EP0826130B1 - Process for melting of metal materials in a shaft furnace - Google Patents

Process for melting of metal materials in a shaft furnace Download PDF

Info

Publication number
EP0826130B1
EP0826130B1 EP97903198A EP97903198A EP0826130B1 EP 0826130 B1 EP0826130 B1 EP 0826130B1 EP 97903198 A EP97903198 A EP 97903198A EP 97903198 A EP97903198 A EP 97903198A EP 0826130 B1 EP0826130 B1 EP 0826130B1
Authority
EP
European Patent Office
Prior art keywords
oxygen
furnace
coke
wind
blast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97903198A
Other languages
German (de)
French (fr)
Other versions
EP0826130A1 (en
Inventor
Josef Ramthun
Albert Koperek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Messer Griesheim GmbH
Original Assignee
Messer Griesheim GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messer Griesheim GmbH filed Critical Messer Griesheim GmbH
Publication of EP0826130A1 publication Critical patent/EP0826130A1/en
Application granted granted Critical
Publication of EP0826130B1 publication Critical patent/EP0826130B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/16Arrangements of tuyeres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/28Arrangements of monitoring devices, of indicators, of alarm devices

Definitions

  • the invention is defined in claim 1 and relates to a method for melting metallic feedstocks in a shaft furnace where coke Metallic and non-metallic materials, such as iron and non-ferrous metals, Basalt and diabase, despite the development of electrical and flame-heated melting processes as before melted in coke-heated shaft ovens. So are still today approx. 60% of all iron materials are produced in cupola furnaces.
  • oxygen either by enriching the Cupola furnace wind up to max. 25% or by direct injection with Subsonic speed is blown into the cupola furnace. Due to the high operating costs, however, oxygen is used only used discontinuously, e.g. for a quick start the cold oven or for a temporary increase in the Iron temperature. The possibility of increasing performance, i.e. Continuous use of oxygen is only used in exceptional cases used.
  • melting performance diagram Fig. 1 By linking the influencing factors, wind volume, coke rate and Combustion ratio with the target sizes, melting performance diagram Fig. 1 with curves of the same coke set and the same Wind amount.
  • This melt flow diagram known as the Jungbluth diagram must be determined empirically for each cupola. A Transfer to other cupola furnaces is not possible because of the operating behavior with changed boundary conditions, such as coke lumps, Coke reactivity, compound composition, wind speed, Oven pressure, temperature, etc. change immediately.
  • the heat losses are lowest at the maximum temperature. If the amount of wind is too high, ie the flow rate is high, the furnace is blown over. If the air volume is too small, ie the flow rate is too low, the furnace is blown out. In both cases, the combustion temperature is reduced because, on the one hand, the additional N 2 ballast has to be heated and, on the other hand, heat is extracted through the additional CO formation. In addition, the iron accompanying elements are more strongly oxidized when overblown.
  • the coke present in the middle of the furnace does not contribute to the reaction because the combustion air due to the low momentum cannot penetrate the bed in front of it.
  • the reaction zone is in the immediate vicinity of the wind nozzle (Fig. 2a).
  • the depth of penetration is not essential enlarge. Due to the higher oxygen supply, the reaction zone expanded upwards due to the pressure conditions (Fig. 2b).
  • the even combustion over the furnace cross section i.e. the even distribution of the oxygen supply desirable.
  • the impulse i.e. the The speed of the air or oxygen has been radiating up to now Targeted values to be designated as state of the art increased become.
  • Patent application GB 2 018 295 describes a system with which the oxygen is built into the center of the wind vents Laval nozzles, i.e. blown in at supersonic speed to the wear of the refractory lining minimize.
  • the Kökssatz could not be reduced.
  • EP-A-0 554 022 discloses a method for melting metallic Feedstocks in a shaft furnace in which coke with preheated air and largely pure oxygen is burned and the flue gases in countercurrent heat the metal insert and the melt in the coke bed overheats and is carburized.
  • a fixed subset of the Oxygen injected into the coke bed at supersonic speed is used.
  • the remaining amount of oxygen is added to the wind in the wind ring in a controlled manner (Fig. 4).
  • the oxygen enrichment in the wind is controlled and regulated by the components CO, CO 2 , O 2 , in the blast furnace gas.
  • the reaction zone which has penetrated into the tongue in the middle of the cupola furnace as a result of the supersonic injection (FIG. 2 c), is expanded and evened out, since, due to the suction capacity of the supersonic jet, combustion air enriched with O 2 is also transported to the center of the furnace. (Fig. 2d)
  • the furnace pressure is reduced and reduced the amount of blast furnace gas by 20%. Due to the The smaller the flow rate in the furnace, the amount of dust additionally reduced in proportion to the amount of blast furnace gas.
  • the hot wind temperature increases by up to 30 ° C because the recuperator passes through the reduced amount of wind has to do less.
  • the basic quantities can be selected from the diagram according to FIG. 3.
  • the absolute amount of oxygen addition is determined by the desired Iron temperature determined. The iron temperature rises when the temperature in the coke bed rises. The temperature in the coke bed increases when the cooling effect of the accompanying oxygen Nitrogen is missing.
  • the optimal ratio of the volume shares of CO to CO2 in the Top gas is the sum of the resulting operating costs determined. A more reducing atmosphere with higher ones Proportions of CO result in savings in silicon and higher Coke expenses. The optimal setting therefore depends also depending on the respective market prices of the raw materials. There are Times and countries where a more oxidizing mode of operation is economical. The cheapest ratio of CO to CO2 must therefore be checked from time to time and the appropriate one Amount of oxygen can be adjusted.
  • the intended optimal attitude of CO to CO2 fluctuates, because by scattering the batches of Carbon to iron is produced. This short term Fluctuations can be caused by adjusting the addition of Oxygen can be balanced.
  • the Boudouard reaction is prompt, because the temperature of the coke bed when adding Oxygen rises very quickly.
  • the supply of the total amount of Oxygen to O1 and 02 is therefore controlled so that the Ratio of CO to CO2 at the most economical value is held. With this driving style, the least spread of analysis achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Heat Treatment Of Articles (AREA)
  • Die Bonding (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PCT No. PCT/CH97/00080 Sec. 371 Date Feb. 6, 1998 Sec. 102(e) Date Feb. 6, 1998 PCT Filed Mar. 3, 1997 PCT Pub. No. WO97/33134 PCT Pub. Date Sep. 12, 1997A process for smelting metallic raw materials in a shaft furnace having beds of metallic raw material and coke comprises injecting concurrently into the shaft furnace (1) a mixture of flue gases and oxygen at a subsonic velocity and (2) preheated oxygen at supersonic velocity wherein the supersonic velocity oxygen is injected into the coke bed.

