EP0840571A1 - Vorrichtung zur detektion von konkrementen und kavitationsblasen - Google Patents

Vorrichtung zur detektion von konkrementen und kavitationsblasen

Info

Publication number
EP0840571A1
EP0840571A1 EP96927032A EP96927032A EP0840571A1 EP 0840571 A1 EP0840571 A1 EP 0840571A1 EP 96927032 A EP96927032 A EP 96927032A EP 96927032 A EP96927032 A EP 96927032A EP 0840571 A1 EP0840571 A1 EP 0840571A1
Authority
EP
European Patent Office
Prior art keywords
doppler
converter
sound
transducer
ultrasound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96927032A
Other languages
English (en)
French (fr)
Inventor
Rainer Schmitt
Matthias Molitor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP0840571A1 publication Critical patent/EP0840571A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/225Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for for extracorporeal shock wave lithotripsy [ESWL], e.g. by using ultrasonic waves
    • A61B17/2256Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for for extracorporeal shock wave lithotripsy [ESWL], e.g. by using ultrasonic waves with means for locating or checking the concrement, e.g. X-ray apparatus, imaging means
    • A61B17/2258Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for for extracorporeal shock wave lithotripsy [ESWL], e.g. by using ultrasonic waves with means for locating or checking the concrement, e.g. X-ray apparatus, imaging means integrated in a central portion of the shock wave apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/488Diagnostic techniques involving Doppler signals

