EP0825811A1 - Non-genetically modified mammal as a model for multiple sclerosis - Google Patents

Non-genetically modified mammal as a model for multiple sclerosis

Info

Publication number
EP0825811A1
EP0825811A1 EP97914408A EP97914408A EP0825811A1 EP 0825811 A1 EP0825811 A1 EP 0825811A1 EP 97914408 A EP97914408 A EP 97914408A EP 97914408 A EP97914408 A EP 97914408A EP 0825811 A1 EP0825811 A1 EP 0825811A1
Authority
EP
European Patent Office
Prior art keywords
animal
therapeutic process
cells
factor
multiple sclerosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97914408A
Other languages
German (de)
French (fr)
Inventor
François Rieger
Hervé Perron
Nabila Benjelloun
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biomerieux SA
Original Assignee
Biomerieux SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biomerieux SA filed Critical Biomerieux SA
Publication of EP0825811A1 publication Critical patent/EP0825811A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4713Autoimmune diseases, e.g. Insulin-dependent diabetes mellitus, multiple sclerosis, rheumathoid arthritis, systemic lupus erythematosus; Autoantigens
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates

Definitions

  • the present invention relates to the production of a mammalian, non-human, modified animal, having a pathophysiology similar to that of patients suffering from multiple sclerosis (MS), as well as to the uses of the animal thus obtained.
  • MS multiple sclerosis
  • BBB blood-brain barrier
  • This factor induces apoptotic death of astrocyte lines, and also of oligodendrocytes, in vitro (see patent application PCT / FR95 / 00178). These two fractions are also found in the cerebrospinal fluid (CSF) and seru s of patients suffering from MS (Dobransky & col submitted).
  • CSF cerebrospinal fluid
  • MS Dobransky & col submitted
  • the present invention relates to a modified, non-human, mammalian animal, in which signs or abnormalities characteristic of multiple sclerosis are observed when they are observed in humans.
  • modified animal means an animal which, compared to a control animal of the same family, the same genus and the same species, has undergone a voluntary modification.
  • This voluntary modification does not affect the animal's genome and in particular the animal is not transgenic. It is essentially characterized by a pathophysiological condition linked to an infection of the animal with the gliotoxic factor as obtained from biological fluid taken from patients suffering from multiple sclerosis.
  • a mammalian animal, non-human, modified without affecting its genome having at least any two of the following signs or anomalies: (a) a blood-brain barrier open or permeable to the water-soluble molecules of non-blood specific to the brain parenchyma; (b) an astrocytic attack notably revealed by the disorganization of physiological networks, by a disappearance of the astrocytic feet around the capillary vessels and by gliosis; (c) activation of microglial cells; (d) demyelination plaques, especially present in the brainstem and / or the cerebellar white matter; (e) lesions of the glial cells and of the endothelial cells of the central nervous system, in particular a modification of the morphology and / or at least partial fragmentation of the DNA of glial cells of the astrocytic type, at a distance from the injection site ; preferably, the animal has at least two of the pathological signs (a) a blood-brain barrier open or
  • gliotoxic factor * have an infectious amount of gliotoxic factor, as obtained from a culture of monocytes or from a biological fluid from a patient suffering from multiple sclerosis,
  • a method for measuring the effectiveness of a therapeutic method, in particular a medicinal agent, intended for the treatment of multiple sclerosis comprising the steps consisting in:
  • the modified animal according to the invention lies in obtaining hybridomas capable of producing monoclonal antibodies directed against the gliotoxic factor and originating from B lymphocytes taken from said animal and fused with tumor cells adapted to the obtaining hybridomas (rat / rat or rat / mouse hybridomas according to Kôhler and Milstein 1975).
  • the invention relates to a process for the production of monoclonal antibodies directed against gliotoxic factor and / or against molecules induced or modified by the effects of gliotoxic factor, comprising the steps consisting in fusing B lymphocytes taken from an animal of the invention, with appropriate tumor cells, and to have produced by the hybridoma after selection, said antibodies.
  • the subject of the invention is also a monoclonal antibody directed against the gliotoxic factor and / or against molecules induced or modified by the effects of the gliotoxic factor, capable of being obtained by the above method.
  • the animal modified according to the present invention belongs to the family of muridae, in particular it is a mouse or a rat.
  • the animal of the invention could be a monkey or a guinea pig.
