EP0840690A1 - Plate-forme d'exploitation petroliere en mer - Google Patents

Plate-forme d'exploitation petroliere en mer

Info

Publication number
EP0840690A1
EP0840690A1 EP96926441A EP96926441A EP0840690A1 EP 0840690 A1 EP0840690 A1 EP 0840690A1 EP 96926441 A EP96926441 A EP 96926441A EP 96926441 A EP96926441 A EP 96926441A EP 0840690 A1 EP0840690 A1 EP 0840690A1
Authority
EP
European Patent Office
Prior art keywords
section
platform according
platform
legs
submerged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96926441A
Other languages
German (de)
English (en)
Other versions
EP0840690B1 (fr
Inventor
Pierre-Armand Thomas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technip Energies France SAS
Original Assignee
Technip Geoproduction SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technip Geoproduction SA filed Critical Technip Geoproduction SA
Publication of EP0840690A1 publication Critical patent/EP0840690A1/fr
Application granted granted Critical
Publication of EP0840690B1 publication Critical patent/EP0840690B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/10Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls
    • B63B1/107Semi-submersibles; Small waterline area multiple hull vessels and the like, e.g. SWATH
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B35/4413Floating drilling platforms, e.g. carrying water-oil separating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/10Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls
    • B63B1/12Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls the hulls being interconnected rigidly
    • B63B2001/128Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls the hulls being interconnected rigidly comprising underwater connectors between the hulls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • B63B39/06Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by using foils acting on ambient water
    • B63B2039/067Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by using foils acting on ambient water effecting motion dampening by means of fixed or movable resistance bodies, e.g. by bilge keels