Definitions

  • the invention relates to a device for the detection of concavities and / or cavitation bubbles, in particular for lithotripsy, according to the features specified in the preamble of claim 1.
  • an ultrasound Doppler method for determining the stone size from the rate of descent during biliary lithotripsy and also a device for performing this method is known.
  • a transducer which has to be precisely aligned so that the concrement, in particular a gall stone, is in the focus of the shock wave apparatus.
  • an image system in the form of an ultrasound device is available according to DE 40 12 760 AI, and both systems are to be aligned with the area of the gallstone. Aiming with the power sound system in such a way that the normally largest stone is in focus requires a great deal of experience on the part of the surgeon, the alignment of the
  • the known ultrasound device of the image system can be designed to be Doppler-capable or, in another embodiment, there is an independent Doppler system with individual oscillators for the transmission and reception process for carrying out a Doppler measurement.
  • the particles or concretions whirled up in the body fluid as a result of a shock wave pulse are subjected to ultrasound of a certain frequency in their sinking phase. The particle speed is determined from the frequency shift of the reflected sound and the particle size is calculated.
  • the particles are subjected to a sufficiently narrow frequency bandwidth by ultrasound, and the frequency shift of the reflected ultrasound resulting from the stone movement as a result of the Doppler effect is measured.
  • the particle velocity is calculated from the frequency shift, the angle between the sound direction and the vertical also being taken into account where appropriate.
  • the particle diameter is calculated on the condition that it is proportional to the square of the particle velocity under given conditions.
  • the object of the invention is to further develop the device of the type mentioned in order to achieve an improved representation of concrements and / or cavitation bubbles.
  • Reliable localization of the concretions or cavitation bubbles and a positioning of the acoustic power focus based thereon are to be achieved in a functionally reliable manner.
  • the device according to the invention contains a further ultrasound system which has the same focus, in particular at least approximately as the performance sound system.
  • This further ultrasound system is expediently arranged around the image sound migrator, which images the region of interest in a two-dimensional plane.
  • the ultrasound waves are sent into the focus zone formed in this way, which lead to a Doppler signal shift when the stone is hit.
  • this Doppler signal shift is resumed with the same arrangement and processed into yes / no hit information.
  • This information is thus obtained via ultrasound Doppler and the transmission and reception electronics provided for Doppler signal processing consist of an SE arrangement which is implemented from several elements.
  • an element is used alternately as a transmitter and also as a receiver, so that CW ultrasound can be used.
  • the frequencies of the doubling system are selected such that they lie between the imaging frequencies of the imaging transducer system and the power sound frequencies of the therapeutic signal or the power sound system.
  • the frequency becomes so that the localization, in particular of a stone, can be carried out simultaneously with the destruction, in particular of the stone, with the aid of the Doppler signals of the doubler in such a way that the lowest possible interference in the received Doppler signals occurs both through the power sound and through the ultrasound of the image system.
  • the Doppler frequency that is to say the transmit frequency of the Doppler converter
  • the Doppler frequency is specified in such a way that it lies in a range in which, on the one hand, the power sound field has a minimum and, on the other hand, separation from the image sound can take place.
  • the Doppler converter is expediently focused in the working area of the high-performance sound system, in particular the lithotriptor.
  • the Doppler converter is focused in this range within the scope of the invention.
  • the focus width is also expediently specified to be as small as possible.
  • the sample volume of the Doppler system is appropriately adapted to the hit volume of the power sound.
  • the device proposed according to the invention is suitable for detecting the process of crushing solid bodies as well as cleaning surfaces, evaporation of capsules or bubbles in a water bath.
  • the frequency range of the Doppler device is predetermined in such a way that there is only minimal impairment of the Doppler signal by the frequency of the power sound and the frequency of the imaging ultrasound system.
  • the ultrasound transducer is expediently excited with a continuous sinusoidal signal which is generated by a quartz-stabilized, amplitude-controlled oscillator.
  • the frequency of the transmission signal is in particular in the range of 1 MHz and the amplitude can be adapted to the requirements. Furthermore, interference in the imaging ultrasound system is avoided due to the selected Doppler frequency.
  • the ultrasound transducer provided in the Doppler device expediently works in the CW Operation and it consists of interconnected individual elements.
  • a ring-shaped arrangement of the elements with alternating interconnection for transmitting and receiving operation achieves a rotationally symmetrical sound field distribution in a particularly tick-like manner.
  • the transmission and reception aperture is selected such that the effective aperture forms a focus zone, which coincides with the focus of the power sound. It has proven to be particularly expedient to plug the double ring onto the image converter. Furthermore, the dimensions of the Doppler ring are dimensioned in such a way that the shading zone of the power sound provided by the image system is only slightly expanded; a restriction of the opening angle of the image system is advantageously avoided.
  • the same transducer is used both for generating the power sound and for generating the ultrasound of the image system.
  • the common transducer is therefore a component of both the performance sound system and the image system and also serves to receive the sound of the image system.
  • the sound head is expediently used to direct both the power sound, in the form of pulsed ultrasound and, expediently immediately after the ultrasound power sound has ended, the sound of the imaging system, preferably as continuous sound, onto the concretion and / or the cavitation bubbles.
  • the combined common transducer not only ensures a compact structure, but also an exact detection of the concretions and / or cavitation bubbles due to the matching focus of the image system and the power system.
  • the depth of field range is advantageously defined symmetrically to half the working stroke of the power transducer.
  • the focus on the focus area is functional guaranteed guaranteed.
  • An existing system can be retrofitted without any problems, the Doppler unit being arranged, in particular, in a ring around the sector scanner or the image transducer.
  • the Doppler signal is generated and evaluated by means of electronics, the analysis of the amplitude and the frequency spectrum being carried out in an analog or digital technique. The results of the evaluation can be presented optically and / or acoustically.
  • the signals are forwarded to a digital signal processor, hereinafter abbreviated as DSP.
  • DSP digital signal processor
  • the DSP makes it possible to use the in-phase and quadrature components of the Doppler signal to detect the direction of movement of a stone and its concretions, the destruction of solid bodies, the cleaning of surfaces or the like.
  • the disintegration state of the stone or the like is determined from the amplitude behavior.
  • the differentiation of the frequency components of the double signal provides the characteristic movement features of the stone or the like and also gives information about the nature of the stones, the bubbles or the like.
  • Fig. 3 is a block diagram of the Doppler unit. 1 schematically shows a top view of the ring-shaped Doppler converter 2.
  • This Doppler converter is arranged on a sound head of a power sound system, which is not further explained here, in such a way that both the sound head and the B-picture converter of the picture system are located in the inner free area 4.
  • the Doppler converter 2 has an inner diameter 6 of 33.4 mm and an outer diameter 8 of 43 mm.
  • the ring area 10 available for the Doppler signal is divided into at least one transmitting surface 12 and one receiving surface 14.
  • the total area of the ring area 10 is occupied by a total of sixteen circular transducers, of which eight transducers are connected as transmitters 12 and eight transducers as receivers 14, with transmitters 12 and receivers alternating evenly distributed over the circumference 14 are provided.
  • This alternating arrangement of transmitter 10 and receiver 14 or the transmitting and receiving ceramics leads to symmetrical sound fields for the transmitter and receiver.
  • the transducers or their transmitting and receiving ceramics can be arranged inclined at a predetermined angle with respect to the plane of the ring region 10 and with respect to the axis running through the center of the annular Doppler transducer.
  • a high sensitivity namely an amplitude up to 6 dB
  • a focus tube width of 4 mm diameter By tilting the transducer outwards, corresponding to an inclination angle of -10 °, a near field with a non-uniform pressure distribution up to 130 mm was determined by the transducer.
  • a favorable sensitivity was found at a distance of the order of 190 mm.
  • the inclination of the transducers or the transmitting and receiving ceramics by an angle of the order of 10 ° inwards to the center produced particularly favorable results.
  • a high sensitivity was found at a distance of 50 mm to 170 mm, the focus tube having a diameter of approx. 4 mm.
  • the construction of the Doppler transducer with such an aperture ensures a focus tube which is long and which is narrow enough, with a diameter of 4 mm, to enable exact positioning of the Performance sound system to ensure the concretion or the like.
  • FIG. 2 schematically shows a sound head 16 of a power sound system, which has a focus 18.
  • Lines 20 also indicate the detection range of the image system.
  • the annular Doppler converter 2 is arranged around the transducer 16.
  • the Doppler converter 2 forms a focus zone 22 or a focus tube with depth of field.
  • the transmission and reception aperture is predetermined such that the effective aperture of the Doppler converter 2 forms this focus zone 22, which coincides with the focus 18 of the power sound system.
  • the image converter of the image system is not shown here further, but this image converter is also coaxially surrounded by the Doppler converter 2.
  • the focus tube or the focus zone 22 of the Doppler converter 2 is aligned with the focus or focus tube of the power sound system as well as with the detection area 20 of the image system.
  • the transducer 16 is a common component of both the performance sound system and the imaging system.
  • the transducer is suitably focused on the area of interest, both for the power sound system and for the image system.
  • the power sound is preferably directed in the form of pulsed ultrasound to the area of interest or the concretions and / or cavitation bubbles.
  • the imaging system it is expedient to direct the concrements and / or cavitation bubbles to be examined immediately after the pulsed output sound, in particular continuous sound, has ended.
  • the continuous sound for image acquisition has a significantly lower energy compared to the performance show.
  • the transducer 16 is also designed as a receiver for the reflected sound for image generation by means of the image system.
  • the frequency of the doubler or its generator 30 is specified according to the invention in such a way that the lowest possible interference to the received Doppler signals is caused by the power sound on the one hand and by the ultrasound the B-imaging device on the other hand are to be expected.
  • the Doppler frequency is expediently specified such that it lies in the range in which the power sound field has a minimum and can also be separated from the B-scan sound.
  • the high-performance sound system has a center frequency of 380 kHz and the image system has a center frequency of 3.5 MHz.
  • a Doppler frequency namely the transmission frequency of the Doppler converter, in the range of 1 MHz has proven to be particularly expedient.
  • the amplitude can be adapted to the requirements.
  • the 1 MHz transmission signal 32 is fed to the transmitter (s) 12 of the Doppler converter 2 and transmitted by them.
  • the echo signals received by means of the receiver (s) 14 are filtered by means of a 1 MHz bandpass 34 in order to filter out the frequency components of the power sound and the image system.
  • the frequency of the bandpass 34 is matched to the frequency of the generator 30 and corresponds to this.
  • the Doppler signal 38 is obtained from the filtered reception signal and the transmission signal 32 in a mixer 36 by multicative mixing. Furthermore, the mixer 36 is supplied with a signal which is 90 ° out of phase by the generator 30.
  • the Doppler signal 38 is fed to an analog signal processing unit for the purpose of generating acoustic and optical perception signals for the movement of stone stones. Furthermore, the Doppler signal 38 is fed to a computer unit 40 in order to analyze the frequency- and amplitude-specific signal parameters and to present them as a digitally prepared audio signal on an output module 42.
  • the high-frequency interference components in the Doppler signal 38 are first filtered by means of a 500 Hz low-pass filter 44, so that only the frequency range of the stone-relevant useful signal is subsequently processed.
  • An adjustable threshold detector 46 generates a level window for the Doppler signal to suppress signals whose amplitude is either less than the minimum value set or greater than the maximum value set. The suppression of the signals with small amplitudes is effective in a range in which most of the Doppler signal is caused by slight movement of the water surface, breathing movement of the patient, vibrations of the apparatus or by other slight vibrations. The suppression of the signal components with too large Amplitudes are activated during the power pulse or when the vibrations are too great.
  • a time blocking or release window 48 is generated for the Doppler signal.
  • the threshold detector 46 recognizes the high signal level of the power pulse and causes a time delay in the release window 48.
  • the release window comprises the time period in which the largest portions of the Doppler signal originate from the Nie ⁇ renstein movement.
  • the duration of the release window 48 and the delay are set according to the invention and adapted to the requirements.
  • the signal from the blocking window 48 like that from the threshold detector 46, is fed to an analog switch 49.
  • the Doppler signal selected in this way is transformed into a higher frequency range by amplitude modulation by means of a modulator 50 for the purpose of better acoustic perceptibility.
  • An oscillator 51 expediently supplies a modulation signal in the range from 0.3 to 3 kHz.
  • the amplitude of the double signal corresponds to the intensity of the audio signal 52 and the frequency is represented in the length of the signal burst.
  • the audio signal 52 is passed on the one hand to headphones or an optical display and on the other hand amplified by an output stage 54 for connecting a loudspeaker 56.
  • the quadrature component 58 of the Doppler signal 38 is additionally generated for the digital signal processing. After digitization, the signals are forwarded to a digital signal processor by means of the computer unit 40. This DSP calculates the direction of movement of the stone and the stone concrements from the in-phase components 60 and quadrature components 58 of the Doppler signal 38. Furthermore, the disintegration state of the stone is determined from the amplitude behavior. Finally, the differentiation of the frequency components of the Doppler signal 38 provides the characteristic movement characteristics of the stone, information about the nature of the stone concrements being output. Reference numerals

