EP0848151B1 - Méthode de commande rétroactive du rapport air/carburant d'un moteur à combustion intern - Google Patents

Méthode de commande rétroactive du rapport air/carburant d'un moteur à combustion intern Download PDF

Info

Publication number
EP0848151B1
EP0848151B1 EP97120602A EP97120602A EP0848151B1 EP 0848151 B1 EP0848151 B1 EP 0848151B1 EP 97120602 A EP97120602 A EP 97120602A EP 97120602 A EP97120602 A EP 97120602A EP 0848151 B1 EP0848151 B1 EP 0848151B1
Authority
EP
European Patent Office
Prior art keywords
lambda probe
lambda
control loop
probe
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97120602A
Other languages
German (de)
English (en)
Other versions
EP0848151A3 (fr
EP0848151A2 (fr
Inventor
Ulrich Staufenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to US09/010,208 priority Critical patent/US6062019A/en
Publication of EP0848151A2 publication Critical patent/EP0848151A2/fr
Publication of EP0848151A3 publication Critical patent/EP0848151A3/fr
Application granted granted Critical
Publication of EP0848151B1 publication Critical patent/EP0848151B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/1483Proportional component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors

Definitions

  • the invention relates to a method for regulating the fuel-air ratio an internal combustion engine after Feature of the preamble of claim 1.
  • Control devices are used to achieve the most pollutant-free exhaust gases known for internal combustion engines in which the Oxygen content in the exhaust duct is measured and evaluated.
  • Oxygen measuring probes so-called lambda probes, are known for this purpose, the z. B. on the principle of ion conduction by a Solid electrolytes due to an oxygen partial pressure difference work and according to the existing in the exhaust gas Oxygen partial pressure emit a voltage signal that at Transition from lack of oxygen to excess oxygen or the other way round has a voltage jump.
  • the output signal of the lambda probe is controlled by a controller evaluated, which in turn controls the fuel-air mixture adjusts.
  • the invention is therefore based on the object of a method specify which is an accurate and adaptable scheme enables, so the air-fuel ratio in the sense a reduction in exhaust gas emissions is further improved.
  • the advantage of the invention is a quick feedback of the output signal of the second lambda control loop on the control loop of the first lambda probe by changing the voltage jump of the output signal of the first lambda probe.
  • the P component of the first control loop is thus determined by a Correction value affects which of the actually ongoing Period of the output signal of the first lambda probe is dependent.
  • the correction signal is multiplicative on the P component of the control loop of the first lambda probe the P component of the control loop is strengthened or weakened.
  • the correction signal becomes dependent the air mass flow and / or the ratio of Amplitude of the second lambda probe to the amplitude of the first Lambda probe formed.
  • the efficiency of the catalyst is determined by the amplitude ratio taken into account when correcting the first control loop.
  • the amplitude of both the first and the second lambda probe is done by discrete samples of the output signal each Lambda probe determined, from within the scan a mean value is formed from a time window which the amplitude ratio is determined.
  • the correction signal is advantageously dependent from the sign of the control deviation of the second lambda control loop weighted.
  • the device consists of an internal combustion engine 1 a catalyst 2. Air is supplied to the engine 1 via an intake manifold 3.
  • the fuel is injected into the intake manifold 3 via injection valves 4.
  • Lambda sensors 5 and 6 measure the respective lambda value of the exhaust gas before and after the Catalyst 2. Both signals supplied by lambda sensors 5 and 6 are led to a controller with PI characteristic 8, which is usually in Control device (Fig. 2) is arranged in the motor vehicle.
  • the controller 8 uses setpoints to form an actuating signal, which is fed to the injection valves 4.
  • This control signal leads to a change in the fuel metering, which a certain lambda value together with the intake air mass of the exhaust gas.
  • the controller 8 is, as shown in Fig. 2, a microcomputer consisting of a central processor unit CPU a RAM and a Read-only memory ROM.
  • the controller 8 evaluates both the signals of the first lambda probe 5 and the signals of the second lambda probe 6 from which are fed and processed via its input / output unit I / 0 this further.
  • the controller 8 evaluates the signal of the first lambda probe 5 by: the current value with a setpoint 9 stored in the memory ROM for the Lambda probe 5 compares and determines an injection time as a manipulated variable which regulates the fuel-air mixture. This comparison the evaluation of the second lambda control loop is superimposed as in 4 will be explained in detail in connection with FIG. The result of the second lambda control loop is represented in the determination of the Holding time TH. This hold time TH causes the action of the controller 8th on the injection valves 4 which, depending on the comparison of the first Control loop takes place, is delayed.