Definitions

  • the present invention relates to an offshore exploitation platform, in particular an offshore oil exploitation platform, of the type comprising an upper hull extending above sea level and connected to a base. hollow bottom totally immersed by partially immersed connecting legs forming buoyancy box and extending substantially vertically.
  • Platforms of this type are known as semi-submersible platforms.
  • the lower base is ballasted, for example by filling it with sea water.
  • the legs are formed by cylindrical columns with solid walls delimiting over their entire height an enclosed space forming a buoyancy box for the platform.
  • French patent application FR-A-2 713 588 describes a self-elevating platform comprising legs formed over the entire height of a metal trellis- lique. Integrated floats on the legs allow the platform to float. However, they are not intended to provide a reduction in the vertical movements of the platform.
  • the object of the present invention is to propose an operating platform at sea which is not very sensitive to swell and whose length of the legs connecting the upper hull to the lower base is limited.
  • the subject of the invention is an offshore exploitation platform, in particular an offshore petroleum exploitation platform, of the aforementioned type, characterized in that the legs have on their immersed height at least two successive sections, a first section with solid walls delimiting an enclosed space and forming a buoyancy box and a second section with perforated side wall, the interior space of this second section being open to the surrounding marine environment.
  • the invention may have one or more of the following characteristics:
  • the second section with perforated side wall is a metallic lattice structure
  • the second section with perforated side wall is disposed between the first section with solid walls and the base
  • the first section with full walls extends at least partially immediately below said shell, -
  • the first and second sections are dimensioned so that the pressure force exerted on the first section with full walls compensates appreciably over a range of usual swell periods the acceleration force of the platform, the first and second sections are dimensioned so that the pressure force and the acceleration force are equal for two values of swell period included in the range of usual swell periods,
  • the submerged height of the second section is between a quarter and three quarcs of the total submerged height of the leg
  • the submerged height of the second section is between substantially 0.4 and substantially 0.65 times the total submerged height of the leg, the legs have a generally cylindrical outer shape,
  • the base comprises at least one passage crossing it substantially vertically right through,
  • ballast-forming fluid in particular sea water
  • the hull is mounted movable along the legs and there are provided mechanisms for relative displacement and locking of the hull relative to the legs, - said second section with perforated side wall is disposed between two sections with solid walls according to the submerged height legs.
  • FIG. 1 is a schematic elevational view of an oil platform according to the invention
  • - Figure 2 is a graph showing the transfer function of a platform of the state of the art as a function of the swell period
  • Figure 3 is a graph showing the evolution of the pressure and acceleration forces exerted on a platform of the prior art as a function of the swell period
  • Figures 4 and 5 are graphs analogous to those of Figures 2 and 3 for a platform according to the invention.
  • FIG. 1 there is shown schematically a self-elevating oil platform of the semi-submersible type. It essentially comprises an upper hull 1 extending over the sea when the platform is in operation, and connected by legs 2 to a submerged lower base 3.
  • the upper shell comprises technical and residential buildings which are not shown, as well as a wellbore and well heads 4.
  • passages 5 are provided through the hull 1 to allow the passage of the legs 2.
  • Lifting mechanisms 6 are arranged around the passages 5 and make it possible to lower the legs 2 and the base 3 and hoist the hull 1 above the surface of the water up to an altitude which puts it out of reach of the highest waves.
  • the mechanisms 6 are for example pinion and rack mechanisms, the racks extending over the entire height of the legs 2.
  • These mechanisms 6 also include means for locking the legs 2 relative to the shell 1 in order to ensure a rigid leg connection on the hull.
  • the legs 3 2 are for example four in number and have a generally cylindrical external shape. In the embodiment shown in Figure 1, they have a square section, but they can also have a circular or triangular section.
  • the legs 2 are all identical and have, according to their submerged height, two successive sections.
  • a first upper section 10 is formed by a tube with a solid wall closed at its lower end by a bottom 12. This first section thus delimits an enclosed space isolated from the surrounding marine environment and forms a buoyancy box for the platform.
  • the upper part of this first section extends above sea level on either side of the hull 1.
  • the lower part thereof extends immediately below the hull 1 and is partially submerged.
  • the first section is extended by a second section 14 with perforated side wall, the interior of this second section being open to the surrounding marine environment.
  • This second section is thus interposed between the first section 10 and the base 3 and is formed for example by a metallic lattice structure.
  • This structure comprises four metal uprights 16 interconnected by a trellis 18 of metal tubes.
  • the second section is welded at its upper end to the lower end of the section 10 and at its lower end to the base 3.
  • the submerged height Zt of the first section 10 with a solid wall represents substantially a third of the total submerged height Zm of the legs 2.
  • the second lattice section is completely submerged and extends in the embodiment shown over substantially two-thirds of the total submerged height of the legs 2.
  • the submerged height of the second section with perforated side wall is between a quarter and three quarters of the total submerged height of the legs 2.
  • the calculations show that the submerged height of the second section is generally between substantially 0.4 and substantially 0.65 times the total submerged height of the legs.
  • the base 3 is hollow and is generally square, rectangular or triangular. It is filled with seawater and thus forms a ballast for the entire platform. It can also include tanks incorporated inside it in which hydrocarbons are stored. Furthermore, a central passage 20 passes right through the base 3. This passage reduces the resistant surface offered to the water during the vertical movements of the platform. It can also allow the circulation of drilling tools.
  • the platform floats thanks to the submerged part of the first sections 10 with a solid wall. These sections are subjected to a pressure force denoted F p exerted on their bottom 12. The pressure force F p depends on the submerged height Zt of the first section 10.
  • a ⁇ j is the area of the flotation surface, i.e. the area of the bottoms 12, ⁇ is the wave number of the swell and f (t) is the rise in the level of the free sea surface as a function of time.
  • F acceleration force due principa ⁇ LEMENT the water movements and in particular their effect on the base 3.
  • the added mass is a fictitious mass taking into account the action of the sea water surrounding the base on the platform during the movements of the latter.
  • the two forces F a and F p applied to the platform are in phase opposition. Under these conditions, it is understandable that it is possible to size the first and second sections so that the submerged height Zt of the section 10 is such that the pressure force F p exerted on this first section substantially compensates over a range of periods. usual swell the acceleration force F a of the platform. In addition, the dimensioning can be such that these two forces are equal for two values of swell period included in the range of usual swell periods.
  • the flotation surface that is to say the area of intersection of the legs with the surface of the water, as well as the base.
  • the submerged height Zt of the first solid wall section is determined by solving the equation reflecting the equality of the forces F a and F p applied on the platform.
  • a computer simulation of the behavior of the platform it is then verified that the two values of swell period, for which the forces F a and F p are equal, are included in a usual swell period range.
  • the smallest value of swell period for the- which the two forces are equal is greater than 4 seconds.
  • FIG. 2 is shown the transfer function of a platform of the prior art, that is to say with legs formed of a single solid wall section extending from the base 3 to hull 1, depending on the swell period T expressed in seconds.
  • the transfer function in heaving is the ratio between the amplitude of the heaving movement of the platform and the amplitude of a swell of one meter, the heaving being a quantity representative of the upward and downward vertical movements platform under the effect of the swell.
  • FIG. 3 shows the evolution of the pressure force F p and the evolution of the acceleration force F a as a function of the swell period T expressed in seconds for a platform of the state of technology.
  • the amplitudes of the forces F a and F p for a period considered to be less than 28 seconds are very large.
  • differences between the values of the forces F a and F p are large.
  • the platform is subjected mainly to the acceleration force F a , from which results the significant heaving translated on the curve of FIG. 2.
  • the values of F a and F p are substantially equal, which corresponds to a substantially zero heaving in this figure.
  • the transfer function is represented in FIG. 4 while the forces F a and F p are represented in FIG. 5.
  • the curve is canceled for two different periods T (15.5 seconds and 23.5 seconds) and not only a value as in the case of known platforms. These two cancellation values result from the two points of intersection of the curves representative of the forces of acceleration F a and pressure F p .
  • the curves shown here were obtained with a platform whose submerged height Zt of the first section 10 with solid walls is equal to 50 m and whose total submerged length Zm of the legs is equal to 140 m.
  • the volume of the base is equal to 33,000 m 3
  • the area of the flotation surface (sum of the areas of the bottoms 12) is equal to 841 m 2 .
  • the added mass of the platform is equal to 194,750 tonnes.
  • the lattice sections 14 are arranged between two sections with solid walls according to the immersed height of the legs. Furthermore, any other arrangement of successive sections, some of which have solid walls and others with perforated side walls, is also possible for producing the legs of the platform.
  • the good stability of the platform allows the installation of well heads on the hull.