  • Figure 1 is a photograph showing the organization and orientation of periventricular astrocytes after injection of the toxic factor:
  • Fig. 1A controls: the GFAP + cells close to the left lateral ventricle are of the fibrous type; the cell bodies are densely marked; the extensions are relatively thick; GFAP + cells are oriented parallel to the cutting plane (vertical-frontal section);
  • Fig. 1B rats treated with the toxic factor: the GFAP + cells observed near the left lateral ventricle have an enlarged and / or polymorphic soma with a disorganization of the cytoplasmic extensions; the orientation of these cells is perpendicular to the section plane and the organization of the cells is palisade;
  • FIG. 1C at higher magnification of FIG. 1B, a normal astrocyte is observed
  • FIG. 1D at higher magnification of FIG. 1B, an astrocyte is observed whose cytoplasmic extensions are oriented towards the left lateral ventricle;
  • FIG. 1 illustrates nodules in the CNS of rats treated with the toxic factor:
  • Fig. 2A in the striatu of the control rats, the GFAP + cells are small, star-shaped, the extensions are short and thin;
  • Fig. 2B in rats treated with factor, the astrocytic bodies are enlarged, and have abnormal cytoplasmic extensions (very fine and numerous);
  • Fig. 2C in rats treated with factor, nodules are observed in the striatum;
  • Figure 3 represents the organization of periventricular astrocytes following the injection of the gliotoxic factor:
  • Fig. 3A in the control rats, the astrocytic extensions form GFAP + immunoreactive patches around the vessels;
  • Fig. 3B in the treated rats, the astrocytic extensions around the vessels regressed or disappeared; a "depletion" of the vascular environment in astrocytes is also observed;
  • Fig. 3C in treated rats, near certain vessels, foci of astrocytic gliosis are formed; astrocytes are densely labeled with GFAP; the cytoplasmic extensions are thicker;
  • Figure 4 shows the distribution of astrocytes in the cortex, 10 days after injury:
  • Fig. 4A in the control animals, in the marginal zone of the piriform cortex, the astrocytes have an aspect of "candles" and their cytoplasmic extensions are oriented towards the pia perpendicular to its surface;
  • Fig. 4B in layer I of the piriform cortex in the treated rats, there is a structural modification of the GFAP + cells which have lost their physiological orientation; there is a disorganization of the glia limitans established by the astrocytic prolongations;
  • Fig. 4C in control animals, in layers II and III of the cortex, the GFAP + cells have a star shape; numerous cytoplasmic extensions occupy the intercellular space; Fig. 4D: in the treated rats, a regression of the cytoplasmic prolongations is observed, an increase in the intercellular space and a loss of the "star" morphology of the astrocytes; Bar: 40 ⁇ m
  • Figure 5 highlights the fragmentation of cellular DNA by the TUNEL technique after treatment with the toxic factor:
  • Fig. 5A in the treated rats, the TUNEL + cells are observed in the wall of the lateral ventricles;
  • Fig. 5B in treated rats, observation in the white matter of the cerebellum;
  • Fig. 5C in the treated rats, observation in the layer of the cerebellum grains
  • Fig. 5D in the treated rats, observation at the level of the arachnoid vessels
  • Fig. 5E in the treated rats, it is observed that in the cerebellum, the fragmented DNA is found in the cytoplasm;
  • Fig. 5F in the treated rats, the TUNEL " * " cells are observed in the choroid plexus, with hematoxylin counter staining;
  • Fig. 6A GFAP + cells (blue), also TUNEL "1" (brown) in the cortex;
  • Fig. 6B in the striatu; the absence of cytoplasmic extensions and the attenuation of the GFAP labeling are observed;
  • Fig. 6C doubly labeled GFAP / TUNEL cell in the cerebellum
  • Fig. 6D doubly labeled cells (FVIII / TUNEL) in the vascular wall; the labeling of FVIII is very weak;
  • Figure 7 is a photograph showing the opening of the blood-brain barrier in rats treated with the toxic factor:
  • Fig. 7A in a large periventricular zone, a diffusion of blood imoglobulins is observed; 1 * immunostaining is diffuse;
  • Fig. 7B at higher magnification, an IgG halo is observed around a vessel
  • Figure 8 represents the microglial-macrophagic reactivity
  • Fig. 8A in the controls, OX42 + cells are observed in the striatum; the microglia is in quiescent form, the marking is weak; very few cells are observed; Fig. 8B: in the treated animals, there is a morphological modification of the OX42 + cells and an increase in their number;
  • Fig. 8C at higher magnification of FIG. 8B, quiescent microglial cell
  • Fig. 8D at higher magnification of FIG. 8B, reactive microglial branched type cell
  • bar A, B, 20 ⁇ m C, D, 40 ⁇ m
  • Figure 9 illustrates foci of reactive microglia in the brainstem: Fig. 9A: focus of OX42 + cells in the brainstem;
  • Fig. 9B at higher magnification, the OX42 + cells are reactive of the branched and pseudopodic type
  • Figure 10 illustrates the yelin degradation: Fig. 10A: white substance of the cerebellum where there is an attenuation of 1 • immunostaining in a large well defined area;
  • Fig. 10B bundle of myelin in the cerebellum where a strong myelin degradation is observed
  • Fig. 10C enlargement of Fig. 10B: very clear myelin degradation
  • Figure 11 represents a co-detection of astrocytes and TUNEL " * " cells compared to astrocytes in patient biopsies (MS):
  • Fig. 11A reactive astrocyte (blue) surrounded by TUNEL "1" cells (brown);
  • Fig. 11B small GFAP + cells, weakly labeled by anti-GFAP, lacking cytoplasmic extensions and located at the periphery of the plate;
  • Fig. 11C TUNEL " * " cells in the vascular wall, with endothelial phenotype; Bar: 40 ⁇ m
  • the gliotoxic factor CSF or urine samples, or monocytes are taken from patients suffering from MS.
  • the toxic factor is partially purified after treatment on an ion exchange column, then on an exclusion separation column, in accordance with Example 11 of patent application PCT / FR95 / 00178.
  • the gliotoxic factor consists mainly of a light fraction of 17 Kd and a heavy fraction of 21 Kd, both of which have a strong affinity for concanavaulin.
  • the separation of the gliotoxic factor is detailed below, from crude culture supernatants of monocytes / macrophages from patients suffering from MS.
  • Culture medium includes RPMI1640 (Boehringer), penicillin-streptomycin (bioMérieux), L-glutamine (bioMérieux), sodium pyruvate (Boehringer), non-essential amino acids lOOx (Boehringer), serum human AB taken from healthy donors and seronegative for all viruses transmissible by known blood derivatives (see PERRON et al., The Lancet, vol 337, pages 862-863, 6 April 1991). Lymphoid cells are grown in culture flasks of 75 cm 3 Primaria (Falcon) after being separated from the plasma and other blood cellular components by centrifugation on Ficoll (Lymphoprep ®, Flow).
  • Primaria Falcon
  • lymphoid cells 50 ml of blood are taken by venipuncture on a sterile heparin tube (lithium heparin). The blood and heparin are well mixed as soon as the blood is drawn. Alternatively, blood can be drawn into tubes containing EDTA. It is then important to immediately transport the tubes maintained at + 4 ° C to the laboratory, where they will be handled under a "biohazard" laminar flow culture hood under sterile conditions.
  • an "RPMI” medium which comprises 100-150 ml of RPMI 1640 medium, a mixture of penicillin and streptomycin, 4% L-glutamine, 1% sodium pyruvate, 1% acids non-essential amino Boehringer (100X). Also prepared are 3 sterile 50 ml conical bottom tubes (Falcon) containing 10 ml of the "RPMI” medium described above, and 4 sterile 50 ml tubes with 20 ml of Ficoll at the bottom. The heparinized tubes are opened to pipette the blood, deposit it in the tubes containing medium and mix it gently with the medium described above.
