EP0827565B1 - System zum regeln der temperatur der kühlungsflüssigkeit in einer brennkraftmaschine - Google Patents

System zum regeln der temperatur der kühlungsflüssigkeit in einer brennkraftmaschine Download PDF

Info

Publication number
EP0827565B1
EP0827565B1 EP96920232A EP96920232A EP0827565B1 EP 0827565 B1 EP0827565 B1 EP 0827565B1 EP 96920232 A EP96920232 A EP 96920232A EP 96920232 A EP96920232 A EP 96920232A EP 0827565 B1 EP0827565 B1 EP 0827565B1
Authority
EP
European Patent Office
Prior art keywords
flow
fluid
temperature
temperature control
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96920232A
Other languages
English (en)
French (fr)
Other versions
EP0827565A1 (de
Inventor
Thomas J. Hollis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/448,150 external-priority patent/US5503118A/en
Priority claimed from US08/447,468 external-priority patent/US5551384A/en
Priority claimed from US08/533,471 external-priority patent/US5655506A/en
Priority claimed from US08/576,608 external-priority patent/US5638775A/en
Priority claimed from US08/576,713 external-priority patent/US5699759A/en
Priority claimed from US08/576,609 external-priority patent/US5724931A/en
Application filed by Individual filed Critical Individual
Publication of EP0827565A1 publication Critical patent/EP0827565A1/de
Application granted granted Critical
Publication of EP0827565B1 publication Critical patent/EP0827565B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2023/00Signal processing; Details thereof
    • F01P2023/08Microprocessor; Microcomputer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/13Ambient temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/40Oil temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2037/00Controlling
    • F01P2037/02Controlling starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/10Fuel manifold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/16Outlet manifold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2070/00Details
    • F01P2070/08Using lubricant pressure as actuating fluid