Description

Verfahren zum Einschmelzen von metallischen Einsatzstoffen in einem Schachtofen mit vorgewärmter Luft und weitgehend reinem Sauerstoff verbrannt wird und die Rauchgase im Gegenstrom den metallischen Einsatz erwärmen und bei dem die Schmelze in dem Koksbett überhitzt und aufgekohlt wird.Process for melting metallic feedstocks in a shaft furnace burned with preheated air and largely pure oxygen and the flue gases countercurrent to the metallic ones Warm the insert and the melt in the coke bed overheats and is carburized.

Die Erfindung ist im Anspruch 1 definiert und betrifft betrifft ein Verfahren zum Einschmelzen von metallischen Einsatzstoffen in einem Schachtofen, bei dem Koks Metallische und nichtmetallische Werkstoffe, wie Eisen und NE-Metalle, Basalt und Diabas, werden trotz der Entwicklung von elektrischen und flammbeheizten Schmelzverfahren nach wie vor in koksbeheizten Schachtöfen geschmolzen. So werden heute noch ca. 60 % aller Eisenwerkstoffe in Kupolöfen produziert.The invention is defined in claim 1 and relates to a method for melting metallic feedstocks in a shaft furnace where coke Metallic and non-metallic materials, such as iron and non-ferrous metals, Basalt and diabase, despite the development of electrical and flame-heated melting processes as before melted in coke-heated shaft ovens. So are still today approx. 60% of all iron materials are produced in cupola furnaces.

Der Grund für diesen hohen Markanteil des Kupolofens liegt in der kontinuierliche Weiterentwicklung, wobei von der Vielzahl der bekannten Verfahrensmodifikationen die Entwicklung des Heisswindkupolofens und der Einsatz von Sauerstoff von Bedeutung sind. The reason for this high market share of the cupola furnace lies in the continuous development, being of the multitude the known process modifications the development of Hot wind cupola and the use of oxygen are important are.

So wurden z.B. durch die Entwicklung des Heisswindkupolofens die verfahrenstechnischen und metallurgischen Nachteile des Kaltwindkupolofens, wie

  • niedrige Eisentemperaturen
  • hoher Siliziumabbrand
  • geringe Aufkohlung
  • hoher Koksverbrauch
  • hohe Schwefelaufnahme
  • hoher Feuerfestverschluss
weitgehend kompensiert.For example, through the development of the hot wind cupola, the procedural and metallurgical disadvantages of the cold wind cupola, such as
  • low iron temperatures
  • high silicon erosion
  • low carburization
  • high coke consumption
  • high sulfur absorption
  • high fireproof closure
largely compensated.