  • Falcon sterile 50 ml conical bottom tubes
  • the tubes are recovered in which a pipette is gently inserted up to the top of the "Ficoll / plasma" interface and the whitish layer located above the Ficoll is gently sucked in by concentric circles from the walls , then by describing "zig-zags" from one side to the other of the surface of the Ficoll.
  • the aspirated medium is placed in 50 ml tubes, diluted in at least 3 times the volume of RPMI medium and mixed gently by inverting the sterile stoppered tubes.
  • the tubes are then centrifuged at + 15 ° C for 10 minutes at 1800 rpm, with a slow deceleration mode.
  • the supernatant is removed as above, the pellet is gently resuspended in 5 ml of "RPMI” medium with 15% SH and the resuspended cells are distributed in the bottles placed flat and barely raised. The suspension is immediately distributed, stirring each bottle flat. The centrifuge tubes are rinsed with 5 ml of "RPMI” medium at 15% SH, and the suspension is added and distributed in the two bottles, as before.
  • all the media used for these stages are at 37 ° C. (reheated in a water bath). Once the bottles are closed, they are kept flat in a humid oven at 37 ° C with 5% C0 2 until the next morning.
  • the cell suspensions thus collected 24 h after the cultivation are centrifuged at + 15 ° C for 10 minutes at 1800 rpm, with a slow deceleration mode.
  • the cell pellet can be taken up in fetal calf serum with 10% DMSO (Dimethyl sulfoxide) to be frozen at -80 ° C or in liquid nitrogen according to a procedure for maintaining viable cells.
  • DMSO Dimethyl sulfoxide
  • the corresponding supernatant is then centrifuged at 3000 rpm for 30 min in order to remove the cellular debris, and the clarified supernatant is aliquoted, listed as a 24 h culture sample, ie Jl, then stored in the freezer at -80 ° C. .
  • the bottles are taken out, the supernatant is gently aspirated, and, as before, centrifuged at 3000 rpm for 30 minutes in order to remove cellular debris.
  • the clarified supernatant is aliquoted, listed as a sample after 3 days of culture, ie D3, then stored in the freezer at -80 ° C.
  • the flasks are immediately filled with 5 ml of RPMI medium at 5% SH and replaced in the oven. From this moment, the culture medium contains only 5% of SH and this proportion will be used for all medium renewals.
  • the media from the flasks are then removed, stored under aliquots of clarified medium of cellular debris, at -80 ° C.
  • the supernatant thus collected constitutes the sample from which the gliotoxic factor will be separated, according to the technique described in patent application PCT / FR95 / 00178.
  • Intraventricular brain injections The experiments are carried out on Lewis rats, adults (2 months), weighing between 200-250 g at the start of the experiment. The animals are anesthetized with chloral hydrate (400 mg / kg) injected intraperitoneally. The injections of the toxic solution, 5 to 10 ⁇ g of active proteins in 5 ⁇ l of a sterile PBS (saline phosphate buffer) solution are carried out by stereotaxic methods, in the left lateral ventricle, (AP: 0.8, L : 1.5, P: 4). The injections are made using a micropipette (22 ⁇ m in diameter) attached to a 25 ⁇ l Hamilton syringe.
  • Six control animals are subjected to injections under the same conditions with 5 ⁇ l of a sterile PBS solution, and are sacrificed at the same time. All animals receive a lethal dose of chloral hydrate (0.5 g / kg), then perfused transcardially through the ascending aorta with a solution of 4% paraformaldehyde in 0.12 M phosphate buffer.
  • brains with cervical marrow are postfixed in the same fixative for one hour at 4 ° C, then cryoprotected in a 10% sucrose solution in 0.12 M phosphate buffer for 2 days, then frozen in isopentane cooled in the liquid nitrogen at -40 ° C and stored at -80 ° C.
  • Slices with a vertical-frontal cryostat, 10 ⁇ m thick, serialized every 100 ⁇ m are collected on 1% gelatinized slides.
  • an anti-glial acid fibrillar glial protein (anti-GFAP) monoclonal antibody (BOEHRINGER) diluted to 1/200 is used.
  • Myelin is visualized by an anti-basic myelin protein antibody (anti-MBP) (BOEHRINGER) diluted to 1/500.
  • anti-MBP anti-basic myelin protein antibody
  • SEROTEC monoclonal antibodies diluted 1/500
  • a rat anti-immunoglobulin antibody (AMERSHAM) diluted to 1/200 is used to visualize a possible rupture of the BBB.
  • An anti-FVIII antibody is used to visualize endothelial cells.
  • the sections are incubated with the primary antibodies at the concentrations indicated overnight at 4 ° C., they are diluted in PBS 0.1 M 2% BSA (bovine serum albumin), 0.3% Triton-X.
  • the sections intended to be marked with anti-MBP are degreased beforehand in absolute alcohol containing 5% acetic acid, for 25 minutes at 4 ° C., then immersed in alcohol baths at 95 and then at 70 , for 5 minutes for each, and rinsed several times in PBS.
  • the secondary antibody (anti-biotinylated mouse IgG, AMERSHAM) diluted to 1/200 is placed in the presence of the sections, for approximately 2 hours at room temperature.
  • the sections are then incubated with the streptavidin-biotin / peroxidase complex (1/200).
  • the peroxidase activity is revealed in the presence of its specific substrate H 2 0 2 and of DAB.
  • Certain sections treated according to the TUNEL method will be counter-colored with 1 he atoxyline.
  • results presented in this example relate to the observations carried out on rats sacrificed 10 days after the operation.
  • the lesion is bilateral, and affects the distribution, orientation and organization of all of the rat's CNS astrocytes.
  • Astrocytes show profound morphological changes which vary according to their location. The lesions will be described, starting from the periventricular spaces towards the subpial spaces.