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Vascular Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

Eine Vorrichtung zur Detektion von Konkrementen und/oder Kavitationsblasen, welche bei der Ablösung oder Zerkleinerung von vorzugsweise festen Körpern beim Einsatz Ultraschall-Leistungsschall auftreten, enthält ein Leistungsschallsystem und ein Bildsystem, welches vorzugsweise als Ultraschallsystem ausgebildet ist. Diese Vorrichtung soll dahingehend weitergebildet werden, daß eine verbesserte Darstellung von Konkrementen und/oder Kavitationsblasen erreicht wird. Es wird vorgeschlagen, daß ein weiteres Ultraschallsystem mit einem Dopplerwandler (2) vorgesehen ist, welcher im Bereich eines Schallkopfes (16) des Leistungsschallsystems und/oder des Bildsystems angeordnet ist. Der Dopplerwandler (2) ist insbesondere ringförmig um den Schallkopf (16) angeordnet.

Description

Vorrichtung zur Detektion von Konkrementen und Kavitationsblasen
Die Erfindung bezieht sich auf eine Vorrichtung zur Detektion von Konkre¬ menten und/oder Kavitationsblasen, insbesondere für die Lithotripsie, gemäß den im Oberbegriff des Patentanspruchs 1 angegebenen Merkmalen.
Aus der DE 40 12 760 AI ist ein Ultraschall-Doppler- Verfahren zur Bestimmung der Steingröße aus der Sinkgeschwindigkeit während der Gallen-Lithotripsie und ferner eine Vorrichtung zur Durchführung dieses Verfahrens bekannt. Bekannt¬ lich entfällt eine Stoßwellenapparatur bzw. ein Leistungsschallsystem einen Schallkopf, welcher genau ausgerichtet werden muß, damit sich das Konkrement, insbesondere ein Gallenstein, im Fokus der Stoßwellenapparatur befindet. Un¬ abhängig von einem solchen Leistungsschallsystem ist gemäß der DE 40 12 760 AI ein Bildsystem in Form eines Ultraschallgerätes vorhanden, und beide Syste¬ me sind auf den Bereich des Gallensteins auszurichten. Das Zielen mit dem Leistungsschallsystem derart, daß sich der normalerweise größte Stein im Fokus befindet, erfordert große Erfahrung des Operateurs, wobei das Ausrichten des
ORIGINAL UNTERLAGEN Bildsystems eine zusätzliche Belastung darstellt und einen weiteren nicht un¬ erheblichen Aufwand erfordert. Das vorbekannte Ultraschallgerät des Bild¬ systems kann dopplerfähig ausgebildet sein oder in einer anderen Ausführungs- form ist ein unabhängiges Dopplersystem mit Einzelschwingern für den Sende- und Empfangsvorgang zur Durchführung einer Dopplermessung vorhanden. Hierbei werden die infolge eines Stoßwellenimpulses in der Körperflüssigkeit aufgewirbelten Partikel oder Konkremente in ihrer Absinkphase mit Ultraschall bestimmter Frequenz beaufschlagt. Aus der Frequenzverschiebung des reflektier¬ ten Schalls wird die Partikelgeschwindigkeit bestimmt und die Partikelgröße berechnet. In der Absinkphase werden die Partikel von Ultraschall hinreichend schmaler Frequenz-Bandbreite beaufschlagt und die aufgrund der Steinbewegung infolge des Doppler-Effekts entstehende Frequenzverschiebung des reflektierten Ultraschalls wird gemessen. Aus der Frequenzverschiebung wird die Partikel¬ geschwindigkeit berechnet, wobei gegebenenfalls auch der Winkel zwischen Schallrichtung und der Vertikalen berücksichtigt wird. Schließlich wird der Par¬ tikeldurchmesser unter der Voraussetzung berechnet, daß bei gegebenen Bedin¬ gungen dieser proportional dem Quadrat der Partikelgeschwindigkeit ist.
Ferner ist aus dem US-Patent 4 932 414 eine Vorrichtung bekannt, welche ein Leistungsschallsystem zur Diagnose und Therapie kombiniert mit einem Bild¬ system enthält. Das Bildsystem muß wiederum manuell auf den Fokus des Lei¬ stungsschallsystems ausgerichtet werden und mittels eines Positionsmelders wird die erfaßte Winkelstellung auf einen Rechner gegeben. Der apparative Aufwand ist nicht unerheblich und die Erfassung der Winkelposition erfordert einen zu¬ sätzlichen Rechner- und/oder Softwareaufwand.
Während der Lithotripsie ist die Lokalisation eines Steines innerhalb einer Niere oder Gallenblase von außerordentlichem Interesse. Nur eine genaue Kenntnis dieser Position erlaubt eine zielsicherere Einrichtung des Ultraschallfokuses des Leistungsschallgenerators, und zwar vor allem wenn dieser nur eine schmale Keule besitzt, innerhalb welcher der Stein zerstört werden kann. Die bekannten Vorrichtungen und Verfahren ermöglichen keine allzu genaue Lokalisation. Bei Ultraschall- und Röntgenverfahren ist ferner zu beachten, daß aufgrund der nicht geradlinigen Schallausbreitung der Fokus des Lcistungsschalls, der Fokus des Bildschalls sowie die Abbildung eines Röntgengeräts zu einer verfälschten Posi- tion führen können. Daher spielt die Erfolgskontrolle dahingegend, ob ein Stein auch tatsächlich vom Leistungsschall getroffen worden ist, eine außerordentlich große Rolle.
Hiervon ausgehend liegt der Erfindung die Aufgabe zugrunde, die Vorrichtung der genannten Art weiterzubilden, um eine verbesserte Darstellung von Kon¬ krementen und/oder Kavitationsblasen zu erreichen. Eine sichere Lokalisation der Konkremente bzw. Kavitationsblasen und eine darauf basierende Positionie¬ rung des Leistungsschallfokus soll funktionssicher erreicht werden. Ferner soll gewährleistet werden, daß eine Rückkopplung zwischen einem Operateur und der Vorrichtung dahingehend besteht, daß eine Fehlpositionierung oder Fehlschüsse des Leistungsschallfokus-Systems vermieden werden.
Die Lösung dieser Aufgabe erfolgt gemäß den kennzeichnenden Merkmalen des Patentanspruchs 1.