Ähnliche Verbesserungen werden durch den Einsatz von Sauerstoff erzielt, wobei der Sauerstoff entweder durch Anreicherung des Kupolofenwindes bis max. 25 % oder durch Direktinjektion mit Unterschallgeschwindigkeit in den Kupolofen eingeblasen wird. Aufgrund der hohen Betriebskosten wird Sauerstoff allerdings nur diskontinuierlich eingesetzt, z.B. zum schnellen Anfahren des kalten Ofens oder zur zeitlich befristeten Steigerung der Eisentemperatur. Die Möglichkeit der Leistungssteigerung, d.h. kontinuierlicher Einsatz von Sauerstoff, wird nur in Ausnahmefällen genutzt.Similar improvements are made through the use of oxygen achieved, the oxygen either by enriching the Cupola furnace wind up to max. 25% or by direct injection with Subsonic speed is blown into the cupola furnace. Due to the high operating costs, however, oxygen is used only used discontinuously, e.g. for a quick start the cold oven or for a temporary increase in the Iron temperature. The possibility of increasing performance, i.e. Continuous use of oxygen is only used in exceptional cases used.

Trotz der Einführung dieser Verfahrensmodifikationen kann

  • die Schmelzleistung
  • die Eisentemperatur
  • der Kokssatz
nach wie vor nur in einem sehr engen Bereich am optimalen Betriebspunkt geändert werden.Despite the introduction of these process modifications
  • the melting capacity
  • the iron temperature
  • the coke pack
can only be changed in a very narrow area at the optimal operating point.

Der Zusammenhang zwischen Schmelzleistung und Windmenge sowie Zusatzsauerstoffmenge wird durch die bekannte Jungbluth-Gleichung beschrieben. Diese Gleichung resultiert aus eine Massenund Energiebildung, wobei der Kokssatz und das Verbrennungsverhältnis empirisch für jeden Kupolofen ermittelt werden muss. The relationship between melting capacity and amount of wind as well The additional amount of oxygen is determined by the well-known Jungbluth equation described. This equation results from a mass and Energy production, the coke rate and the combustion ratio must be determined empirically for each cupola furnace.

Durch Verknüpfung der Einflussgrössen, Windmenge, Kokssatz und Verbrennungsverhältnis mit den Zielgrössen, Schmelzleistungsschaubild Fig. 1 mit Kurven gleichen Kokssatzes und gleicher Windmenge.By linking the influencing factors, wind volume, coke rate and Combustion ratio with the target sizes, melting performance diagram Fig. 1 with curves of the same coke set and the same Wind amount.

Dieses als Jungbluth-Diagramm bekannte Schmelzleistungsschaubild muss für jeden Kupolofen empirisch ermittelt werden. Eine Übertragung auf andere Kupolöfen ist nicht möglich, da das Betriebsverhalten bei geänderten Randbedingungen, wie Koksstückigkeit, Koksreaktivität, Satzzusammensetzung, Windgeschwindigkeit, Ofendruck, Temperatur, etc. sich sofort ändert.This melt flow diagram known as the Jungbluth diagram must be determined empirically for each cupola. A Transfer to other cupola furnaces is not possible because of the operating behavior with changed boundary conditions, such as coke lumps, Coke reactivity, compound composition, wind speed, Oven pressure, temperature, etc. change immediately.

Im Temperaturmaximum sind die Wärmeverluste am geringsten. Bei zu grossen Windmengen, d.h. hohe Strömungsgeschwindigkeit, wird der Ofen überblasen. Bei zu kleinen Luftmengen, d.h. zu geringe Strömungsgeschwindigkeit, wird der Ofen unterblasen. In beiden Fällen wird die Verbrennungstemperatur abgesenkt, da einerseits der zusätzliche N2-Ballast mit erhitzt werden muss und anderseits durch die zusätzliche CO-Bildung Wärme entzogen wird. Zusätzlich werden beim Überblasen die Eisenbegleitelemente stärker oxidiert.The heat losses are lowest at the maximum temperature. If the amount of wind is too high, ie the flow rate is high, the furnace is blown over. If the air volume is too small, ie the flow rate is too low, the furnace is blown out. In both cases, the combustion temperature is reduced because, on the one hand, the additional N 2 ballast has to be heated and, on the other hand, heat is extracted through the additional CO formation. In addition, the iron accompanying elements are more strongly oxidized when overblown.

Durch Einsatz von Sauerstoff z.B. auf 24 Vol.% im Wind die Netzlinie nach rechts oben, d.h. zu höheren Temperaturen und zu höheren Eisendurchsätzen verschoben. Das Temperaturmaximum verflacht, der Ofen wird unempfindlich gegenüber Unter- oder Überblasen.By using oxygen e.g. to 24 vol.% in the wind Network line to the top right, i.e. to higher temperatures and to shifted higher iron throughputs. The temperature maximum flattens out the oven becomes insensitive to under or over blowing.