  • telencephalic regions by moving away from the ventricular spaces, in particular in the striatum, one observes GFAP cells of fibrous appearance densely nested one inside the other, forming nodules (Fig. 2B, 2C). These nodules are observed in all of the telencephalic regions;
  • astrocytes presenting reactive forms, characterized by an enlargement of their somas and a thickening of their extensions, they are densely marked with GFAP and often have cell foci near certain vessels (Fig. 3C);
  • the GFAP " * cells located in the deep layers lose their extensions and become scarce; in the surface layers, the astrocytes whose cytoplasmic prolongations orient themselves towards the pia normally have an abnormal morphology and an anarchic orientation (Fig. 4B).
  • the distribution of astrocytes in control rats is normal and comparable to that described by Kal an & Hajos 1989.
  • Astrogliosis, in controls without gliotoxin (that is to say to which a placebo was injected), is limited to level of the injection site.
  • Fragmentation of cellular DNA induced by the toxic factor in the CNS of the rat (demonstrated by the TUNEL method)
  • TUNEL + Cells giving a positive response in the method of TUNEL (TUNEL + ) are observed throughout the CNS of the rat. They are more frequent in the wall of the ventricles where they correspond to type cells ependymal (Fig. 5A). They are observed in the cerebellum (Fig. 5B), some are localized in the layer of grains (Fig. 5C), others in the walls of the blood vessels located in the subarachnoid spaces (Fig. 5D) and intraparenchymatous, and also in the choroid plexus (Fig. 5E). Some TUNEL " * " cells have fragmented DNA in their cytoplasm. Other TUNEL " *" cells are observed in the choroid plexus (Fig. 5F).
  • GFAP 4 " cells are TUNEL 4" . They are observed throughout the CNS (Fig. 6A, 6B, 6C). TUNEL 4 " cells labeled with FVIII are also observed (FIG. 6D). It should be noted that the labeling of FVIII in this case is very weak. No case of DNA fragmentation is observed in the control animals. One or two 4 " TUNEL cells are sometimes visible at the injection site of the placebo solution. However, the presence of TUNEL cells " disseminated in the cerebral parenchyma is specific to gliotoxin 4 animals " . c) Opening of the blood-brain barrier A diffusion of immunoglobulins from the blood is observed in the cerebral parenchyma in all animals treated with the toxic factor. It is more marked in the periventricular spaces, around certain vessels (Fig. 7A, 7B). This phenomenon was not observed in the controls. d) Microglial-macrophagic reactivity
  • the OX42 4 " cells have characteristic reactive forms, a distinction is made between branched and pseudopodic forms. They are more numerous than what is observed in the control rats (FIG. 8B). In certain regions of the brainstem and of the cerebellum, small foci of 4 " OX42 cells are observed (Fig. 9A, 9B). e) Toxic factor-induced demyelination in rats Demyelination areas are visualized by attenuation of the labeling of MBP in well-defined foci. These foci are very clearly observable in the brainstem as well as the cerebellar white matter (Fig. 10A). Cases of myelin degradation are also observed scattered throughout practically the whole CNS of the rat (Fig. 10B, 10C).
  • CSF urine or monocyte culture
  • MS patients injected into the rat CSF induces lesions affecting glial and also endothelial CNS cells.
  • the toxic factor is probably distributed by the CSF which circulates in the ventricles, then in the ⁇ ubarachnoid spaces. It is absorbed by the arachnoid vessels, then the venous sinuses.
  • TUNEL 4 " cells are located in the ventricular walls (ependymal type cells) and arachnoid vessels. Involvement of the ependymal cells would modify the interface between the CSF and the brain, which is likely to promote the formation of lesions in periventricular spaces In MS, lesion plaques are located near the ventricular system and are frequent around the venules.
  • astrocytes The lesion affecting astrocytes is complex. A fragmentation of astrocyte DNA is observed suggesting death by apoptosis of these cells.
  • Astrocytes induce the formation and maintenance of the BBB, through their perivascular cytoplasmic extensions (astrocytic feet), even if they do not constitute it (Stewart & Wiley 1981).
  • the alteration of the perivascular astrocytes suggests a retraction of the astrocytic feet which can consequently modify the tightness of the BBB.
  • the fragmentation of the DNA of cerebral endothelial cells suggests modifications of the intrinsic properties of these cells which could lead to an opening of the BBB.
  • the detection of blood immunoglobulins in the rat brain is proof of this. It is possible that it is the morphological modifications of the perivascular astrocytes, which occur very early, which lead to the modification of the phenotype of the endothelial cells and therefore to the alteration of the BBB.
  • Astrogliosis has also been observed near certain vessels and a very marked proliferation of fibrous astrocytes throughout the rat's CNS.
  • Astrocytes, after stimulation, produce a variety of immunoregulatory molecules. They include IL-1 (Fontana & col 1982), IL-6 (Frei & col 1989), IFN-y (Tedeschi & col 1986) and also TNF- (Robbins & col 1987, Sawada & col 1989, Chung & col 1990).
  • TNF- ⁇ is toxic to endothelial cells (Deguchi & col 1989, Ishii & col 1992). It has an important role in the progression of lesions in MS (Sharief & col 1991).
  • TNF- ⁇ has a direct cytotoxic effect on oligodendrocytes and causes yelin destruction (Salt aj & Raine 1988). It induces proliferation of astrocytes in vitro (Barna & col 1990).
  • astrocytes are found at the crossroads of inflammatory reactions. They represent the resident immunocompetent cells in the CNS (Fontana & col 1987). A primary alteration of the astrocytes in the lesional processes of MS could both destabilize the hoostostatic balance of the CNS, and trigger a cascade of inflammatory events which would lead to demyelination.
  • Soluble factors of monocytic or lymphoid origin could alter the biological activity of astrocytes (Chung & col 1990) and induce cytokines, some potentially demyelinating.
  • Acrophagic microglial proliferation was observed in rats treated with the toxic factor. This reactivity is observed in the form of OX42 4 " foci located in the white matter, and no longer in the brainstem.