Die erfindungsgemäße Vorrichtung enthält ein weiteres Ultraschallsystem, wel¬ ches den gleichen Fokus insbesondere zumindest näherungsweise wie das Leistungsschallsystem aufweist. Dieses weitere Ultraschallsystem ist in zweckmä¬ ßiger Weise um den Bildschallwander angeordnet, welcher die Region des Inte¬ resses in zweidimensionaler Ebene abbildet. In die derart gebildete Fokuszone werden die Ultraschallwellen gesandt, welche bei einem Treffer des Steines zu einer Dopplersignalverschiebung führen. Erfindungsgemäß wird diese Doppler- signalverschiebung mit der gleichen Anordnung wieder aufgenommen und zu einer ja/nein-Trefferinformation verarbeitet. Diese Information wird also über Ultraschalldoppler gewonnen und die zur Dopplersignalverarbeitung vorgesehene Sende- und Empfangselektronik besteht aus einer SE-Anordnung, welche aus mehreren Elementen realisiert ist. Hierbei wird ein Element abwechselnd als Sender und ferner als Empfänger genutzt, so daß CW-Ultraschall eingesetzt werden kann. In besonders zweckmäßiger Weise werden die Frequenzen des Dopplcrsystems derart gewählt, daß sie zwischen den Imagingfrequcnzen des abbildenden Transducersystems und den Leistungsschallfrequenzen des therapeu¬ tischen Signals bzw. des Leistungsschallsystems liegen. Damit die Lokalisation, insbesondere eines Steines, mit Hilfe der Dopplersignale simultan zur Zertrüm¬ merung, insbesondere des Steines, vorgenommen werden kann, wird die Frequenz des Doppiers derart vorgegeben, daß möglichst geringe Störungen der empfange¬ nen Dopplersignale sowohl durch den Leistungsschall als auch durch den Ultraschall des Bildsystems auftreten. Ist beispielsweise das Leistungsschallsystem für eine Mittenfrequenz von 380 kHz und das Bildgerät, insbesondere B-Bild- gerät, für einen Ultraschall mit einer Mittenfrequenz von 3,5 MHZ ausgelegt, so wird die Dopplerfrequenz, also die Sendefrequenz des Dopplerwandlers im Be¬ reich von 1 MHz vorgegeben. Erfindungsgemäß wird die Dopplerfrequenz derart vorgegeben, daß sie in einem Bereich liegt, in welchem zum einen das Leistungs¬ schallfeld ein Minimum aufweist und zum anderen eine Separation vom Bild¬ schall erfolgen kann. Ferner wird in zweckmäßiger Weise der Dopplerwandler in den Arbeitsbereich des Leistungsschallsystems, insbesondere des Lithotriptors, fokusiert. Liegt der Arbeitsbereich des Leistungsschallsystems, insbesondere des Lithotriptors, in einer Tiefe zwischen 50 mm und 150 mm, so ist im Rahmen der Erfindung der Dopplerwandler in diesem Bereich fokusiert. Um ferner eine exakte Ortung des Konkrements zu ermöglichen, wird in zweckmäßiger Weise ferner die Fokusbreite möglichst klein vorgegeben. Desweiteren ist in zweckmäßi¬ ger Weise das Sample Volume des Dopplersystems auf das Treffervolumen des Leistungsschalls angepaßt. Schließlich wird die genannte Information über eine entsprechende Schaltungseinheit einem Anwender hörbar gemacht, welcher somit nicht nur sieht, daß der Stein getroffen wurde, sondern auch ein diesbezügliches akustisches Signal erhält.
Die erfindungsgemäß vorgeschlagene Vorrichtung ist geeignet, den Vorgang der Zertrümmerung von festen Körpern ebenso zu detektieren wie die Reinigung von Oberflächen, des Evapurieren von Kapseln oder Blasen in einem Wasserbad. Der Frequenzbereich der Dopplereinrichtung ist derart vorgegeben, daß nur eine minimale Beeinträchtigung des Dopplersignals durch die Frequenz des Leistungs¬ schalls und die Frequenz des bildgebenden Ultraschallsystems erfolgt. Der Ultraschallwandler wird in zweckmäßiger Weise mit einen kontinuierlichen sinus¬ förmigen Signal angeregt, welches von einem quarzstabilisierten, amplitudengere¬ gelten Oszillator erzeugt wird. Die Frequenz des Sendesignals liegt insbesondere im Bereich von 1 MHz und die Amplitude kann den Anforderungen entsprechend angepaßt werden. Desweiteren werden aufgrund der gewählten Dopplerfrequenz Störungen im bildgebenden Ultraschallsystem vermieden. In zweckmäßiger Weise arbeitet der in der Dopplereinrichtung vorgesehene Ultraschallwandler im CW- Betrieb und er besteht aus zusammengeschalteten Einzelelementen. Durch eine ringförmige Anordnung der Elemente mit wechselnder Verschaltung für Sende- und Empfangsbetrieb wird in besonders zeckmäßiger Weise eine rotations¬ symmetrische Schallfeldverteilung erreicht.
Ferner ist die Sende- und Empfangsapertur derart gewählt, daß die effektive Apertur eine Fokuszone bildet, welche mit dem Fokus des Leistungsschalls zu¬ sammenfällt. Es hat sich als besonders zweckmäßig herausgestellt, den Dopp¬ lerring auf den Bildwandler aufzustecken. Ferner sind die Abmessungen des Dopplerrings derart dimensioniert, daß die vom Bildsystem vorhandene Ab- schattungszone des Leistungsschalles nur geringfügig erweitert wird; eine Ein¬ schränkung des Öffnungswinkels des Bildsystems wird in zweckmäßiger Weise vermieden.
Nach einer besonderen Ausgestaltung dient der gleiche Schallkopf sowohl zur Erzeugung des Leistungsschalls als auch für die Erzeugung des Ultraschalls des Bildsystems. Der gemeinsame Schallkopf ist also Bestandteil sowohl des Lei¬ stungsschallsystems als auch des Bildsystems und dient ferner für den Empfang des Schalls des Bildsystems. In diesem kombinierten System wird mittels des Schallkopfes zweckmäßig sowohl der Leistungsschall, in Form von pulsförmigem Ultraschall als auch, zweckmäßig unmittelbar nach Beendigung des Ultraschall- Leistungsschall der Schall des Bildsystems, vorzugsweise als Dauerschall auf das Konkrement und/oder die Kavitationsblasen gerichtet. Durch den kombinierten gemeinsamen Schallkopf wird nicht nur ein kompakter Aufbau gewährleistet, sondern eine exakte Erfassung der Konkremente und/oder Kavitationsblasen aufgrund des übereinstimmenden Fokus' des Bildsystems und des Leistungs¬ systems gewährleistet.
Auch ist es besonders günstig, den Fokus des Dopplerwandlers auf den Fokus des Leistungsschallsystems und/oder den Erfassungsbereich des Bildsystems auszu¬ richten. Der depth of field-Bereich ist vorteilhaft symmetrisch zum halben Ar¬ beitshub des Leistungsschallwandlers festgelegt.