Eine Reduzierung des Kokssatzes bei konstanten Eisendurchsätzen und reduzierter Windmenge ist auch bei kontinuierlicher Sauer-stoffougabe nicht möglich, da dann die Eisentemperatur abfällt und zusätzliche metallurgische und verfahrenstechnische Probleme, wie

  • geringere Aufkohlung
  • Erhöhung des Si-Abbrands
  • Erhöhung des FeO-Gehaltes in der Schlacke
  • Randgängigkeit des Ofens durch Reduzierung der Windgeschwindigkeit
auftreten. Der Kupolofen produziert ein nicht vergiessbares Eisen.A reduction of the coke rate with constant iron throughputs and reduced wind volume is not possible even with continuous addition of oxygen, since then the iron temperature drops and additional metallurgical and procedural problems such as
  • less carburization
  • Increase in Si burnup
  • Increase in the FeO content in the slag
  • Marginality of the furnace by reducing the wind speed
occur. The cupola furnace produces a non-pourable iron.

Da aus verbrennungstechnischer Sicht der Koks mit hohem Überschuss vorliegt, ist eine Koksmengenreduzierung bei konstanter Schmelzleistung aus Gründen der Wirtschaftlichkeit von grossem Interesse, denn die Herstellkosten von flüssigem Eisen werden im wesentlichen durch die Umschmelzkosten und die Einsatzstoffkosten beeinflusst.Because from a combustion point of view, the coke with a large excess there is a reduction in the amount of coke at constant Melting performance of great for reasons of economy Interest, because the manufacturing costs of liquid iron will essentially by the remelting costs and the cost of feed affected.

Darüber hinaus ist seit langem bekannt, dass insbesondere bei Kupolöfen mit grossen Gestelldurchmessern trotz Sauerstoffanreicherung des Windes bzw. Sauerstoffdirektinjetion mit Unterschallgeschwindigkeit in der Mitte des Ofens der sogenannte "Tote Mann" stehen bleibt. Die Reaktion zwischen dem eingeblasenen Sauerstoff und dem Kohlenstoff findet nur in einem begrenzten Bereich in der Nähe der Winddüse statt, der Ofen arbeitet randgängig.In addition, it has long been known that in particular Cupola furnaces with large frame diameters despite oxygen enrichment the wind or direct oxygen injection at subsonic speed in the middle of the furnace the so-called "Dead man" remains. The reaction between the blown Oxygen and carbon only take place in a limited way Area near the wind nozzle instead, the oven is working wall channeling.

Der in der Mitte des Ofens vorhandene Koks trägt nicht zur Reaktion bei, da die Verbrennungluft aufgrund des geringen Impulses die davorliegende Schüttung nicht durchdringen kann. Die Reaktionszone befindet sich in unmittelbarer Nähe der Winddüse (Fig. 2a). Durch das bekannte Anreichern des Ofenwindes mit Sauerstoff bzw. durch Einblasen des Sauerstoffes mit Unterschallgeschwindigkeit wird die Eindringtiefe nicht wesentlich vergrössern. Durch das höhere Sauerstoffangebot wird die Reaktionszone aufgrund der Druckverhältnisse nach oben erweitert (Fig. 2b).The coke present in the middle of the furnace does not contribute to the reaction because the combustion air due to the low momentum cannot penetrate the bed in front of it. The The reaction zone is in the immediate vicinity of the wind nozzle (Fig. 2a). By the known enrichment of the furnace wind with Oxygen or by blowing oxygen at subsonic speed the depth of penetration is not essential enlarge. Due to the higher oxygen supply, the reaction zone expanded upwards due to the pressure conditions (Fig. 2b).

Als Vorbedingung der angestrebten Reduzierung der Verbrennungskoksmenge ist die gleichmässige Verbrennung über den Ofenquerschnitt, d.h. die gleichmässige Verteilung des Sauerstoffangebotes anzustreben. Zu diesem Zweck muss der Impuls, d.h. die Geschwindigkeit der Luft bzw. Sauerstoff strahlen über bislang als Stand der Technik zu bezeichnende gezielte Werte gesteigert werden.As a prerequisite for the intended reduction in the amount of combustion coke is the even combustion over the furnace cross section, i.e. the even distribution of the oxygen supply desirable. For this purpose the impulse, i.e. the The speed of the air or oxygen has been radiating up to now Targeted values to be designated as state of the art increased become.

In der Patentanmeldung GB 2 018 295 wird ein System beschrieben, mit dem der Sauerstoff mit zentrisch in die Winddüsen eingebauten Lavaldüsen, d.h. mit Überschallgeschwindigkeit eingeblasen wird, um den Verschleiss der feuerfesten Ausmauerung zu minimieren. Der Kökssatz konnte nicht reduziert werden.Patent application GB 2 018 295 describes a system with which the oxygen is built into the center of the wind vents Laval nozzles, i.e. blown in at supersonic speed to the wear of the refractory lining minimize. The Kökssatz could not be reduced.

