un diamètre égal au diamètre du premier passage cylindrique, et ladite seconde extrémité dudit passage conique présentant un diamètre égal au diamètre du second passage cylindrique, chacun desdits passages étant coaxial avec l'axe longitudinal (26), ledit premier passage cylindrique comprenant ledit orifice d'évacuation (68) situé sur la première extrémité dudit premier passage cylindrique.
  9. Injecteur de carburant selon la revendication 8, dans lequel le corps central (12) comprend en outre une coupelle rotative (108) coaxiale avec l'axe (26) et située dans la chambre (100) immédiatement adjacente à la seconde extrémité (76) du second passage cylindrique (72), et
       une lance de carburant (110) coaxiale avec l'axe (26) et s'étendant à travers ladite base (58), ladite chambre interne, et ladite coupelle rotative (108) et se terminant dans ledit second passage cylindrique.
EP19970310463 1996-12-20 1997-12-22 Ajutage d'entrée tangentiel Expired - Lifetime EP0849529B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US771409 1985-08-30
US08/771,408 US5899076A (en) 1996-12-20 1996-12-20 Flame disgorging two stream tangential entry nozzle
US771408 1996-12-20
US08/771,409 US5896739A (en) 1996-12-20 1996-12-20 Method of disgorging flames from a two stream tangential entry nozzle

Publications (3)

Publication Number Publication Date
EP0849529A2 EP0849529A2 (fr) 1998-06-24
EP0849529A3 EP0849529A3 (fr) 1999-06-09
EP0849529B1 true EP0849529B1 (fr) 2004-03-03

Family

ID=27118459

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19970310463 Expired - Lifetime EP0849529B1 (fr) 1996-12-20 1997-12-22 Ajutage d'entrée tangentiel

Country Status (2)

Country Link
EP (1) EP0849529B1 (fr)
DE (1) DE69727899T2 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6141954A (en) 1998-05-18 2000-11-07 United Technologies Corporation Premixing fuel injector with improved flame disgorgement capacity
CN113669726B (zh) * 2021-09-26 2022-10-21 西安热工研究院有限公司 一种氢燃料燃烧装置
DE102022207493A1 (de) * 2022-07-21 2024-02-01 Rolls-Royce Deutschland Ltd & Co Kg Verbindungsvorrichtung zur Strömungsverbindung zwischen einem Kraftstoff- Zuleitungssystem und einer Düsenvorrichtung, Düsenvorrichtung und Gasturbinenanordnung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5307634A (en) 1992-02-26 1994-05-03 United Technologies Corporation Premix gas nozzle
US5461865A (en) * 1994-02-24 1995-10-31 United Technologies Corporation Tangential entry fuel nozzle
US5671597A (en) * 1994-12-22 1997-09-30 United Technologies Corporation Low nox fuel nozzle assembly
DE19545309A1 (de) * 1995-12-05 1997-06-12 Asea Brown Boveri Vormischbrenner

Also Published As

Publication number Publication date
EP0849529A3 (fr) 1999-06-09
EP0849529A2 (fr) 1998-06-24
DE69727899T2 (de) 2004-07-29
DE69727899D1 (de) 2004-04-08

Similar Documents

Publication Publication Date Title
US6141967A (en) Air fuel mixer for gas turbine combustor
US5899076A (en) Flame disgorging two stream tangential entry nozzle
US6092363A (en) Low Nox combustor having dual fuel injection system
US5680766A (en) Dual fuel mixer for gas turbine combustor
US6301899B1 (en) Mixer having intervane fuel injection
EP0700499B1 (fr) Chambre de combustion de moteur a turbine a gaz
US5626017A (en) Combustion chamber for gas turbine engine
US5778676A (en) Dual fuel mixer for gas turbine combustor
EP0849531B1 (fr) Procédé de combustion à faible émission de tonalités acoustiques
EP2400220B1 (fr) Dispositif de tourbillonnement, dispositif de mélange combustible-air et brûleur
EP0722065B1 (fr) Dispositif d'injection du combustible pour turbine alimentée en combustible gazeux ou liquide
EP0927854A2 (fr) Brûleur pour turbine à gaz à faible émission de NOx
JP3075732B2 (ja) ガスタービンの燃焼室
WO2001051787A1 (fr) Preinjecteur direct de carburant a melange pauvre pneumatique
US5791892A (en) Premix burner
US5896739A (en) Method of disgorging flames from a two stream tangential entry nozzle
EP0849527B1 (fr) Procédé de combustion avec un ajutage d'entrée tangentiel à deux courants
US5127821A (en) Premixing burner for producing hot gas
EP0548143B1 (fr) Turbine à gaz avec un injecteur de carburant gazeux et injecteur pour une telle turbine
US5735466A (en) Two stream tangential entry nozzle
EP0849530A2 (fr) Ajutages de combustible et des corps au centre associés
US5791562A (en) Conical centerbody for a two stream tangential entry nozzle
EP0849529B1 (fr) Ajutage d'entrée tangentiel
JPH07293886A (ja) ガスタービンの燃焼室の運転のための方法と装置
US5887795A (en) Premix fuel injector with low acoustics

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19990706

AKX Designation fees paid

Free format text: DE FR GB

17Q First examination report despatched

Effective date: 20020417

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69727899

Country of ref document: DE

Date of ref document: 20040408

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20041206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081205

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20131218

Year of fee payment: 17

Ref country code: GB

Payment date: 20131218

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69727899

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141222

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150701