Landscapes

  • Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Earth Drilling (AREA)
  • Revetment (AREA)
  • Cleaning Or Clearing Of The Surface Of Open Water (AREA)
  • Lubricants (AREA)

Abstract

La plate-forme d'exploitation pétrolière en mer comporte une coque supérieure (1) s'étendant au-dessus du niveau de la mer. La coque (1) est reliée à une embase inférieure (3) creuse totalement immergée par des jambes de liaison (2) partiellement immergées formant caisson de flottabilité et s'étendant sensiblement verticalement. Les jambes (2) comportent sur leur hauteur immergée au moins deux tronçons successifs (10, 14), un premier tronçon (10) à parois pleines délimitant un espace clos et formant un caisson de flottabilité et un second tronçon (14) à paroi latérale ajourée, l'espace intérieur de ce second tronçon (14) étant ouvert sur le milieu marin environnant.

Description

Plate-forme d'exploitation pétrolière en mer
La présente invention concerne une plate-forme d'exploitation en mer, notamment une plate-forme d'ex¬ ploitation pétrolière en mer, du type comportant une coque supérieure s'étendant au-dessus du niveau de la mer et reliée à une embase inférieure creuse totalement immergée par des jambes de liaison partiellement immer¬ gées formant caisson de flottabilité et s'étendant sensiblement verticalement.
Les plate-formes de ce type sont connues sous le nom de plate-formes semi-submersibles. Afin d'assurer la stabilité de telles plate-formes en position d'exploita¬ tion, l'embase inférieure est lestée, par exemple par remplissage de celle-ci avec de l'eau de mer. Dans les plate-formes connues, les jambes sont formées par des colonnes cylindriques à parois pleines délimitant sur toute leur hauteur un espace clos formant un caisson de flottabilité pour la plate-forme.
Ces plate-formes ne reposent pas directement sur le fond marin et sont simplement ancrées par des lignes d'ancrage caténaire. Elles sont ainsi très sensibles à la houle marine qui provoque des mouvements verticaux ascendants et descendants de la plate-forme. L'amplitude de ces mouvements peut atteindre des valeurs importantes . Ce phénomène rend difficile l''exploitation pétrolière depuis la plate-forme.
Afin de tenter d'apporter une solution à ce problème, il a été proposé d'allonger la longueur des jambes afin que l'embase soit immergée profondément. Le résultat obtenu par mise en oeuvre de cette solution reste imparfait et de telles plate-formes sont complexes à fabriquer et à installer. Par ailleurs, elles sont temporairement instables lors de leur installation.
La demande de brevet français FR-A-2 713 588 décrit une plateforme auto-élévatrice comportant des jambes formées sur toute la hauteur d'un treillis métal- lique. Des flotteurs intégrés sur les jambes permettent de faire flotter la plate-forme. Toutefois, ils ne sont pas destinés à assurer une réduction des mouvements verticaux de la plate-forme. La présente invention a pour but de proposer une plate-forme d'exploitation en mer peu sensible à la houle et dont la longueur des jambes liant la coque supérieure à l'embase inférieure est limitée.
A cet effet, l'invention a pour objet une plate- forme d'exploitation en mer, notamment une plate-forme d'exploitation pétrolière en mer, du type précité, caractérisée en ce que les jambes comportent sur leur hauteur immergée au moins deux tronçons successifs, un premier tronçon à parois pleines délimitant un espace clos et formant un caisson de flottabilité et un second tronçon à paroi latérale ajourée, l'espace intérieur de ce second tronçon étant ouvert sur le milieu marin environnant.
Suivant des modes particuliers de réalisation, l'invention peut présenter l'une ou plusieurs des carac¬ téristiques suivantes :
- le second tronçon à paroi latérale ajourée est une structure métallique en treillis,
- le second tronçon à paroi latérale ajourée est disposé entre le premier tronçon à parois pleines et l'embase,
- le premier tronçon à parois pleines s'étend au moins partiellement immédiatement au-dessous de ladite coque, - les premier et second tronçons sont dimension- nés de telle sorte que la force de pression s 'exerçant sur le premier tronçon à parois pleines compense sensi¬ blement sur une plage de périodes de houle usuelle la force d'accélération de la plate-forme, - les premier et second tronçons sont dimension- nés de telle sorte que la force de pression et la force d'accélération sont égales pour deux valeurs de période de houle comprises dans la plage de périodes de houle usuelle,
- la valeur de période de houle la plus petite pour laquelle la force de pression et la force d'accé¬ lération sont égales est supérieure à 4 secondes,
- la hauteur immergée du second tronçon est comprise entre le quart et les trois quarcs de la hauteur totale immergée de la jambe,
- la hauteur immergée du second tronçon est comprise entre sensiblement 0,4 et sensiblement 0,65 fois la hauteur totale immergée de la jambe, - les jambes ont une forme générale extérieure cylindrique,
- l'embase comporte au moins un passage traver¬ sant celle-ci sensiblement verticalement de part en part,
- l'embase est emplie d'un fluide formant lest, notamment de l'eau de mer,
- la coque est montée déplaçable le long des jambes et il est prévu des mécanismes de déplacement relatif et de verrouillage de la coque par rapport aux jambes, - ledit second tronçon à paroi latérale ajourée est disposé entre deux tronçons à parois pleines suivant la hauteur immergée des jambes.
L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple, et faite en se référant aux dessins sur lesquels :
- la figure 1 est une vue schématique en éleva- ti n d'une plate-forme pétrolière conforme à l'invention; - la figure 2 est un graphique représentant la fonction de transfert d'une plate-forme de l'état de la technique en fonction de la période de la houle ; la figure 3 est un graphique représentant l'évolution des forces de pression et d'accélération s 'exerçant sur une plate-forme de l'état de la technique en fonction de la période de la houle ; et