EP-A-0 554 022 offenbart ein Verfahren zum Einschmelzen von metallischen Einsatzstoffen in einem Schachtofen, bei dem Koks mit vorgewärmter Luft und weitgehend reinem Sauerstoff verbrannt wird und die Rauchgase im Gegenstrom den metallischen Einsatz erwärmen und bei dem die Schmelze in dem Koksbett überhitzt und aufgekohlt wird. Im Verfahren vom EP-A-0 554 022 wird eine feste Teilmenge des Sauerstoffes mit Überschallgeschwindigkeit in das Koksbett eingedüst.EP-A-0 554 022 discloses a method for melting metallic Feedstocks in a shaft furnace in which coke with preheated air and largely pure oxygen is burned and the flue gases in countercurrent heat the metal insert and the melt in the coke bed overheats and is carburized. In the process of EP-A-0 554 022, a fixed subset of the Oxygen injected into the coke bed at supersonic speed.

Versuche mit zentrisch in die Winddüsen eingebaute Überschalldüsen haben dagegen überraschenderweise gezeigt, dass der Verbrennungskoks um 20 bis 30 kg/t Fe reduziert werden kann, ohne negative Beeinflussung des Ofenganges und der Eisenmetallurgie, wenn gleichzeitig die spezifische Ofenwindmenge von 500 bis 600 m3 (i.D.)/t Fe auf 400 bis 480 m3 (i.N.)/t Fe reduziert wird und in Abhängigkeit vom Ofendurchmesser Sauerstoff zusätzlich eingeblasen wird (Fig. 3). Der spezifischen Sauerstoffbedarf muss gemäss Fig. 3 verändert werden. Bei einem Heisswindkupolofen (500 bis 600°C Heisswindtemperatur) und einem Ofendurchmesser von 1 m werden ca. 15 bis 22 m3 (i.N.) Sauerstoff pro Tonne Eisen, bei einem Ofendurchmesser von 4 m 40 bis 61 m3 (i.N.) Sauerstoff pro Tonne Eisen benötigt. In Abhängigkeit vom Ofendurchmesser muss eine Düsenaustrittsmachzahl der Sauerstoffstrahlen von 1,1 < M < 3 eingestellt werden. Entgegen der bislang bekannten Kupolofentheorie wird gleichzeitig die Rinneneisentemperatur um bis zu 30°C erhöht. Dadurch wird der Siliziumabbrand um 10 % reduziert und die Aufkohlung um 0,2 % verbessert. Die besten Ergebnisse hinsichtlich Kokseinsparung werden erzielt, wenn ein fester Teil der Sauerstoffmenge durch Überschallinjektion in den Kupolofen eingetragen wird, da dann eine gleichmässigere Sauerstoffverteilung über den Kupolofenquerschnitt vorliegt. Die restliche Sauerstoffmenge wird geregelt dem Wind im Windring beigemischt (Fig. 4). Durch diese Massnahme wird eine konstante Analysenführung möglich. Die Sauerstoffanreicherung im Wind wird über die Komponenten CO, CO2, O2, im Gichtgas gesteuert und geregelt. Die Reaktionszone, die durch die Überschallinjektion in die Mitte des Kupolofens zungenförmig vorgedrungen ist (Fig. 2c) wird nach oben erweitert und vergleichmässigt, da infolge das Ansaugvermögen des Überschallstrahles zusätzlich mit O2 angereicherte Verbrennungsluft in die Ofenmitte transportiert wird. (Fig. 2d)Experiments with supersonic nozzles installed centrally in the wind nozzles, on the other hand, have surprisingly shown that the combustion coke can be reduced by 20 to 30 kg / t Fe, without adversely affecting the furnace run and the iron metallurgy, if at the same time the specific furnace wind volume of 500 to 600 m 3 (iD ) / t Fe is reduced to 400 to 480 m 3 (iN) / t Fe and, depending on the furnace diameter, oxygen is additionally blown in (FIG. 3). The specific oxygen requirement must be changed according to FIG. 3. With a hot wind cupola furnace (500 to 600 ° C hot wind temperature) and a furnace diameter of 1 m approx. 15 to 22 m 3 (iN) oxygen per ton of iron, with a furnace diameter of 4 m 40 to 61 m 3 (iN) oxygen per ton Iron needed. Depending on the furnace diameter, a nozzle exit number for the oxygen jets of 1.1 <M <3 must be set. Contrary to the previously known cupola furnace theory, the channel iron temperature is increased by up to 30 ° C. This reduces the silicon burn-off by 10% and improves carburization by 0.2%. The best results in terms of coke saving are achieved if a fixed part of the amount of oxygen is injected into the cupola by supersonic injection, since then there is a more uniform oxygen distribution over the cupola cross section. The remaining amount of oxygen is added to the wind in the wind ring in a controlled manner (Fig. 4). This measure enables constant analysis. The oxygen enrichment in the wind is controlled and regulated by the components CO, CO 2 , O 2 , in the blast furnace gas. The reaction zone, which has penetrated into the tongue in the middle of the cupola furnace as a result of the supersonic injection (FIG. 2 c), is expanded and evened out, since, due to the suction capacity of the supersonic jet, combustion air enriched with O 2 is also transported to the center of the furnace. (Fig. 2d)