Durch die erfindungsgemäße mechanische Kopplung von Leistungswandler, Bildsystem und Dopplerring ist die Ausrichtung auf den Fokusbereich funktions- sicher gewährleistet. Eine Nachrüstung eines vorhandenen Systems ist problemlos möglich, wobei die Dopplereinheit insbesondere ringförmig um den Sektor¬ scanner bzw. den Bildschallwandler angeordnet wird. Die Erzeugung und Auswer¬ tung des Dopplersignals erfolgt mittels einer Elektronik, wobei die Analyse der Amplitude und des Frequenzspektrums in einer analogen oder digitalen Technik durchgeführt wird. Die Ergebnisse der Auswertung können optisch und/oder akustisch dargestellt werden.
Desweiteren hat es sich als zweckmäßig erwiesen, für die digitale Signalauf¬ bereitung zusätzlich die Quadraturkomponente des Dopplersignals zu generieren. Nach einer Digitalisierung werden die Signale an einen Digitalsignal-Prozessor, nachfolgend als DSP abgekürzt, weitergeleitet. Mittels des DSP wird ermöglicht, aus den Inphase- und Quadraturkomponenten des Dopplersignals die Bewegungs¬ richtung eines Steins und dessen Konkrementen, die Zertrümmerung von festen Körpern, die Reinigung von Oberflächen oder dergleichen zu detektieren. Aus dem Amplitudenverhalten wird der Desintegrationszustand des Steins oder des¬ gleichen ermittelt. Die Differenzierung der Frequenzkomponenten des Dopp¬ lersignals liefert die charakteristischen Bewegungsmerkmale des Steins oder dergleichen und gibt darüberhinaus Informationen über die Beschaffenheit der Konkremente des Steins, der Blasen oder dergleichen.
Besondere Ausgestaltungen und Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.
Nachfolgend wird die Erfindung anhand der in der Zeichnung dargestellten Ausführungsbeispiele näher erläutert. Es zeigen:
Fig. 1 eine schematische Darstellung des Dopplerwandlers,
Fig. 2 eine perspektivische Darstellung der unterschiedlichen Funktions¬ bereiche der Komponenten der Vorrichtung,
Fig. 3 ein Blockschaltbild der Dopplereinheit. Fig. 1 zeigt schematisch eine Aufsicht des ringförmigen Dopplerwandlers 2. Dieser Dopplerwandler wird auf einem hier nicht weiter zu erläuternden Schall¬ kopf eines Leistungsschallsystems derart angeordnet, daß im inneren freien Bereich 4 sowohl der Schallkopf als auch der B-Bildwandler des Bildsystems sich befindet. In einer erprobten Ausführungsform besitzt der Dopplerwandler 2 einen Innendurchmesser 6 von 33,4 mm und einen Außendurchmesser 8 von 43 mm. Der für das Dopplersignal zur Verfügung stehende Ringbereich 10 ist in wenigstens eine Sendefläche 12 und eine Empfangsfläche 14 aufgeteilt. Bei der hier dargestellten besonderen Ausführungsform ist die Gesamtfläche des Ring¬ bereichs 10 mit insgesamt sechzehn Kreiswandlern belegt, von denen jeweils acht Wandler als Sender 12 und acht Wandler als Empfänger 14 verschaltet sind, wobei über den Umfang gleichmäßig verteilt abwechselnd Sender 12 und Emp¬ fänger 14 vorgesehen sind. Diese wechselnde Anordnung von Sender 10 und Empfänger 14 bzw. den Sende- und Empfangskeramiken führt zu symmetrischen Schallfeldern für Sender und Empfänger.
Zur Anpassung an die jeweiligen Einsatzbedingungen und zur Erzielung einer hohen Empfindlichkeit können die Wandler bzw. deren Sende- und Empfangs¬ keramiken bezüglich der Ebene des Ringbereichs 10 und bezüglich der durch das Zentrum des ringförmigen Dopplerwandlers verlaufenden Achse um vorgegebene Winkel geneigt angeordnet werden. Bei eben bzw. parallel zur Oberfläche des Ringberciches 10 angeordneten Kreiswandlern konnte eine hohe Empfindlichkeit, und zwar eine Amplitude bis 6 dB, in einem Abstand von 65 mm bis 350 mm mit einer Fokusschlauchbreite von 4 mm Durchmesser festgestellt werden. Durch Kippen der Wandler nach außen, entsprechend einem Neigungswinkel von -10°, wurde ein Nahfeld mit einer uneinheitlichen Druckverteilung bis 130 mm vom Wandler festgestellt. Eine günstige Empfindlichkeit konnte bei einer Entfernung in der Größenordnung 190 mm festgestellt werden. Besonders günstige Ergeb¬ nisse erbrachte die Neigung der Wandler bzw. der Sende- und Empfangskerami¬ ken, um einen Winkel in der Größenordnung von 10° nach innen zum Zentrum. Hierbei wurde eine hohe Empfindlichkeit im Abstand von 50 mm bis 170 mm festgestellt, wobei der Fokusschlauch einen Durchmesser von ca. 4 mm aufwies. Der Aufbau des Dopplerwandlers mit einer derartigen Apertur gewährleistet einen den Erfordernissen entsprechend langen Fokusschlauch, welcher mit einem Durchmesser von 4 mm schmal genug ist, um eine exakte Positionierung des Leistungsschallsystems auf das Konkrement oder dergleichen sicherstellen zu können.
Fig. 2 zeigt schematisch einen Schallkopf 16 eines Leistungsschallsystems, wel¬ ches einen Fokus 18 aufweist. Ferner ist mit den Linien 20 der Erfassungsbereich des Bildsystems angedeutet. Der ringförmige Dopplerwandler 2 ist um den Schallkopf 16 angeordnet. Der Dopplerwandler 2 bildet eine Fokuszone 22 bzw. einen Fokusschlauch mit depth of field. Erfindungsgemäß ist die Sende- und Empfangsapertur derart vorgegeben, daß die effektive Apertur des Dopplerwand¬ lers 2 diese Fokuszone 22 bildet, welche mit dem Fokus 18 des Leistungsschall¬ systems zusammenfällt. Der Bildschallwandler des Bildsystems ist hier nicht weiter dargestellt, doch wird auch dieser Bildschallwandler vom Dopplerwandler 2 koaxial umgeben. Wie ersichtlich, ist der Fokusschlauch bzw. die Fokuszone 22 des Dopplerwandlers 2 auf den Fokus oder Fokusschlauch des Leistungsschall¬ systems ebenso ausgerichtet, wie auf den Erfassungsbereich 20 des Bildsystems.
Der Schallkopf 16 ist im Rahmen der Erfindung gemeinsamer Bestandteil sowohl des Leistungsschallsystems als auch des Bildsystems. Der Schallkopf ist in ge¬ eigneter Weise auf den Bereich des Interesses fokusiert, und zwar gleichermaßen für das Leistungsschallsystem als auch für das Bildsystem. Der Leistungsschall wird vorzugsweise in Form von pulsförmigem Ultraschall auf den Bereich des Interesses bzw. die Konkremente und/oder Kavitationsblasen gerichtet. Für das Bildsystem wird in zweckmäßiger Weise unmittelbar nach Beendigung des gepul¬ sten Leistungsschalls, insbesondere Dauerschall auf das oder die zu untersuchen¬ den Konkremente und/oder Kavitationsblasen gerichtet. Der Dauerschall für die Bilderfassung weist im Vergleich mit dem Leistungsschau eine wesentlich niedri¬ gere Energie auf. Darüberhinaus ist der Schallkopf 16 ferner als Empfänger für den reflektierten Schall zur Bilderzeugung mittels des Bildsystems ausgebildet.