- les figures 4 et 5 sont des graphiques analo¬ gues à ceux des figures 2 et 3 pour une plate-forme selon l'invention.
Sur la figure 1, on a représenté schématiquement une plate-forme pétrolière auto-élévatrice du type semi- submersible . Elle comporte essentiellement une coque supérieure 1 s'étendant au-dessus de la mer lorsque la plate-forme est en exploitation, et reliée par des jambes 2 à une embase inférieure immergée 3.
De manière classique, la coque supérieure com¬ porte des bâtiments techniques et d'habitation non repré¬ sentés ainsi qu'un puits de forage et des têtes de puits 4.
Par ailleurs, des passages 5 sont ménagés au travers de la coque 1 pour permettre le passage des jambes 2. Des mécanismes 6 de levage sont disposés autour des passages 5 et permettent de descendre les jambes 2 et l'embase 3 et de hisser la coque 1 au-dessus de la surface de l'eau jusqu'à une altitude qui la met hors de portée des plus hautes vagues . Les mécanismes 6 sont par exemple des mécanismes à pignons et crémaillères, les crémaillères s'étendant sur toute la hauteur des jambes 2. Ces mécanismes 6 comportent en outre des moyens de verrouillage des jambes 2 par rapport à la coque 1 afin d'assurer une liaison rigide des jambes sur la coque.
Les jamb- 3 2 sont par exemple au nombre de quatre et ont une forme générale extérieure cylindrique. Dans le mode de réalisation représenté à la figure 1, elles ont une section carrée, mais elles peuvent également avoir une section circulaire ou triangulaire.
Les jambes 2 sont toutes identiques et présentent suivant leur hauteur immergée deux tronçons successifs. Un premier tronçon supérieur 10 est formé par un tube à paroi pleine obturé à son extrémité inférieure par un fond 12. Ce premier tronçon délimite ainsi un espace clos isolé du milieu marin environnant et forme un caisson de flottabilité pour la plate-forme. La partie supérieure de ce premier tronçon s'étend au-dessus du niveau de la mer de part et d'autre de la coque 1. La partie inférieure de celui-ci s'étend immédiatement au-dessous de la coque 1 et est partiellement immergée.
Le premier tronçon est prolongé par un second tronçon 14 à paroi latérale ajourée, l'intérieur de ce second tronçon étant ouvert sur le milieu marin environ¬ nant. Ce second tronçon est ainsi interposé entre le premier tronçon 10 et l'embase 3 et est formé par exemple par une structure métallique en treillis. Cette structure comporte quatre montants 16 métalliques reliés entre eux par un treillis 18 de tubes métalliques .
Le second tronçon est soudé à son extrémité supérieure à l'extrémité inférieure du tronçon 10 et à son extrémité inférieure à l'embase 3. Comme cela est représenté sur la figure 1, en position d'exploitation, la hauteur immergée Zt du premier tronçon 10 à paroi pleine représente sensiblement un tiers de la hauteur totale immergée Zm des jambes 2. Ainsi, le second tronçon en treillis est totalement immergé et s'étend dans le mode de réalisation représenté sur sensiblement deux-tiers de la hauteur totale immergée des jambes 2. De manière générale, la hauteur immergée du second tronçon à paroi latérale ajourée est comprise entre le quart et les trois quarts de la hauteur totale immergée des jambes 2. Dans la pratique, les calculs montrent que la hauteur immergée du second tronçon est généralement comprise entre sensiblement 0,4 et sensiblement 0,65 fois la hauteur totale immergée des jambes. L'embase 3 est creuse et est de forme générale carrée, rectangulaire ou triangulaire. Elle est emplie d'eau de mer et forme ainsi un lest pour l'ensemble de la plate-forme. Elle peut également comporter des réservoirs incorporés à l'intérieur de celle-ci dans lesquels sont stockés des hydrocarbures. Par ailleurs, un passage central 20 traverse de part en part l'embase 3. Ce passage réduit la surface résistante offerte à l'eau lors des mouvements verticaux de la plate-forme. Il peut également permettre la circulation d'outils de forage. Dans la position représentée sur la figure 1, la plateforme flotte grâce à la partie immergée des premiers tronçons 10 à paroi pleine. Ces tronçons sont soumis à une force de pression notée Fp s'exerçant sur leur fond 12. La force de pression Fp dépend de la hauteur immergée Zt du premier tronçon 10.
Elle s'exprime en première approximation sous la forme :
Fp = A^" f(t) OÙ : A^j est l'aire de la surface de flottaison, c'est-à-dire l'aire des fonds 12, β est le nombre d'onde de la houle et f(t) est l'élévation du niveau de la surface libre de la mer en fonction du temps.
Par ailleurs, l'ensemble de la plate-forme est soumise à une force d'accélération notée Fa due principa¬ lement aux mouvements de l'eau et notamment à leurs effets sur l'embase 3. Cette force d'accélération dépend de la hauteur totale immergée Zm des jambes 2. Elle s'ex¬ prime en première approximation sous la forme : Fa = kx Bepzm f(t) OÙ : kλ est une constante pour une période de houle donnée et B est la somme de la masse de l'embase 3 emplie d'eau et de la masse ajoutée. La masse ajoutée est une masse fictive prenant en compte l'action de l'eau de mer entourant l'embase sur la plate-forme lors des mouvements de celle-ci.
Les deux forces Fa et Fp appliquées sur la plate¬ forme sont en opposition de phase. Dans ces conditions, on conçoit qu'il est possible de dimensionner les premier et second tronçons de telle sorte que la hauteur immergée Zt du tronçon 10 soit telle que la force de pression Fp exercée sur ce premier tronçon compense sensiblement sur une plage de périodes de houle usuelle la force d'accélé- ration Fa de la plate-forme. De plus, le dimensionnement peut être tel que ces deux forces soient égales pour deux valeurs de période de houle comprises dans la plage de périodes de houle usuelle.