Durch die Reduzierung des Ofenwindes wird der Ofendruck reduziert und die Gichtgasmenge um 20 % vermindert. Aufgrund der kleineren Strömungsgeschwindigkeit im Ofen wird die Staubmenge proportional zur Gichtgasmenge zusätzlich reduziert. Die Heisswindtemperatur steigt um bis zu 30 °C, da der Rekuperator durch die verringerte Windmenge weniger leisten muss.By reducing the furnace wind, the furnace pressure is reduced and reduced the amount of blast furnace gas by 20%. Due to the The smaller the flow rate in the furnace, the amount of dust additionally reduced in proportion to the amount of blast furnace gas. The hot wind temperature increases by up to 30 ° C because the recuperator passes through the reduced amount of wind has to do less.

Für die Aufteilung der Sauerstoffzugabe je in den Windring und in die Düsen gelten folgende Grundsätze:For the division of the oxygen addition into the wind ring and The following principles apply to the nozzles:

Die Basismengen können aus dem Diagramm gemäß Figur 3 gewählt werden. Die absolute Menge der Sauerstoffzugabe wird durch die gewünschte Eisentemperatur bestimmt. Die Eisentemperatur steigt, wenn die Temperatur im Koksbett steigt. Die Temperatur im Koksbett steigt, wenn die Kühlwirkung des den Sauerstoff begleitenden Stickstoffs fehlt.The basic quantities can be selected from the diagram according to FIG. 3. The absolute amount of oxygen addition is determined by the desired Iron temperature determined. The iron temperature rises when the temperature in the coke bed rises. The temperature in the coke bed increases when the cooling effect of the accompanying oxygen Nitrogen is missing.

Es soll umso mehr Sauerstoff mit Ueberschall durch die Lanzen zugegeben werden, umso grösser der Ofen ist. Das optimale Verhältnis von der Sauerstoffmenge, die durch Lanzen zugegeben wird = O1 zu der Sauerstoffmenge die als Anreicherung dem Wind zugegeben wird = O2, wird bei der Inbetriebnahme durch die Messung der Eisentemperatur gesucht und dann dem Regler vorgegeben.All the more oxygen with supersonic sound through the lances are added, the larger the oven. The optimal ratio of the amount of oxygen added by lances = O1 becomes the amount of oxygen that enriches the wind is added = O2, is put into operation by the measurement the iron temperature is searched for and then given to the controller.

Das optimale Verhältnis der Volumenanteile von CO zu CO2 im Gichtgas wird aus der Summe der resultierenden Betriebskosten ermittelt. Eine stärker reduzierende Atmosphäre mit höheren Anteilen von CO ergibt Ersparnisse an Silizium und höhere Aufwendungen für Koks. Die optimale Einstellung hängt daher auch von den jeweiligen Marktpreisen der Rohstoffe ab. Es gibt Zeiten und Länder, in denen eine mehr oxidierende Betriebsweise ökonomisch ist. Das günstigste Verhältnis von CO zu CO2 muss daher von Zeit zu Zeit überprüft werden und die dazu passende Menge des Sauerstoffs eingestellt werden.The optimal ratio of the volume shares of CO to CO2 in the Top gas is the sum of the resulting operating costs determined. A more reducing atmosphere with higher ones Proportions of CO result in savings in silicon and higher Coke expenses. The optimal setting therefore depends also depending on the respective market prices of the raw materials. There are Times and countries where a more oxidizing mode of operation is economical. The cheapest ratio of CO to CO2 must therefore be checked from time to time and the appropriate one Amount of oxygen can be adjusted.

Die beabsichtigte optimale Einstellung von CO zu CO2 schwankt, weil sie durch die Streuung der chargierten Mengen von Kohlenstoff zu Eisen hervorgerufen wird. Diese kurzfristigen Schwankungen können durch eine Anpassung der Zugabe von Sauerstoff ausgeglichen werden. Die Boudouard-Reaktion ist prompt, weil die Temperatur des Koksbettes bei Zugabe von Sauerstoff sehr schnell steigt. Die Zufuhr der Gesamtmenge von Sauerstoff zu O1 und zu 02 wird daher so gesteuert, dass das Verhältnis von CO zu CO2 auf dem wirtschaftlichsten Wert gehalten wird. Bei dieser Fahrweise wird dann auch die geringste Streuung der Analyse erreicht.The intended optimal attitude of CO to CO2 fluctuates, because by scattering the batches of Carbon to iron is produced. This short term Fluctuations can be caused by adjusting the addition of Oxygen can be balanced. The Boudouard reaction is prompt, because the temperature of the coke bed when adding Oxygen rises very quickly. The supply of the total amount of Oxygen to O1 and 02 is therefore controlled so that the Ratio of CO to CO2 at the most economical value is held. With this driving style, the least spread of analysis achieved.