  • the activated microglia also produces cytokines, such as TNF- ⁇ (Frei & Fontana 1989, Hetier & col 1990), IL-6 (Frei & col 1989) et al.
  • Macrophagic microglial reactivity has been described in MS and could participate in demyelination processes (oodroofe & col 1986, Esiri & col 1987).
  • Demyelination is also observed.
  • the demyelination areas are very clearly delimited in the brainstem and the cerebellar white matter. These aspects are very close to those observed in MS.
  • the results obtained suggest that the toxic factor isolated from the CSF of patients MS induces large lesions in the CNS of the rat. These lesions are similar in nature and distribution to some of the lesions observed in MS, in particular demyelination, fibrillar astrogliosis, macrophagic microglial reactivity and the opening of the BBB with the formation of an edema objectified by the diffusion of intraparenchymal plasma immunoglobulins.
  • a sample of purified gliotoxic factor is prepared according to the description made in Example 1 and in patent application PCT / FR95 / 00178.
  • a series of female Lewis rats is selected according to the criteria described in Example 1. Thirty or more of these animals receive on day 0, a dose of gliotoxic factor by stereotaxic intraventricular injection, according to the protocol described in Example 1. On days 0, 1, 3, 8, and 10 (for example) after injection of the gliotoxic factor, they receive an adequate dose of a therapeutic agent such as Rolipram ® , 1 ⁇ interferon, 1 • azathioprine, cyclophosphamide, an anti-gliotoxin antiserum, or any other therapeutic means to be evaluated.
  • This series "A” corresponds to sick animals (gliotoxin +) treated with an active product or process, and can be reproduced in several variants to assess a optimal quantitative and qualitative administration protocol among all variants.
  • Brain histopathology (away from the injection site): - morphological and histological anomalies of the astrocytes (as described in the previous examples); DNA fragmentation (TUNEL positive technique) mainly in astrocytic cells, but possibly and in particular ependymal or endothelial;
  • Therapeutic efficacy is demonstrated if a significant difference (reproducible in a number of statistically analyzable animals) exists between the frequency, intensity, surface area, summation, of the above-described anomalies observed in animals of series A ( gliotoxin " *" / active treatment) and those of series B (gliotoxin " * " / placebo treatment).
  • the therapeutic efficacy is all the better as the difference between the observations reported in series A and those reported in series C, becomes non-significant according to the same criteria as above.
  • EXAMPLE 5 OBTAINING SPECIFIC ANTIBODIES FOR ANTI-GLIOTOXIC FACTOR AND / OR DIRECTED AGAINST MOLECULES INDUCED OR MODIFIED BY THE EFFECTS OF THE GLIOTOXIC FACTOR Injection of gliotoxic factor (intracerebral, intraperitoneal, or PI, intravenous, or IV, intramuscular) or intradermal, or ID) to a series of animals according to Example 1.
  • gliotoxic factor intracerebral, intraperitoneal, or PI, intravenous, or IV, intramuscular
  • ID intradermal, or ID
  • a fraction of gliotoxin is exposed to the various antibody suspensions according to an appropriate serological technique and the specific antibodies are revealed by a positive reaction.
  • a source of recombinant gliotoxin or synthetic peptides derived from its sequence can be used for this screening.
  • Tissue antigens The hybridoma clones of interest are subsequently cultured to produce monoclonal antibodies.
  • Tissue antigens Tissue antigens:
  • Serological tests can be applied to antigens extracted from the tissues of sick animals and compared with equivalent tissues from control animals to identify molecules induced or modified by the effect of the gliotoxic factor.
  • These antibodies may have a diagnostic or even therapeutic interest.
  • GFAP glial figrillary acidic protein
  • Lumsden CE (1970) The pathology of multiple sclerosis. IN / P.J. Vinken and G.. Bruyn (Eds), Handbook of clinical Neurol. Flight. 19 North-Holland Publishers. Amsterdam, PP. 217-309.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Hematology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Rehabilitation Therapy (AREA)
  • Toxicology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Diabetes (AREA)
  • Animal Behavior & Ethology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Rheumatology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

A non-human mammal genetically modified without affecting its genome and having any two of the following pathological signs: (a) a blood-brain barrier that is open or permeable to water-soluble blood molecules non-specific for the cerebral parenchyma, (b) an astrocyte disorder revealed particularly by physical network disorganisation, the disappearance of perivascular feet around the capillaries, and gliosis, (c) microglial cell activation, (d) demyelinisation plates, particularly in the brain stem and/or the cerebral white matter, and (e) central nervous system glial and endothelial cell lesions, as well as the uses of said animal, are disclosed.

Description

MAMMIFERE NON GENETIQUEMENT MODIFIE, MODELE POUR LA SCLEROSE EN PLAQUES NON-GENETICALLY MODIFIED MAMMAL, MODEL FOR MULTIPLE SCLEROSIS
La présente invention concerne l'obtention d'un animal mammifère, non humain, modifié, présentant une physiopathologie similaire à celle de patients atteints de sclérose en plaques (SEP) , ainsi que les utilisations de l'animal ainsi obtenu.The present invention relates to the production of a mammalian, non-human, modified animal, having a pathophysiology similar to that of patients suffering from multiple sclerosis (MS), as well as to the uses of the animal thus obtained.