A cet effet, lors du dimensionnement de la plate- forme, on détermine d'abord la surface de flottaison, c'est-à-dire la surface d'intersection des jambes avec la surface de l'eau, ainsi que le volume de l'embase. Par une étude de stabilité classique, on détermine alors la hauteur totale immergée Zm des jambes devant être mises en oeuvre .
On détermine la hauteur immergée Zt du premier tronçon à paroi pleine en résolvant l'équation traduisant l'égalité des forces Fa et Fp appliquées sur la plate¬ forme . Par une simulation informatique du comportement de la plate-forme, on vérifie ensuite que les deux valeurs de période de houle, pour lesquelles les forces Fa et Fp sont égales, sont comprises dans une plage de période de houle usuelle. En particulier, on vérifie que la valeur la plus petite de période de houle pour la- quelle les deux forces sont égales est supérieure à 4 secondes .
Si tel n'est pas le cas, un nouveau calcul des hauteurs Zm et Zt est effectué avec une embase de volume ou de forme différente. En effet, la modification de la structure de l'embase, et en particulier de sa forme modifie la masse ajoutée. Ainsi, les hauteurs Zm et Zt se trouvent modifiées ainsi que les valeurs de période de houle pour lesquelles les deux forces Fa et Fp sont égales.
Sur la figure 2 est représentée la fonction de transfert d'une plate-forme de l'état de la technique, c'est-à-dire avec des jambes formées d'un unique tronçon à paroi pleine s'étendant depuis l'embase 3 jusqu'à la coque 1, en fonction de la période T de houle exprimée en secondes. La fonction de transfert en pilonnement est le rapport entre l'amplitude du mouvement de pilonnement de la plate-forme et l'amplitude d'une houle de un mètre, le pilonnement étant une grandeur représentative des mouve- ments verticaux ascendants et descendants de la plate¬ forme sous l'effet de la houle.
On constate sur cette courbe que le pilonnement de la plate-forme est important sur une plage de périodes de 18 à 28 secondes. Cette plage de périodes correspond aux valeurs élevées des périodes de houle rencontrées communément. Par ailleurs, le pilonnement est extrêmement important pour des périodes de houle proches de 24 secondes .
Sur la figure 3 sont représentées l'évolution de la force de pression Fp et l'évolution de la force d'accé¬ lération Fa en fonction de la période de houle T exprimée en secondes pour une plate-forme de l'état de la techni¬ que. Sur ces courbes, on constate que les amplitudes des forces Fa et Fp pour une période considérée inférieure à 28 secondes sont très importantes. Par ailleurs, les écarts entre les valeurs des forces Fa et Fp sont grands. Ainsi, la plate-forme est soumise principalement à la force d'accélération Fa, d'où il résulte le pilonnement important traduit sur la courbe de la figure 2. Pour une période sensiblement égale à 31 secondes, les valeurs de Fa et Fp sont sensiblement égales, ce qui correspond à un pilonnement sensiblement nul sur cette figure.
Pour la plate-forme selon l'invention représentée sur la figure 1, la fonction de transfert est représentée sur la figure 4 alors que les forces Fa et Fp sont représentées sur la figure 5.
On constate sur la figure 5 que grâce à la conception des jambes en deux tronçons successifs, dont l'un est à parois pleines et l'autre à paroi latérale ajourée, il est possible que les valeurs des forces Fa et Fp soient rendues très proches les unes des autres sur une plage étendue de périodes de houle comprise entre 0 et 24 secondes et correspondant aux houles usuelles. Par ail¬ leurs, les courbes représentatives des forces Fa et Fp se coupent en deux points sur cette plage de valeurs, ce qui correspond physiquement, puisque ces forces sont en opposition de phase, à une annulation de la force d'exci¬ tation résultante s'appliquant sur la plate-forme.
On constate sur la figure 4, que les forces d'accélération FΛ et de pression Fp se compensant sensi¬ blement sur toute l'étendue de la plage de périodes correspondant aux houles usuelles, le pilonnement de la plate-forme est très faible. En particulier, le maximum de pilonnement obtenu sur cette plage correspond à sensiblement l/6ème du pilonnement maximum obtenu avec des plate-formes de l'état de la technique.
En outre, sur cette figure, la courbe s'annule pour deux périodes T différentes (15,5 secondes et 23,5 secondes) et non uniquement une valeur comme dans le cas des plate-formes connues. Ces deux valeurs d'annulation résultent des deux points d'intersection des courbes représentatives des forces d'accélération Fa et de pression Fp.
Les courbes représentées ici ont été obtenues avec une plate-forme dont la hauteur immergée Zt du premier tronçon 10 à parois pleines est égale à 50 m et dont la longueur totale immergée Zm des jambes est égale à 140 m. Le volume de l'embase est égale à 33.000 m3, l'aire de la surface de flottaison (somme des aires des fonds 12) est égale à 841 m2. La masse ajoutée de la plate-forme est égale à 194.750 tonnes.
En variante, non représentée, il est également possible d'interposer entre l'extrémité inférieure des tronçons 14 en treillis et l'embase 3 des tronçons à parois pleines formant des caissons supplémentaires de flottabilité ou de stockage pour la plate-forme. Dans ces conditions, les tronçons 14 en treillis sont disposés entre deux tronçons à parois pleines suivant la hauteur immergée des jambes. Par ailleurs, tout autre agencement de tronçons successifs dont certains sont à parois pleines et d'au¬ tres à paroi latérale ajourée est également possible pour la réalisation des jambes de la plate-forme.
On notera qu'avec ce type de plate-forme, la longueur des jambes est indépendante de la profondeur du lieu d'exploitation.
De plus, la bonne stabilité de la plate-forme autorise l'installation des têtes de puits sur la coque.