Definitions

  • This invention relates to a system for heating and cooling an internal combustion gasoline or diesel engine by controlling the flow of temperature control fluid to and from an exhaust heat assembly positioned adjacent to an exhaust manifold.
  • the cooling system circulates water or liquid coolant through a water jacket which surrounds certain parts of the engine (e.g., block, cylinder, cylinder head, pistons).
  • the heat energy is transferred from the engine parts to the coolant in the water jacket.
  • the transferred heat energy will be so great that it will cause the liquid coolant to boil (i.e., vaporize) and destroy the cooling system.
  • the hot coolant is circulated through a radiator well before it reaches its boiling point. The radiator dissipates enough of the heat energy to the surrounding air to maintain the coolant in the liquid state.
  • thermostats To avoid running the coolant through the radiator, coolant systems employ a thermostat.
  • the thermostat operates as a one-way valve, blocking or allowing flow to the radiator.
  • Figs. 40-42 (described below) and Fig. 2 of U.S. Patent No. 4,545,333 show typical prior art thermostat controlled coolant systems.
  • Most prior art coolant systems employ wax pellet type or bimetallic coil type thermostats. These thermostats are self-contained devices which open and close according to precalibrated temperature values.
  • Coolant systems must perform a plurality of functions, in addition to cooling the engine parts.
  • the cooling system In cold weather, the cooling system must deliver hot coolant to heat exchangers associated with the heating and defrosting system so that the heater and defroster can deliver warm air to the passenger compartment and windows.
  • the coolant system must also deliver hot coolant to the intake manifold to heat incoming air destined for combustion, especially in cold ambient air temperature environments. or when a cold engine is started.
  • the coolant system should also reduce its volume and speed of flow when the engine parts are cold so as to allow the engine to reach an optimum hot operating temperature. Since one or both of the intake manifold and heater need hot coolant in cold ambient air temperatures and/or during engine start-up, it is not practical to completely shut off the coolant flow through the engine block.
  • U.S. Patent No. 4,484,541 discloses a vacuum operated diaphragm type flow control valve which replaces a prior art thermostat valve in an engine cooling system. When the coolant temperature is in a predetermined range, the state of the diaphragm valve is controlled in response to the intake manifold vacuum. This allows the engine coolant system to respond more closely to the actual load on the engine.
  • U.S. Patent No. 4,484,541 also discloses in Fig. 4 a system for blocking all coolant flow through a bypass passage when the diaphragm valve allows coolant flow into the radiator. In this manner, all of the coolant circulates through the radiator (i.e., none is diverted through the bypass passage), thereby shortening the cooling time.
  • U.S. Patent No. 4,399,775 discloses a vacuum operated diaphragm valve for opening and closing a bypass for bypassing a wax pellet type thermostat valve.
  • the diaphragm valve closes the bypass so that coolant flow to the radiator is controlled by the wax pellet type thermostat.
  • the diaphragm valve opens the bypass, thereby removing the thermostat from the coolant flow path. Bypassing the thermostat increases the volume of cooling water flowing to the radiator, thereby increasing the thermal efficiency of the engine.
  • U.S. Patent No. 4,399,776 discloses a solenoid actuated flow control valve for preventing coolant from circulating in the engine body in cold engine operation, thereby accelerating engine warm-up. This patent also employs a conventional thermostat valve.
  • U.S. Patent No. 4,545,333 discloses a vacuum actuated diaphragm flow control valve for replacing a conventional thermostat valve.
  • the flow control valve is computer controlled according to sensed engine parameters.
  • U.S. Patent No. 4,369,738 discloses a radiator flow regulation valve and a block transfer flow regulation valve which replace the function of the prior art thermostat valve. Both of those valves receive electrical control signals from a controller.
  • the valves may be either vacuum actuated diaphragm valves or may be directly actuated by linear motors, solenoids or the like.
  • the controller varies the opening amount of the radiator flow regulation valve in accordance with a block output fluid temperature.
  • U.S. Patent No. 5,121,714 discloses a system for directing coolant into the engine in two different streams when the oil temperature is above a predetermined value.
  • One stream flows through the cylinder head and the other stream flows through the cylinder block.
  • a flow control valve closes off the stream through the cylinder block.
  • the flow control valve is connected to an electronic control unit (ECU).
  • ECU electronice control unit
  • This patent describes that the ECU receives signals from an outside air temperature sensor, an intake air temperature sensor, an intake pipe vacuum pressure sensor, a vehicle velocity sensor, an engine rotation sensor and an oil temperature sensor.
  • the ECU calculates the best operating conditions of the engine cooling system and sends control signals to the flow control valve and to other engine cooling system components.
  • U.S. Patent No. 5,121,714 employs a typical prior art thermostat valve 108 for directing the cooling fluid through a radiator when its temperature is above a preselected value.
  • This patent also describes that the thermostat valve can be replaced by an electrical-control valve, although no specific examples are disclosed.
  • U.S. Patent No. 4,744,336 discloses a solenoid actuated piston type flow control valve for infinitely varying coolant flow into a servo controlled valve.
  • the solenoids receive pulse signals from an electronic control unit (ECU).
  • the ECU receives inputs from sensors measuring ambient temperature, engine input and output coolant temperature, combustion temperature, manifold pressure and heater temperature.
  • One prior art method for tailoring the cooling needs of an engine to the actual engine operating conditions is to selectively cool different portions of an engine block by directing coolant through different cooling jackets (i.e., multiple circuit cooling systems).
  • different cooling jackets i.e., multiple circuit cooling systems.
  • one cooling jacket is associated with the engine cylinder head and another cooling jacket is associated with the cylinder block.
  • U.S. Patent No. 4,539,942 employs a single cooling fluid pump and a plurality of flow control valves to selectively direct the coolant through the respective portions of the engine block.
  • U.S. Patent No. 4,423,705 shows in Figs. 4 and 5 a system which employs a single water pump and a flow divider valve for directing cooling water to head and block portions of the engine.
  • Still other prior art systems employ a single water pump and single water jacket, and vary the flow rate of the coolant by varying the speed of the water pump.
  • U.S. Patent No. 5,121,714 discloses a water pump which is driven by an oil hydraulic motor.
  • the oil hydraulic motor is connected to an oil hydraulic pump which is driven by the engine through a clutch.
  • An electronic control unit (ECU) varies the discharge volume of the water pump according to selected engine parameters.
  • U.S. Patent No. 4,079,715 discloses an electromagnetic clutch for disengaging a water pump from its drive means during engine start-up or when the engine coolant temperature is below a predetermined level.
  • the goal of all engine cooling systems is to maintain the internal engine temperature as close as possible to a predetermined optimum value. Since engine coolant temperature generally tracks internal engine temperature. the prior art approach to controlling internal engine temperature control is to control engine coolant temperature. Many problems arise from this approach. For example, sudden load increases on an engine may cause the internal engine temperature to significantly exceed the optimum value before the coolant temperature reflects this fact. If the thermostat is in the closed state just before the sudden load increase, the extra delay in opening will prolong the period of time in which the engine is unnecessarily overheated.
  • Engine oil life is largely dependent upon wear conditions. Engine oil life is significantly shortened if an engine is run either too cold or too hot. As noted above, a cold running engine will have less complete combustion in the engine combustion chamber and will build up sludge more rapidly than a hot running engine. The sludge contaminates the oil. A hot running engine will prematurely break down the oil. Thus, more frequent oil changes are needed when the internal engine temperature is not consistently maintained at its optimum value.
  • Prior art cooling systems also do not account for the fact that the optimum oil temperature varies with ambient air temperature. As the ambient air temperature declines, the internal engine components lose heat more rapidly to the environment and there is an increased cooling effect on the internal engine components from induction air. To counter these effects and thus maintain the internal engine components at the optimum operating temperature, the engine oil should be hotter in cold ambient air temperatures than in hot ambient air temperatures. Current prior art cooling systems cannot account for this difference because the cooling system is responsive only to coolant temperature.
  • a second prior art method for utilizing the heat in the exhaust gases is disclosed on pages 229 of the Goodheart-Willcox automotive encyclopedia, The Goodheart-Willcox Company, Inc., South Holland, Illinois, 1995.
  • This method requires the incorporation of a special duct or "crossover passage" around the exhaust manifold that traps the heat which is otherwise dissipated. This trapped heated air is then routed to the intake manifold where it preheats the intake air.
  • U.S. Patent No. 4,258,676 discloses an engine temperature system which includes a heat exchanger located between the exhaust gas and engine coolant flows. A coolant sensor is used to actuate a valve for controlling flow of the exhaust gas into the heat exchanger.
  • preheating intake combustion air is not beneficial in all environments, preheating the air in relatively cold ambient temperature environments (e.g., below 20°F. (-6°C)) provides many benefits, including improved fuel economy, reduced emissions and the creation of a supercharging effect.
  • U.S. Patent No. 3,397,684 discloses a supercharged diesel engine with a combustion air cooler for removing the heat of compression of the supercharger and a preheater for heating all of the combustion air within the cooler heat exchanger for cold weather starting and initial operation.
  • a heating apparatus is interconnected into the engine cooling liquid circulatory system.
  • the present invention provides systems and methods for controlling the temperature of a liquid cooled internal combustion engine.
  • the systems disclosed utilize a novel heating arrangement which controls the flow of temperature control fluid to and from an exhaust heat assembly located adjacent to an the engine exhaust manifold.
  • the systems disclosed also control flow of temperature control fluid through various components of the engine for efficiently transferring heat to and from the control fluid.
  • the system includes an exhaust manifold for exhausting heated gases which result from combustion of the air/fuel mixture in the engine.
  • An exhaust input tube directs a flow of temperature control fluid from the engine cooling system and an exhaust output tube directs the flow of temperature control fluid back to the engine.
  • An exhaust heat assembly is connected to the exhaust input and output tubes and channels the flow of temperature control fluid from the exhaust input tube to the exhaust output tube. The exhaust heat assembly is located adjacent or in close proximity to the exhaust manifold and is designed to permit heat transfer from the heated gases flowing in the exhaust manifold to the temperature control fluid in the exhaust heat assembly.
  • the exhaust heat assembly includes a heating conduit which is in contact or immediately adjacent to the manifold.
  • First and second spacers are mounted on opposite ends of the heating conduit for preventing or minimizing the passage of heat from the heating conduit to the exhaust input and output tubes.
  • the exhaust heat assembly receives a flow of temperature control fluid from a water pump in the engine.
  • the water pump preferably has at least one flow restrictor valve located within the water pump which is adapted to control the flow of temperature control fluid flowing within the water pump.
  • the flow restrictor valve is actuatable between a first position and a second position. The first position of the flow restrictor valve permits flow of temperature control fluid directly into the engine block. The second position of the flow restrictor valve restricts the flow into the engine block and, instead, directs a portion of flow of the temperature control fluid to the exhaust heat assembly.
  • the novel exhaust heat assembly works in conjunction with a temperature control system for maintaining the temperature of the engine lubricating oil at or near its optimum operating temperature.
  • a temperature control system for maintaining the temperature of the engine lubricating oil at or near its optimum operating temperature.
  • the flow restrictor valves in the water pump are in their second position which prevents or inhibits the flow of temperature control fluid through the engine block and, instead, directs a flow of temperature control fluid to the exhaust heat assembly along the exhaust input tube.
  • the temperature control fluid is quickly heated by the heat flowing through the exhaust manifold and is recirculated back to the engine through the exhaust output tube.
  • the heated temperature control fluid flowing through the exhaust output tube is directed into a heat exchanger positioned within the oil pan of the engine. This results in the transfer of heat from the temperature control fluid to the engine oil. Accordingly, the engine oil is heated as quickly as possible during engine warm-up.
  • the heated temperature control fluid flowing through the exhaust output tube is directed into the intake manifold for heating the intake air prior to combustion. From the intake manifold, the heated temperature control fluid is preferably routed to the oil pan and the passenger compartment heater assembly.
  • the flow restrictor or flow control valves are actuated into their first position permitting flow of temperature fluid along the flow channels into the engine block. This stops the flow of temperature control fluid along the exhaust input tube.
  • a pressurization system is also disclosed for controlling actuation of flow control valves in the temperature control system.
  • the pressurization system includes a housing which has a chamber formed in it.
  • An input injector is in communication with the housing and is adapted to channel a flow of pressurized fluid into the chamber.
  • An output injector is also in communication with the housing and is adapted to channel a flow of pressurized fluid out of the chamber.
  • Fluid flow control means is connected to the housing and has at least one fluid outlet. The fluid outlet is adapted to direct a flow of pressurized fluid to a flow control valve to control actuation of the valve.
  • the fluid flow control means has an open position for allowing a flow of pressurized fluid out of the fluid outlet and a closed position for preventing fluid flow out of the fluid outlet.
  • the fluid flow control means receives signals from an engine computer for controlling actuation of the fluid flow control means between its open and closed positions.
  • First and second solenoids are preferably connected to the injectors and receive signals from the engine computer for controlling actuation of the injectors between their open and closed positions.
  • the fluid control means includes a solenoid with at least one and preferably three fluid outlets formed in it. Each outlet directs a flow of pressurized fluid to a prescribed flow control valve.
  • the solenoid controls flow along each outlet based on signals received from the engine computer.
  • An inlet line supplies a flow of fluid to the housing.
  • the fluid is preferably hydraulic fluid.
  • An outlet line channels a flow of fluid from the housing to a fluid reservoir.
  • Figure 1 is a side view of an internal combustion engine incorporating the novel water pump/engine block bypass system according to the present invention.
  • Figure 2 is an enlarged view of the preferred hydraulic solenoid injector system for use with the novel water pump/ engine bypass system.
  • Figure 3 is an enlarged partial section view of one embodiment of the novel water pump design illustrating the flow restrictor valves.
  • Figure 4 is a section view of one embodiment of the flow restrictor valves according to the present invention.
  • Figure 5 is a diagrammatical plan view of the flow circuits of the temperature control fluid through the cylinder heads and the intake manifold according to the present invention.
  • Figure 6A is a diagrammatical side view of the flow circuit of the temperature control fluid through the engine block, cylinder heads, and radiator in a fully warmed engine according to the present invention.
  • Figure 6B is a diagrammatical side view of the flow circuit of the temperature control fluid through the cylinder heads, the intake manifold and the oil pan during engine warm-up according to the present invention.
  • Figure 7A through 7G are embodiments of the temperature control curves useful in controlling the opening and closing of the valves in the present invention.
  • Figure 7H is a plot of the actual engine oil temperature when the temperature control curve is shifted according to the present invention.
  • Figure 8 is one embodiment of the novel exhaust heat assembly according to the present invention.
  • Figure 9 is side view of the invention taken along lines 9-9 in Figure 8 and illustrates the shape of the heating conduit and one method of attaching the exhaust heat assembly to the engine.
  • Figure 10 is another embodiment of the novel exhaust heat assembly according to the present invention.
  • Figure 11 is side view of the invention taken along lines 11-11 in Figure 10 and illustrates another method of attaching and routing the exhaust heat assembly to the engine.
  • Figure 12 is a diagrammatical plan view of the flow circuits of the temperature control fluid through the cylinder heads and the intake manifold according to one embodiment of the exhaust heat assembly of the present invention.
  • Figure 13 is a graphical illustration of the actual temperature measured on the engine exhaust manifold of a GM 3800 V6 engine.
  • Figure 14 is a graphical comparison of the actual engine oil temperature to the optimum oil temperature for various temperature control systems.
  • Figure 15 is schematic side view of an internal combustion engine incorporating the present invention and showing the various temperature control fluid flow paths through the engine.
  • Figures 16A and 16B are sectional views of one embodiment of a control valve for controlling flow of temperature control fluid through an engine.
  • Figure 17 is a diagrammatical plan view of an engine incorporating an exhaust heat assembly according to the present invention.
  • Figure 17A is a sectional view of an air induction system used with the present invention taken along line 3A in Figure 3.
  • Figure 18 is a sectional view of a hydraulic solenoid injector assembly according to the present invention useful for controlling actuation of control valves.
  • Figure 19 is a sectional view of an electronic engine temperature control valve according to the present invention.
  • Figure 20 illustrates two temperature control curves according to the present invention.
  • Figures 21A and 22B illustrate two alternate curves for producing a scaled temperature threshold value according to the present invention.
  • Figures 22A through 22D illustrate various stages of a free flow buoyancy check valve according to the present invention.
  • Figure 23 is a graph of the pressure/vacuum pressures within the water pump illustrating a preferred location for a vent bleed line.
  • Figure 24 is an alternate configuration of a solenoid pressurization system for controlling only one flow control valve.
  • valves and related components may be oriented in any direction.
  • a vertically oriented radiator is illustrated in the figures, a horizontally oriented radiator is well within the scope of the invention.
  • the terms “inhibiting” and “restricting” are intended to cover both partial and full prevention of fluid flow.
  • the valves for controlling the flow of temperature control fluid are generally referred to as “flow control valves” or “flow restrictor valves”. These terms are intended to define any valve capable of controlling flow of fluid along a conduit.
  • FIG. 1 illustrates an internal combustion engine generally designated with numeral 10.
  • the internal combustion engine 10 depicted is a transverse mounted V-6 engine similar to a GM 3800 engine.
  • the internal combustion engine includes a radiator 12 mounted in the forward facing portion of an engine compartment (not shown).
  • a radiator outlet tube 18 is attached to the lower portion of radiator 12 and extends to and attaches with an inlet port 20 on a water pump 16.
  • a radiator inlet tube 22 extends from the engine 10 and attaches to the upper portion of the radiator 12.
  • the radiator inlet and outlet tubes 18, 22 direct temperature control fluid in to and out of the radiator 12 as will be discussed in more detail hereinbelow.
  • the internal combustion engine illustrated includes an engine block 24 and two cylinder heads 26 mounted to the upper portions of the engine block 24. Attached to the lower portion of the engine block 24 is an oil pan 28 which provides a reservoir for hydraulic engine lubricating oil. A oil pump (not shown) is located within the oil pan 28 and operates to direct hydraulic lubricating oil to the various members being driven within the engine. An intake manifold 30 is shown mounted between the cylinder heads 26 on the upper portion of the engine 10. The intake manifold directs a flow of air into the combustion chamber of the engine for mixing with the fuel.
  • the water pump 16 is attached to the engine block 24 and includes a rotatably mounted pulley 32.
  • the pulley 32 is rotated by means of a belt 34 which, in turn, is driven by a drive mechanism (not shown). Rotation of the pulley 32 by the belt 34 produces corresponding rotation within the water pump 16.
  • the water pump 16 has two primary modes of operation in the present invention. In the first mode of operation, the water pump functions in a similar fashion as a conventional water pump.
  • the pulley 32 drives an internally mounted impeller (shown in Figure 3) which directs the flow of temperature control fluid entering into the water pump 16 from its inlet port 20.
  • the rotary motion of the impellers produces centrifugal forces on the temperature control fluid which cause the fluid to flow toward block inlet ports 36, 38 formed in the engine block 24.
  • the block inlet ports 36, 38 are connected to the engine block water jacket (not shown) which surrounds the cylinders of the engine.
  • the temperature control fluid Upon entering the water jacket of the engine block 24 in the first mode of operation, the temperature control fluid flows through the engine block water jacket and then enters into the water jacket surrounding the cylinder heads 26.
  • the effect of this temperature control fluid flow is the cooling of the engine block and cylinder heads through the removal of the heat generated during engine operation. This will be discussed below in more detail.
  • the temperature control fluid circulating in the water pump 16 is not directed into the engine block 24 but, instead, is channeled directly into the cylinder heads 26.
  • the water pump 16 has mounted thereto at least one hydraulically operated flow restrictor valve 40.
  • the flow restrictor valve 40 is located so as to be capable of impeding the flow of the temperature control fluid from the impellers into the block inlet ports 36, 38.
  • the first flow restrictor valve 40 prevents or restricts flow of temperature control fluid into the leftmost or aft block inlet port 36.
  • the second flow restrictor valve 42 prevents or restricts flow of temperature control fluid into the rightmost or forward block inlet port 38.
  • the flow restrictor valves 40, 42 are actuatable between a first "open" position or state and a second "restricted” position or state.
  • first or open position the temperature control fluid is permitted to flow substantially unrestricted into the engine inlet ports 36. 38 (e.g., first mode of water pump 16 operation).
  • second or restricted position the temperature control fluid is substantially inhibited from entering the engine block inlet ports 36. 38 (e.g., second mode of water pump 16 operation).
  • the actuation of the flow restrictor valves 40, 42 is achieved by means of a hydraulic solenoid injector system (generally designated 44).
  • the hydraulic injector system 44 controls the flow of a hydraulic fluid to and from the flow restrictor valves 40, 42 for actuating the valves between the first unrestricted position and the second restricted position.
  • the preferred embodiment of the hydraulic solenoid injector system 44 is shown in more detail in Figure 2 and includes input and output hydraulic fluid injectors 46, 48. Attached to the hydraulic fluid injectors 40, 42 are first and second solenoids 50, 52.
  • the solenoids are designed to receive signals on control lines 54, 56 from an engine computer unit (ECU) for controlling the opening and closing of their respective hydraulic injectors 46, 48.
  • ECU engine computer unit
  • a source of pressurized hydraulic fluid (not shown) is connected to the housing 58 of the hydraulic solenoid injector system 44 through fluid inlet connector 60.
  • the source of pressurized hydraulic fluid is engine lubrication oil flowing either directly from the oil pump or, more preferably, from an oil filter. The oil filter prevents debris from entering into the hydraulic injectors causing damage and/or malfunction.
  • a flow of pressurized hydraulic fluid enters into the fluid inlet connector 60, passes through the input hydraulic injector 46 and into passageway 64. This results in the filling of chamber 66 provided that the output hydraulic injector is closed. From the chamber 66, the hydraulic fluid is provided to the flow restrictor valves 40, 42 via supply line 68.
  • the output hydraulic injector 48 controls the emptying or depressurization of the chamber 66.
  • the opening of the output hydraulic injector 48 causes the hydraulic fluid in chamber 66 to drain along passage 70 and through fluid outlet connector 72.
  • a hydraulic fluid line from the fluid outlet connector 72 leads to a hydraulic fluid reservoir, such as the engine oil pan.
  • the hydraulic injectors are Siemens Deka II modified hydraulic fluid injectors. Details of these injectors are provided in the above-referenced related patent applications. Other injectors can be readily substituted therefor without departing from the scope of the invention.
  • the hydraulic solenoid injector system 44 provides pressurized fluid for actuating both flow restrictor valves 40 and 42.
  • the supply line 68 extends from the housing 58 and provides the flow of hydraulic fluid to the valves.
  • the supply line 68 includes a tee member or splitter 74 which diverts part of the hydraulic fluid to each flow restrictor valve 40, 42. While a single hydraulic solenoid injector system 44 is utilized in the illustrated embodiment, it should be understood that separate hydraulic solenoid injector systems could be utilized to control each flow restrictor valve.
  • FIG 3 is an enlargement of one embodiment of the novel water pump according to the present invention.
  • an impeller 76 is rotatably mounted within the water pump 16 and directs the entering temperature control fluid in a circular pattern. This produces centrifugal forces on the temperature control fluid which cause the fluid to flow along first and second flow channels 80, 82.
  • the flow channels 80, 82 extend from the impeller 76 to the block inlet ports 36, 38, respectively. Accordingly, when temperature control fluid flows from the radiator 12 into the water pump 16, it is driven in a circular fashion by the impeller 76 and directed down channels 80, 82 into block inlet ports 36, 38 leading into the engine block 24.
  • the impeller 76 and flow channels 80, 82 are conventional in the art and do not need to be discussed further.
  • each flow restrictor valve includes a piston 84 and a blade shut-off 86.
  • the piston 84 is slidably disposed within a housing 90 and includes a pressure receiving surface 92 and a biasing spring 94. The actuation of the piston 84 translates the blade shutoff 86 between the first or open position and the second or restricted position.
  • the open position of the flow restrictor valve permits flow of temperature control fluid along channels 80, 82 and into ports 36, 38, while the restricted position of the flow restrictor valve prevents flow or restricts flow along channels 80, 82.
  • the splitter 74 in the hydraulic fluid supply line 68 separates the hydraulic fluid flow along two lines 96, 98. Each line is directed to a separate flow restrictor valve 40, 42. When the input hydraulic injector is open, each line conveys hydraulic fluid into the housing of its respective flow restrictor valve. The hydraulic fluid fills a chamber 100 located between the housing 90 and the pressure receiving surface 92 of the piston 84. The filling of chamber 100 with pressurized fluid causes the pressure receiving surface 92 to compress the biasing spring 94.
  • the piston 84 is preferably mechanically connected to the blade shut-off 86 such that displacement of the piston 84 causes the blade shut-off 86 to translate between the first and second positions.
  • the piston 84 is directly connected to the blade shut-off through an integral piston rod 85, such that translation of the piston 84 provides corresponding translation of the blade shut-off without need for intermediate mechanical connections.
  • Figure 4 illustrates this type of flow restrictor valve. As shown, the flow restrictor valve 40 is mounted directly onto the water pump 16 such that displacement of the piston 84 causes direct actuation of the blade shut-off.