Fig. 3 zeigt das Blockschaltbild des Dopplersystems, welches einen Generator 30 enthält. Da in der Lithotripsie die Steinlokalisation mit Hilfe von Dopplersigna¬ len simultan zur Steinzertrümmerung vorgenommen werden soll, wird erfindungs¬ gemäß die Frequenz des Doppiers bzw. dessen Generators 30 derart vorgegeben, daß möglichst geringe Störungen der empfangenen Dopplersignale durch den Leistungsschall einerseits und durch den Ultraschall des B-Bildgeräts andererseits zu erwarten sind. In zweckmäßiger Weise wird die Dopplerfrequenz derart vor¬ gegeben, daß sie in dem Bereich liegt, in welchem das Leistungsschallfeld ein Minimum aufweist, und ferner vom B-Bildschall separiert werden kann. In einer besonderen Ausführungsform der Vorrichtung weist das Leistungsschallsystem eine Mittenfrequenz von 380 kHz und das Bildsystem eine Mittenfrequenz von 3,5 MHz auf. Bei dieser Konstellation hat sich eine Dopplerfrequenz, nämlich die Sendefrequenz des Dopplerwandlers, im Bereich von 1 MHz als besonders zweck¬ mäßig erwiesen. Die Amplitude ist den Anforderungen entsprechend anpaßbar.
Das 1 MHz Sendesignal 32 wird dem oder den Sendern 12 des Dopplerwandlers 2 zugeführt und von diesen ausgesendet. Die mittels des oder der Empfänger 14 empfangenen Echosignale werden mittels eines 1 MHz-Bandpaß 34 gefiltert, um die Frequenzanteile des Leistungsschalls sowie des Bildsystems auszufiltern. Die Frequenz des Bandpaß 34 ist auf die Frequenz des Generators 30 abgestimmt und entspricht dieser. Aus dem gefilterten Empfangssignal sowie dem Sende¬ signal 32 wird in einem Mischer 36 durch multikative Mischung das Dopplersig¬ nal 38 gewonnen. Ferner wird dem Mischer 36 vom Generator 30 ein um 90° phasenverschobenes Signal zugeführt. Das Dopplersignal 38 wird einer analogen Signalaufbereitung zwecks Erzeugung von akustischen und optischen Wahrneh¬ mungssignale für die Bewegung von Steinkonkrementen zugeführt. Ferner wird das Dopplersignal 38 einer Rechnereinheit 40 zugeführt, um die frequenz- und amplitudenspezifischen Signalparameter zu analysieren und als digital aufbereite¬ tes Audiosignal auf einem Ausgabemodul 42 darzustellen.
In der erwähnten analogen Signalaufbereitung werden zunächst die hochfrequen¬ ten Störkomponenten im Dopplersignal 38 mittels eines 500 Hz Tiefpaß 44 gefil¬ tert, so daß in der Folge nur der Frequenzbereich des steinrelevanten Nutzsignals weiterverarbeitet wird. Ein einstellbarer Schwellendetektor 46 generiert ein Pegelfcnster für das Dopplersignal zur Unterdrückung solcher Signale, deren Amplitude entweder kleiner als der eingestellte Mindestwert oder größer als der eingestellte Höchstwert ist. Die Unterdrückung der Signale mit kleinen Amplitu¬ den wird in einem Bereich wirksam, in dem die meisten Anteile des Doppler¬ signals durch leichte Bewegung der Wasseroberfläche, der Atembewegung des Patienten, Vibrationen der Apparatur oder durch sonstige leichte Erschütterun¬ gen verursacht werden. Die Unterdrückung der Signalanteile mit zu großen Amplituden wird während des Leistungspulses oder bei zu großen Erschütterun¬ gen aktiviert. Ferner wird ein zeitliches Sperr- bzw. Freigabefenster 48 für das Dopplersignal erzeugt. Unmittelbar nach dem Puls des Leistungsschalles erkennt der Schwellendetektor 46 den hohen Signalpegel des Leistungspulses und bewirkt eine zeitliche Verzögerung des Freigabefensters 48. Das Freigabefenster umfaßt die Zeitspanne, in welcher die größten Anteile des Dopplersignals von der Nie¬ rensteinbewegung stammen. Die Dauer des Freigabefensters 48 und die Ver¬ zögerung werden erfindungsgemäß eingestellt und an die Anforderungen ange¬ paßt. Das Signal des Sperrfensters 48 wird ebenso wie das des Schwellendetek¬ tors 46 einem Analogschalter 49 zugeführt.
Durch Amplitudenmodulation mittels eines Modulators 50 wird das derart selek¬ tierte Dopplersignal zwecks besserer akustischer Wahrnehmbarkeit in einen höheren Frequenzbereich transformiert. Ein Oszillator 51 liefert ein Modula¬ tionssignal zweckmäßig im Bereich von 0,3 bis 3 KHz. Die Amplitude des Dopp¬ lersignals entspricht der Intensitäti des Audiosignals 52 und die Frequenz wird in der Länge des Signalbursts abgebildet. Das Audiosignal 52 wird einerseits zu einem Kopfhörer oder einer optischen Anzeige geführt und andererseits von einer Endstufe 54 für den Anschluß eines Lautsprechers 56 verstärkt.
Für die digitale Signalaufbereitung wird zusätzlich die Quadraturkomponente 58 des Dopplersignals 38 generiert. Nach einer Digitalisierung werden mittels der Rechnereinheit 40 die Signale an einen Digitalsignalprozessor weitergeleitet. Diese DSP rechnet aus den Inphasekomponenten 60 und Quadraturkomponenten 58 des Dopplersignals 38 die Bewegungsrichtung des Steins und der Steinkon¬ kremente. Desweiteren wird aus dem Amplitudenverhalten der Desintegrations¬ zustand des Steins ermittelt. Schließlich liefert die Differenzierung der Frequenz¬ komponenten des Dopplersignals 38 die charakteristischen Bewegungsmerkmale des Steins, wobei Informationen über die Beschaffenheit der Steinkonkremente ausgegeben werden. Bezugszeichen
Dopplerwandler freier Bereich in 2
Innendurchmesser von 2
Außendurchmesser von 2
Ringbereich
Sender
Empfänger
Schallkopf
Fokus
Erfassungsbereich des Bildsystems
Fokuszone
Generator
Sendesignal
Bandpaß
Mischer
Dopplersignal
Rechnereinheit
Ausgabemodul
Tiefpaß
Schwellendetektor
Sperrfenster
Analogschalter
Modulator
Oszillator
Modulationssignal
Endstufe
Lautsprecher
Quadraturkomponente von 38
Inphasekomponente von 38