Claims

REVENDICATIONS 1.- Plate-forme d'exploitation en mer, notamment plate-forme d'exploitation pétrolière en mer, du type comportant une coque supérieure (1) s'étendant au-dessus du niveau de la mer et reliée à une embase inférieure (3) creuse totalement immergée par des jambes de liaison (2) partiellement immergées formant caisson de flottabilité et s'étendant sensiblement verticalement, caractérisée en ce que les jambes (2) comportent sur leur hauteur immer- gée au moins deux tronçons successifs (10, 14), un pre¬ mier tronçon (10) à parois pleines délimitant un espace clos et formant un caisson de flottabilité et un second tronçon (14) à paroi latérale ajourée, l'espace intérieur de ce second tronçon (14) étant ouvert sur le milieu marin environnant.
2.- Plate-forme selon la revendication 1, carac¬ térisée en ce que le second tronçon (14) à paroi latérale ajourée est une structure métallique en treillis (18) .
3.- Plate-forme selon la revendication 1 ou 2, caractérisée en ce que le second tronçon (14) à paroi latérale ajourée est disposé entre le premier tronçon (10) à parois pleines et l'embase (3).
4.- Plate-forme selon l'une quelconque des revendications précédentes, caractérisée en ce que le premier tronçon (10) à parois pleines s'étend au moins partiellement immédiatement au-dessous de ladite coque
(1) .
5.- Plate-forme selon l'une quelconque des reven¬ dications précédentes, caractérisée en ce que les premier (10) et second (14) tronçons sont dimensionnés de telle sorte que la force de pression (Fp) s'exerçant sur le premier tronçon (10) à parois pleines compense sensible¬ ment sur une plage de périodes de houle usuelle la force d'accélération (Fa) de la plate-forme.
6.- Plate-forme selon la revendication 5, carac¬ térisée en ce que les premier et second tronçons sont dimensionnés de telle sorte que la force de pression (Fp) et la force d'accélération (Fa) sont égales pour deux valeurs de période de houle comprises dans la plage de périodes de houle usuelle.
7.- Plate-forme selon la revendication 6, carac¬ térisée en ce que la valeur de période de houle la plus petite pour laquelle la force de pression (Fp) et la force d'accélération (Fa) sont égales est supérieure à 4 secondes .
8.- Plate-forme selon l'une quelconque des revendications précédentes, caractérisée en ce que la hauteur immergée du second tronçon (14) est comprise entre le quart et les trois quarts de la hauteur totale immergée de la jambe (2) .
9.- Plate-forme selon la revendication 8, carac¬ térisée en ce que la hauteur immergée du second tronçon (14) est comprise entre sensiblement 0,4 et sensiblement 0,65 fois la hauteur totale immergée de la jambe (2) .
10.- Plate-forme selon l'une quelconque des revendications précédentes, caractérisée en ce que les jambes (2) ont une forme générale extérieure cylindrique.
11.- Plate-forme selon l'une quelconque des revendications précédentes, caractérisée en ce que l'embase (3) comporte au moins un passage (20) traversant celle-ci sensiblement verticalement de part en part.
12.- Plate-forme selon l'une quelconque des revendications précédentes, caractérisée en ce que l'embase (3) est emplie d'un fluide formant lest, notam¬ ment de l'eau de mer.
13.- Plate-forme selon l'une quelconque des revendications précédentes, caractérisée en ce que la coque (1) est montée déplaçable le long des jambes (2) et en ce qu'il est prévu des mécanismes (6) de déplacement et de verrouillage relatif de la coque (1) par rapport aux jambes (2) .
14.- Plate-forme selon l'une quelconque des revendications précédentes, caractérisée en ce que ledit second tronçon (14) à paroi latérale ajourée est disposé entre deux tronçons à parois pleines suivant la hauteur immergée des jambes (2) .
EP96926441A 1995-07-26 1996-07-22 Plate-forme d'exploitation petroliere en mer Expired - Lifetime EP0840690B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9509112 1995-07-26
FR9509112A FR2737179B1 (fr) 1995-07-26 1995-07-26 Plate-forme d'exploitation petroliere en mer
PCT/FR1996/001151 WO1997005011A1 (fr) 1995-07-26 1996-07-22 Plate-forme d'exploitation petroliere en mer