  • the blade shut-off 86 While it is preferable to locate the blade shut-off 86 adjacent to the piston 84 so as to permit its direct actuation, the actual engine configuration may prohibit this.
  • the location of various engine components proximate to the water pump prevents mounting the pistons 84 of both flow restrictor valves directly in line with their respective blade shut-offs.
  • one flow restrictor valve 40 is configured so as to have the blade shut-off located directly in line with the piston.
  • the second flow restricting valve designated by the numeral 42, has its piston 84 located apart from the blade shut-off 86.
  • a push-pull cable 102 is utilized to connect the piston 84 to the blade shut-off 86.
  • the cable 102 has a push rod 104 slidably mounted within the cable sleeve 105.
  • One end of the push rod 104 is attached to the piston 84.
  • the opposite end of the push rod 104 is connected to the blade shut-off 86.
  • Pressurization of the chamber 100 so as to produce translation of the piston 84 and compression of the biasing spring 94 causes the push rod 104 to slide within cable sleeve 105.
  • This, in turn, causes the blade shut-off 86 to slide into the water pump 16, from its open position (permitting flow of temperature control fluid along flow channel 82) to its restricted position (prohibiting or restricting flow of temperature control fluid along flow channel 82).
  • One or more seals 91 are preferably positioned between the piston 84 and the housing 90 to prevent the leakage of hydraulic fluid.
  • the piston 84 could be replaced by a diaphragm valve arrangement which provides translation of the push rod 104.
  • the biasing spring could also be replaced by a pneumatic system which supplies a pressurized gas such as air.
  • Still further modifications are possible such as utilizing linear actuators and/or other electro-mechanical devices to actuate the blade shut-off.
  • FIG. 4 illustrates a sectional view of the flow restricting valve 40 showing some additional features of this particular valve.
  • the piston 84 is slidably disposed within the housing 90.
  • the housing 90 has a cover 107 threadingly engaged with the housing for permitting access to the piston 84 and the biasing spring 94 for replacing and/or repairing these elements.
  • the housing 90 of at least one of the flow restrictor valves (which, in the illustrated figure is the flow restrictor valve designated by the numeral 40) includes a bypass passageway 106 which is adjacent to the flow channel 80.
  • the bypass passageway is attached to and in fluidic communication with the first flow channel 82 of the water pump 16.
  • the bypass passageway 106 provides a second conduit along which the temperature control fluid can flow.
  • the bypass passageway 106 has a bypass outlet 108 which connects with at least one bypass tube 110.
  • the blade shut-off 86 of the flow restrictor valve 40 is in the open position wherein the temperature control fluid is permitted to flow substantially unrestricted along first flow channel 82 and into the block inlet port 36. In this position, the blade shut-off 86 blocks or restricts the flow of temperature control fluid along the bypass passageway 106.
  • the blade shut-off 86 is positioned within the first flow channel 82 preventing flow of temperature control fluid along flow channel 82 and into the block inlet port 36.
  • the piston rod 85 is located at the entrance to the bypass passageway 106. The piston rod 85 is configured to permit the passage of temperature control fluid along the bypass passageway 106. In order to do so.
  • the piston rod 85 is preferably formed either with a width that is dimensionally smaller than the width of the bypass passageway entrance, or has one or more apertures formed through it to permit the passage of temperature control fluid.
  • the piston rod 85 has a cylindrical shape, the diameter of which is less than the width of the bypass passageway entrance.
  • the diameter of the piston rod 85 is approximately 3/16ths of an inch.
  • the opening to the bypass passageway is preferably about 1/2 inch high by 1 inch long. Accordingly, when the flow restrictor valve 40 is in its restricted position, the temperature control fluid is prevented or inhibited from passing directly into the engine block 24 through the block inlet port 36 and, instead, is permitted along the bypass passageway 106 and into the bypass tube 110.
  • the bypass tube 110 connects with cylinder head input lines 112 for directing a flow of temperature control fluid along a bypass circuit to the cylinder heads 26.
  • one cylinder head input line 112 would be utilized for channeling the temperature control fluid in the bypass circuit to the cylinder head.
  • the illustrated embodiment is for a V6 engine which has separate cylinder heads.
  • the bypass circuit include two cylinder head input lines 112 for channeling the temperature control fluid.
  • the bypass tube 110 is split at a 'Y' joint separating the flow of temperature control fluid into the two cylinder head input lines 112.
  • the two cylinder head input lines 112 are, preferably, balanced so as to provide substantially equal flow to the cylinder heads.
  • bypass tubes 110 could be attached to the housing 90 for directing separate flows of the temperature control fluid. Accordingly, when the flow restrictor valve 40 is in its second or restricted position, the flow of temperature control fluid from the water pump 16 is channeled directly to the cylinder heads 26.
  • FIG. 5 a plan view of the engine is shown with the cylinder head input lines 112 attached to the cylinder heads 26.
  • the flow of temperature control fluid is shown by the arrows in the figure.
  • the flow of temperature control fluid enters the cylinder heads 26 at the attachment of the cylinder head input lines 112.
  • the temperature control fluid flows across and around the cylinder heads to the aft portion of the cylinder head, which in the illustrated configuration is the rightmost portion of the engine.
  • the temperature control fluid is directed along passageways 114 into the intake manifold 30.
  • the water jacket of intake manifold 30 is configured with two separate channels 116 separated by a wall 118. Both channels permit flow of temperature control fluid in the direction of the water pump as shown by the dashed arrows.
  • One of the channels 116 A in the intake manifold directs the flow of temperature control fluid to the heater assembly (not shown). More specifically, a heater tube 120 is attached to and in fluid communication with channel 116 A of the intake manifold for receiving a flow of temperature control fluid.
  • the temperature control fluid flowing in channel 116 A is directed through heater tube 120 to the heater assembly for providing heating and defrost capabilities in the passenger compartment of the vehicle.
  • the heater assembly is conventional in the art and does not need to be discussed in any further detail.
  • the second channel 116 B in the intake manifold 30 directs a flow of temperature control fluid to a return tube 122.
  • the return tube 122 channels the temperature control fluid either back to the water pump assembly 16 or, more preferably, to a heat exchanger located within the oil pan 28.
  • return tube 122 attaches to the oil pan 28 at a first opening 124.
  • Located within the oil pan 28 is a heat exchanger through which the flow of temperature control fluid from the return tube 122 flows.
  • the heat exchanger transfers the heat from the temperature control fluid to the oil thereby assisting in the heating of the oil.
  • a preferred arrangement for utilizing temperature control fluid for heating engine oil is discussed in detail in Internation application No. PCT/UC96/01278 which has been incorporated herein by reference.
  • the temperature control fluid is directed out of the oil pan through a second opening 126 and along outlet tube 128.
  • the outlet tube 128 preferably attaches to the inlet tube 18 leading to the water pump 16.
  • the outlet tube can attach to a separate opening formed in the water pump 16.
  • the return tube 122 could be formed integral with the engine.
  • the engine can be configured with an internal flow path through the cylinder heads and engine block to the oil pan.
  • a flow control valve is shown positioned on the rightmost portion of the engine, and is generally designated with the numeral 130.
  • the flow control valve 130 controls the flow of temperature control fluid between the cylinder head 26, the intake manifold 30. and the radiator 12.
  • the flow control valve is an electronic engine temperature control (EETC) valve, similar to the type disclosed in International application No. PCT/US95/11742 which has been incorporated herein by reference.
  • the EETC valve 130 is actuatable between a first or open state and second or closed state. The first or open state permits a substantially unrestricted flow of the temperature control fluid from the cylinder head 26 into the intake manifold 30.
  • the EETC valve prevents or inhibits at least a portion of the flow of the temperature control fluid from the cylinder head 26 to the intake manifold 30. Instead, in the second state, at least a portion of the temperature control fluid is directed from the cylinder head 26 into the radiator inlet tube 22 which leads to the radiator 12.
  • the EETC valve 130 when the EETC valve 130 is in its second or closed state, the flow of temperature control fluid from the cylinder head 26 into the channel 116 B of intake manifold is inhibited. As a result, preferably little or none of the temperature control fluid flows into return tube 122 and into the water pump 16 or the oil pan 28. Instead this temperature control fluid is directed into the radiator 12. However, the closed position of the EETC valve 130 preferably does not prevent the flow of temperature control fluid along channel 116 A . As a consequence, the heater assembly (not shown) continues to receive a flow of temperature control fluid. Hence, the heater/defrost capabilities of the system remain generally unaffected by the operation of the EETC valve 130.
  • the air flowing through the intake manifold will already be sufficiently preheated (approximately 120 degrees Fahrenheit ). Additional preheating by means of the temperature control fluid is, therefore, not needed.
  • the engine oil will be operating closer to the optimum engine oil temperature value. Hence, heating of the engine oil with temperature control fluid is also not needed. Accordingly, the EETC valve in the preferred system prevents the flow of temperature control fluid through the channel 116 B of the intake manifold.
  • the flow of temperature control fluid along channel 116 A is not prevented by actuation of the EETC valve 130.
  • the heater/defrost systems will, naturally, be in their closed positions. Accordingly, there will be no flow of temperature control fluid through the intake manifold, although temperature control fluid will remain within channel 116 A .
  • This "trapped" temperature control fluid acts as an insulator, reducing the amount of heat which is radiated from the cylinder heads.
  • the EETC valve 130 could be modified to have a third position or state wherein flow along channel 116 A is also inhibited when the ambient temperature is above a predetermined value. This would permit the full circulation of the temperature control fluid through the radiator 12 in situations where the heater/defrost capabilities are not likely to be needed (e.g., summertime).
  • FIGS 6A and 6B are schematic representations of the fluid flow paths in the preferred embodiment.
  • the solid arrows in Figure 6A illustrate the flow path of the temperature control fluid during normal operation of the engine when the temperature control fluid is relatively hot and the engine is fully warmed.
  • the temperature control fluid enters the block 24 from the water pump 16 and passes through a plurality of channels 132 formed between the engine block 24 and the cylinder head 26.
  • the temperature control fluid flows through the cylinder head 26 and into passageway 114. Since the temperature of the temperature control fluid is relatively hot, the EETC valve 130 is in its second or closed position prohibiting temperature control fluid flow into channel 116 B of the intake manifold and permitting temperature control fluid flow along radiator inlet tube 22 and into the radiator 12 for cooling.
  • the cooled temperature control fluid is then recirculated back to the water pump 16.
  • the dashed arrows in Figure 6B illustrate the flow of temperature control fluid during engine warm up/start up.
  • the engine is relatively cold and, therefore, it is desirable to heat up the engine as quickly as possible.
  • the preferred temperature control system directs the temperature control fluid through the hottest area of the engine (e.g., cylinder heads) and the areas of the engine which need the heat the most (e.g., intake manifold and engine oil). This results in faster heating of the engine oil and, hence, the faster overall heating of the engine.
  • the flow restrictor valves 40, 42 in the water pump 16 are actuated into their closed or restricted position, preventing the flow of temperature control fluid into the engine block 24.
  • the temperature control fluid is, instead, directed through the bypass passageway 106 and into the cylinder input lines 112. These input lines channel the temperature control fluid directly into the cylinder heads 25 so as to permit quick heating of the fluid.
  • the temperature control fluid then passes though passageway 114.
  • the EETC valve 130 is in its first or open position preventing or inhibiting flow of temperature control fluid to the radiator 12.
  • the temperature control fluid is permitted to flow along both channels 116 A and 116 B in the intake manifold 30.
  • the fluid in channel 116 B flows into the return tube 122 and. as stated above, is preferably directed through the oil pan 28 to assist in heating the oil up as quickly as possible.
  • the dashed arrows in Figure 6B illustrate this preferred flow circuit through the oil pan 28 during engine warm up. During extremely cold weather conditions, the circuit illustrated in Figure 6B may continue for a significant amount of time. It is also conceivable that during a particular operation of the engine. the temperature conditions may prevent the valves from ever closing.
  • FIG. 6A and 6B Also shown in Figures 6A and 6B is the routing of the hydraulic lines from oil pan 28, which is the preferred hydraulic fluid reservoir/source, to the hydraulic solenoid injector system 44.
  • a filter 131 is shown located along the pressurized hydraulic fluid inlet line.
  • a second line designated 200 is also shown tapping off of the pressurized hydraulic inlet line. This second line feeds pressurized hydraulic fluid to the EETC valve which, preferably, has its own hydraulic solenoid injector system (not shown).
  • the preferred system controls the flow of temperature control fluid through the engine to efficiently transfer the heat generated in the cylinder heads to the intake manifold and the oil pan.
  • the system preheats the intake of the induction air preparing it for proper fuel mixture to provide effective and efficient combustion.
  • the heat from the cylinder heads to the oil pan it is possible to heat the oil towards its optimum temperature as quickly as possible.
  • the engine block will naturally heat up as a consequence of the warmer engine lubricating oil and cylinder piston wall friction.
  • the ECU of the present invention utilizes the EETC valve 130 in conjunction with the flow restrictor valves 40, 42 mounted on the water pump 16 to control the flow of temperature control fluid. More particularly, referring to Figures 6A and 6B, the ECU 900 receives signals from sensors located in and around the engine which are indicative of the engine operating state and ambient conditions. The ECU 900 utilizes these signals, in combination with predetermined temperature control curves or values, for controlling the state of the valves.
  • the ECU 900 receives signals indicative of the ambient air temperature 210, the engine oil temperature 212, and the temperature control fluid temperature 214.
  • the ECU 900 compares these signals to one or more temperature control curves.
  • the ECU 900 compares the engine oil temperature 212 to an optimum engine oil temperature curve.
  • the ECU 900 determines the operating state of the engine based on this comparison (e.g., normal, high or extremely high load).
  • the ECU 900 then compares the actual temperatures of the ambient air 210 and the temperature control fluid 214 to a predetermined curve or set of points for determining the desired state or position of the EETC valve 130 and the flow restrictor valves 40, 42.
  • the set of points preferably defines a curve which is a function of at least ambient air temperature and temperature control fluid temperature. A portion of the preferred curve has a non-zero slope.
  • Figures 7A through 7F are examples of suitable temperature control curves.
  • Co-pending International application No. PCT/US96/01278 discusses in detail the utilization of temperature control curves for controlling the state of EETC and restrictor type valves.
  • the ECU 900 sends control signals along lines 54, 56 to the solenoids 50, 52 to open and close the hydraulic fluid injectors 46, 48. This, in turn, causes the opening and closing of the flow restrictor valves 40, 42 as required.
  • the ECU 900 also sends signals 216 to the solenoids (not shown) of the EETC 130 to place it in its open or closed state as determined by the temperature control curves.
  • the ECU 900 compares the actual oil temperature against an optimum engine oil temperature value or series of values defining a curve. If the actual oil temperature is above the optimum engine oil temperature value, then the ECU 900 adjusts the Normal temperature control curve instead of switching to a High Load curve. Specifically, the ECU 900 shifts the Normal temperature curve downward a predetermined amount so as to reduce the temperature of the temperature control fluid which causes actuation of the valves between their states of positions. In one embodiment of the invention, for every one degree Fahrenheit that the actual engine oil temperature is above the optimum engine oil temperature there is a corresponding two degree Fahrenheit decrease in the temperature control fluid temperature component which produces actuation of the valves.
  • the temperature control fluid temperature component is shifted downward for a one degree rise in actual engine oil temperature.
  • a one degree rise in actual oil temperature above the optimum oil temperature value may produce a decrease in the actuation temperature of the temperature control fluid within a range of between 1 and 10 degrees.
  • the amount of downward shifting of the temperature component may not be constant (e.g., the amount of downward shifting may increase as the difference between the actual oil temperature and the optimum oil temperature increases).
  • the amount of downward shifting of the temperature control fluid temperature component may also vary with changes in ambient temperature. For example, at 0 degrees ambient air temperature, every one degree that the actual oil temperature is above the optimum oil temperature produces a one degree decrease in the temperature control fluid temperature component. At 50 degrees ambient air temperature, every one degree that the actual oil temperature is above the optimum oil temperature produces a two degree decrease in the temperature control fluid temperature component. At 80 degrees ambient air temperature, every one degree that the actual oil temperature is above the optimum oil temperature produces a three degree decrease in the temperature control fluid temperature component.
  • This embodiment of the invention may be graphically illustrated as shown in Figure 7F wherein a control curve is selected by the ECU depending on the sensed ambient temperature.
  • linear curves are illustrated in the exemplary embodiment, it should be understood that alternate non-linear curves may be incorporated for each ambient temperature. It is also contemplated that a single curve may be utilized for shifting the temperature control curve. One axis of the plot would represent the sensed ambient temperature. The second axis would represent the ratio of a one degree increase in engine oil over the corresponding downward shifting of the temperature control curve (e.g., 1/1, 1/2 or 1/3).
  • the actual oil temperature exceeds the optimum oil temperature value by a set amount before altering the temperature control curve. For example, for every 3 degree increase in the actual engine oil temperature above the optimum oil temperature value there is a corresponding decrease in the set point temperature of the temperature control fluid which directs actuation of the valve.
  • FIG. 7E graphically illustrates this aspect of the invention.
  • a series of identical temperature control curves are shown for a plurality of actual sensed engine oil temperatures.
  • Each dashed line (NC') represents a shifted-down version of the solid "normal" temperature control curve (NC).
  • NC solid "normal" temperature control curve
  • altering the temperature control fluid component based only on the amount that the actual engine oil temperature exceeds the optimum engine oil value would be sufficient.
  • One method for varying or altering the temperature control curve is by monitoring the rate of change of the actual engine oil temperature.
  • FIG 7G an exemplary curve is illustrated which depicts the rate of change of the actual engine oil temperature versus the scaling factor for the temperature control fluid component and/or for determining the downward shifting of the temperature control curve. If the detected rate of change of the actual oil temperature is relatively low (R 1 ), the downward shifting of the temperature control curves is also small (S 1 ). If, on the other hand, the detected rate of change of actual oil temperature is large (R 2 ) which is indicative of a high loading condition, then the downward shifting of the temperature control curve is also relatively large (S 2 ).
  • exemplary curve depicts a linear curve
  • curve shapes such as exponential, logarithmic, curvilinear, etc.
  • a step function may instead be utilized which provides a different amount of downward shifting of the temperature control curve for different detected rates of change of the actual engine oil.
  • the engine computer determines rate of change of the actual engine oil temperature.
  • the engine computer determines a scaling factor from this rate of change.
  • the scaling factor is then applied to the normal temperature curve to shift the curve downward.
  • the engine computer continues to monitor the rate of change in the actual oil temperature and shifts the temperature control curve accordingly. Delays can be incorporated into the system to minimize the amount of shifting of the temperature control curve that occurs.
  • FIG. 7H An analytically determined curve illustrating the effect of the above embodiment is shown in Figure 7H.
  • the curve shown is for a constant ambient temperature of 60°F (15°C).
  • the engine computer controls the opening and closing of the EETC valve and restrictor valves according to a normal temperature control curve (level 1).
  • the engine computer detects an increase in the actual oil temperature above the optimum engine oil temperature value (approximately 235°F (112°C) in the illustrated embodiment) which is preferably determined from an optimum engine oil temperature curve similar to the one shown in Figure 7C. This is indicative of an increase in engine load.
  • the engine computer either applies a predetermined factor for downward shifting of the temperature control curve (e.g., 2 degree drop in TCF for each 1 degree rise in engine oil temperature) or, more preferably, the engine computer determines a rate of change of the engine oil temperature and from that rate calculates the amount of downward shifting of the temperature control curve required.
  • a predetermined factor for downward shifting of the temperature control curve e.g., 2 degree drop in TCF for each 1 degree rise in engine oil temperature
  • the engine computer determines a rate of change of the engine oil temperature and from that rate calculates the amount of downward shifting of the temperature control curve required.
  • the EETC valve is opened according to the new shifted temperature control curve (level 2), causing the immediate drop in the temperature control fluid as shown between time t 1 and t 2 .
  • the engine oil however, will continue to rise until the cooling effect of the temperature control fluid begins to cool the engine oil.
  • the engine computer continues to monitor the actual engine oil temperature.
  • the temperature of the temperature control fluid stabilizes at the new shifted temperature control fluid valve. If the actual engine oil is still above the optimum engine oil temperature, the engine computer determines the rate of change of engine oil temperature between time t 1 and t 2 . The high rate of change indicates a continued high engine load condition. Accordingly, based on this determined rate, the engine computer determines an additional amount of downward shifting of the temperature control curve that is required. The EETC valve is then controlled based on the this second shifted temperature control curve (level 3).
  • the engine computer determines a rate of change of the engine oil temperature between time t 2 and t 3 . Since the new rate of change in the illustrated example is less than the previous rate of change, the engine computer does not shift the temperature control curve downward. Instead, the engine computer continues to control the EETC valve based on the level 3 temperature control curve.
  • the engine computer determines a rate of change of the engine oil temperature between time t 4 and t 5 . Since the new rate of change in the illustrated example is decreasing, the engine computer shifts the temperature control curve upward back toward the first or normal level. As a result, the temperature control fluid temperature continues to heat up while the engine oil decreases in temperature and begins to return to its optimal operating temperature.
  • the sensed ambient air temperature will affect rate or slope of the temperature control fluid temperature curve in Figure 7H.
  • the temperature slope of the temperature control fluid between time t 5 and t 6 will be steeper than at low ambient temperatures. This is due to the fact that at lower temperatures (e.g., zero degrees ambient) it is more preferable that the engine oil remains at a higher temperature for a longer period of time to increase heater and defroster capabilities.
  • the cold ambient temperature reduces the likelihood that the engine oil will become excessively hot. In warmer ambient temperatures, it is desirable to maintain the engine oil closer to its optimum valve so as to prevent overheating.
  • the temperature slope of the temperature control fluid is, thus, steeper at these warmer temperatures.
  • An alternate method for determining the engine load is by monitoring the intake manifold vacuum pressure.
  • the sensed intake manifold pressure generally provides an accurate indication of the current engine load. For example, if the sensed intake manifold vacuum is less than about 4 inches Hg, (13546 Pa), the engine is operating under a high load condition. Accordingly, a first predetermined scaling factor or curve can be selected for reducing or replacing the temperature control curve. If, however, the intake manifold vacuum is less than about 2 inches Hg, (6773 Pa), then the engine is operating under an extremely load condition. In this case, a second scaling factor or curve is selected for varying the normal temperature control curve.
  • Another method for determining engine load is through the monitoring of the commanded engine acceleration.
  • a high commanded engine acceleration is indicative of a high engine load condition.
  • the amount of engine acceleration can be determined from a variety of methods, such as the accelerator pedal displacement, a signal from the fuel injection system, etc.
  • a predetermined factor and/or curve is selected for varying the normal temperature control curve.
  • the temperature control curves themselves may be replaced by one or more equations for controlling the actuation of the valves.
  • fuzzy logic controllers could be implemented for controlling the actuation of the valves and/or varying of the temperature control curves.
  • the varying or downward shifting of the temperature control curves as discussed above is preferably limited to between approximately 50°F - 70°F (10°C - 21°C). This is intended to prevent substantial degradation in the capabilities of the heater/defroster systems by maintaining the temperature control fluid at a reasonably high temperature.
  • the temperature control fluid trapped within the engine block acts as an "insulator" to retain valuable heat within the engine circuit. It is expected that the temperature of the temperature control fluid entering the cylinder heads (after circulation through the engine oil pan and water pump) will be approximately 30 °F to 50°F (-1°C to 10°C) warmer than the temperature of the temperature control fluid trapped within the engine block water jacket. This should be low enough to prevent "thermal shock” yet be significant enough to improve engine warm-up for better engine out exhaust emissions and fuel economy especially for short durations of engine operation, e.g., delivery vans, etc.
  • the preferred configuration reduces the mass of temperature control fluid circulating by between approximately forty to fifty percent during warm-up. This results in the quicker heat up of the engine towards its optimum operating temperature, yielding reduced exhaust emissions and quicker heater/defrost capabilities. Also, by raising the temperature of the oil in the oil pan to above 195° Fahrenheit (90° Celsius), it is possible to reduce or eliminate sludge buildup and also maintain the engine oil at or near its optimum temperature. This should result in better extreme cold weather fuel economy.
  • an EETC valve is the preferred valve for controlling the flow of temperature control fluid between the engine and the radiator. While an EETC valve has been chosen as the preferred valve, other valves may be utilized in its stead for controlling the fluid flow between the engine and the radiator. A standard thermostat could also be used in place of the EETC valve disclosed above. However, since a thermostatic valve is limited to controlling the flow of fluid based on the temperature of the fluid, it is not designed to maintain the temperature of the engine oil at or near its optimum temperature. Accordingly, it is not a preferred valve.