Claims (4)

  1. Process for smelting metallic raw materials in a smelting furnace, in which coke is burnt in a coke bed with preheated air and substantially pure oxygen, a first fixed part rate of the oxygen being injected into the coke bed at supersonic velocity, and the flue gases heat the metallic charge in countercurrent, in which the melt is superheated and carburized in the coke bed, and in which a blast furnace gas leaves the smelting furnace, characterized in that a second part rate of the oxygen is admixed in a controlled manner with a furnace blast in a blast ring, the second oxygen part rate being controlled as a function of the CO/CO2 content of the blast furnace gas.
  2. Process according to Claim 1, characterized in that the temperature of the metallic iron is kept constant by means of a control loop.
  3. Process according to Claim 1 or 2, characterized in that the furnace atmosphere is kept constant by means of a control loop.
  4. Process according to Claim 1, characterized in that the CO/CO2 content of the blast furnace gas is adjusted to minimize a loss in the smelting furnace.
EP97903198A 1996-03-04 1997-03-03 Process for melting of metal materials in a shaft furnace Expired - Lifetime EP0826130B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CH55696 1996-03-04
CH556/96 1996-03-04
CH00556/96A CH690378A5 (en) 1996-03-04 1996-03-04 A process for melting metallic charge materials in a shaft furnace.
PCT/CH1997/000080 WO1997033134A1 (en) 1996-03-04 1997-03-03 Process for melting of metal materials in a shaft furnace

Publications (2)

Publication Number Publication Date
EP0826130A1 EP0826130A1 (en) 1998-03-04
EP0826130B1 true EP0826130B1 (en) 2003-07-23

Family

ID=4189741

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97903198A Expired - Lifetime EP0826130B1 (en) 1996-03-04 1997-03-03 Process for melting of metal materials in a shaft furnace

Country Status (18)

Country Link
US (1) US5946340A (en)
EP (1) EP0826130B1 (en)
JP (1) JPH11504707A (en)
KR (1) KR19990008225A (en)
AT (1) ATE245791T1 (en)
AU (1) AU1763997A (en)
BR (1) BR9702109A (en)
CA (1) CA2217995A1 (en)
CH (1) CH690378A5 (en)
CZ (1) CZ342097A3 (en)
DE (1) DE59710457D1 (en)
ES (1) ES2205170T3 (en)
PL (1) PL323343A1 (en)
PT (1) PT826130E (en)
RU (1) RU2137068C1 (en)
SK (1) SK147397A3 (en)
TR (1) TR199701297T1 (en)
WO (1) WO1997033134A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19954556A1 (en) * 1999-11-12 2001-05-23 Messer Griesheim Gmbh Process for operating a melting furnace
FR2893122B1 (en) * 2005-11-10 2014-01-31 Air Liquide PROCESS FOR THE SUPERSONIC INJECTION OF OXYGEN IN AN OVEN
EP1939305A1 (en) * 2006-12-29 2008-07-02 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Process for making pig iron in a blast furnace
JP5515242B2 (en) * 2008-06-30 2014-06-11 Jfeスチール株式会社 Hot metal production method using vertical melting furnace
JP5181875B2 (en) * 2008-06-30 2013-04-10 Jfeスチール株式会社 Hot metal production method using vertical melting furnace
JP5262354B2 (en) * 2008-06-30 2013-08-14 Jfeスチール株式会社 Hot metal production method using vertical melting furnace
US8377372B2 (en) * 2009-11-30 2013-02-19 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dynamic lances utilizing fluidic techniques
US20110127701A1 (en) * 2009-11-30 2011-06-02 Grant Michael G K Dynamic control of lance utilizing co-flow fluidic techniques
US8323558B2 (en) * 2009-11-30 2012-12-04 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dynamic control of lance utilizing counterflow fluidic techniques
US9797023B2 (en) * 2013-12-20 2017-10-24 Grede Llc Shaft furnace and method of operating same
KR200480927Y1 (en) 2014-07-10 2016-07-25 임홍섭 A shelve by assemble
RU2709318C1 (en) * 2019-04-24 2019-12-17 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Blast-furnace smelting method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR890211A (en) * 1941-10-25 1944-02-02 Eisenwerke A G Deutsche A process for producing cast iron in a blast furnace in the presence of oxygen
GB914904A (en) * 1959-10-28 1963-01-09 British Oxygen Co Ltd Melting of ferrous metal
US3964897A (en) * 1973-03-02 1976-06-22 Klockner-Werke Ag Method and arrangement for melting charges, particularly for use in the production of steel
GB1571484A (en) * 1975-12-05 1980-07-16 Boc Ltd Process for melting metal in a vertical shaft furnace
US4324583A (en) * 1981-01-21 1982-04-13 Union Carbide Corporation Supersonic injection of oxygen in cupolas
US4547150A (en) * 1984-05-10 1985-10-15 Midland-Ross Corporation Control system for oxygen enriched air burner
ZA85287B (en) * 1985-01-21 1986-09-24 Korf Engineering Gmbh Process for the production of pig iron
US5060913A (en) * 1989-08-30 1991-10-29 Regents Of The University Of Minnesota Integrated metallurgical reactor
GB9202073D0 (en) * 1992-01-31 1992-03-18 Boc Group Plc Operation of vertical shaft furnaces
JPH07190629A (en) * 1993-04-15 1995-07-28 Ishikawajima Harima Heavy Ind Co Ltd Scrap material preheating and charging device
JPH07332860A (en) * 1994-06-10 1995-12-22 Taiyo Chuki Co Ltd Vertical type rapid melting furnace