  • the controlled system 11 is the combustion process in the engine 1 which via the injection time as a manipulated variable and the injectors as actuators is controlled.
  • Each lambda sensor delivers the respective fuel-air mixture ⁇ factor representing a waveform as shown in Figure 3 is.
  • the resistance or the voltage can be above the ⁇ factor to be viewed as.
  • the probe If the probe is active, it has a signal voltage that is outside of the range (ULSU, ULSO). Delivers during the lean rash the lambda probe has a minimal output signal that is below ULSU lies. A maximum voltage signal appears during the fat rash measured above ULSO in a range of 600 - 800 mV. This maximum value is subject to manufacturing tolerances and signs of aging certain scatter caused by a probe correction factor Getting corrected.
  • the controlled system 11 contains the motor 1, that of the controller 8, as in FIG. 1 described, the control signal in the form of the changed injection time of the injection valves is fed.
  • the lambda probe 6 arranged in the exhaust gas duct behind the catalytic converter 2 supplies a lambda value in the form of a signal voltage.
  • This setpoint U 6SOLL is formed from the mean value measured by the lambda probe 6 if the lambda probe 5 arranged in front of the catalytic converter works without problems.
  • the control difference formed in point 12 from the setpoint and actual value of the output signal of the second lambda probe 6 is fed to a limiter 15, which compares the amount of the control difference with a threshold value 14, which is also stored in the memory ROM of the control unit. Only if the amount of the control difference is greater than this threshold value 14, the control difference is passed to a comparator 13 which, depending on the sign of the difference between the actual value U 6IST of the second lambda probe 6 and the target value U 6SOLL of the second lambda probe 6, is a 1 or Outputs -1. Depending on this output value, a Signum integrator 16 is advanced or reset.
  • the Signum integrator 16 increments when the actual value U 6IST is greater than the setpoint U 6SOLL . It decrements by 1 if the actual value U 6IST is smaller than the setpoint U 6SOLL . If both values are the same, the counter reading is not changed.
  • the signum integrator 16 becomes in front of the catalytic converter with each envelope 17 arranged arranged first lambda probe 5 and is thus from this is clock controlled.
  • the count value is multiplied by a proportionality constant 19 in the value of (0.5 - a few 100) ms / probe change of the first lambda probe 5, whereby an absolute holding time TH raw is determined.
  • the holding time TH raw obtained in this way is evaluated in a second multiplication point 20 with a weighting factor WF, which is determined in point 23 by dividing the actually measured period 21 of the first lambda probe 5 by a constant 22.
  • the constant 22 is a function of the period of the first lambda probe 5 at idle.
  • the holding time TH obtained is used as a controlled variable for the controller 8 for adaptation the controlled system 11 fed.
  • the controlled system 11 is supplied with a correction signal, which is formed as follows.
  • the control difference of the second lambda probe formed in the sum point 12 6 is fed to a changeover switch 24, which is dependent on the sign of the signals emitted by the comparator 15 switches. Is the signal negative, a first characteristic curve 25 becomes a first characteristic curve 25 taken, the signal is positive, is switched on from a second characteristic second evaluation factor KL for the control deviation taken.
  • This The evaluation factor KM or KL is in point 27 with a map 28 formed third evaluation factor KF multiplied.
  • the map 28 is determined by the mean amplitude ratio value 29 of the two lambda probes 5 and 6 and the air mass flow 30 measured by the air mass meter 7 certainly.
  • the characteristic value KPF formed in point 27 becomes dependent in point 31 from the probe cover 17 of the first lambda probe 5 and from the sign the control difference of the second lambda probe 6, which by the Comparator 15 is weighted.
  • the correction factor KPF is weighted as follows. Work both probes 5, 6 simultaneously in the rich or simultaneously in the lean range, the correction factor KPF is increased by 1. Is the first probe working in the grease and the second probe in the lean area or vice versa, the Correction factor KPF subtracted from 1.
  • the weighting factor contained in this way as a dimensionless variable, the TH is independent of the holding time Controller 8 supplied in the controlled system 11. It is like-minded Tendency of the output signal of the two lambda probes 5, 6 the P component of the controller 8 increased and decreased in the opposite direction, which leads to The consequence of this is that the second lambda control loop acts quickly and directly on the first lambda control loop.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Claims (6)