  • the EETC valve 130 is actuated into its second or closed position so as to permit flow of temperature control fluid from the cylinder heads 26 toward the radiator 12. Furthermore, at some point after the engine has begun to warm up, the flow restrictor valves 40, 42 are actuated into their open or unrestricted position which inhibits flow of temperature control fluid into the bypass passageway 106 and, instead, permits flow of temperature control fluid along flow channels 80, 82 of the water pump 16. This permits the flow of temperature control fluid to enter into the block inlet ports 36. 38.
  • the flow of temperature control fluid in this mode of operation is indicated by the solid arrows in Figure 6A. The fluid flows directly into the engine block 24 and through the series of channels 132 formed between the engine block 24 and the cylinder head 26 as shown.
  • one or more restrictor valves may be incorporated into the engine block 24 to reduce the flow of temperature control fluid through the channels 132 between the block and the cylinder head to further optimize the system.
  • Figures 6A and 6B illustrate two restrictor valves in phantom (identified by the numeral 400) positioned within the engine block 24. Suitable restrictor valves are discussed in Internation application No. PCT/US95/11742 and U.S. Patent 5.463,986.
  • Another feature of the invention involves the utilization of the heat present in the engine exhaust to further heat the temperature control fluid. As discussed above, approximately one third of heat generated during the combustion of the fuel/air mixture is transferred through the exhaust system.
  • the present invention utilizes the heat in the exhaust gases to assist in heating up the temperature control fluid during warm-up of the engine. Accordingly, the increased temperature of the temperature control fluid helps to bring the engine and the engine oil up to their optimum operating temperatures significantly faster than prior art systems.
  • the present invention has particular use in diesel engines where the additional heat significantly increases the engine efficiency.
  • FIGS 8 and 9 illustrate an embodiment of the invention which incorporates a novel means for harnessing the heat of the exhaust gases.
  • the bypass tube 110 which leads from the water pump 16 and connects to the cylinder head input lines 112, is split so as to direct at least a portion of the temperature control fluid flow to the exhaust manifold 140 along the exhaust input tube 141.
  • the exhaust input tube 141 attaches with an exhaust heat assembly generally designated 142.
  • the exhaust heat assembly 142 extends along or adjacent to at least a portion of the exhaust manifold 140.
  • the exhaust heat assembly 142 includes a heating conduit 144 that is directly in contact with or adjacent to the exhaust manifold 140.
  • the heat from exhaust gases in the exhaust manifold 140 is conducted through the walls of the exhaust manifold 140 and the heating conduit 144 and into the temperature control fluid.
  • the heating conduit 144 be shaped so as to conform to the exhaust manifold 140.
  • the side 144 A of the heating conduit 144 which is directly in contact with the exhaust manifold 140 is preferably configured relatively large in size so as to permit a significant amount of heat transfer into the heating conduit 144.
  • the heating conduit 144 is made from material which is capable of withstanding the excessive temperatures which exist in and/or around the exhaust manifold 140. However, the material chosen must also be capable of readily transferring the heat from the exhaust manifold 140 to the temperature control fluid which flows within the heating conduit 144. In the preferred embodiment, the heating conduit is made from stainless steel, and has a wall thickness of approximately 0.090 inches. The shape of the heating conduit 144 will vary depending on the engine exhaust manifold configuration.
  • the exhaust heat assembly 142 preferably includes a first spacer 146 which is located between the heating conduit 144 and the return tube 141.
  • the first spacer 146 is preferably made from a non-conductive or minimally conductive material such as ceramic.
  • the exhaust input tube 141 attaches to the first spacer 146 in conventional fashion so as to permit the flow of temperature control fluid into the inlet of the heating conduit 144.
  • the heating conduit 144 extends approximately six inches on either side of its engagement with the exhaust manifold 140.
  • heating conduit 144 attaches to a second spacer 148, which is also preferably made from ceramic material.
  • the second spacer 148 directs the flow of temperature control fluid from the heating conduit 144 to an exhaust return tube 152.
  • the exhaust return tube 152 conveys the heated temperature control fluid into either the water pump 16 or, more preferably, into the oil pan 28 for transferring the heat from the temperature control fluid to the engine oil. If, as is preferred, the heated temperature control fluid is directed to the oil pan 28, then the return tube 122 from channel 116 B of the intake manifold 30 does not also need to be directed through the oil pan 28. Instead, the return tube 122 can attach directly to the inlet 20 of the water pump 16.
  • a crimp joint 149 is utilized to attach the spacers 146, 148 to the heating conduit 144.
  • the crimp joint 149 includes a soft metallic seal 150, such as copper or high temperature synthetic material.
  • a valving arrangement 154 is located between the second spacer 148 and the exhaust return tube 152.
  • the valving arrangement is designed to permit temperature control fluid flow in only one direction. That is, the valving arrangement 154 permits the heated temperature control fluid to flow from the heating conduit 144 into the exhaust return tube 152 and toward the oil pan and/or water pump 16.
  • the valving arrangement 154 does not permit the temperature control fluid to flow back into the heating conduit 144. This is particularly important when the flow of temperature control fluid into the exhaust heat assembly 142 is shut off, such as after the engine oil has been warmed to a predetermined temperature.
  • the flow restrictor valves 40, 42 will be in their open state, inhibiting flow of temperature control fluid into the exhaust input tube 141 and, accordingly, the exhaust heat assembly 142.
  • the valving arrangement 154 of the present invention prevents any back flow of temperature control fluid from entering the heating conduit 144.
  • a check ball valve is the valve of choice, although a spring type flapper valve could readily be substituted without detracting from the invention. Since the valving arrangement is separated from the heating conduit 144 by a ceramic spacer 148, the valve will not experience extreme temperatures. Therefore, it can be made from a lightweight material such as glass-filled nylon or aluminum.
  • FIG. 300 Another embodiment of the engine exhaust heat assembly is illustrated in Figures 10 through 12 and generally designated by the numeral 300.
  • the heat of the exhaust gases flowing through the engine manifold 140 is transferred to the temperature control fluid flowing through the exhaust heat assembly 142 as described above.
  • the heated temperature control fluid is channeled through the intake manifold and/or the heater assembly for heating the passenger compartment.
  • the heated temperature control fluid which exits from the valving arrangement 154 is channeled by an exhaust output tube 302 directly to the intake manifold 30.
  • the exhaust output tube 302 enters the intake manifold 30 through opening 304.
  • the heated temperature control fluid which enters the intake manifold 30 at opening 304, mixes with the flow of temperature control fluid flowing into the intake manifold 30 from the cylinder heads 26. This combined flow of temperature control fluid flows along channels 116 A and 116 B .
  • the heated temperature control fluid flows through the intake manifold and preferably exits through return tube 122 and heater tube 120.
  • the heater tube 120 directs a portion of the temperature control fluid to the heater assembly (not shown) for heating the passenger compartment.
  • the return tube 122 preferably channels a portion of the temperature control fluid to the engine oil pan 28 for heating the engine lubricating oil. This arrangement of the return tube 122 and heater tube 120 has been described in detail above with respect to Figures 1 through 6B.
  • the flow restrictor valves 40, 42 in the water pump 16 stop the flow of temperature control fluid through the exhaust heat assembly 142. Accordingly, temperature control fluid no longer enters the intake manifold through opening 304.
  • the valving arrangement 154 is preferably a one-way flow valve which prevents the temperature control fluid in the exhaust output tube 302 from flowing back into the exhaust heat assembly 142.
  • a second exhaust heat assembly could be mounted to the exhaust manifolds on the opposite side of the block as shown in phantom in Figure 8.
  • a second exhaust input tube (not shown) would preferably tap off of the bypass tube 110.
  • the heated temperature control fluid from the exhaust heat assembly 142 can be channeled directly from the exhaust manifold to the heater assembly for heating the passenger compartment.
  • a graphical illustration is shown of the actual temperature of the exhaust manifold as measured on a GM 3800 V6 engine.
  • the temperatures were measured from a cold start condition.
  • the temperature of the exhaust manifold increases from a cold start temperature to over 600 degrees Fahrenheit (315°C) in approximately four minutes. This exemplifies the amount of heat that is lost through the engine exhaust.
  • the present invention harnesses this heat and directs it back to the engine for optimally controlling the engine temperature.
  • the point designated 'X' on the curve represents the point at which the engine ignition was turned off.
  • the temperature in the exhaust manifold immediately begins to drop back toward the ambient temperature.
  • the engine has been described as a V-6 engine and accordingly there are two flow paths of temperature control fluid through the engine block 24 (e.g., two engine block inlets 36, 38) and also two flow paths of temperature control fluid through the cylinder heads 26.
  • the invention is also applicable to an embodiment wherein there is a single flow path of temperature control fluid into the engine block 24 and/or through the cylinder heads 26.
  • a single flow restrictor valve would be required to inhibit the flow of temperature control fluid into the block 24 and to direct the flow of temperature control fluid into the cylinder heads 24.
  • Figure 14 graphically compares the actual engine oil temperature to the optimum engine oil temperature for various temperature control systems disclosed in the above-referenced related applications.
  • a system according to one preferred embodiment of the invention which utilizes the exhaust heat assembly in combination with the novel water pump design, maintains the actual engine oil temperature closer to the desired optimum engine oil temperature.
  • Figure 15 illustrates an internal combustion engine generally designated with numeral 10.
  • the configuration of the engine in this embodiment is preferably similar to the embodiments disclosed above.
  • an alternate valve for controlling flow from the water pump 16 to the exhaust heat assembly is generally designated by the numeral 40.
  • the flow restrictor valve 40 includes first and second housing portions 1100, 1101.
  • the first housing portion 1100 is crimped into engagement with the second housing portion 1101.
  • Alternate attachment mechanisms, such as threads, are well within the scope of the invention.
  • the flow restrictor valve 40 is actuatable between a first "normal flow” position or state and a second "exhaust heating flow” position or state.
  • an actuatable piston 1104 prevents the temperature control fluid from flowing through a passageway 1102 in the first housing portion 1100 leading to the exhaust heat assembly 1142.
  • the piston 1104 includes a pressure head 1106 and a sealing head 1108.
  • the pressure head 1104 is slidably disposed within a chamber 1110 within the first housing portion 1100 and has a pressure receiving surface 1112 formed thereon.
  • a fluid line 1114 is connected to the first housing portion 1100 and is in fluid communication with the chamber 1110.
  • the fluid line 1114 is operative for directing a pressurized medium into the chamber 1110 for increasing the pressure therein. As will be discussed in more detail below, this increase in pressure is designed to displace the pressure head 1106 and the piston 1104.
  • the fluid line is threaded into an insert 1113.
  • the insert 1113 is mounted to the first housing portion 1100 by means of a cap 1115. Attachment of the cap 1115 to the first housing portion 1100 is provided by a crimp joint 1117 as shown. Alternately, the cap 1115 may be threaded into engagement with the first housing portion 1100. Flow of the medium is channeled out of the fluid line 1114, through the insert 1113 and into the chamber 1110.
  • the sealing head 1108 is slidably disposed within the passageway 1102 in the first housing portion 1100.
  • the sealing head 1108 is designed to prevent temperature control fluid from passing through the passageway 1102 when the valve 40 is in its first position.
  • a shaft 1116 extends between and attaches to the sealing head 1108 and the piston head 1106. In the embodiment illustrated, the shaft 1116 is formed integral with the sealing head 1108 and is threaded into engagement with the piston head 1106. A variety of alternate attachment means can be substituted for the illustrated embodiment.
  • a biasing spring 1118 is located within the first housing portion 1100 between the pressure head 1106 and a seat 1120. The biasing spring 1118 urges the pressure head 1106 away from the passageway 1102 and opposes any displacement of piston 1104 caused by pressure in the chamber 1110.
  • a valve inlet 1122 channels temperature control fluid to the passageway 1102.
  • the passageway 1102 communicates with a valve conduit 1124 formed in the second housing portion 1101.
  • the valve conduit 1124 communicates with one or more valve outlets 1126 which permit fluid flow out of the valve 40.
  • Exhaust input tubes 141 are attached to the valve outlets 1126 and communicate with the exhaust heat assembly 142. Attachment between the exhaust heat inlet tubes 141 and the valve outlets 1126 is provided by crimps.
  • the sealing head 1108 prevents the temperature control fluid from flowing through the passageway 1102 to the valve conduit 1124 and valve outlets 1126.
  • the second position of the valve 40 is shown in Figure 16B.
  • this position at least a portion of the temperature control fluid is allowed to flow through the passageway 1102, along the valve conduit 1124, and out of the valve 40 through the valve outlets 1126. From the valve 40, the temperature control fluid is permitted to flow to the exhaust heat assembly 142.
  • a sufficient amount of fluid medium has been supplied to the chamber 1110 to overcome the spring force associated with the biasing spring 1118 and to force the piston 1104 to slide within the first housing portion 1100. This causes compression of the spring 1118 and moves the sealing head 1108 out of the passageway 1102, thus permitting fluid to flow therethrough.
  • Seals 1128 may be placed between the walls of the first housing portion 1100 and the pressure head 1106 and sealing head 1108 to prevent leakage of the pressurizing medium into the valve inlet 1122.
  • the seals 1128 are preferably POLYPAK® retention seals manufactured by Parker-Hannifin Corp., Cleveland. OH, VITON® elastomer seals manufactured by E.I. Du Pont De Nemours & Co., Wilmington, DE, or teflon O-rings.
  • high temperature seals 1130 are preferably utilized at the attachment of the exhaust manifold inlet tubes 141 to the valve outlets 1126.
  • the high temperature seals are preferably radial O-rings.
  • a secondary seal 1132 may also be incorporated. This secondary seal 1132 is preferably a soft copper flange seal.
  • the high temperatures of the exhaust heat assembly 142 also require the addition of a high temperature radial O-ring seal between the first and second housing portions 1100, 1101.
  • the valve 40 has first and second housing portions 1100, 1101.
  • One reason for utilizing two housing portions is the need to prevent or minimize heat transfer from the exhaust heat assembly 142.
  • Related application Serial Number 08/447,468 discusses in detail the temperature related problems associated with the exhaust heating assembly 142.
  • a high temperature non-conductive material such as ceramic.
  • the remainder of the valve 40 (e.g., the first housing portion 1100, the cap 1115) may be made from a less costly material, such as aluminum or plastic, thereby designating the valve as a bi-material valve.
  • An O-ring seal 1134 is preferably utilized at the attachment of the second housing portion 1101 to the first housing portion 1100 and between the cap 1115 and the first housing portion 1100.
  • the piston 1104 could be replaced by a diaphragm valve arrangement which provides translation of the sealing head 1108.
  • the biasing spring 1118 it is also possible to eliminate the biasing spring 1118 and, instead, utilize the elastomeric properties of the diaphragm to provide the biasing needed.
  • a rotary valve may be utilized to control flow to the exhaust heat assembly 142.
  • the flow restrictor valve 40 is located between the water pump 16 and the exhaust heat assembly 142.
  • the flow restrictor valve 40 is attached directly to an outlet on the water pump 16 and controls the flow of temperature control fluid to a heating conduit 144 in the exhaust heat assembly 142.
  • the exhaust heat assembly 142 is illustrated with a second flow restrictor valve 41 mounted downstream of the heating conduit 144.
  • the second valve 41 is similar in configuration and operates is a similar manner as the first flow restrictor valve 40.
  • the second flow restrictor valve 41 has a first position wherein flow of temperature control fluid through the valve 41 is inhibited and a second position wherein the flow of the temperature control fluid is allowed.
  • the second flow restrictor valve 41 controls the flow of the temperature control fluid from the heating conduit 144 of the exhaust heat assembly 142 and to various components in or on the engine.
  • the second flow restrictor valve 41 controls flow of the temperature control fluid to an air induction system (designated by numeral 150 in Figure 15) for heating air entering a throttle prior to mixture with fuel. This embodiment is discussed in detail hereinbelow.
  • the temperature control fluid is channeled from the second flow restrictor valve 41 directly to the conductive tubes 220 in the oil pan 28.
  • the flow restrictor valves 40, 41 are actuatable between first and second positions.
  • the actuation is achieved by means of a pressurization system, such as a hydraulic solenoid injector system (generally designated 44 in Figure 2 and 15).
  • the hydraulic injector system 44 controls the flow of a fluid medium, such as hydraulic fluid, to and from the flow restrictor valves 40, 41 for actuating the valves between their first and second positions.
  • a preferred embodiment of the hydraulic solenoid injector system 44 is shown in more detail in Figures 15 and 18 and includes input and output hydraulic fluid injectors 46, 48. Attached to the hydraulic fluid injectors 46, 48 are first and second solenoids 50, 52.
  • the solenoids are designed to receive signals on control lines 54, 56 from an engine computer unit (ECU) 900 for controlling the opening and closing of their respective hydraulic injectors 46, 48.
  • ECU engine computer unit
  • a source of pressurized fluid is connected to a housing 58 of the hydraulic solenoid injector system 44 through fluid inlet connector 60.
  • the source of pressurized fluid is engine lubrication oil flowing either directly from the oil pump or, more preferably, from an oil filter (designated by the numeral 3 in Figure 15).
  • the oil filter 3 prevents debris from entering into the hydraulic injectors causing damage and/or malfunction.
  • the filter is preferably replaceable.
  • the output hydraulic injector 48 controls the emptying or depressurization of the chamber 66.
  • the opening of the output hydraulic injector 48 causes the hydraulic fluid in chamber 66 to drain along passage 70 and through fluid outlet connector 72.
  • a hydraulic fluid line from the fluid outlet connector 72 leads to a hydraulic fluid reservoir, such as the engine oil pan 28.
  • the hydraulic injectors are Siemens Deka II modified hydraulic fluid injectors. Details of these injectors are provided in the above-referenced related patent applications. Other solenoid-type injectors can be readily substituted therefor without departing from the scope of the invention.
  • the hydraulic solenoid injector system 44 also preferably includes a third solenoid 74 mounted to the housing 58 and in communication with the chamber 66.
  • the third solenoid 74 is preferably a multi-way solenoid which provides a means for controlling fluid flow over one or more supply lines 76 leading to the flow restrictor valves 40, 41 and an electronic engine temperature control valve (EETC) 130.
  • the third solenoid controls flow of a fluid medium along three supply lines (designated by numerals 76 A , 76 B and 76 C ). Each supply line channels a flow of fluid for pressurizing a valve. While three supply lines are shown in the preferred embodiment, alternate configurations are possible and well within the purview of the claims.
  • Supply line 76 A supplies pressurized fluid to the flow restrictor valve 40 which controls flow of the temperature control fluid leading to the exhaust heat assembly 142 from the water pump 16.
  • Supply line 76 B supplies pressurized fluid to the flow restrictor valve 41 located downstream from the exhaust heat assembly 142 which controls flow of temperature control fluid from the exhaust heat assembly to the engine.
  • Supply line 76 C supplies pressurized fluid to the EETC valve 130 which controls flow of temperature control fluid between the engine and the radiator.
  • the hydraulic solenoid injector system 44 is filled and drained of pressurized fluid such as hydraulic oil.
  • pressurized fluid such as hydraulic oil.
  • the injectors 46, 48 are mounted on opposite sides of a central plane and are angled with respect to that plane with the fill and drain openings located at the lowest point in the housing 58.
  • Passages 64 and 70 are similarly angled downward from the chamber 66. Consequently, when it is desired to drain the hydraulic solenoid injector system, the natural force of gravity assists in draining the passages 64, 70 and injectors 46, 48.
  • the hydraulic solenoid injector system 44 provides pressurized fluid for actuating both flow restrictor valves 40, 41 and the EETC valve 130.
  • the EETC valve 130 is shown in Figure 15 controlling the flow of the temperature control fluid to the radiator 12.
  • An alternate position for the EETC valve is shown in phantom and designated with the numeral 130'.
  • U.S. Patent No. 5,458,096 provides a detailed discussion of various embodiments of the EETC valve 130 and their operation and is incorporated herein by reference.
  • a fluid line 1131 from the hydraulic solenoid injection system 44 supplies a flow of pressurized fluid into a chamber 1132 within the valve 1130.
  • the filling of the chamber 1132 with the pressurized fluid causes a flexible diaphragm 1134 to displace a valve member 1136 compressing a spring 1137.
  • Displacement of the valve member 1136 permits temperature control fluid to flow along the channel 1138 leading to the radiator 12.
  • the draining of the chamber 1132, in combination with the energy stored in the compressed spring 1137, causes the valve member 1136 to reciprocate back into its first position shown in the figure.
  • Exemplary control curves are shown in Figure 20 for use by the ECU 900 in controlling the actuation of the valves.
  • the two curves shown are functions of an engine operating parameter and ambient condition.
  • Preferably the curves are a function of engine oil temperature and ambient air temperature.
  • Related application Serial No. 08/390,711 discusses how the internal engine components lose heat more rapidly to the environment as the ambient air temperature decreases.
  • By controlling the temperature of the temperature control fluid or coolant according to a predetermined temperature control curve it is possible to effectively control the temperature of the engine.
  • the actual engine oil temperature should be monitored and maintained at or near its optimum temperature.
  • the optimum engine oil temperature will typically be higher in colder ambient air temperatures to counter the increased cooling effect of the air on the engine components.
  • the illustrated curves are optimum engine temperature curves. These curves are preferably utilized in conjunction with temperature control curves for controlling the temperature of the engine.
  • the engine temperature curves will be described as being a function of engine oil temperature and ambient air temperature.
  • various alternate engine parameters and/or ambient conditions which may be utilized within the scope of the present invention. If alternate engine parameters are utilized, they are preferably indicative of the temperature of the engine oil. It is also contemplated that a fixed optimum engine oil temperature value may be utilized in the temperature control system (i.e., not a function of ambient air temperature). However, utilizing a fixed engine oil temperature value will not necessarily optimally control the temperature control system so as to minimize engine exhaust emissions.
  • curve A is utilized for determining the state of the engine (e.g., load condition, temperature state, etc.) This curve is utilized in conjunction with either a temperature control curve or a set of predetermined temperature values for controlling the actuation of the EETC valve.
  • the specifics of this curve and how it is utilized for controlling flow of temperature control fluid is discussed in detail in related Internation application No. PCT/US96/01278 and U.S. Patent 5,507,251, which have been incorporated by reference.
  • the curve is defined by a set of predetermined values preferably having an ambient air temperature component and an engine oil temperature component.
  • the temperature for the engine oil is measured in the oil pan and the temperature for the ambient air is measured either outside the engine compartment or in an air cleaner mounted on the engine.
  • the temperature for the engine oil is measured in the oil pan and the temperature for the ambient air is measured either outside the engine compartment or in an air cleaner mounted on the engine.
  • those skilled in the art would readily be capable of producing control curves for use in the instant invention based on ambient air temperatures and engine oil temperatures as measured at any location related to the engine.
  • curve A has been discussed as varying with ambient air temperature and illustrated as a non-linear curve, it is also contemplated that curve A may be a step function or series of step functions which define the relationship between ambient air temperature and engine oil temperature. These alternate embodiments are all well within the purview of the claims.
  • the engine oil temperature curve is utilized in conjunction with a temperature control curve for determining the appropriate state of the EETC valve. Specifically, the comparison of the actual engine oil temperature to the optimum engine oil temperature (for a given ambient air temperature) determines an adjustment factor for adjusting the temperature control curve. While it is also contemplated that the engine oil temperature curve can be utilized for directly actuating the EETC valve, it is not preferred since there is a significant time lag between the actuation of the EETC valve and the resulting actual engine oil temperature.
  • Figure 20 also illustrates an exemplary embodiment of a second curve (curve B) which is also shown as a function of ambient air temperature and engine oil temperature.
  • Curve B is shown positioned below Curve A and is utilized for controlling actuation of the flow restrictor valves 40, 41 which control flow of temperature control fluid to and from the exhaust heat assembly 142.
  • curve B can be embodied in various other configurations (e.g., can be a fixed value, can be a function of an ambient condition and an engine parameter, etc.).
  • the curve is defined by a set of predetermined values preferably having an ambient air temperature component and an engine oil temperature component.
  • a second temperature threshold value be determined by scaling the control curve.
  • a first threshold temperature value is determined by comparing a sensed ambient air temperature to curve A. This threshold value is then utilized for controlling one or more values, such as the EETC valve.
  • a second threshold value for controlling additional valves is determined by scaling the first threshold value.
  • a scaling factor is determined by comparing the sensed ambient air temperature to a second curve. The scaling factor is then utilized with the first threshold temperature value for determining the second threshold temperature value.
  • the scaling factor and the first threshold temperature value are multiplied for determining the second threshold temperature value. If the curve in Figure 21B is utilized, the scaling factor is subtracted from the first threshold temperature value to determine the second threshold temperature value. Alternate methods for determining the threshold temperature values should be readily apparent to those skilled in the art and are well within the purview of the claims.
  • curve A and curve B define three regions or zones designated I, II, and III, each zone relating to a state or position of the various valves.
  • the ECU 900 receives signals from one or more sensors which are indicative of an ambient air temperature and an engine oil temperature.
  • the ECU 900 compares these signals or sensed temperatures to the curves shown in Figure 20. (Alternately, the ECU 900 compares the signals to sets of predetermined values or to fixed values preferably having an ambient air temperature component and an engine oil temperature component.) If the combination of the measured ambient air temperature and engine oil temperature falls within Zone I, the engine is in a relatively cold state and the engine oil is well below its optimum operating temperature. It is therefore desirable to heat-up the engine oil as quickly as possible. This state typically occurs when the engine is initially started or if the vehicle is in a relatively cold environment.