Publications (2)

Publication Number Publication Date
EP0840690A1 true EP0840690A1 (fr) 1998-05-13
EP0840690B1 EP0840690B1 (fr) 1999-09-22

Family

ID=9481422

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96926441A Expired - Lifetime EP0840690B1 (fr) 1995-07-26 1996-07-22 Plate-forme d'exploitation petroliere en mer

Country Status (10)

Country Link
US (1) US6024040A (fr)
EP (1) EP0840690B1 (fr)
JP (1) JP3905557B2 (fr)
KR (1) KR100442502B1 (fr)
BR (1) BR9610018A (fr)
ES (1) ES2140883T3 (fr)
FR (1) FR2737179B1 (fr)
NO (1) NO314717B1 (fr)
OA (1) OA10656A (fr)
WO (1) WO1997005011A1 (fr)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1010884C2 (nl) * 1998-12-23 2000-06-26 Hans Van Der Poel Werkschip.
US6524032B2 (en) 2000-10-10 2003-02-25 Cso Aker Maritime, Inc. High capacity nonconcentric structural connectors and method of use
US6652192B1 (en) * 2000-10-10 2003-11-25 Cso Aker Maritime, Inc. Heave suppressed offshore drilling and production platform and method of installation
US6666624B2 (en) 2001-08-07 2003-12-23 Union Oil Company Of California Floating, modular deepwater platform and method of deployment
US6701861B2 (en) 2002-05-03 2004-03-09 Friede & Goldman, Ltd. Semi-submersible floating production facility
US6761124B1 (en) * 2002-09-28 2004-07-13 Nagan Srinivasan Column-stabilized floating structures with truss pontoons
US6718901B1 (en) 2002-11-12 2004-04-13 Technip France Offshore deployment of extendable draft platforms
US6942427B1 (en) 2003-05-03 2005-09-13 Nagan Srinivasan Column-stabilized floating structure with telescopic keel tank for offshore applications and method of installation
US7037044B2 (en) * 2003-10-15 2006-05-02 Technip France Deck-to-column connection for extendable draft platform
US7467912B2 (en) * 2004-09-30 2008-12-23 Technip France Extendable draft platform with buoyancy column strakes
US7854570B2 (en) * 2008-05-08 2010-12-21 Seahorse Equipment Corporation Pontoonless tension leg platform
FR2934635B1 (fr) 2008-07-29 2010-08-13 Technip France Installation de conduite montante flexible de transport d'hydrocarbures pour grande profondeur
CN101857072B (zh) * 2010-06-09 2012-09-26 中国海洋石油总公司 无条件稳性整装型深吃水浮式采油平台及其海上安装方法
US9032896B2 (en) 2010-06-09 2015-05-19 China National Offshore Oil Corporation Grouting and welding combined connection joint applied to a deepwater floating type platform and an offshore installation method thereof
US8757081B2 (en) 2010-11-09 2014-06-24 Technip France Semi-submersible floating structure for vortex-induced motion performance
US8757082B2 (en) 2011-07-01 2014-06-24 Seahorse Equipment Corp Offshore platform with outset columns
US8707882B2 (en) 2011-07-01 2014-04-29 Seahorse Equipment Corp Offshore platform with outset columns
KR101358302B1 (ko) * 2012-03-22 2014-02-05 삼성중공업 주식회사 반잠수식 해상구조물
KR101313809B1 (ko) * 2012-05-04 2013-09-30 삼성중공업 주식회사 잭업 플랫폼
KR101313204B1 (ko) * 2012-05-08 2013-09-30 삼성중공업 주식회사 잭업 플랫폼
CN108262864B (zh) * 2017-12-22 2020-09-01 中铁大桥局集团第四工程有限公司 水下钻孔定位装置和定位方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO823489L (no) * 1982-10-20 1984-04-24 Kvaerner Eng Flytende offshore-plattform.
US4864958A (en) * 1987-09-25 1989-09-12 Belinsky Sidney I Swap type floating platforms
US4784529A (en) * 1987-10-06 1988-11-15 Conoco Inc. Mooring apparatus and method of installation for deep water tension leg platform
NO882421L (no) * 1988-06-02 1989-12-04 Per Herbert Kristensen Flytekonstruksjon.
FR2713588B1 (fr) * 1993-12-09 1996-03-01 Technip Geoproduction Plate-forme auto-élévatrice d'exploitation pétrolière en grande profondeur.
US5588369A (en) * 1994-05-12 1996-12-31 Zedd Technologies Inc. Passive stabilization platform