  1. Méthode de régulation du rapport air/carburant dans un moteur à combustion interne, le signal de sortie d'une première sonde lambda, disposée dans le conduit des gaz d'échappement du moteur à combustion interne en amont d'un catalyseur étant amené à un régulateur, qui présente une caractéristique PI et le régulateur restituant une valeur de réglage pour le rapport air/carburant et un signal supplémentaire, obtenu à partir du signal de sortie d'une seconde sonde lambda, située en aval du catalyseur étant amenée au régulateur et influençant la boucle de régulation de la première sonde lambda, pour que le saut P du régulateur, qui est déterminé par la boucle de régulation de la première sonde lambda soit modifié en fonction de la boucle de régulation de la seconde sonde lambda et une valeur de correction de la seconde boucle de régulation lambda étant formée au moment de la permutation de la première sonde lambda, située en amont du catalyseur,
       caractérisée en ce que
       en fonction de la permutation de la première sonde lambda et du signe de la différence de réglage de la seconde sonde lambda, une valeur de correction est pondérée et amenée à la boucle de régulation de la première sonde lambda, indépendamment d'un temps d'arrêt.
  2. Méthode selon la revendication 1,
       caractérisée en ce que,
       la valeur de correction est formée à partir de l'écart de réglage entre la valeur effective de la seconde sonde lambda et la valeur de consigne de la seconde sonde lambda, le saut P de la première boucle de régulation lambda étant augmenté, si le signe de l'écart de réglage correspond au sens de permutation de la première sonde lambda et le saut P de la première boucle de régulation lambda étant diminué, si le signe de l'écart de réglage est à contresens du sens de permutation de la première sonde lambda.
  3. Méthode selon l'une quelconque des revendications 1 ou 2,
       caractérisée en ce que le signal de correction est formé en fonction du débit massique d'air.
  4. Méthode selon l'une quelconque des revendications 1 ou 2,
       caractérisée en ce que le signal de correction est formé en fonction du rapport d'amplitudes entre l'amplitude de la seconde sonde lambda et l'amplitude de la première sonde lambda.
  5. Méthode selon l'une quelconque des revendications 3 ou 4,
       caractérisée en ce que l'amplitude de la première sonde lambda et l'amplitude de la seconde sonde lambda sont déterminées par des balayages discrets des signaux de sortie de chaque sonde lambda et en ce qu'une valeur moyenne d'amplitude pour chaque sonde lambda, à partir de laquelle le rapport d'amplitudes est déterminé, est formée au cours d'une fenêtre de temps.
  6. Méthode selon l'une quelconque des revendications précédentes,
       caractérisée en ce que
       le signal de correction est pondéré, en fonction du signe de l'écart de réglage de la seconde boucle de réglage lambda.
EP97120602A 1996-12-12 1997-11-25 Méthode de commande rétroactive du rapport air/carburant d'un moteur à combustion intern Expired - Lifetime EP0848151B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/010,208 US6062019A (en) 1997-11-25 1998-01-21 Method for controlling the fuel/air ratio of an internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19651613 1996-12-12
DE19651613A DE19651613C1 (de) 1996-12-12 1996-12-12 Verfahren zur Regelung des Kraftstoff-Luft-Verhältnisses einer Brennkraftmaschine

Publications (3)

Publication Number Publication Date
EP0848151A2 EP0848151A2 (fr) 1998-06-17
EP0848151A3 EP0848151A3 (fr) 1999-05-12
EP0848151B1 true EP0848151B1 (fr) 2004-01-28

Family

ID=7814430

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97120602A Expired - Lifetime EP0848151B1 (fr) 1996-12-12 1997-11-25 Méthode de commande rétroactive du rapport air/carburant d'un moteur à combustion intern

Country Status (2)

Country Link
EP (1) EP0848151B1 (fr)
DE (2) DE19651613C1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5848528A (en) * 1997-08-13 1998-12-15 Siemens Automotive Corporation Optimization of closed-loop and post O2 fuel control by measuring catalyst oxygen storage capacity
DE102006049656B4 (de) * 2006-10-18 2016-02-11 Volkswagen Ag Lambda-Regelung mit einer Sprung-Lambda-Sonde

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3500594C2 (de) * 1985-01-10 1995-08-17 Bosch Gmbh Robert Zumeßsystem für eine Brennkraftmaschine zur Beeinflussung des Betriebsgemisches
JPH0612087B2 (ja) * 1987-12-14 1994-02-16 日本電子機器株式会社 内燃機関の電子制御燃料噴射装置
JP2697251B2 (ja) * 1990-05-28 1998-01-14 日産自動車株式会社 エンジンの空燃比制御装置
DE4024210C2 (de) * 1990-07-31 1999-09-02 Bosch Gmbh Robert Verfahren zur Lambdaregelung einer Brennkraftmaschine mit Katalysator
US5115639A (en) * 1991-06-28 1992-05-26 Ford Motor Company Dual EGO sensor closed loop fuel control
JP3356878B2 (ja) * 1994-05-09 2002-12-16 本田技研工業株式会社 内燃機関の空燃比制御装置