  • the temperature control system controls the flow of the temperature control fluid so as to harness the heat generated by the exhaust manifold 140 and transfer it to the engine oil.
  • the ECU 900 sends signals to the hydraulic solenoid injection system 44 ( Figure 4) to open the input fluid injector 46 (and close the output fluid injector 48 if it is open).
  • the pressurized hydraulic fluid then fills chamber 66.
  • the ECU 900 sends a signal to the third solenoid 74 to actuate it so as to permit pressurized fluid flow along supply line 76 A .
  • the flow restrictor valve 41 located downstream of the heating conduit 144 is in its first position wherein flow of temperature control fluid is inhibited from flowing out of the exhaust heat assembly 142 and back to the engine. Also at this point, the EETC valve 130 is in an unactuated position (since the sensed engine oil temperature and ambient air temperatures are below Curve A). Flow of temperature control fluid to the radiator is, thus, inhibited and cooling of the temperature control fluid by the radiator is prevented.
  • a corollary of preventing flow of temperature control fluid into the radiator is that the significant quantity of fluid in the radiator is not directed into the engine water jacket. Hence, a reduced mass of temperature control fluid circulates through the system. The smaller mass of circulating temperature control fluid will, as a consequence, heat up significantly faster.
  • a flow of temperature fluid is channeled into the heating conduit 144 of the exhaust heat assembly 142 adjacent to the exhaust manifold 140.
  • the heat from the exhaust manifold 14 is conducted to temperature control fluid thereby raising its temperature.
  • a temperature sensor mounted on or in the heating conduit 144 measures the temperature of the temperature control fluid in the heating conduit 144 and sends a signal to the ECU 900.
  • the ECU 900 sends a signal to the third solenoid 74 to provide a flow of pressurized fluid along supply line 76 B which leads to the flow restrictor valve 41 located downstream from the heating conduit 144.
  • This pressurized fluid causes the flow restrictor valve 41 to actuate into its second position wherein a flow of temperature control fluid is permitted along an exhaust return tube 152 and to the air induction system 150 or the oil pan 28.
  • the ECU 900 opens both flow restrictor valves 40, 41 so as to permit an immediate flow of temperature control fluid to the oil pan or induction air system.
  • This is not the preferred method since the initial flow of temperature control fluid will not be sufficiently heated to provide any additional heating of the engine oil.
  • the initial flow of temperature control fluid may be colder than the component (e.g., oil pan) to which it is sent. As a result, the component will initially decrease in temperature. It is more preferable, therefore, to prevent the temperature control fluid from flowing to the desired component until it has been sufficiently heated.
  • the amount of opening of the flow restrictor valves 40, 41 may also be desirable to vary the amount of opening of the flow restrictor valves 40, 41 so as to control the rate of flow of temperature control fluid through the exhaust heat assembly 142. That is, the amount of opening of the valves can be related to the temperature of the temperature control fluid. This will minimize any problems that may develop from sudden drastic temperature changes.
  • the ECU 900 continues to monitor the engine oil temperature and ambient air temperature and compares the measured signals against the curves in Figure 20 or against predetermined values which define the curves.
  • the ECU 900 receives an engine oil temperature signal which, when combined with the ambient air signal, falls within Zone II, the engine oil is warm enough such that additional heating is not required.
  • the ECU 900 sends signals to the hydraulic solenoid injection system 44 to change the valve positions accordingly.
  • the ECU 900 sends signals to actuate flow restrictor valve 40 leading to the exhaust heat assembly 142 into its first position wherein flow to the exhaust heat assembly 142 is prevented. This is accomplished by sending signals to close the input injector 46 (if it has not been previously closed) and open the output injector 48. This produces depressurization of the chamber 66.
  • the ECU also sends a signal to the third solenoid 74 to open supply line 76 A (if it is not already open) permitting the pressurized fluid in the flow restrictor valve 40 to drain into chamber 66 and out through outlet connector 72 to the reservoir.
  • the flow restrictor valve 41 positioned downstream from the exhaust heat assembly 142 is simultaneously closed with flow restrictor valve 40. This is achieved by sending a signal to the third solenoid 74 to open supply line 76 B (if it is not already open) thereby permitting the pressurized fluid in the flow restrictor valve 41 to drain into chamber 66 and out of the hydraulic solenoid injector assembly 44.
  • the ECU 900 continues to monitor the engine oil temperature and ambient air temperature. If the ECU 900 receives an engine oil temperature signal which. when combined with the ambient air signal. falls within Zone III, the temperature of the engine oil is above its optimum value. At this point it is desirable to circulate at least a portion of the temperature control fluid through the radiator 12.
  • the ECU 900 adjusts or shifts a temperature control curve which governs actuation of the EETC valve. (Alternately, the ECU adjusts or shifts one or more desired temperature control fluid temperature values.) This results is signals being sent to actuate the EETC valve 130 into is second position wherein the temperature control fluid is permitted to flow toward the radiator. (If the temperature control system instead has an EETC valve 130' as shown in phantom, then the valve is opened to allow a flow of fluid from the radiator and to the engine.) The signals cause the input injector 46 to open and the output injector 48 to close. This results in a supply of pressurized fluid entering chamber 66.
  • the ECU also sends a signal to the third solenoid 74 to open supply line 76 C permitting the pressurized fluid to flow to the EETC valve 130 and fill its chamber 132 ( Figure 5). This produces displacement of valve member 136, thereby permitting temperature control fluid to flow along channel 138 and to the radiator 12.
  • the ECU 900 depressurizes supply line 76 C by sending signals to close the input injector 46, open the output injector 48 and open supply line 76 C .
  • the pressurized fluid in the EETC valve 130 is allowed to drain into chamber 66 and out through outlet connector 72 to the reservoir.
  • the EETC valve is never in its open position (permitting flow to the radiator for cooling) when the exhaust heat assembly 142 is being utilized.
  • the ECU 900 closes the input injector 46 after actuating the valves into their desired positions. This traps pressurized fluid within chamber 66 and any open supply line 76.
  • a pressure sensor (not shown) monitors pressure within the chamber 66. If the pressure within the chamber 66 falls below a threshold value (indicative of a fluid leak), the ECU 900 opens the input injector 46 to supply additional pressurized fluid to chamber 66. Alternately, the ECU can close the supply line 76 which has been pressurized. thereby locking the associated valve in its desired position.
  • the injectors 46, 48 may be necessary to dither the injectors 46, 48 (i.e., controlled opening and closing of the injectors) to assist in draining the hydraulic solenoid injector assembly 44.
  • International application No. PCT/US96/01278 discusses in detail several methods for dithering hydraulic solenoid injectors to assist in emptying a hydraulic fluid supply line. These methods can readily be applied to emptying the fluid supply lines after they have been depressurized.
  • the ECU 900 dithers the input and output injectors 46, 48 and the supply lines 76 when the engine has been shut-off.
  • FIG. 24 illustrates one alternate configuration of a solenoid valve 44' in a pressurization system for controlling one flow control valve, such as an EETC valve.
  • the solenoid valve 44' includes an input line 60 and an output line 72. The input and output lines feed an internal chamber 66' which is in communication with a supply line 76'. Electrical signals from an engine commuter are sent by the solenoid valve 44' to control flow of hydraulic fluid from the chamber 66' to the supply line 76'.
  • the illustrated embodiment provides a novel arrangement of hydraulic lines which minimize the number of connections which may be subject to leakage.
  • the utilization of a single injection system also reduces the overall cost and complexity of the temperature control system.
  • a pressure escape port 200 ( Figures 2A and 2B) is preferably incorporated into at least one of flow restrictor valves 40, 41.
  • the pressure escape port 200 is an aperture formed in the second housing of the flow restrictor valve and is in fluid communication with the heating conduit 144.
  • the pressure escape port may be formed integral with or separately attached to the housing.
  • the pressure escape port 1200 is connected through a tube 1202 to a pressure relief valve 1204 which is in communication with a portion of the housing 1206 of the EETC valve 130.
  • the pressure escape port 1200, tube 1202 and pressure relief valve 1204 provide a means for channeling or venting the pressurized steam out of the heating conduit 144.
  • a preferred embodiment of the pressure relief valve 1204 includes an insert 1208 which retains a ball 1210 within a compartment 1212.
  • the insert 1208 has a passage 1209 formed through it which is in communication with the tube 1202.
  • a spring 1214 biases the ball away from a wall 1215 of the compartment 1212 and toward the insert 1208.
  • a pressure relief orifice 1216 is formed through the wall 1215 and permits fluid communication between the compartment 1212 and the channel 138 of the EETC valve 130.
  • the insert 1208 and the tube 1202 are both threadingly engaged with the housing 1206. Alternate attachment mechanisms are possible.
  • the sizing and configuration of the tube 1202 and pressure relief valve 1204 is preferably determined so as to prevent the liquid in the heating conduit 144 from becoming too hot after it has turned to steam.
  • the temperature of the exhaust manifold 140 can reach upwards of 1500 degrees Fahrenheit (815°C). If the trapped temperature control fluid is exposed to this excessive temperature for a prolonged period of time, the temperature control fluid may begin to break down (i.e., the mixture of the water and glycol may begin to separate).
  • the tube 1202 and the pressure relief valve 1204 are preferably designed to quickly vent the exhaust heat assembly 142 so as to result in dry tubes. It is also desirable, when designing the tube 1202 and the pressure relief valve 1204, to minimize the noise associated by the steam passing through the pressure relief valve 1204 and into the radiator.
  • the tube 1202 has a diameter of approximately 0.25 inches.
  • the diameter of the insert passage is approximately 0.375 inches.
  • the pressure relief orifice has a diameter that is preferably between about 0.150 inches to about 0.180 inches.
  • the novel pressure relief system described above permits pressure in the exhaust heat assembly 142 to be vented to the radiator before any damage to the temperature control system can occur.
  • Alternate methods for venting the high pressure steam from the exhaust heat assembly 142 can be readily substituted for the above method and are well within the purview of the invention.
  • the steam can be vented into an fluid overflow bottle associated with the radiator. However, doing so may require the incorporation of baffles (not shown) into the bottle to reduce the noise of as the steam enters.
  • the steam can be channeled directly into the radiator. Venting to the radiator (either by means of the EETC valve or directly into the radiator) is preferred so as to quickly circulate and cool the heat temperature steam in the radiator. It is contemplated that a considerable amount of temperature control fluid in the radiator will be displaced by the steam since steam occupies a considerably larger volume than the condensed liquid. To accommodate this additional volume of fluid media, a larger fluid overflow bottle may be required.
  • the above described system will accurately and efficiently assist in maintaining the engine oil at or near its optimum temperature. It is, however, anticipated that as the temperature control system switches between channeling temperature control fluid to the exhaust heat assembly 142 and the engine block pockets of air may develop. This is likely to occur when the flow restrictor valves 40, 41 are opened so as to permit temperature control fluid to flow into the exhaust heater assembly 142. Prior to opening, the exhaust heat assembly 142 would contain a sizable amount of trapped air. Upon opening of the valves 40, 41, the flow of temperature control fluid will force the air in the heating conduit 144 to flow through the temperature control system. Trapped air within the system tends to reduce the cooling and heating capabilities of the system and, thus, reduce its overall efficiency.
  • Air pockets may also develop within the water pump 16 during operation of the temperature control system. Variations in suction and pressurization within the water pump 16 during the different phases of operation of the temperature control system could lead to the formation of small air pockets within the system. These air pockets, similar to the air pockets generated in the exhaust heat assembly 142, may eventually travel through the system resulting in reduced efficiency.
  • a free flow buoyancy check valve 800 which is attached to the radiator fluid overflow container 802, commonly known as an overflow bottle.
  • an overflow bottle a schematic is shown of a portion of the fluid overflow bottle 802 illustrating the attachment of the free flow buoyancy check valve 800 to the fluid overflow bottle 802 and to the water pump 16.
  • the free flow buoyancy check valve 800 provides a means for directly channeling a flow of temperature control fluid from the fluid overflow container 802 and into the water pump 16 when it is required. By channeling this additional source of fluid to the water pump 16, it is possible to reduce the amount of air pockets that develop within the water pump 16 when the it is not receiving a sufficient amount of temperature control fluid to accommodate the demand imposed by the temperature control system.
  • the free flow buoyancy check valve 800 provides additional fluid to help reduce the demand.
  • an air bleed tube 804 attached between the water pump 16 and the fluid overflow container 802.
  • the air bleed tube 804 is designed to bleed or vent trapped air out of the water pump 16 and channel it to the fluid overflow container. As discussed above, air bubbles that develop in the system will reduce the efficiency of the overall temperature control system.
  • a vent line By attaching a vent line to the water pump 16, it is possible to vent out these air pockets as they circulate. Referring to Figure 23, a graph of pressure/vacuum in the water pump is illustrated.
  • the vent line is preferably affixed to the water pump 16 so as to be in communication with the interior cavity approximately at the transition between the suction and pressure pressures. This ensures that air will be vented air of the water pump along the vent line as opposed to being drawn in.
  • the air bleed tube 804 is attached to the fluid overflow container 802 at an upper location where it will vent the air from the water pump 16 to the fluid overflow container 802. Preferably the attachment is above the water line in the fluid overflow container 802, otherwise bubbling in the container will occur.
  • the vent line can be made from any suitable material and preferably has a diameter between approximately 0.060 inches and 0.080 inches.
  • the valve 800 is mounted directly to the bottom of the fluid overflow container 802.
  • the valve 800 includes a housing 806 with a check valve outlet 808 formed thereon.
  • the check valve outlet 808 is connected via an overflow outlet tube 810 to the water pump 16.
  • the overflow outlet tube 810 functions as a conduit for channeling fluid between the check valve outlet 808 and the interior of the water pump 16.
  • the overflow outlet tube attaches to the inlet tube leading into the water pump 16.
  • the housing 806 also includes a chamber 812 for channeling fluid between the check valve outlet 808 and the fluid overflow container 802.
  • a cap assembly 814 is mounted to an end of the housing 806 and controls flow of temperature control fluid between the chamber 812 and the fluid overflow container 802.
  • the cap assembly 814 includes split ring portions 816 and a diffuser cap 818.
  • the split ring portions 816 engage with a locking seat 820 formed in the housing 806. When installed within the locking seat 820, the ring portions 816 lock the diffuser cap 818 to the housing 806.
  • the diffuser cap 818 preferably has a semi-circular dome 822 which extends into the fluid overflow container 802 when the diffuser cap 818 is attached to the housing 806.
  • the diffuser cap 818 also has a channel 824 formed in it which is adapted to conduct fluid from the chamber 812 through a plurality of holes 826 formed in the diffuser cap 818 and into the fluid overflow container 802.
  • the present invention also incorporates in the valve housing a control means for controlling flow through the valve.
  • the control means comprises a ball 828 which is movably disposed within the chamber 812 between the check valve outlet 808 and the cap assembly 814.
  • the ball 828 is configured to seat on an upper ball seat 832 surrounding the channel 824 and on a lower ball seat 834 surrounding the check valve outlet 808.
  • the ball seat 832 When the ball seats against the upper ball seat 832, flow of temperature control fluid is prevented from passing through the channel 824.
  • the ball seats against the lower ball seat 834 e.g., in a low fluid level condition, air is prevented from passing through the check valve outlet 808.
  • the ball check valve prevents passage of air into the temperature control system and maintains a waterhead in the tube up to the seat 834.
  • a spring 830 is located between the ball 828 and the cap assembly 814.
  • the spring 830 biases the ball 828 away from the cap assembly 814 so as to prevent the ball 828 from seating on the upper ball seat 832 surrounding the channel 824.
  • the spring 830 does not bias the ball 828 into seating on the lower ball seat 834.
  • the spring is preferably made from stainless steel, although other materials can be readily substituted therefor.
  • FIGs 22A through 22D illustrate various stages of operation of the free flow buoyancy check valve 800.
  • the valve 800 is shown in a first stage wherein the water pump 16 is not receiving a sufficient flow of temperature control fluid. This shortage of fluid in the water pump 16 creates a draw or suction along overflow outlet tube 810 resulting in temperature control fluid flowing from the fluid overflow container 802, through the chamber 812 and out the check valve outlet 808. This flow of temperature control fluid is channeled directly into the water pump 16 for mixing with the fluid already contained therein.
  • Figure 22B illustrates a second stage wherein the water pump 16 is receiving a sufficient amount of temperature control fluid and, therefore, additional fluid is not needed. That is, the fluid pressure within the water pump creates a back pressure flow of temperature control fluid along the overflow outlet tube 810 and into the valve 800 from the water pump 16. This flow of temperature control fluid creates pressure within the chamber which forces the ball 828 to compress the spring 830 until the ball 828 seats against the upper ball seat 832. The seating of the ball 828 against the upper ball seat 832 prevents flow of temperature control fluid into the fluid overflow container 802.
  • FIGs 22C and 22D illustrate third and fourth stages of the valve 800 wherein the fluid overflow container has a very low level of temperature control fluid contained within it, in Figure 22C, the water pump 16 is not receiving a sufficient flow of temperature control fluid. This creates a draw or suction along overflow outlet tube 810. Since the fluid overflow container 802 does not have sufficient fluid to accommodate the draw from the water pump 16, air will be drawn into the water pump 16 unless the valve 800 is closed. As shown, the ball 828 is designed to seat against the lower ball seat 834 when the fluid in the fluid overflow container 802 is low so as to seal or close the valve 800. This prevents air in the fluid overflow container from being drawn into the overflow outlet tube 810.
  • FIG 22D illustrates the fourth stage wherein the water pump 16 is receiving a sufficient flow of temperature control fluid.
  • a flow of temperature control fluid flows from the water pump 16 to the valve 800 along overflow outlet tube 810. Since there is no fluid within the fluid overflow container to counter the flow of temperature control fluid, the fluid flow easily forces the ball 828 to seat against the upper ball seat 834 sealing the channel 824. Flow of temperature control fluid into the fluid overflow container 802 is, thus, prevented.
  • the channel 824 is approximately 1/4" diameter and the check valve outlet 808 has an internal diameter of approximately 5/16" diameter.
  • the channel and outlet 808 should be sized so as to only require a small amount of back pressure to seat the ball 828 on the upper seat.
  • the housing 806 is shown as being formed integral with the fluid overflow container. However, it is contemplated that the housing 806 can be a separate component which is mounted to the fluid overflow container 802 and can be made from any suitable material.
  • the ball 828 is preferably made from plastic material so as to permit it to float within the chamber 812. Again other materials may be substituting without detracting from the invention.
  • the ball 828 is made from hollow stainless steel or aluminum and the lower ball seat 834 has two electrical contacts formed thereon which do not contact one another.
  • the metallic material of the ball 828 provides electrical continuity between two contacts. This electrical continuity can be utilized to trigger a light displayed on a dashboard for indicating a low fluid level in the fluid overflow container 802.
  • the novel overflow free flow buoyancy check valve 800 configuration described above provides a flow of temperature control fluid between the water pump 16 and the fluid overflow container 802 when additional fluid is needed.
  • the valve 800 also prevents air from being drawn into the water pump 16 from the fluid overflow container 802 when the temperature control fluid within the container 802 is low.
  • the ball 828 also prevents the fluid from leaving the temperature control fluid circuit in the engine whether or not there is temperature control fluid in the container.
  • the fluid overflow container 802 should be designed so as to produce approximately 1 foot of temperature control fluid pressure head. This pressure head should provide sufficient pressure to allow the system to operate efficiently.
  • the free flow buoyancy check valve 800 can be configured in other ways for controlling flow of temperature control fluid (e.g., hydraulic valve, solenoid valve, etc.) Additionally, while the preferred system channels temperature control fluid from the fluid overflow container to the water pump, other sources (e.g., radiator) and destinations (e.g., water pump inlet tube) for the fluid flow may be utilized and are well within the scope of the invention.
  • temperature control fluid e.g., hydraulic valve, solenoid valve, etc.
  • other sources e.g., radiator
  • destinations e.g., water pump inlet tube
  • the above described temperature control system has particular utilization in the diesel engine industry. Diesel engines typically operate at a significantly lower temperature than standard automobile internal combustion engines. The lower temperatures of these engines results in increased oil sludge build-up. To diminish the development of sludge, the engine oil must frequently be changed. Truck diesel engines typically utilize 10 to 16 quarts of engine oil and, therefore, frequent engine oil changes can become quite expensive.
  • the present invention significantly improves the condition of the engine oil by maintaining its temperature at or near an optimum temperature. As a result, the time between engine oil changes can be extended, thus reducing the cost of operating the diesel engine.
  • the temperature control system preferably includes a system for preheating intake air flowing through an intake manifold of an internal combustion engine. As discussed above, the heated temperature control fluid is then channeled from the exhaust heat assembly 140 along at least one conduit to a heat exchanger 150, where heat energy is transferred to the intake air.
  • the intake air enters the engine through the air cleaner (not shown) and is channeled to the intake manifold 30.
  • a throttle valve located within a throttle body (not shown) regulates the air flow.
  • heat energy is transferred to the intake air as it flows through the heat exchanger 150 mounted to the engine within the flow of intake air, preferably between the air cleaner and the throttle body.
  • the heat exchanger 150 can be mounted in the air cleaner or downstream of the throttle body.
  • the heat exchanger 150 consists of a panel of high capacity heat transferring aluminum fins which allow a laminar flow of the intake air as it passes through.
  • the fins are heated by heat conductive tubes 151 made of aluminum or copper, which are wrapped around the periphery of the panel.
  • Temperature control fluid circulates through the tubes 151 when the ambient air temperature falls below a predetermined value (e.g., 20°F. (-6°C)). Heat energy is transferred from the temperature control fluid to the fins where it is transmitted into the passing flow of air. This results in the heating of the intake air.
  • the fuel line may also be heated with the temperature control fluid flowing to or from the heat exchanger 150.
  • the temperature control fluid discharges from the tubes 151 of the heat exchanger 150, it flows through the oil pan 28 and to the water pump 16 for recirculation through the engine.
  • the flow of the temperature control fluid to the heat exchanger 150 is preferably regulated by opening and closing the control valve 41.
  • the ECU 900 preferably controls actuation of the control valve as discussed above.
  • FIGS 17 and 17A are schematic representations of an electronic engine temperature control system which includes the system for preheating intake air.
  • the heat exchanger 150 is enclosed in a plastic cover 150 C which provides insulation.
  • the heat exchanger 150 in the preferred embodiment consists of a panel of aluminum fins
  • the heat exchanger simply may comprise a length of conduit, disposed in the air flow, of sufficient length for radiating heat to the air.
  • a conduit could be straight, coiled, or some other configuration.
  • the length and other dimensions of the heat exchanger will be determined in part by the anticipated conditions, including the expected ranges of temperatures and flows of the temperature control fluid. These variables will be taken into account by those persons skilled in the art.
  • the temperature of the heated intake air may be maintained optimally between 120°F and 130°F (48°C and 54°C) through a secondary system which further regulates the flow of temperature control fluid based on feedback regarding the intake air temperature downstream of the heat exchanger 150.
  • a secondary system which further regulates the flow of temperature control fluid based on feedback regarding the intake air temperature downstream of the heat exchanger 150.
  • the present invention provides a system for heating the intake air to assist in combustion. When it is determined that the intake air has reached a high enough temperature, the secondary system stops or reduces the flow of temperature control fluid to the heat exchanger 150.
  • the intake air temperature is detected by a sensor located in the throttle body.
  • the sensor may be located anywhere downstream of the heat exchanger 150.
  • the sensor provides a signal to the ECU 900, which produces control signals for regulating the position of control valve 41, which in turn regulates the flow of temperature control fluid through heat exchanger 150.
  • the ECU 900 compares the sensed intake air temperature to a predetermined threshold value (e.g., 120°F (48°C)). If the sensed intake air temperature exceeds the threshold value, the ECU 900 closes the control valve 41. In an alternate embodiment, the ECU 900 compares the intake air temperature and the sensed engine oil temperature to threshold values (e.g., 120°F and 220°F (48°C and 104°C) respectively). If both threshold values are exceeded, then the control valve 41 is actuated into its closed position or state.
  • a predetermined threshold value e.g. 120°F (48°C)
  • a curve instead of a single threshold value, which controls the state of the control valve 41. It may also be desirable to control the amount and/or rate of flow of temperature control fluid based on intake air temperature. For example, as the intake air approaches a predetermined value (e.g., 120°F (48°C)), the rate of flow of the temperature control fluid to the heat exchanger 150 can be reduced.
  • a predetermined value e.g. 120°F (48°C)
  • Figure 15 includes a schematic representation of the fluid flow paths in the preferred embodiment of the system.
  • the dashed arrows in Figure 15 illustrate the flow path of the temperature control fluid during normal operation of the engine when the temperature control fluid is relatively hot and the engine is fully warmed.
  • the solid arrows in Figure 1 illustrate the flow of temperature control fluid during engine warmup/startup.
  • While the preferred embodiments utilize hydraulic fluid for controlling the state or position of the flow restrictor valves and EETC valve, other fluid media may be utilized, such as water, temperature control fluid, air, etc. Alternately, electro-mechanical devices may be utilized for controlling the valves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Temperature-Responsive Valves (AREA)
  • Control Of Temperature (AREA)