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9705011A1 *

Also Published As

Publication number Publication date
BR9610018A (pt) 1999-07-06
JPH11509803A (ja) 1999-08-31
NO980339L (no) 1998-03-26
NO314717B1 (no) 2003-05-12
ES2140883T3 (es) 2000-03-01
KR19990035950A (ko) 1999-05-25
FR2737179A1 (fr) 1997-01-31
US6024040A (en) 2000-02-15
OA10656A (en) 2002-09-19
EP0840690B1 (fr) 1999-09-22
FR2737179B1 (fr) 1997-10-17
WO1997005011A1 (fr) 1997-02-13
NO980339D0 (no) 1998-01-26
JP3905557B2 (ja) 2007-04-18
KR100442502B1 (ko) 2004-10-08

Similar Documents

Publication Publication Date Title
EP0840690B1 (fr) Plate-forme d'exploitation petroliere en mer
EP3472458B1 (fr) Dispositif flottant support d'eolienne offshore et ensemble eolien flottant correspondant
NZ296833A (en) Device, for use on offshore apparatus, having a vertical frame and plates with window between plates for allowing water to flow horizontally between plates
RU2141427C1 (ru) Плавучее буровое/добычное морское основание с малой осадкой (варианты)
WO2003093627A1 (fr) Systeme de colonne montante flexible
FR2559808A1 (fr) Plate-forme composite pour exploitations petrolieres en mers polaires
EP1250510B1 (fr) Dispositif de liaison fond-surface comportant un dispositif stabilisateur
FR2536456A1 (fr) Systeme de forage a partir d'un plan d'eau, insensible a la houle
FR2620413A1 (fr) Element constitutif d'une ligne d'ancrage catenaire, ligne d'ancrage comportant un tel element, et dispositif et procede de mise en oeuvre de cette ligne d'ancrage
US7086810B2 (en) Floating structure
NO325651B1 (no) Bronnhodeplattform
OA10021A (fr) Plate-forme pétrolière flottante - pilonnement contrôlable
WO2016169811A1 (fr) Support flottant avec section horizontale variable avec la profondeur
FR2525176A1 (fr) Structure de forage en mer demi-immergee
EP3490882A1 (fr) Support flottant comportant un flotteur et une plaque d'amortissement munie d'une rangee d'orifines
EP0959182B1 (fr) Plate-forme marine auto-élévatrice et son procédé d'installation
FR2507995A1 (fr) Plate-forme marine semi-submersible
CA1281555C (fr) Plate-forme semi-submersible, notamment pour la recherche et/ou l'exploitation de gisements sous- marins en mers froides
US5983822A (en) Polygon floating offshore structure
EP1838570B1 (fr) Support flottant stabilise
FR2713588A1 (fr) Plate-forme auto-élévatrice d'exploitation pétrolière en grande profondeur.
EP0963906B1 (fr) Procédé d'installation d'une plate-forme gravitaire auto-élévatrice pour l'exploitation d'un champ pétrolier en mer
WO2021094191A1 (fr) Installation pour supporter une plate-forme auto-elevatrice
AU741756B2 (en) Off-shore oil production platform
WO2004045946A1 (fr) Barge de grandes dimensions presentant des cavites formant cavernes dans la coque

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980116

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): ES FI GB IE IT

17Q First examination report despatched

Effective date: 19980428

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): ES FI GB IE IT

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: TECHNIP FRANCE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

ITF It: translation for a ep patent filed

Owner name: INVENTION S.N.C.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19991129

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2140883

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20090723

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20090720

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090718

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100722

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100722

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100723

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20120629

Year of fee payment: 17

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130722

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140717

Year of fee payment: 19

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150722