Claims

Patentansprüche
1. Vorrichtung zur Detektion von Konkrementen und/oder Kavitationsblasen, welche bei der Ablösung oder Zerkleinerung von vorzugsweise festen Körpern beim Einsatz von Ultraschall-Leistungsschall auftreten, enthaltend ein Leistungs¬ schallsystem und ein Bildsystem, welches vorzugweise als Ultraschallsystem aus¬ gebildet ist, dadurch gekennzeichnet, daß ein weiteres Ultraschallsystem mit einem Dopp¬ lerwandler (2) vorgesehen ist, welcher im Bereich des Schallkopfes (16) des Lei¬ stungsschallsystems und/oder des Bildsystems angeordnet ist.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Doppler¬ wandler (2) ringförmig ausgebildet ist und um den Schallkopf (16) des Leistungs¬ schallsystems und/oder des Bildsystems angeordnet ist, welche innerhalb eines freien Bereiches (4) des Dopplerwandlers (2) angeordnet sind.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das weitere Ultraschallsystem im wesentlichen den gleichen Fokus wie das Leistungs¬ schallsystem aufweist, wobei in die genannte Fokuszone Ultraschallwellen ge¬ sandt werden, welche bei einem Treffer zu einer Dopplersignalverschiebung führen.
4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Dopplerwandler (2) sowohl wenigstens einen Sender (12) als auch einen Empfänger (14) aufweist, wobei mittels des Empfängers (14) die Echosignale aufgenommen und mittels einer Elektronik zu einer digitalen und/oder ja-nein- Trefferinformation verarbeitet werden.
5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die zur Dopplersignalverarbeitung vorgesehene Sende- und Empfangselektronik eine SE-Anordnung enthält, welche aus mehreren Elementen besteht, und/oder daß ein Element abwechselnd als Sender (12) bzw. als Empfänger (14) nutzbar ist und/oder daß CW-Ultraschall einsetzbar ist.
6. Vorrichtung, insbesondere nach einem der Ansprüche 1 bis 5, dadurch ge¬ kennzeichnet, daß die Dopplerfrequenzen derart vorgegeben sind, daß sie zwi¬ schen den Imagingfrequenzen des abbildenden Transducersystems und den Lei¬ stungsschallfrequenzen des therapeutischen Schalls liegen und/oder daß das Sample Volume des Dopplersystems auf das Treffervolumen des Leistungsschall¬ systems angepaßt ist.
7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß eine Schaltungseinheit (50, 51, 52, 54, 56) vorgesehen ist, mittels welcher eine Trefferinformation akustisch hörbar gemacht wird.
8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Dopplerwandler (2) über den Umfang vorzugsweise gleichmäßig verteilt und abwechselnd eine Anzahl von Sendern (12) und Empfängern (14) aufweist und/oder daß die Wandler in einem Winkelbereich zwischen + 10° nach innen zum Zentrum des Dopplerwandlers (2) und -10° nach außen gekippt angeordnet sind.
9. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die einzelnen Wandler bzw. Sender (12) und Empfänger (14) in einem vorgegebe¬ nen Winkel geneigt zu der Ebene angeordnet sind, welche im wesentlichen orthogonal zur Ausbreitungsrichtung des Leistungsschalls angeordnet ist.
10. Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß der ringförmige Dopplerwandler (2) mit dem Leistungswandler bzw. dem Schall¬ kopf und/oder dem Bildsystem mechanisch gekoppelt ist und/oder auf den Fokus¬ bereich des Leistungsschallsystems ausgerichtet ist.
EP96927032A 1995-07-21 1996-07-17 Vorrichtung zur detektion von konkrementen und kavitationsblasen Withdrawn EP0840571A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19526599 1995-07-21
DE19526599 1995-07-21
PCT/EP1996/003141 WO1997003610A1 (de) 1995-07-21 1996-07-17 Vorrichtung zur detektion von konkrementen und kavitationsblasen