Claims (100)

  1. Temperatursteuersystem zur Steuerung der Temperatur eines Verbrennungsmotors, wobei der Motor einen Motorblock, einen Zylinderkopf, einen Kühler, einen Ansaugkrümmer, einen Auspuffkrümmer zum Ausstoßen von erhitzen Gasen aus dem Motor und eine Ölwanne einschließt, wobei das System einen Strom von Temperatursteuerflüssigkeit für das Erhitzen und Kühlen des Verbrennungsmotors einschließt und folgendes umfaßt:
    einen ersten Temperaturfühler zum Fühlen der Temperatur der Temperatursteuerflüssigkeit,
    ein Abgaseinlaßrohr, das zur Führung eines Stroms der Temperatursteuerflüssigkeit von dem Motor fort angepaßt ist,
    ein Abgasauslaßrohr, das zur Führung eines Stroms der Temperatursteuerflüssigkeit hin zu dem Motor angepaßt ist,
    eine Abgaswärmeeinrichtung, die mit den Abgaseinlaß- und -auslaßrohren verbunden ist und für ein Leiten eines Stroms der Temperatursteuerflüssigkeit von dem Abgaseinlaßrohr zu dem Abgasauslaßrohr angepaßt ist, wobei die Abgaswärmeeinrichtung angrenzend an den Auspuffkrümmer angeordnet ist und für einen Wärmetransport der heißen Gase in dem Abgaskrümmer zu der Temperatursteuerflüssigkeit in der Abgaswärmeeinrichtung angepaßt ist,
    gekennzeichnet durch
    einen zweiten Temperatursensor, der eine Temperatur fühlt, welche die Temperatur des Motoröls anzeigt,
    ein erstes Stromventil, das in durchgängiger Verbindung mit dem Abgaseinlaßrohr steht, und
    einen Motorcomputer zur Steuerung des Stroms der Temperatursteuerflüssigkeit durch die Abgaswärmeeinrichtung durch Betätigen des ersten Stromventils, wobei der Motorcomputer von dem ersten und zweiten Temperatursensor Signale empfängt und der Motorcomputer ferner das erste Stromventil betätigt, um einen Strom der Temperatursteuerflüssigkeit entlang dem Abgaseinlaßrohr und in die Abgaswärmeeinrichtung zu ermöglichen, wenn die gefühlte Temperatur, welche die Temperatur des Motoröls anzeigt, unterhalb eines ersten vorbestimmten Werts liegt, und der Motorcomputer das Stromventil derart betätigt, daß der Strom der Temperatursteuerflüssigkeit entlang dem Abgaseinlaßrohr und durch die Abgaswärmeeinrichtung unterbunden ist, wenn die gefühlte Temperatur der Temperatursteuerflüssigkeit oberhalb eines zweiten vorbestimmten Wertes liegt.
  2. System nach Anspruch 1, dadurch gekennzeichnet, daß die Abgaswärmeeinrichtung einen Heizleiter mit einem ersten und einem zweiten Ende, einem ersten an dem ersten Ende des Heizleiters befestigten Abstandshalter und einem zweiten Abstandshalter, der an dem zweiten Ende des Heizleiters befestigt ist, aufweist.
  3. System nach Anspruch 1, dadurch gekennzeichnet, daß die Abgaswärmeeinrichtung zusätzlich ein Steuerventil aufweist, das an dem Auslaßrohr zur Steuerung des Stroms der Temperatursteuerflüssigkeit zu dem Motor und zur Sperrung des Stroms der Temperatursteuerflüssigkeit in die Abgaswärmeeinrichtung befestigt ist.
  4. System nach Anspruch 1, dadurch gekennzeichnet, daß der Motor eine Wasserpumpe zur Zirkulation der Temperatursteuerflüssigkeit aufweist, wobei das Abgaseinlaßrohr den Strom der Temperatursteuerflüssigkeit von der Wasserpumpe aufnimmt.
  5. System nach Anspruch 1, dadurch gekennzeichnet, daß der Motor eine Ölwanne aufweist, wobei das Abgasauslaßrohr einen Strom der Temperatursteuerflüssigkeit in die Ölwanne richtet.
  6. System nach Anspruch 1, dadurch gekennzeichnet, daß der Motor einen Einlaßkrümmer einschließt, wobei das Abgasauslaßrohr einen Strom der Temperatursteuerflüssigkeit hin zu dem Einlaßkrümmer richtet.
  7. System nach Anspruch 1, dadurch gekennzeichnet, daß der Motor eine Fahrgastinnenraum-Wärmeeinrichtung einschließt, wobei das Abgasauslaßrohr den Strom der Temperatursteuerflüssigkeit hin zu der Fahrgastinnenraum-Wärmeeinrichtung richtet.
  8. System nach Anspruch 1, dadurch gekennzeichnet, daß zusätzlich folgendes vorgesehen ist:
    eine Wasserpumpe, die für ein Richten einer Temperatursteuerflüssigkeit in den Motor angepaßt ist und die folgendes einschließt:
    ein Gehäuse,
    ein drehbar in dem Gehäuse befestigtes Gebläserad, wobei das Gebläserad für eine Zirkulation des Stroms der Temperatursteuerflüssigkeit angepaßt ist, und
    mindestens einen Flußkanal, um den Strom der Temperatursteuerflüssigkeit in den Motorblock zu richten,
    wobei das Stromventil zur Steuerung des Stroms der Temperatursteuerflüssigkeit entlang dem Flußkanal angepaßt und an dem Wasserpumpengehäuse befestigt ist sowie zwischen einer ersten Position und einer zweiten Position bewegbar ist, wobei das Stromventil in seiner ersten Position es zuläßt, daß der Strom der Temperatursteuerflüssigkeit entlang dem Flußkanal fließt, und das Stromventil den Strom der Temperatursteuerflüssigkeit entlang dem Flußkanal beschränkt, wenn es sich in seiner zweiten Position befindet, und wobei das Abgaseinlaßrohr für ein Richten eines Stroms der Temperatursteuerflüssigkeit von dem Motor fort angepaßt ist, wenn das Stromventil sich in seiner zweiten Position befindet.
  9. System nach Anspruch 1, dadurch gekennzeichnet, daß zusätzlich ein Solenoideinspritzsystem zur Steuerung der Betätigung des Stromventils vorgesehen ist, wobei das Solenoideinspritzsystem folgendes umfaßt:
    ein Gehäuse mit einer in diesem geformten Kammer,
    eine Einlaßleitung, die mit dem Gehäuse verbunden ist und für eine Versorgung eines Flüssigkeitsstroms in das Gehäuse angepaßt ist,
    eine Auslaßleitung, die mit dem Gehäuse verbunden ist und für ein Leiten eines Flüssigkeitsstroms aus dem Gehäuse angepaßt ist,
    einen Einlaßinjektor, der mit dem Gehäuse verbunden ist und in Verbindung mit der Kammer und der Einlaßleitung steht, wobei der Einlaßinjektor eine geöffnete Position, die für ein Leiten eines Stroms von unter Druck stehender Flüssigkeit von der Einlaßleitung in die Kammer angepaßt ist, und eine geschlossene Position besitzt, in der ein Strom der unter Druck stehenden Flüssigkeit von der Einlaßleitung in die Kammer verhindert ist,
    einen ersten mit dem Einlaßinjektor verbundenen Solenoiden, der für eine Betätigung des Einlaßinjektors zwischen seiner geöffneten und geschlossenen Position dient, wobei der erste Solenoid für einen Empfang eines Signals von dem Motorcomputer zur Steuerung der Betätigung des Einlaßinjektors angepaßt ist,
    ein Auslaßinjektor, der mit dem Gehäuse verbunden ist und mit der Kammer sowie der Auslaßleitung in Verbindung steht, wobei der Auslaßinjektor eine geöffnete Position besitzt, die für ein Leiten eines Flüssigkeitsstroms aus der Kammer und in die Auslaßleitung angepaßt ist, und eine geschlossene Position besitzt, die zur Verhinderung eine Flüssigkeitsstroms aus der Kammer und in die Auslaßleitung angepaßt ist,
    ein zweiter Solenoid, der mit dem Auslaßinjektor für eine Betätigung des Auslaßinjektors zwischen seiner geöffneten und geschlossenen Position verbunden ist, wobei der zweite Solenoid für eine Aufnahme eines Signals von dem Motorcomputer zur Steuerung der Betätigung des Auslaßinjektors angepaßt ist, und
    ein dritter Solenoid, der mit dem Gehäuse verbunden ist und in durchgängiger Verbindung mit der Kammer steht, wobei der dritte Solenoid mindestens eine mit diesem verbundene erste Flüssigkeitsversorgungsleitung besitzt, die für ein Leiten eines Stroms von unter Druck stehender Flüssigkeit zu dem Stromventil zur Steuerung der Betätigung des Ventils angepaßt ist, dabei besitzt der dritte Solenoid eine offene Position, um einen Fluß der unter Druck stehenden Flüssigkeit entlang der Versorgungsleitung zu gestattet, und eine geschlossene Position, um den Flüssigkeitsstrom entlang der Versorgungsleitung zu unterbinden, wobei der dritte Solenoid zum Empfang von Signalen von dem Motorcomputer zur Steuerung der unter Druck stehenden Flüssigkeit entlang der Versorgungsleitung angepaßt ist.
  10. System nach Anspruch 1, dadurch gekennzeichnet, daß zusätzlich ein Solenoideinspritzsystem zur Steuerung der Betätigung des Stromventils vorgesehen ist, wobei das Solenoideinspritzsystem folgendes einschließt:
    ein Gehäuse mit einer in diesem geformten Kammer,
    Einlaßmittel, die für ein Leiten eines Flüssigkeitsstroms in die Kammer in Verbindung mit dem Gehäuse stehen,
    Auslaßmittel, die für eine Leiten eines Flüssigkeitstroms aus der Kammer in Verbindung mit dem Gehäuse stehen, und
    einen Solenoid, der mit dem Gehäuse verbunden ist und innerhalb der Kammer positioniert ist, wobei der Solenoid mindestens einen Flüssigkeitsauslaß besitzt, der angepaßt ist, um einen Strom von unter Druck stehender Flüssigkeit zu dem Stromventil zur Steuerung der Betätigung des Ventils zu richten, wobei der Elektromotor eine geöffnete Position besitzt, um einen Fluß der unter Druck stehenden Flüssigkeit aus dem Flüssigkeitsauslaß zu ermöglichen, und eine geschlossene Position, um einen Flüssigkeitsstrom aus dem Flüssigketisauslaß zu unterbinden, wobei der Solenoid für die Aufnahme von Signalen von dem Motorcomputer zur Steuerung des Solenoiden zwischen seiner geöffneten und seiner geschlossenen Position angepaßt ist.
  11. System nach Anspruch 1, dadurch gekennzeichnet, daß zusätzlich ein Druckerzeugungssystem zur Steuerung der Betätigung des Stromventils vorgesehen ist, wobei das Druckerzeugungssystem aufweist:
    ein Gehäuse mit einer darin geformten Kammer,
    einen Einlaßinjektor, der für ein Leiten eines Stroms von unter Druck stehender Flüssigkeit in die Kammer mit dem Gehäuse in Verbindung steht,
    einen Auslaßinjektor, der für ein Leiten eines Stroms von unter Druck stehender Flüssigkeit aus der Kammer mit dem Gehäuse in Verbindung steht, und
    Flüssigkeitstromsteuermittel, die mit dem Gehäuse verbunden sind und wenigstens einen Flüssigkeitsauslaß besitzen, der für ein Richten eines Stroms von unter Druck stehender Flüssigkeit zu dem Stromventil zur Steuerung dessen Betätigung gerichtet ist, wobei die Flüssigkeitstromsteuermittel eine geöffnete Position besitzen, um einen Fluß von unter Druck stehender Flüssigkeit aus dem Flüssigkeitsauslaß zu gestatten, und eine geschlossene Position, um einen Flüssigkeitsfluß aus dem Flüssigkeitsauslaß zu verhindern, wobei die Flüssigkeitstromsteuermittel derart angepaßt sind, daß sie Signale von dem Motorcomputer für die Steuerung der Betätigung der Flüssigkeitsstromsteuermittel zwischen ihrer offenen und geschlossenen Position empfangen.
  12. System nach Anspruch 1, dadurch gekennzeichnet, daß zusätzlich ein Einspritzsystem zur Steuerung der Betätigung des Stromventils vorgesehen ist, wobei das Einspritzsystem folgendes aufweist:
    ein Gehäuse mit einer in diesem geformten Kammer,
    eine Einlaßleitung, die mit dem Gehäuse verbunden und angepaßt ist, einen Flüssigkeitsstrom in das Gehäuse zu versorgen,
    eine Auslaßleitung, die mit dem Gehäuse verbunden und angepaßt ist, einen Flüssigkeitsstrom aus dem Gehäuse zu leiten,
    einen Einlaßinjektor, der mit dem Gehäuse verbunden ist und in Verbindung mit der Kammer und der Einlaßleitung steht, wobei der Einlaßinjektor eine geöffnete Position, die für ein Leiten eines Stroms von unter Druck stehender Flüssigkeit von der Einlaßleitung in die Kammer angepaßt ist, und eine geschlossene Position besitzt, in der ein Strom von unter Druck stehender Flüssigkeit von der Einlaßleitung in die Kammer verhindert ist,
    einen ersten mit dem Einlaßinjektor verbundenen Solenoid, der für eine Betätigung des Einlaßinjektors zwischen seiner offenen und geschlossenen Position dient, wobei der erste Solenoid für eine Aufnahme eines Signals von dem Motorcomputer zur Steuerung der Betätigung des Einlaßinjektors angepaßt ist,
    einen Auslaßinjektor, der mit dem Gehäuse verbunden ist und mit der Kammer sowie der Auslaßleitung in Verbindung steht, wobei der Auslaßinjektor eine offene Position, die für ein Leiten eines Flüssigkeitsstroms aus der Kammer und in die Auslaßleitung angepaßt ist, und eine geschlossene Position besitzt, die zur Verhinderung eines Flüssigkeitsstroms aus der Kammer sowie in die Auslaßleitung angepaßt ist,
    einen zweiten mit dem Auslaßinjektor verbundenen Solenoid, der zur Betätigung des Auslaßinjektors zwischen seiner geöffneten und geschlossenen Position dient, wobei der zweite Solenoid zum Empfang von Signalen von dem Motorcomputer zur Steuerung der Betätigung des Einlaßinjektors angepaßt ist, und
    einen dritten Solenoid, der mit dem Gehäuse verbunden ist und in durchgängiger Verbindung mit der Kammer steht, wobei der dritte Solenoid mindestens eine mit dieser verbundene erste Flüssigkeitsversorgungsleitung besitzt, wobei die Versorgungsleitung für ein Leiten eines Stroms von unter Druck stehender Flüssigkeit zu dem Stromventil zur Steuerung der Betätigung des Ventils angepaßt ist, dabei besitzt der dritte Solenoid eine geöffnete Position, um einen Fluß der unter Druck stehenden Flüssigkeit entlang der Versorgungsleitung zu ermöglichen, und eine geschlossene Position, um den Flüssigkeitsstrom entlang der Versorgungsleitung zu unterbinden, und wobei der dritte Solenoid zum Empfang von Signalen von dem Motorcomputer zur Steuerung der unter Druck stehenden Flüssigkeit entlang der Versorgungsleitung angepaßt ist.
  13. System nach Anspruch 1, dadurch gekennzeichnet, daß zusätzlich ein Druckerzeugungssystem zur Steuerung der Betätigung des Stromventils vorgesehen ist, wobei das Druckerzeugungssystem aufweist:
    ein Gehäuse mit einer darin geformten Kammer,
    eine Einlaßleitung, die an dem Gehäuse befestigt ist und für ein Leiten eines Stroms von unter Druck stehender Flüssigkeit in die Kammer angepaßt ist,
    eine Auslaßleitung, die an dem Gehäuse befestigt ist und für ein Leiten eines Flüssigkeitsstroms aus der Kammer angepaßt ist, und einen Solenoid, der mit dem Gehäuse verbunden und innerhalb der Kammer angeordnet ist, wobei der Solenoid mindestens einen Flüssigkeitsauslaß besitzt, der für ein Richten eines Stroms von unter Druck stehender Flüssigkeit zu mindestens einem Stromventil zur Steuerung der Betätigung des Ventil angepaßt ist, wobei der Solenoid wenigstens eine geöffnete Position aufweist, um einen Fluß von unter Druck stehender Flüssigkeit aus dem Flüssigkeitsauslaß zu gestatten, und eine geschlossene Position, um einen Flüssigkeitsstrom aus dem Flüssigkeitsauslaß zu verhindern, wobei der Solenoid für eine Aufnahme von Signalen von dem Motorcomputer zur Steuerung des Solenoiden zwischen seiner offenen und geschlossenen Position angepaßt ist.
  14. System nach Anspruch 1, dadurch gekennzeichnet, daß das Stromventil folgendes einschließt:
    einen ersten und zweiten Gehäuseabschnitt, die miteinander verbunden sind, wobei der erste Gehäuseabschnitt eine Öffnung besitzt, die durchgängig mit dem Motor verbunden ist, der zweite Gehäuseabschnitt mindestens einen Ventilauslaß besitzt, der für eine durchgängige Verbindung mit der Abgaswärmeeinrichtung angepaßt ist, und wobei der zweite Gehäuseabschnitt aus einem hochwarmfesten Material hergestellt ist, das die Wärmeleitung minimiert,
    einen Durchgang, der zwischen dem ersten und zweiten Gehäuseabschnitt geformt ist und der eine Verbindung der Temperatursteuerflüssigkeit zwischen den zwei Gehäuseabschnitten ermöglicht, und
    einen Kolben, der verschiebbar innerhalb des Gehäusebereichs angeordnet ist und der einen Abdichtbereich und einen Druckaufnahmebereich besitzt, wobei der Abdichtbereich den Durchgang zwischen dem ersten und zweiten Gehäusebereich abdichtet und der Druckaufnahmebereich in dem ersten Gehäusebereich angeordnet ist und eine Oberfläche zur Aufnahme eines unter Druck stehenden Mediums aufweist, wobei das unter Druck stehende Medium für ein Verschieben des Kolbens innerhalb des Ventils vorgesehen ist.
  15. System nach Anspruch 1 zusätzlich mit
    einem Absperrventil zur Steuerung des Stroms der Temperatursteuerflüssigkeit zwischen einem Kühlerflüssigkeitsüberlaufbehälter und einer Wasserpumpe in einem Verbrennungsmotor, wobei das Absperrventil
    ein Gehäuse einschließt, das in Verbindung mit dem Flüssigkeitsüberlaufbehälter steht und angepaßt ist, einen Strom der Temperatursteuerflüssigkeit von diesem aufzunehmen, wobei das Gehäuse eine in diesem geformte Ventilkammer besitzt, um einen Strom von Temperatursteuerflüssigkeit zu leiten, wobei das Gehäuse ebenfalls in Verbindung mit der Wasserpumpe steht und für ein Leiten eines Stroms der Temperatursteuerflüssigkeit zwischen der Ventilkammer und der Wasserpumpe ausgebildet ist.
  16. System nach Anspruch 1, dadurch gekennzeichnet, daß zusätzlich ein Absperrventil zur Steuerung des Stroms der Temperatursteuerflüssigkeit zwischen einem Kühlerflüssigkeitsüberlaufbehälter und einer Wasserpumpe aufweisend, wobei das Absperrventil
       ein Gehäuse, das in Verbindung mit dem Flüssigkeitsüberlaufbehälter steht und angepaßt ist, einen Strom der Temperatursteuerflüssigkeit von diesem aufzunehmen, wobei das Gehäuse eine in diesem geformte Ventilkammer besitzt, um einen Strom von Temperatursteuerflüssigkeit zu leiten, wobei das Gehäuse ebenfalls in Verbindung mit der Wasserpumpe steht und für ein Leiten eines Stroms der Temperatursteuerflüssigkeit zwischen der Ventilkammer und der Wasserpumpe ausgebildet ist, und Mittel zur Steuerung der Temperatursteuerflüssigkeit durch das Gehäuse einschließt, wobei die Mittel zur Steuerung des Stroms eine erste Position, die zur Ermöglichung eines Flüssigkeitsstroms zu der Wasserpumpe angepaßt ist, und eine zweite Position zur Verhinderung eines Flüssigkeits-Luftstroms von dem Flüssigkeitssüberlaufbehälter zu der Wasserpumpe besitzen.
  17. System nach Anspruch 1, dadurch gekennzeichnet, daß zusätzlich folgendes vorgesehen ist:
    ein Flüssigkeitsüberlaufbehälter,
    eine Wasserpumpe und
    ein Absperrventil, das mit dem Flüssigkeitsüberlaufbehälter und der Wasserpumpe in Verbindung steht und zur Steuerung der Temperatursteuerflüssigkeit zwischen dem Flüssigkeitsüberlaufbehälter und der Wasserpumpe angepaßt ist.
  18. System nach Anspruch 2, dadurch gekennzeichnet, daß der Heizleiter aus einem Material besteht, das einen Wärmetransport gestattet, und daß der erste und zweite Abstandshalter aus einem Material bestehen, das den Wärmetransport begrenzt.
  19. System nach Anspruch 18, dadurch gekennzeichnet, daß der erste und der zweite Abstandshalter aus einem keramischen Material hergestellt ist.
  20. System nach Anspruch 18, dadurch gekennzeichnet, daß der Heizleiter aus einem nichtrostenden Stahl hergestellt ist.
  21. System nach Anspruch 18, dadurch gekennzeichnet, daß der Heizleiter sich über den Auspuffkrümmer bis zu einem vorbestimmten Abstand erstreckt, um eine Hitzeabgabe von dem Heizleiter zu ermöglichen.
  22. System nach Anspruch 8, dadurch gekennzeichnet, daß das Abgasauslaßrohr für ein Richten eines Stroms von Temperatursteuerflüssigkeit zu dem Einlaßkrümmer des Motors angepaßt ist.
  23. System nach Anspruch 8, dadurch gekennzeichnet, daß das Abgasauslaßrohr für ein Richten eines Stroms von Temperatursteuerflüssigkeit zu der Ölwanne des Motors angepaßt ist.
  24. System nach Anspruch 8, dadurch gekennzeichnet, daß das Stromventil an der Wasserpumpe befestigt ist, wobei das System weiterhin ein zweites Stromventil aufweist, das an der Wasserpumpe befestigt ist, und daß eines von den Stromventilen einen Umgehungsdurchgang einschließt, der für ein Leiten einer Temperatursteuerflüssigkeit aus der Wasserpumpe angepaßt ist, wenn das Stromventil sich in seiner zweiten Position befindet.
  25. System nach Anspruch 8, dadurch gekennzeichnet, daß zusätzlich ein hydraulischer Solenoidinjektor in durchgängiger Verbindung mit den Stromventilen steht und zur Versorgung der Stromventile mit einem Strom von unter Druck stehender Flüssigkeit angepaßt ist, wobei das hydraulische Solenoidinjektrosystem Signale von dem Motorcomputer zur Steuerung der Versorgung der Stromventile mit unter Druck stehender Flüssigkeit empfängt, wobei die unter Druck stehende Flüssigkeit die Betätigung des Stromventils steuert.
  26. System nach Anspruch 8, dadurch gekennzeichnet, daß die Wasserpumpe weiterhin mindestens ein Rohr umfaßt, das mit dem Zylinderkopf verbunden ist, um einen Strom von Temperatursteuerflüssigkeit in den Zylinderkopf zu leiten, wenn das Stromventil sich in seiner zweiten Position befindet.
  27. System nach Anspruch 8, dadurch gekennzeichnet, daß zusätzlich ein Wärmetauscher innerhalb der Ölwanne angeordnet ist, um einen Strom der Temperatursteuerflüssigkeit zu leiten, und wobei die Wasserpumpe angepaßt ist, um einen Strom der Temperatursteuerflüssigkeit von dem Wärmetauscher in der Ölwanne aufzunehmen, wenn das Stromventil sich in seinem geschlossenen Zustand befindet.
  28. System nach Anspruch 8, dadurch gekennzeichnet, daß die Abgaswärmeeinrichtung mit einem Wärmetauscher, der innerhalb der Motorölwanne angeordnet ist, durch ein Abgasrückführrohr verbunden ist und daß die Temperatursteuerflüssigkeit von der Abgaswärmeeinrichtung zu dem Wärmetauscher durch das Abgasrückführrohr fließt.
  29. System nach Anspruch 8, dadurch gekennzeichnet, daß der Motor zusätzlich einen Einlaßkrümmer zum Leiten des Stroms der Einlasserluft einschließt, wobei das System zusätzlich mindestens einen Kanal, der innerhalb des Einlaßkrümmers angeordnet und zur Aufnahme eines Stroms von Temperatursteuerflüssigkeit zur Erwärmung der Einlasserluft angepaßt ist, aufweist, und daß das Stromventil mindestens einen Teil der Temperatursteuerflüssigkeit durch den Einlaßkrümmerkanal behindert, wenn das Stromventil sich in seinem geschlossenen Zustand befindet.
  30. System nach Anspruch 23, dadurch gekennzeichnet, daß der Motor eine Fahrgastinnenraum-Wärmeeinrichtung einschließt und daß das Abgasauslaßrohr angepaßt ist, um den Strom der Temperatursteuerflüssigkeit zu der Wärmeeinrichtung zu richten.
  31. System nach Anspruch 24, dadurch gekennzeichnet, daß die Umgehungsdurchgangskanäle einen Strom der Temperatursteuerflüssigkeit von der Wasserpumpe zu dem Zylinderkopf leiten, wenn das Stromventil sich in seiner zweiten Position befindet.
  32. System nach Anspruch 9, dadurch gekennzeichnet, daß der Einlaßinjektor innerhalb eines in dem Gehäuse geformten Einlaßfaches angeordnet ist, wobei das Einlaßfach in einer durchgängigen Verbindung mit der Einlaßleitung steht und wobei der Einlaßinjektor für ein Richten eines Stroms der Temperatursteuerflüssigkeit von dem Einlaßfach in die Kammer angepaßt ist, und daß der Auslaßinjektor innerhalb eines in dem Gehäuse geformten Auslaßfaches angeordnet ist, wobei das Auslaßfach in einer durchgängigen Verbindung mit der Auslaßleitung steht und wobei der Auslaßinjektor für ein Richten eines Stroms der Temperatursteuerflüssigkeit aus der Kammer und in das Auslaßfach angepaßt ist.
  33. System nach Anspruch 9, dadurch gekennzeichnet, daß mehrere Versorgungsleitungen vorgesehen sind, wobei eine der Versorgungsleitungen vorgesehen ist, um einen Strom einer unter Druck stehenden Flüssigkeit hin zu einem elektronischen Motortemperatursteuerventil zu leiten, das den Strom der Temperatursteuerflüssigkeit zwischen einem Motor und einem Kühler steuert, wobei der Strom von unter Druck stehender Flüssigkeit zum Hervorrufen einer Betätigung des Ventils vorgesehen ist, eine zweite Versorgungsleitung für ein Richten eines Stroms von unter Druck stehender Flüssigkeit zu dem ersten Stromventil vorgesehen ist und eine dritte Versorgungsleitung angepaßt ist, um einen Strom von unter Druck stehender Flüssigkeit wenigstens bis zu einem zweiten Stromventil, das an einem anderen Ende der Abgaswärmeeinrichtung angeordnet ist, zu leiten, wobei das zweite Stromventil angepaßt ist, um den Strom der Temperatursteuerflüssigkeit aus der Abgaswärmeeinrichtung zu steuern.
  34. System nach Anspruch 33, dadurch gekennzeichnet, daß das Gehäuse eine Mittelebene besitzt und daß das Einlaß- und das Auslaßfach auf beiden Seiten der Mittelebene angeordnet ist sowie in bezug auf die Mittelebene einen Winkel einschließt.
  35. System nach Anspruch 10, dadurch gekennzeichnet, daß zusätzlich folgendes vorgesehen ist:
    ein Einlaß, der in dem Gehäuse zum Richten eines Flüssigkeitsstroms in das Gehäuse und hin zu den Einlaßmitteln geformt ist, und
    ein Auslaß, der in dem Gehäuse zum Richten eines Flüssigkeitsstroms aus dem Gehäuse und hin zu den Auslaßmitteln geformt ist.
  36. System nach Anspruch 10, dadurch gekennzeichnet, daß die Einlaßmittel einen Injektor zum Spritzen eines Flüssigkeitsstroms in die Kammer einschließen und daß die Auslaßmittel einen Injektor zum Spritzen eines Flüssigkeitsstroms aus der Kammer einschließen.
  37. System nach Anspruch 9, 10, 11, 12 oder 13, dadurch gekennzeichnet, daß die Flüssigkeit eine hydraulische Flüssigkeit ist.
  38. System nach Anspruch 10, 11, 12 oder 13, dadurch gekennzeichnet, daß der Flüssigkeitsauslaß zum Richten eines Stroms von unter Druck stehender Flüssigkeit hin zu einem elektronischen Motortemperatursteuerventil, das den Strom der Temperatursteuerflüssigkeit zwischen dem Motor und dem Kühler steuert, angepaßt ist, wobei der Strom von unter Druck stehender Flüssigkeit dafür angepaßt ist, eine Betätigung des Ventils hervorzurufen.