Une altération de la barrière hématoencéphalique (BHE) semble être un élément crucial dans le développement des lésions de la sclérose en plaques (SEP) (Gay & Esiri 1991, Haw ins & col 1991, Thompson & col 1992, Poser 1993) . Il semble qu'une prédisposition génétique, combinée à un agent pathogène, peut-être d'origine virale, puisse entraîner ces lésions puis que se développe un processus inflammatoire et auto-immun démyélinisant ( asksman 1985) . Les observations de Perron & col (1989, 1991) d'une activité transcriptase inverse (RT) , et de la présence de particules virales dans des lignées de cellules leptomeningees et des monocytes en culture de patients atteints de SEP, apportent des arguments compatibles avec une étiologie virale, plus particulièrement rétrovirale, de la SEP. Une hypothèse récemment vérifiée par les présents inventeurs, est que, dans la SEP, des monocytes probablement infectés par un rétrovirus soient susceptibles de libérer des molécules gliotoxiques in vitro. En effet, le surnageant de monocytes prélevés chez des patients SEP en phase de poussée et mis en culture in vitro, ajouté au milieu de culture d'expiants de cortex de rat embryonnaire a montré une toxicité ciblée préférentielle ent sur les astrocytes (voir la demande de brevet PCT/FR95/00178 déposée au nom de la Demanderesse et dont le contenu est incorporé dans la présente description par référence) . La purification du surnageant de monocytes de patients atteints de SEP, actif in vitro, a mis en évidence un facteur toxique représenté majoritairement par une fraction de 17 Kd et une bande associée minoritaire de 21 Kd. Ce facteur induit une mort par apoptose de lignées d'astrocytes, et aussi d'oligodendrocytes, in vitro (voir la demande de brevet PCT/FR95/00178) . Ces deux fractions se retrouvent également dans le liquide céphalorachidien (LCR) et séru s de patients atteints de SEP (Dobransky & col soumis) .An alteration in the blood-brain barrier (BBB) seems to be a crucial element in the development of multiple sclerosis (MS) lesions (Gay & Esiri 1991, Haw ins & col 1991, Thompson & col 1992, Poser 1993). It seems that a genetic predisposition, combined with a pathogenic agent, possibly of viral origin, can lead to these lesions then that an inflammatory and auto-immune demyelinating process develops (asksman 1985). The observations of Perron & col (1989, 1991) of reverse transcriptase (RT) activity, and of the presence of viral particles in leptomeningee cell lines and monocytes in culture of MS patients, provide arguments compatible with a viral, more particularly retroviral, etiology of MS. A hypothesis recently verified by the present inventors is that, in MS, monocytes probably infected with a retrovirus are capable of releasing gliotoxic molecules in vitro. Indeed, the supernatant of monocytes taken from MS patients in the pushing phase and placed in culture in vitro, added to the culture medium of explants of embryonic rat cortex has shown a preferential targeted toxicity ent on astrocytes (see the request PCT / FR95 / 00178 patent filed in the name of the Applicant and the content of which is incorporated in the present description by reference). The purification of the supernatant of monocytes from MS patients, active in vitro, revealed a toxic factor mainly represented by a fraction of 17 Kd and an associated minority band of 21 Kd. This factor induces apoptotic death of astrocyte lines, and also of oligodendrocytes, in vitro (see patent application PCT / FR95 / 00178). These two fractions are also found in the cerebrospinal fluid (CSF) and seru s of patients suffering from MS (Dobransky & col submitted).
Les auteurs ont découvert que, de manière surprenante, l'inoculation du facteur toxique défini ci- dessus chez un animal, provoquait chez ce dernier, l'apparition de lésions physiopathologiques, en particulier cérébrales, de même nature que celles observées chez les patients atteints de sclérose en plaques. Ainsi, la présente invention concerne un animal mammifère, non humain, modifié, chez lequel on observe des signes ou anomalies caractéristiques de la sclérose en plaques quand elles sont observées chez l'homme.The authors discovered that, surprisingly, the inoculation of the toxic factor defined above in an animal, provoked in the latter, the appearance of pathophysiological lesions, in particular cerebral, of the same nature as those observed in patients with multiple sclerosis. Thus, the present invention relates to a modified, non-human, mammalian animal, in which signs or abnormalities characteristic of multiple sclerosis are observed when they are observed in humans.
Par animal modifié selon l'invention, on entend un animal qui, par rapport à un animal témoin de même famille, de même genre et de même espèce, a subi une modification volontaire. Cette modification volontaire n'affecte pas le génome de l'animal et en particulier l'animal n'est pas transgénique. Elle se caractérise essentiellement par un état physiopathologique lié à une infection de l'animal par le facteur gliotoxique tel qu'obtenu à partir de liquide biologique prélevé chez des patients atteints de sclérose en plaques.By modified animal according to the invention means an animal which, compared to a control animal of the same family, the same genus and the same species, has undergone a voluntary modification. This voluntary modification does not affect the animal's genome and in particular the animal is not transgenic. It is essentially characterized by a pathophysiological condition linked to an infection of the animal with the gliotoxic factor as obtained from biological fluid taken from patients suffering from multiple sclerosis.