Also Published As

Publication number Publication date
EP0848151A3 (fr) 1999-05-12
EP0848151A2 (fr) 1998-06-17
DE19651613C1 (de) 1998-08-06
DE59711258D1 (de) 2004-03-04

Similar Documents

Publication Publication Date Title
DE102008042549B4 (de) Verfahren und Vorrichtung zur Diagnose einer Abgassonde
DE69003459T2 (de) System zum Bestimmen von Fehlern einer Sauerstoffmesszelle und zum Kontrollieren des Luft-/Brennstoff-Verhältnisses.
DE3500594C2 (de) Zumeßsystem für eine Brennkraftmaschine zur Beeinflussung des Betriebsgemisches
EP0388412B1 (fr) Systeme de regulation de la proportion air/carburant d'un moteur a combustion interne
DE4190939C2 (de) Ein Verfahren und ein Gerät zum Steuern des Luft-Kraftstoff-Verhältnisses eines Motors mit innerer Verbrennung
EP0210177B1 (fr) Dispositif et procede pour varier les parametres de marche de machines a combustion interne
DE69015558T2 (de) System zur Rückkopplungsregelung des Luft-/Kraftstoffverhältnisses in einer Brennkraftmaschine.
DE3311029C2 (de) Verfahren und Vorrichtung zur Regelung der Leerlaufdrehzahl einer Brennkraftmaschine
DE69635917T2 (de) Feststellungsvorrichtung der Katalysatorverschlechterung einer Brennkraftmaschine
DE4322344B4 (de) Luft/Brennstoff-Verhältnis-Steuerungssystem für eine Brennkraftmaschine
DE19501150A1 (de) Verfahren zum Steuern des Luft-Kraftstoffverhältnisses bei einem Verbrennungsmotor und Steuerungsvorrichtung hierzu
DE19545694C2 (de) Verfahren zur Regelung des Kraftstoff-Luft-Verhältnisses einer Brennkraftmaschine
DE19545706C2 (de) Verfahren zur Kalibrierung einer Lambdasonde in einer Brennkraftmaschine
DE69006102T2 (de) Steuergeräte zur Steuerung des Luftkraftstoffgemisches einer Brennkraftmaschine.
EP1960642B1 (fr) Procede de diagnostic pour un catalyseur situe dans la zone des gaz d'echappement d'un moteur a combustion interne et dispositif permettant la mise en oeuvre du dit procede
DE3825945C2 (de) Vorrichtung zur Verbesserung nachteiliger Wirkungen von Ablagerungen innerhalb einer Brennkraftmaschine auf die Motorregelung
DE68902373T2 (de) Vorrichtung zur regelung des brennstoff-luft-verhaeltnisses fuer brennkraftmaschinen.
EP0848151B1 (fr) Méthode de commande rétroactive du rapport air/carburant d'un moteur à combustion intern
DE102021102456B3 (de) Verfahren zum Betreiben einer Antriebseinrichtung sowie entsprechende Antriebseinrichtung
DE19545693C2 (de) Verfahren zur Überprüfung des Wirkungsgrades eines Katalysators in einer Brennkraftmaschine
DE19522659A1 (de) Kraftstoffzufuhrsystem und Kraftstoffzufuhrverfahren für eine Verbrennungskraftmaschine
DE4235503C2 (de) Steuersystem für das Luft-/Kraftstoffverhältnis für Verbrennungsmotoren
EP0925433B1 (fr) Systeme de reglage du melange air/carburant dans un moteur a combustion interne
DE102004055231B3 (de) Verfahren und Vorrichtung zur Lambda-Regelung bei einer Brennkraftmaschine
DE4323244B4 (de) Elektronisches Steuersystem für die Kraftstoffzumessung bei einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid

Free format text: DE FR GB IT

17P Request for examination filed

Effective date: 19991109

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 20011214

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RTI1 Title (correction)

Free format text: METHOD OF CLOSED LOOP CONTROL OF THE AIR/FUEL RATIO OF AN INTERNAL COMBUSTION ENGINE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20040128

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040128

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040128

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59711258

Country of ref document: DE

Date of ref document: 20040304

Kind code of ref document: P

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20040128

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20041029

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050601