Publications (1)

Publication Number Publication Date
EP0840571A1 true EP0840571A1 (de) 1998-05-13

Family

ID=7767384

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96927032A Withdrawn EP0840571A1 (de) 1995-07-21 1996-07-17 Vorrichtung zur detektion von konkrementen und kavitationsblasen

Country Status (3)

Country Link
EP (1) EP0840571A1 (de)
JP (1) JPH10510456A (de)
WO (1) WO1997003610A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6174952B1 (en) 1995-04-19 2001-01-16 Capitol Specialty Plastics, Inc. Monolithic polymer composition having a water absorption material
US6080350A (en) * 1995-04-19 2000-06-27 Capitol Specialty Plastics, Inc. Dessicant entrained polymer
US6214255B1 (en) 1995-04-19 2001-04-10 Capitol Specialty Plastics, Inc. Desiccant entrained polymer
US6194079B1 (en) 1995-04-19 2001-02-27 Capitol Specialty Plastics, Inc. Monolithic polymer composition having an absorbing material
US6486231B1 (en) 1995-04-19 2002-11-26 Csp Technologies, Inc. Co-continuous interconnecting channel morphology composition
US6124006A (en) * 1995-04-19 2000-09-26 Capitol Specialty Plastics, Inc. Modified polymers having controlled transmission rates
US6316520B1 (en) 1995-04-19 2001-11-13 Capitol Specialty Plastics, Inc. Monolithic polymer composition having a releasing material
US6221446B1 (en) 1995-04-19 2001-04-24 Capitol Specialty Plastics, Inc Modified polymers having controlled transmission rates
US6177183B1 (en) 1995-04-19 2001-01-23 Capitol Specialty Plastics, Inc. Monolithic composition having an activation material
US6465532B1 (en) 1997-03-05 2002-10-15 Csp Tecnologies, Inc. Co-continuous interconnecting channel morphology polymer having controlled gas transmission rate through the polymer
WO2005094701A1 (ja) * 2004-03-31 2005-10-13 Toudai Tlo, Ltd. 超音波照射方法及び超音波照射装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH547627A (de) * 1972-01-31 1974-04-11 Siemens Ag Applikator fuer medizinische untersuchungen.
FR2587893B1 (fr) * 1985-09-27 1990-03-09 Dory Jacques Procede et dispositif de reperage permettant, au cours d'une lithotripsie, d'apprecier le degre de fragmentation des calculs
DE3607949A1 (de) * 1986-03-11 1987-09-17 Wolf Gmbh Richard Verfahren zum erkennen von moeglichen gewebeschaedigungen bei der medizinischen anwendung von hochenergie-schall
DE68915935T2 (de) * 1988-10-26 1994-11-03 Toshiba Kawasaki Kk Gerät zur Stosswellen-Behandlung.
DE3909558A1 (de) * 1989-03-23 1990-09-27 Dornier Medizintechnik Trefferkontrolle fuer die lithotripsie
US5078143A (en) * 1989-04-07 1992-01-07 Kabushiki Kaisha Toshiba Lithotrity apparatus using ultrasonic waves or shock waves for preventing erroneous irradiation of ultrasonic waves or shock waves

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9703610A1 *

Also Published As

Publication number Publication date
JPH10510456A (ja) 1998-10-13
WO1997003610A1 (de) 1997-02-06

Similar Documents

Publication Publication Date Title
DE102005037043B4 (de) Stoßwellentherapiegerät mit Bildgewinnung
DE3607949C2 (de)
DE4241161C2 (de) Akustische Therapieeinrichtung
DE3543867C3 (de) Vorrichtung zur räumlichen Ortung und zur Zerstörung von Konkrementen in Körperhöhlen
DE69533059T2 (de) Ultraschall spektral-kontrastabbildung
DE4125950C1 (de)
DE3844672C2 (de) Ultraschall-Therapiegerät
DE60026471T2 (de) Akustischer Blitz zum Erhöhen der Penetration
DE4302537C1 (de) Therapiegerät zur Ortung und Behandlung einer Zone im Körper eines Lebewesens mit akustischen Wellen
DE69936507T2 (de) Katheter mit ringförmig angeordneten ultraschallwandlern
EP0357164A1 (de) Ultraschallverfahren und Schaltungen zu deren Durchführung
EP0840571A1 (de) Vorrichtung zur detektion von konkrementen und kavitationsblasen
DE3119295A1 (de) Einrichtung zum zerstoeren von konkrementen in koerperhoehlen
WO1996013213A2 (de) Ultraschallverfahren und schaltungen zur durchführung dieser verfahren
EP2157569A2 (de) Verfahren und Stoßwellenkopf zum Erzeugen von fokussierten Ultraschall-Stoßwellen
DE19548000C1 (de) Vorrichtung zur Ortung von Konkrementen im Körper eines Patienten
EP0372119B2 (de) Lithotripter
DE3817726A1 (de) Vorrichtung zur raeumlichen ultraschall-ortung von konkrementen
DE3617032A1 (de) Ultraschallgeraet zum orten von steinbildungen
DE3913023A1 (de) Zertruemmerungswellen-behandlungsgeraet
DE4012760A1 (de) Ultraschall-doppler-verfahren zur bestimmung der steingroesse aus der sinkgeschwindigkeit waehrend der gallen-lithotripsie sowie vorrichtung zur durchfuehrung des verfahrens
EP0221592A2 (de) Verfahren zur Ultraschallkontrolle bei der Steinzertrümmerung und Anordnung zur Durchführung des Verfahrens
DE60026782T2 (de) Ultraschallsonde
DE4446192A1 (de) Verfahren zur Trefferkontrolle
DE3703335C2 (de) Lithotripter mit PVDF-Folie als Ortungselement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971118

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20010201