Les différents objets de l'invention sont les suivants : un animal mammifère, non humain, modifié sans affecter son génome, possédant au moins deux quelconques des signes ou anomalies suivants : (a) une barrière hématoencéphalique ouverte ou perméable aux molécules hydrosolubleε du sang non spécifiques du parenchyme cérébral ; (b) une atteinte astrocytaire notamment révélée par la désorganisation des réseaux physiologiques, par une disparition des pieds astrocytaires autour des vaisseaux capillaires et par une gliose ; (c) une activation des cellules microgliales ; (d) des plaques de démyélinisation, notamment présentes dans le tronc cérébral et/ou la substance blanche cérébelleuse ; (e) des lésions des cellules gliales et des cellules endothéliales du système nerveux central, en particulier une modification de la morphologie et/ou une fragmentation au moins partielle de l'ADN des cellules gliales de type astrocytaire, à distance du point d'injection ; de préférence, l'animal possède au moins deux des signes pathologiques (a) , (d) et (e) ; selon une autre variante de l'invention, l'animal possède tous les signes (a), (b) , (c), (d) et (e) ; un animal mammifère, non humain, modifié sans affecter son génome, susceptible d'être obtenu par inoculation du facteur gliotoxique tel qu'obtenu dans une culture de monocytes ou dans un liquide biologique de patients atteints de sclérose en plaques ; un procédé d'obtention d'un animal tel que défini précédemment, comprenant les étapes consistant à :The various objects of the invention are as follows: a mammalian animal, non-human, modified without affecting its genome, having at least any two of the following signs or anomalies: (a) a blood-brain barrier open or permeable to the water-soluble molecules of non-blood specific to the brain parenchyma; (b) an astrocytic attack notably revealed by the disorganization of physiological networks, by a disappearance of the astrocytic feet around the capillary vessels and by gliosis; (c) activation of microglial cells; (d) demyelination plaques, especially present in the brainstem and / or the cerebellar white matter; (e) lesions of the glial cells and of the endothelial cells of the central nervous system, in particular a modification of the morphology and / or at least partial fragmentation of the DNA of glial cells of the astrocytic type, at a distance from the injection site ; preferably, the animal has at least two of the pathological signs (a), (d) and (e); according to another variant of the invention, the animal has all the signs (a), (b), (c), (d) and (e); a mammalian, non-human animal, modified without affecting its genome, capable of being obtained by inoculation of the gliotoxic factor as obtained in a culture of monocytes or in a biological fluid of patients suffering from multiple sclerosis; a process for obtaining an animal as defined above, comprising the steps consisting in:
* disposer d'une quantité infectante de facteur gliotoxique, tel qu'obtenu à partir d'une culture de monocytes ou à partir d'un liquide biologique d'un patient atteint de sclérose en plaques,* have an infectious amount of gliotoxic factor, as obtained from a culture of monocytes or from a biological fluid from a patient suffering from multiple sclerosis,
* inoculer ladite quantité infectante à l'animal ; l'utilisation d'un animal de l'invention pour mesurer l'efficacité d'un procédé thérapeutique notamment d'un agent médicamenteux, anti-inflammatoire ou anti¬ toxique ; l'utilisation d'un animal de l'invention, pour mesurer l'efficacité d'un procédé thérapeutique notamment d'un agent médicamenteux, destiné au traitement de la sclérose en plaques ; l'utilisation d'un animal de l'invention pour déterminer la nocuité ou l'innocuité d'un procédé thérapeutique notamment d'un agent médicamenteux, sur le cerveau pathologique de l'animal décrit ; - un procédé pour mesurer l'efficacité d'un procédé thérapeutique notamment d'un agent médicamenteux, anti-inflammatoire, comprenant les étapes consistant à :* inoculate said infectious amount to the animal; the use of an animal of the invention to measure the effectiveness of a therapeutic process, in particular of a medicinal, anti-inflammatory or anti-toxic agent; the use of an animal of the invention, to measure the effectiveness of a therapeutic process in particular of a medicinal agent, intended for the treatment of multiple sclerosis; the use of an animal of the invention to determine the harmlessness or harmlessness of a therapeutic process, in particular of a medicinal agent, on the pathological brain of the animal described; a method for measuring the effectiveness of a therapeutic method, in particular of a drug, anti-inflammatory agent, comprising the steps consisting in:
* disposer d'un animal de l'invention,* have an animal of the invention,
* administrer ledit procédé thérapeutique à l'animal,* administer said therapeutic process to the animal,
* mesurer l'efficacité du procédé thérapeutique en observant la réduction ou l'absence du ou des signes pathologiques décrits précédemment, par rapport à un animal témoin malade ayant reçu le facteur gliotoxique, mais n'ayant pas reçu le procédé thérapeutique, et en référence à un témoin normal traité par ledit procédé thérapeutique mais n'ayant pas reçu de facteur gliotoxique ; un procédé pour mesurer l'efficacité d'un procédé thérapeutique notamment un agent médicamenteux, destiné au traitement de la sclérose en plaques, comprenant les étapes consistant à :* measure the effectiveness of the therapeutic process by observing the reduction or absence of the pathological sign (s) described above, compared with a sick control animal having received the gliotoxic factor, but not having received the therapeutic process, and with reference to a normal control treated by said therapeutic process but not having received a gliotoxic factor; a method for measuring the effectiveness of a therapeutic method, in particular a medicinal agent, intended for the treatment of multiple sclerosis, comprising the steps consisting in:
* disposer d'un animal de l'invention,* have an animal of the invention,
* administrer ledit procédé thérapeutique à l'animal,* administer said therapeutic process to the animal,
* mesurer l'efficacité du procédé thérapeutique en observant la réduction ou l'absence du ou des signes pathologiques décrits précédemment, par rapport à un animal témoin malade ayant reçu le facteur gliotoxique, mais n'ayant pas reçu ledit procédé thérapeutique, et en référence à un témoin normal traité par ledit procédé thérapeutique mais n'ayant pas reçu de facteur gliotoxique ;* measure the effectiveness of the therapeutic process by observing the reduction or absence of the pathological sign (s) described above, compared with a sick control animal having received the gliotoxic factor, but not having received said therapeutic process, and with reference to a normal control treated by said therapeutic process but not having received a gliotoxic factor;
- un procédé pour déterminer la nocuité ou l'innocuité d'un procédé thérapeutique notamment d'un agent médicamenteux, sur le cerveau pathologique de l'animal de l'invention, comprenant les étapes consistant à:- a process for determining the harmlessness or harmlessness of a therapeutic process, in particular of a medicinal agent, on the pathological brain of the animal of the invention, comprising the steps consisting in:
* disposer d'un animal de l'invention,* have an animal of the invention,
* administrer ledit procédé thérapeutique à l'animal,* administer said therapeutic process to the animal,
* mesurer la réponse au procédé thérapeutique par une observation histopathologique étudiant les critères précédemment décrits.* measure the response to the therapeutic process by histopathological observation studying the criteria previously described.