  39. System nach Anspruch 11, dadurch gekennzeichnet, daß die Flüssigkeitssteuereinrichtung ein Stromventil ist.
  40. System nach Anspruch 39, dadurch gekennzeichnet, daß das Stromventil ein Solenoid ist.
  41. Temperatursteuersystem nach Anspruch 1 zusätzlich folgendes aufweisend:
    einen dritten Sensor zum Fühlen einer Umgebungsbedingung und zum Bereitstellen eines Umgebungsbedingungssignals, das diese anzeigt, und
    ein zweites Steuerventil in einer durchgängigen Verbindung mit einem Abgasauslaßrohr,
    wobei der Motorcomputer die Betätigung des zweiten Steuerventils steuert und den ersten vorbestimmten Wert als Funktion der Umgebungsbedingung variiert und der Motorcomputer auf der gefühlten Umgebungsbedingung basierend den ersten vorbestimmten Wert bestimmt.
  42. System nach Anspruch 41, dadurch gekennzeichnet, daß die Temperatur, welche die Temperatur des Motoröls anzeigt, die Motoröltemperatur ist.
  43. System nach Anspruch 41, dadurch gekennzeichnet, daß zusätzlich eine Druckerzeugungseinrichtung vorgesehen ist, um eine Quelle von unter Druck stehender Flüssigkeit für mindestens eines der Stromventile bereitzustellen, wobei die unter Druck stehende Flüssigkeit das Ventil zwischen seiner ersten und seiner zweiten Position betätigt, hierbei empfängt das Druck erzeugende System das Signal des Motorcomputers und steuert die Ventile in Übereinstimmung mit diesem Signal.
  44. System nach Anspruch 41, dadurch gekennzeichnet, daß die Temperatur, welche die des Motoröls anzeigt, die Motoröltemperatur ist und daß die Umgebungsbedingung die Umgebungslufttemperatur ist.
  45. System nach Anspruch 41, dadurch gekennzeichnet, daß das erste Steuerventil ein betätigbares Ventilelement einschließt, das verschiebbar innerhalb des Gehäuses befestigt ist, wobei das Ventil eine zwischen dem Gehäuse und einem Bereich des Ventilelements geformte Kammer besitzt, die in Verbindung mit einem Druckerzeugungssystem steht, das die Kammer mit einem unter Druck stehenden Medium versorgt, um das Ventilelement innerhalb des Gehäuses zu verschieben.
  46. System nach Anspruch 41, dadurch gekennzeichnet, daß ein zweites Stromventil folgendes aufweist:
    erste und zweite Gehäuseabschnitte, die miteinander verbunden sind, wobei der erste Gehäuseabschnitt eine Öffnung, die in durchgängiger Verbindung mit dem Motor steht, aufweist, wobei der zweite Gehäuseabschnitt mindestens einen Ventilauslaß besitzt, der in durchgängiger Verbindung mit der Abgaswärmeeinrichtung steht, und wobei der zweite Gehäuseabschnitt aus einem hochwarmfesten Material, das die Wärmeleitung minimiert, hergestellt ist,
    einen Durchgang, der zwischen dem ersten und zweiten Gehäuse geformt ist, der den Durchgang von Temperatursteuerflüssigkeit zwischen den zwei Gehäuseabschnitten ermöglicht, und
    einen verschiebbaren innerhalb des Gehäuseabschnitts angeordneten Kolben, wobei der Kolben einen Abdichtbereich und einen Druckaufnahmebereich besitzt, wobei der Abdichtbereich den Durchgang zwischen dem ersten und zweiten Gehäuseabschnitt abdichtet und der Druckaufnahmebereich in der Kammer innerhalb des ersten Gehäuseabschnitts angeordnet ist sowie eine Oberfläche zur Aufnahme eines unter Druck stehenden Mediums, das für ein Verschieben des Kolbens innerhalb der Kammer vorgesehen ist, besitzt.
  47. System nach Anspruch 46, dadurch gekennzeichnet, daß der Abdichtbereich den Durchgang abdichtet, wenn das Ventil sich in seiner ersten Position befindet, wodurch der Durchtritt von Temperatursteuerflüssigkeit zwischen dem ersten und zweiten Gehäuseabschnitt verhindert wird, und daß der Durchgang nicht abgedichtet ist, wenn das Ventil sich in seiner zweiten Position befindet und wenn die Oberfläche des Druckaufnahmebereichs das unter Druck stehende Medium aufnimmt, um so ein Fließen der Temperatursteuerflüssigkeit zwischen dem ersten und dem zweiten Gehäuseabschnitt zu ermöglichen.
  48. System nach Anspruch 46, dadurch gekennzeichnet, daß zusätzlich eine Druckentweichöffnung innerhalb des zweiten Gehäuseabschnitts vorgesehen ist, um es einem Strom von Temperatursteuerflüssigkeit zu ermöglichen, den zweiten Gehäuseabschnitt zu entlüften.
  49. System nach Anspruch 46, dadurch gekennzeichnet, daß zusätzliche Mittel für einen Entlüftungsstrom aus dem zweiten Gehäuseabschnitt vorgesehen sind.
  50. System nach Anspruch 41, dadurch gekennzeichnet, daß die Temperatur, welche die Temperatur des Motoröls anzeigt, die Motorblocktemperatur ist.
  51. System nach Anspruch 42, dadurch gekennzeichnet, daß der zweite vorbestimmte Wert mit der gefühlten Umgebungsbedingung variiert.
  52. System nach Anspruch 43, dadurch gekennzeichnet, daß das Druckerzeugungssystem das erste und zweite Stromventil steuert.
  53. System nach Anspruch 52, dadurch gekennzeichnet, daß das Druckerzeugungssystem eine hydraulische Flüssigkeit in einer in dem Stromventil geformten Kammer bereitstellt, wobei die unter Druck stehende hydraulische Flüssigkeit einen Kolben dazu veranlaßt, sich innerhalb des Ventils zwischen einer ersten und einer zweiten Position zu bewegen.
  54. System nach Anspruch 52, dadurch gekennzeichnet, daß die unter Druck stehende hydraulische Flüssigkeit von einer Hochdruckseite einer mit dem Motor verbundenen Ölpumpe bereitgestellt ist.
  55. System nach Anspruch 14, dadurch gekennzeichnet, daß der Abdichtbereich den Durchgang abdichtet, wenn das Ventil sich in seiner ersten Position befindet, um dadurch den Durchgang von Temperatursteuerflüssigkeit zwischen dem ersten und zweiten Gehäuseabschnitt zu verhindern, und daß der Durchgang nicht abgedichtet ist, wenn das Ventil sich in seiner zweiten Position befindet und wenn die Oberfläche des Druckaufnahmebereichs ein unter Druck stehendes Medium aufnimmt, um einen Strom der Temperatursteuerflüssigkeit zwischen dem ersten und zweiten Gehäuseabschnitt zu ermöglichen.
  56. System nach Anspruch 14, dadurch gekennzeichnet, daß eine Druckentweichauslaß in dem zweiten Gehäuseabschnitt geformt ist, um einem Strom von Temperatursteuerflüssigkeit es zu ermöglichen, den zweiten Gehäuseabschnitt zu entlüften.
  57. System nach Anspruch 14, dadurch gekennzeichnet, daß der zweite Gehäuseabschnitt aus einem keramischen Material hergestellt ist.
  58. System nach Anspruch 14, dadurch gekennzeichnet, daß der Druckaufnahmebereich ein Druckkopf ist, der sich innerhalb der Kammer hin und herbewegt, wobei der Kolben zusätzlich eine Feder aufweist, die zwischen dem Druckkopf und dem ersten Gehäuseabschnitt angeordnet ist, wobei die Feder den Druckkopf vorspannt, um das Stromventil in seiner ersten Position zu plazieren, und daß die Feder durch den Kolbenkopf komprimiert wird, wenn die Oberfläche auf dem Druckkopf das unter Druck stehende Medium aufnimmt.
  59. System nach Anspruch 14, dadurch gekennzeichnet, daß der erste Gehäuseabschnitt aus einem Aluminiummaterial hergestellt ist.
  60. System nach Anspruch 48, dadurch gekennzeichnet, daß die Druckausweichöffnung in durchgängiger Verbindung mit dem ersten Steuerventil steht.
  61. System nach Anspruch 48, dadurch gekennzeichnet, daß zusätzlich ein Rohr an der Druckausweichöffnung befestigt ist und in Verbindung mit dem Kühler steht, um einen Strom von unter Druck stehendem Dampf von dem zweiten Gehäuseabschnitt zu dem Kühler zu leiten.
  62. System nach Anspruch 49, dadurch gekennzeichnet, daß das Überdruckventil ein Kugelventil ist.
  63. System nach Anspruch 60, dadurch gekennzeichnet, daß zusätzlich ein Überdruckventil an dem ersten Steuerventil befestigt ist und ein Rohr sich zwischen Druckentweichauslaß und dem Überdruckventil erstreckt, das an dem Überdruckventil befestigt ist, wobei das Rohr und das Überdruckventil eine durchgängige Verbindung zwischen dem zweiten Gehäuseabschnitt und dem ersten Steuerventil ermöglichen.
  64. System nach Anspruch 15, dadurch gekennzeichnet, daß die Verbindung zwischen der Wasserpumpe und der Ventilkammer durch ein Auslaßrohr bereitgestellt wird, das an einem Ende an der Wasserpumpe und an dem anderen Ende an einem Absperrventilauslaß, der an dem Ventilgehäuse ausgebildet ist und in Verbindung mit der Ventilkammer steht, befestigt ist.
  65. System nach Anspruch 15, zusätzlich folgendes aufweisend:
    eine Kappe, die an dem Ventilgehäuse befestigt ist und einen in dieser geformten Kanal besitzt, der zum Leiten eines Flüssigkeitsstroms zwischen dem Flüssigkeitsüberlaufbehälter und der Ventilkammer angepaßt ist,
    einen verschiebbaren Ball, der innerhalb der Ventilkammer angeordnet ist und für ein Abdichten des Kanals in der Kappe ausgelegt ist, um einen Flüssigkeitsstrom durch diese zu verhindern, wenn das Gehäuse einen Strom von unter Druck stehender Flüssigkeit von der Wasserpumpe aufnimmt, wobei der Ball zusätzlich für ein Abdichten des Absperrventilausgangs angepaßt ist, um einen Strom durch diesen zu verhindern, wenn der Flüssigkeitsüberlaufbehälter einen niedrigen Level von darin enthaltender Flüssigkeit erreicht hat, und
    eine Feder, die zwischen dem Ball und der Kappe angeordnet ist, um den Ball entfernt von einem Abdichten des Kanals vorzuspannen.
  66. System nach Anspruch 64, dadurch gekennzeichnet, daß das Ventilgehäuse einstückig mit dem Flüssigkeitsüberlaufbehälter geformt ist.
  67. System nach Anspruch 64, dadurch gekennzeichnet, daß zusätzlich ein Mittel innerhalb des Ventilgehäuses zur Steuerung der Temperatursteuerflüssigkeit zwischen dem Flüssigkeitsüberlaufbehälter und der Wasserpumpe vorgesehen ist.
  68. System nach Anspruch 67, dadurch gekennzeichnet, daß das Mittel zur Steuerung der Temperatursteuerflüssigkeit eine an dem Ventilgehäuse befestigte Kappe einschließt und einen in dieser geformten Kanal besitzt, der zum Leiten eines Flüssigkeitsstroms zwischen dem Flüssigkeitsüberlaufbehälter und der Ventilkammer angepaßt ist.
  69. System nach Anspruch 68, dadurch gekennzeichnet, daß das Mittel zur Steuerung des Stroms der Temperatursteuerflüssigkeit zusätzlich einen verschiebbaren Ball einschließt, der innerhalb der Ventilkammer angeordnet ist und zum Abdichten des Kanals in der Kappe angepaßt ist, um einen Flüssigkeitsstrom durch diese zu verhindern, wenn das Ventilgehäuse einen Strom von unter Druck stehender Flüssigkeit von der Wasserpumpe aufnimmt, wobei der Ball zusätzlich dazu ausgebildet ist, den Absperrventilauslaß abzudichten, um einen Fluß durch diesen zu verhindern, wenn der Flüssigkeitsüberlaufbehälter einen niedrigen Level von darin enthaltender Flüssigkeit besitzt.
  70. System nach Anspruch 69, dadurch gekennzeichnet, daß das Mittel zur Steuerung des Stroms der Temperatursteuerflüssigkeit zusätzlich eine Vorspanneinrichtung einschließt, die zwischen dem Ball und der Kappe angeordnet ist, um den Ball entfernt von einem Abdichten des Kanals vorzuspannen.
  71. System nach Anspruch 17, dadurch gekennzeichnet, daß das Absperrventil folgendes einschließt:
    ein Gehäuse,
    eine Kammer, die innerhalb des Gehäuses zum Leiten eines Stroms von Temperatursteuerflüssigkeit zwischen einer Kappe und einem Absperrventilauslaß geformt ist, wobei die Kappe in Verbindung mit dem Flüssigkeitsüberlaufbehälter steht und der Absperrventilausgang in Verbindung mit der Wasserpumpe steht.
  72. System nach Anspruch 17, dadurch gekennzeichnet, daß die Kappe an dem Gehäuse befestigt ist und einen in dieser geformten Kanal besitzt, der zum Leiten eines Flüssigkeitsstroms zwischen Flüssigkeitsüberlaufbehälter und Kammer vorgesehen ist, wobei das Ventil zusätzlich einen verschiebbaren Ball aufweist, der innerhalb der Kammer angeordnet ist und zum Abdichten des Kappenkanals angepaßt ist, um das Strömen von Flüssigkeit durch diese zu verhindern, wenn das Gehäuse einen Strom von unter Druck stehender Flüssigkeit von der Wasserpumpe aufnimmt, wobei der Ball weiterhin dafür angepaßt ist, den Absperrventilauslaß abzudichten, um ein Fließen durch diesen zu verhindern, wenn der Flüssigkeitsüberlaufbehälter einen geringen Stand von in diesem enthaltender Flüssigkeit aufweist, und eine Feder zwischen dem Ball und der Kappe angeordnet ist, um den Ball entfernt von einem Abdichten des Kanals vorzuspannen.
  73. System nach Anspruch 17, dadurch gekennzeichnet, daß das Absperrventil eine Kammer einschließt und ein Mittel innerhalb der Kammer zur Steuerung des Stroms der Temperatursteuerflüssigkeit zwischen dem Flüssigkeitsüberlaufbehälter und der Wasserpumpe angeordnet ist.
  74. System nach Anspruch 17, dadurch gekennzeichnet, daß die Verbindung zwischen der Wasserpumpe und dem Absperrventil durch ein Auslaßrohr vorgesehen ist, dessen eines Ende an der Wasserpumpe befestigt und dessen anderes Ende an dem auf dem Ventil geformten Absperrventilauslaß befestigt ist.
  75. System nach Anspruch 17, dadurch gekennzeichnet, daß das Absperrventil einstückig mit dem Flüssigkeitsüberlaufbehälter geformt ist.
  76. System nach Anspruch 17, dadurch gekennzeichnet, daß zusätzlich ein Entlüfterrohr zwischen dem Flüssigkeitsüberlaufbehälter und der Wasserpumpe, an welcher es befestigt ist, angeordnet ist, wobei das Entlüfterrohr zum Entlüften von Luft aus der Wasserpumpe heraus angepaßt ist.
  77. System nach Anspruch 76, dadurch gekennzeichnet, daß das Entlüfterrohr an der Wasserpumpe in einem Punkt befestigt ist, in dem die Flüssigkeit von Vakuum zu Druck übergeht.
  78. System nach Anspruch 1, zusätzlich aufweisend:
    einen Einlaßkrümmer zum Einlassen eines Stroms von Einlasserluft in den Motor,
    einen Drosselkörper, der ein Drosselventil besitzt, wobei der Drosselkörper innerhalb des Stroms der Einlasserluft angeordnet ist,
    einen Wärmetauscher, der an dem Motor befestigt ist und innerhalb des Stroms von Einlasserluft angeordnet ist, wobei der Wärmetauscher zur Aufnahme eines Stroms der aufgeheizten Temperatursteuerflüssigkeit von der Abgaswärmeeinrichtung und zum Ausstoßen des Stroms von Temperatursteuerflüssigkeit in den von dem Wärmetauscher fortführenden Durchgang ausgebildet ist, wobei der Wärmetauscher mindestens ein Wärme austauschendes Element für den Wärmetransport von der Temperatursteuerflüssigkeit hin zu der Einlasserluft einschließt,
    einen dritten Sensor zum Fühlen einer aktuellen Umgebungstemperatur und zum Bereitstellen eines Signals, das diese anzeigt, und
    ein zweites Steuerventil zur Regulierung des Stroms von Temperatursteuerflüssigkeit hin zu dem Wärmetauscher, wobei das zweite Steuerventil einen geöffneten und einen geschlossenen Zustand besitzt,
    wobei der Motorcomputer die Betätigung des zweiten Stromventils basierend auf Signalen von dem ersten, zweiten und dritten Sensoren steuert.
  79. System nach Anspruch 78, dadurch gekennzeichnet, daß der Wärmetauscher stromabwärts von dem Drosselkörper befestigt ist.
  80. System nach Anspruch 78, dadurch gekennzeichnet, daß der Wärmetauscher innerhalb eines Luftreinigers montiert ist.
  81. System nach Anspruch 78, dadurch gekennzeichnet, daß der Wärmetauscher zwischen dem Luftreiniger und dem Drosselkörper befestigt ist.
  82. System nach Anspruch 78, dadurch gekennzeichnet, daß das Wärme tauschende Element für den Wärmetransport von der Temperatursteuerflüssigkeit zu der Einlasserluft ein wärmeleitendes Rohr ist.
  83. System nach Anspruch 78, dadurch gekennzeichnet, daß die Temperatur, welche die Motoröltemperatur anzeigt, die Temperatur des Öls in der Ölpfanne ist.
  84. System nach Anspruch 78, dadurch gekennzeichnet, daß zusätzlich ein vierter Sensor zum Fühlen der Temperatur des Stroms der Einlasserluft stromabwärts von dem Wärmetauscher vorgesehen ist, wobei der vierte Sensor ein Signal bereitstellt, das die Temperatur der Einlasserluft dem Motorcomputer anzeigt, dabei vergleicht der Motorcomputer das Signal mit einem Schwellwert, um einen angestrebten Zustand des Steuerventils zu bestimmen, wobei der Computer Signale für das Steuerventil bereitstellt, um das Steuerventil in seinen gewünschten Zustand zu versetzen.
  85. Verfahren zur Steuerung des Stroms von Temperatursteuerflüssigkeit, wobei die Temperatursteuerflüssigkeit dazu dient einen Verbrennungsmotor zu erhitzen und zu kühlen, wobei der Verbrennungsmotor einen Motorblock, einen Zylinderkopf, eine Ölwanne, einen Auspuffkrümmer und ein Stromventil zur Steuerung des Stroms von Temperatursteuerflüssigkeit aufweist, wobei das Verfahren die folgenden Verfahrensschritte beinhaltet:
    Fühlen einer Temperatur von einer Temperatursteuerflüssigkeit, Vergleichen der gefühlten Temperatur der Temperatursteuerflüssigkeit mit einem vorbestimmten Wert der Temperatur der Temperatursteuerflüssigkeit,
    gekennzeichnet durch
    Fühlen einer Temperatur, welche die Temperatur eines Motoröls anzeigt,
    Vergleichen der gefühlten Temperatur, welche die Motoröltemperatur anzeigt, mit einem vorbestimmten Wert der Motoröltemperatur,
    Betätigen des Stromventils damit Temperatursteuerflüssigkeit zu einer Auspuffkrümmer-Wärmeeinrichtung fließen kann, die an dem Auspuffkrümmer befestigt ist, wenn die gefühlte Temperatur, welche die Motoröltemperatur anzeigt, unterhalb des vorbestimmten Wertes der Motoröltemperatur liegt, und
    Betätigen der Stromventile derart, daß der Strom der Temperatursteuerflüssigkeit gehindert wird, zu der Auspuffkrümmer-Wärmeeinrichtung zu fließen, wenn die gefühlte Temperatur der Temperatursteuerflüssigkeit oberhalb des vorbestimmten Wertes für die Temperatursteuerflüssigkeit liegt.
  86. Verfahren nach Anspruch 85, dadurch gekennzeichnet, daß zusätzlich folgende Verfahrensschritte vorgesehen sind:
    Bestimmen eines Satzes von vorbestimmten Temperatursteuerwerten, die auf einem Vergleich der gefühlten Temperaturen, welche die Motoröltemperatur anzeigen, mit dem vorbestimmten Motoröltemperaturwert basieren, und
    Fühlen der Umgebungslufttemperatur,
    wobei der Vergleichsschritt der gefühlten Temperatur der Temperatursteuerflüssigkeit ebenfalls ein Vergleichen mit einer gefühlten Umgebungslufttemperatur mit einem Satz von vorbestimmten Temperatursteuerwerten zur Bestimmung einer gewünschten Position des Ventils einschließt.
  87. Verfahren nach Anspruch 85, dadurch gekennzeichnet, daß zusätzlich die folgenden Verfahrensschritte vorgesehen sind:
    Fühlen einer Umgebungslufttemperatur,
    Vergleichen der gefühlten Temperatur, welche die Temperatur des Motoröls anzeigt, und der gefühlten Umgebungslufttemperatur mit einem Satz von vorbestimmten Temperatursteuerwerten zur Bestimmung einer gewünschten Position von einem zweiten Steuerventil, wobei das zweite Steuerventil den Strom der Temperatursteuerflüssigkeit hin zu einem Wärmetauscher, durch welchen die Einlasserluft passiert, steuert,
    Betätigen des zweiten Steuerventils derart, daß ein Strom von erwärmter Temperatursteuerflüssigkeit hin zu dem Wärmetauscher fließt.
  88. Verfahren nach Anspruch 85, dadurch gekennzeichnet, daß der Motor zusätzlich ein Druckerzeugungssystem einschließt, das mindestens einen Einlaßinjektor und mindestens einen Auslaßinjektor, der innerhalb des Gehäuses montiert ist, besitzt, wobei jeder Injektor eine offene Position, um Flüssigkeit durch einen Durchgang fließen zu lassen, und eine geschlossene Position besitzt, um das Fließen der Flüssigkeit entlang dem Durchgang zu verhindern, wobei das Verfahren zusätzlich die folgenden Verfahrensschritte aufweist:
    Versorgen eines Flüssigkeitsstroms hin zu dem Injektor von einer Flüssigkeitsquelle aus,
    Setzen des Einlaßinjektors in seine offene Position,
    Setzen des Auslaßinjektors in seine geschlossene Position,
    Füllen einer Kammer innerhalb des Gehäuses mit der bereitgestellten Flüssigkeit,
    Steuern eines Solenoiden, um eine Versorgungsleitung zu dem Stromventil zu öffnen, um eine Versorgung von Flüssigkeit von dem Gehäuse hin zu dem Ventil bereitzustellen, wobei die Versorgung von Flüssigkeit zur Betätigung des Stromventils dient, und
    Schließen des Einlaßinjektors, nachdem das Stromventil betätigt wurde, um Flüssigkeit innerhalb der Kammer zu sammeln.
  89. Verfahren nach Anspruch 85, dadurch gekennzeichnet, daß der Motor zusätzlich ein Solenoid-Druckerzeuungssystem einschließt, das mindestens ein Solenoidventil besitzt, welches in durchgängiger Verbindung mit einem Stromventil steht, wobei das Solenoidventil eine offene Position besitzt, um einen Flüssigkeitsstrom entlang der Versorgungsleitung zu ermöglichen, und eine geschlossene Position, um eine Flüssigkeitsstrom entlang der Versorgungsleitung zu verhindern, wobei das Verfahren die folgenden Verfahrensschritte aufweist:
    Versorgen eines Flüssigkeitsstroms hin zu dem Solenoidventil aus einer Quelle für unter Druck stehende Flüssigkeit,
    Empfangen eines Signals von dem Motorcomputer,
    Richten eines Stroms von unter Druck stehender Flüssigkeit entlang der Versorgungsleitung,
    Steuern des Solenoiden derart, daß eine Versorgungsleitung hin zu dem Stromventil geöffnet wird,
    Lenken eines Stroms von unter Druck stehender Flüssigkeit entlang der Versorgungsleitung, wobei die Versorgung mit Flüssigkeit zur Betätigung des Stromventils dient, und
    Schließen des Solenoiden nachdem das Stromventil betätigt wurde.
  90. Verfahren nach Anspruch 86, dadurch gekennzeichnet, daß der Verfahrensschritt des Bestimmens eines Satzes von vorbestimmten Temperatursteuerwerten eine Variation eines ursprünglichen Satzes von vorbestimmten Temperatursteuerwerten als eine Funktion des Betrags, um den die gefühlte Temperatur, welche die Temperatur des Motoröls anzeigt, den vorbestimmten Wert der Motoröltemperatur übersteigt, aufweist.
  91. Verfahren nach Anspruch 86, dadurch gekennzeichnet, daß der Verfahrensschritt des Bestimmens eines Satzes von vorbestimmten Temperatursteuerwerten die Schritte aufweist, einen ursprünglichen Satz von vorbestimmten Temperatursteuerwerten bereitzustellen, das mindestens einen Temperaturanteil der Temperatursteuerflüssigkeit besitzt, und den Temperaturanteil der Temperatursteuerflüssigkeit als eine Funktion des Betrags, um den die gefühlte Temperatur, welche die Temperatur des Motoröls anzeigt, den vorbestimmten Motoröltemperaturwert übersteigt, anzupassen.
  92. Verfahren nach Anspruch 86, dadurch gekennzeichnet, daß der Verfahrensschritt des Bestimmens eines Satzes von Temperatursteuerwerten ein Auswählen eines Satzes von vorbestimmten Temperaturen, welche die Motoröltemperatur anzeigen, basierend auf dem Vergleich der gefühlten Temperaturen, welche die Motoröltemperatur anzeigen, mit den vorbestimmten Motoröltemperaturwerten beinhaltet.
  93. Verfahren nach Anspruch 87, dadurch gekennzeichnet, daß zusätzlich der Verfahrensschritt des Leit'ens des Stroms der Temperatursteuerflüssigkeit von dem Wärmetauscher in einen zu der Ölwanne führenden Durchgang umfaßt ist.
  94. Verfahren nach Anspruch 87, dadurch gekennzeichnet, daß zusätzlich folgende Verfahrensschritte vorgesehen sind:
    Detektieren der Temperatur des Einlasserluftstroms stromabwärts von dem Wärmetauscher,
    Vergleichen der detektierten Temperatur des Stroms der Einlasserluft mit einem vorbestimmten Wert zur Bestimmung einer gewünschten Position des zweiten Steuerventils und
    Betätigen des zweiten Steuerventils, um das Ventil in die gewünschte Position zur Steuerung des Stroms der Temperatursteuerflüssigkeit hin zu dem Wärmetauscher zu bringen.
  95. Verfahren nach Anspruch 85, dadurch gekennzeichnet, daß zusätzlich die Verfahrensschritte vorgesehen sind:
    Empfangen eines Umgebungsbedingungssignals,
    Variieren des vorbestimmten Motoröltemperaturwertes als eine Funktion des Umgebungsbedingungssignals nachdem die gefühlte Temperatur, welche die Motoröltemperatur anzeigt, einen ursprünglichen Motoröltemperaturschwellwert übersteigt.
  96. Verfahren nach Anspruch 85, dadurch gekennzeichnet, daß die Temperatur, welche die Temperatur des Motoröls anzeigt, die Motoröltemperatur ist.
  97. Verfahren nach Anspruch 85, dadurch gekennzeichnet, daß der vorbestimmte Wert der Temperatursteuerflüssigkeit als eine Funktion des Vergleichs der gefühlten Temperatur, welche die Motoröltemperatur anzeigt, mit dem vorbestimmten Motoröltemperaturwert variiert.
  98. Verfahren nach Anspruch 95, dadurch gekennzeichnet, daß die Temperatur, welche die Temperatur des Motoröls anzeigt, die Motoröltemperatur ist und daß die Umgebungsbedingung die Temperatur der Umgebungslufttemperatur ist.
  99. Verfahren nach Anspruch 85, dadurch gekennzeichnet, daß die Temperatur, welche die Temperatur des Motoröls anzeigt, die Temperatur des Motorblocks ist.
  100. Verfahren nach Anspruch 99, dadurch gekennzeichnet, daß zusätzlich der Verfahrensschritt des Entlüftens des unter Druck stehenden Dampfs von dem an den Auspuffkrümmer angrenzenden Leiter erfolgt, nachdem die Stromventile in ihrer ersten Position, die eine Fließen entlang dem Leiter verhindert, plaziert ist.
EP96920232A 1995-05-23 1996-05-16 System zum regeln der temperatur der kühlungsflüssigkeit in einer brennkraftmaschine Expired - Lifetime EP0827565B1 (de)