Also Published As

Publication number Publication date
DE59710457D1 (en) 2003-08-28
ATE245791T1 (en) 2003-08-15
CZ342097A3 (en) 1998-03-18
CH690378A5 (en) 2000-08-15
TR199701297T1 (en) 1998-06-22
RU2137068C1 (en) 1999-09-10
BR9702109A (en) 2001-11-27
AU1763997A (en) 1997-09-22
WO1997033134A1 (en) 1997-09-12
MX9708409A (en) 1998-08-30
KR19990008225A (en) 1999-01-25
ES2205170T3 (en) 2004-05-01
US5946340A (en) 1999-08-31
EP0826130A1 (en) 1998-03-04
JPH11504707A (en) 1999-04-27
PT826130E (en) 2003-12-31
PL323343A1 (en) 1998-03-30
SK147397A3 (en) 1998-06-03
CA2217995A1 (en) 1997-09-12

Similar Documents

Publication Publication Date Title
EP0826130B1 (en) Process for melting of metal materials in a shaft furnace
DE2413580C3 (en) Method for reducing coke consumption when reducing iron oxide in a shaft furnace
EP0126391A1 (en) Iron production method
DE3607774A1 (en) METHOD FOR TWO-STAGE MELT REDUCTION OF IRON ORE
DE2723857A1 (en) METHOD AND DEVICE FOR STEEL PRODUCTION
DE3042239C2 (en) Application of a process for the production of an alloy of chromium oxide and iron oxide containing mainly chromium and iron to the production of a starting melt for the production of stainless chromium steel
EP0680592B1 (en) Process and device for melting iron metallurgy materials in a coke-fired cupola
DE4041689C2 (en) Process and plant for producing liquid steel from iron oxides
US3752663A (en) Continuous production of liquid steel using arc furnaces
DE1030565B (en) Process for the refining of ores
EP2213971B1 (en) Device for melting inset material in a cupola
EP0521523B1 (en) Process for running a cupola
DE625038C (en) Process for the simultaneous production of pig iron or steel and a slag that can be used as cement
DE1154817B (en) Process for reducing iron ore by introducing finely crushed iron ore, flux, fuel, oxygen and / or air through burners into a reaction chamber
DE2819465C2 (en)
DE19917128C1 (en) Production of crude iron in a blast furnace comprises injecting oxygen at the injection sites through burners, sucking the required partial streams of the contaminated blast furnace gas using a partial vacuum, and burning the gas
US4676825A (en) Hot metal desulphurizing and dephosphorizing process
US2162402A (en) Method of running a blast furnace
DE853795C (en) Process for melting and overheating metals in a shaft furnace
DE826593C (en) Process for melting iron and steel scrap
DE19909742A1 (en) Method of operating a shaft furnace
DE916647C (en) Creation of a base material for iron powder production
DE184160C (en)
US3583865A (en) Refining of molten iron
US20060011013A1 (en) Process and device for direct production of steel from iron-containing materials

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB IT LI NL PT

17P Request for examination filed

Effective date: 19980312

17Q First examination report despatched

Effective date: 20000215

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MESSER GRIESHEIM GMBH

AK Designated contracting states

Designated state(s): AT CH DE ES FR GB IT LI NL PT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59710457

Country of ref document: DE

Date of ref document: 20030828

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031127

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20040227

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040309

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20040310

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20040311

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20040318

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2205170

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040426

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050303

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051001

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Effective date: 20050905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051130

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20051001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20051130

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050304

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160321

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160330

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59710457

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20170302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170302