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
US08/448,150 US5503118A (en) 1995-05-23 1995-05-23 Integral water pump/engine block bypass cooling system
US448150 1995-05-23
US447468 1995-05-23
US08/447,468 US5551384A (en) 1995-05-23 1995-05-23 System for heating temperature control fluid using the engine exhaust manifold
US533471 1995-09-25
US08/533,471 US5655506A (en) 1995-09-25 1995-09-25 System for preheating intake air for an internal combustion engine
US08/576,608 US5638775A (en) 1995-12-21 1995-12-21 System for actuating flow control valves in a temperature control system
US08/576,713 US5699759A (en) 1995-12-21 1995-12-21 Free-flow buoyancy check valve for controlling flow of temperature control fluid from an overflow bottle
US576608 1995-12-21
US576713 1995-12-21
US08/576,609 US5724931A (en) 1995-12-21 1995-12-21 System for controlling the heating of temperature control fluid using the engine exhaust manifold
US576609 1995-12-21
PCT/US1996/006994 WO1996037692A1 (en) 1995-05-23 1996-05-16 System for controlling the temperature of a temperature control fluid in an internal combustion engine

Publications (2)

Publication Number Publication Date
EP0827565A1 EP0827565A1 (de) 1998-03-11
EP0827565B1 true EP0827565B1 (de) 1999-11-17

Family

ID=27560001

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96920232A Expired - Lifetime EP0827565B1 (de) 1995-05-23 1996-05-16 System zum regeln der temperatur der kühlungsflüssigkeit in einer brennkraftmaschine

Country Status (6)

Country Link
EP (1) EP0827565B1 (de)
AT (1) ATE186765T1 (de)
AU (1) AU5860496A (de)
CA (1) CA2217770C (de)
DE (1) DE69605193D1 (de)
WO (1) WO1996037692A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2623019C1 (ru) * 2016-05-10 2017-06-21 Владислав Александрович Полушкин Устройство для автоматического обогрева боевого отделения военной гусеничной машины
FR3101447B1 (fr) * 2019-10-01 2022-07-29 Valeo Systemes Thermiques Procédé de gestion thermique, notamment pour véhicule automobile, et stratégie de gestion thermique et unité de commande associées

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2517236A1 (de) * 1975-04-18 1976-10-28 Audi Nsu Auto Union Ag Einrichtung zum aufheizen des kuehlmittelkreislaufes einer brennkraftmaschine
DE2529376C3 (de) * 1975-07-02 1979-04-19 Audi Nsu Auto Union Ag, 7107 Neckarsulm Brennkraftmaschine mit Einrichtung zum Aufheizen des KühlflUssigkeitskreislaufes
JPS5968545A (ja) * 1982-10-12 1984-04-18 Nippon Soken Inc 内燃機関の暖機促進装置
DE4042123A1 (de) * 1990-12-28 1992-07-02 Eberspaecher J Mit einem heizgeraet versehener kuehlmittelkreislauf eines fahrzeugmotors

Also Published As

Publication number Publication date
CA2217770C (en) 2007-09-11
WO1996037692A1 (en) 1996-11-28
DE69605193D1 (de) 1999-12-23
EP0827565A1 (de) 1998-03-11
ATE186765T1 (de) 1999-12-15
AU5860496A (en) 1996-12-11
CA2217770A1 (en) 1996-11-28

Similar Documents

Publication Publication Date Title
US5551384A (en) System for heating temperature control fluid using the engine exhaust manifold
US6044808A (en) Electronically assisted thermostat for controlling engine temperature
US5503118A (en) Integral water pump/engine block bypass cooling system
US5458096A (en) Hydraulically operated electronic engine temperature control valve
US5724931A (en) System for controlling the heating of temperature control fluid using the engine exhaust manifold
US7263954B2 (en) Internal combustion engine coolant flow
US5507251A (en) System for determining the load condition of an engine for maintaining optimum engine oil temperature
US5669335A (en) System for controlling the state of a flow control valve
US5655506A (en) System for preheating intake air for an internal combustion engine
US4410133A (en) Two way fluid switchover valve with crossover protection
US6499442B2 (en) Integral water pump/electronic engine temperature control valve
US5638775A (en) System for actuating flow control valves in a temperature control system
GB2528680A (en) Transmission heat exchange system
US5467745A (en) System for determining the appropriate state of a flow control valve and controlling its state
US5699759A (en) Free-flow buoyancy check valve for controlling flow of temperature control fluid from an overflow bottle
EP0827565B1 (de) System zum regeln der temperatur der kühlungsflüssigkeit in einer brennkraftmaschine
EP1537307B1 (de) Motorkühlsysteme
CA2209792C (en) System for maintaining engine oil at an optimum temperature
US5463986A (en) Hydraulically operated restrictor/shutoff flow control valve
EP0787249B1 (de) System zur regelung des durchflusses von kühlmittel
US7096830B2 (en) Mounting arrangement for electric water pump
US6435143B2 (en) Three-way solenoid valve for actuating flow control valves in a temperature control system
US10641157B2 (en) Thermostat and cooling system having the same
CN110566337B (zh) 车用活性冷却剂体积减小的方法和装置
GB2286039A (en) Engine cooling system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971120

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19981022

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19991117

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19991117

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19991117

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991117

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19991117

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991117

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19991117

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19991117

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19991117

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19991117

REF Corresponds to:

Ref document number: 186765

Country of ref document: AT

Date of ref document: 19991215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69605193

Country of ref document: DE

Date of ref document: 19991223

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

ITF It: translation for a ep patent filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000217

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000218

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000516

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000516

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070525

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070525

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080516