Une autre utilisation de l'animal modifié selon l'invention réside dans l'obtention d'hybridomes susceptibles de produire des anticorps monoclonaux dirigés contre le facteur gliotoxique et issus de lymphocytes B prélevés sur ledit animal et fusionnés avec des cellules tumorales adaptées à l'obtention d'hybridomes (hybridomes rat/rat ou rat/souris selon Kôhler et Milstein 1975) . Ainsi l'invention concerne un procédé de production d'anticorps monoclonaux dirigés contre le facteur gliotoxique et/ou contre des molécules induites ou modifiées par les effets du facteur gliotoxique, comprenant les étapes consistant à fusionner des lymphocytes B prélevés sur un animal de l'invention, avec des cellules tumorales appropriées, et à faire produire par l'hybrido e issu après sélection, lesdits anticorps.Another use of the modified animal according to the invention lies in obtaining hybridomas capable of producing monoclonal antibodies directed against the gliotoxic factor and originating from B lymphocytes taken from said animal and fused with tumor cells adapted to the obtaining hybridomas (rat / rat or rat / mouse hybridomas according to Kôhler and Milstein 1975). Thus, the invention relates to a process for the production of monoclonal antibodies directed against gliotoxic factor and / or against molecules induced or modified by the effects of gliotoxic factor, comprising the steps consisting in fusing B lymphocytes taken from an animal of the invention, with appropriate tumor cells, and to have produced by the hybridoma after selection, said antibodies.
L'invention a également pour objet un anticorps monoclonal dirigé contre le facteur gliotoxique et/ou contre des molécules induites ou modifiées par les effets du facteur gliotoxique, susceptible d'être obtenu par le procédé ci-dessus.The subject of the invention is also a monoclonal antibody directed against the gliotoxic factor and / or against molecules induced or modified by the effects of the gliotoxic factor, capable of being obtained by the above method.
De préférence l'animal modifié selon la présente invention appartient à la famille des muridés, en particulier il s'agit d'une souris ou d'un rat. Mais l'animal de l'invention pourrait être un singe ou un cochon d'Inde.Preferably the animal modified according to the present invention belongs to the family of muridae, in particular it is a mouse or a rat. But the animal of the invention could be a monkey or a guinea pig.
La partie expérimentale ci-après regroupant les exemples 1 à 3 en relation avec les figures 1 à 11, illustre l'effet pathologique du facteur gliotoxique in vivo chez des rates, et la détermination de cet effet permet d'établir la liaison avec les processus lésionnels observés dans la SEP. Dans les exemples 1 à 2 on examine l'évolution des lésions affectant les astrocytes, après injection intraventriculaire de ce facteur chez le rat.The experimental part below gathering examples 1 to 3 in relation to FIGS. 1 to 11, illustrates the pathological effect of the gliotoxic factor in vivo in rats, and the determination of this effect makes it possible to establish the link with the lesional processes observed in MS. In Examples 1 to 2, the evolution of the lesions affecting the astrocytes is examined, after intraventricular injection of this factor in the rat.
La figure 1 est une photographie montrant l'organisation et l'orientation des astrocytes périventriculaires après injection du facteur toxique :Figure 1 is a photograph showing the organization and orientation of periventricular astrocytes after injection of the toxic factor:
Fig. 1A : témoins : les cellules GFAP+ proches du ventricule latéral gauche sont de type fibreux ; les corps cellulaires sont densément marqués ; les prolongements sont relativement épais ; les cellules GFAP+ sont orientées parallèlement au plan de coupe (coupe verticofrontale) ; Fig. 1B : rates traitées par le facteur toxique : les cellules GFAP+ observées à proximité du ventricule latéral gauche ont un soma hypertrophié et/ou polymorphe avec une désorganisation des extensions cytoplasmiques ; l'orientation de ces cellules est perpendiculaire au plan de coupe et l'organisation des cellules est palissadique ;Fig. 1A: controls: the GFAP + cells close to the left lateral ventricle are of the fibrous type; the cell bodies are densely marked; the extensions are relatively thick; GFAP + cells are oriented parallel to the cutting plane (vertical-frontal section); Fig. 1B: rats treated with the toxic factor: the GFAP + cells observed near the left lateral ventricle have an enlarged and / or polymorphic soma with a disorganization of the cytoplasmic extensions; the orientation of these cells is perpendicular to the section plane and the organization of the cells is palisade;
Fig. 1C : à plus fort grossissement de Fig. 1B, on observe un astrocyte normal ;Fig. 1C: at higher magnification of FIG. 1B, a normal astrocyte is observed;
Fig. 1D : à plus fort grossissement de Fig. 1B, on observe un astrocyte dont les prolongements cytoplasmiques sont orientés vers le ventricule latéral gauche ;Fig. 1D: at higher magnification of FIG. 1B, an astrocyte is observed whose cytoplasmic extensions are oriented towards the left lateral ventricle;
Barre : A, B (20 μ ) C,D (60 μm)Bar: A, B (20 μ) C, D (60 μm)
La Figure 2 illustre des nodules dans le SNC de rats traités par le facteur toxique :Figure 2 illustrates nodules in the CNS of rats treated with the toxic factor:
Fig. 2A : dans le striatu des rates témoins, les cellules GFAP+ sont de petite taille, de forme étoilée, les prolongements sont courts et fins ;Fig. 2A: in the striatu of the control rats, the GFAP + cells are small, star-shaped, the extensions are short and thin;
Fig. 2B : chez les rates traitées par le facteur, les corps astrocytaires sont hypertrophiés, et ont des prolongements cytoplasmiques anormaux (très fins et nombreux) ; Fig. 2C : chez les rates traitées par le facteur, on observe des nodules dans le striatum ;Fig. 2B: in rats treated with factor, the astrocytic bodies are enlarged, and have abnormal cytoplasmic extensions (very fine and numerous); Fig. 2C: in rats treated with factor, nodules are observed in the striatum;
Barre : 20 μmBar: 20 μm
Figure 3 représente l'organisation des astrocytes périventriculaires suite à l'injection du facteur gliotoxique :Figure 3 represents the organization of periventricular astrocytes following the injection of the gliotoxic factor:
Fig. 3A : chez les rats témoins, les prolongements astrocytaires forment des patchs immunoréactifs GFAP+ autour des vaisseaux ; Fig. 3B : chez les rates traitées, les prolongements astrocytaires autour des vaisseaux ont régressé ou disparu ; on observe en outre une "déplétion" de l'environnement vasculaire en astrocytes ;Fig. 3A: in the control rats, the astrocytic extensions form GFAP + immunoreactive patches around the vessels; Fig. 3B: in the treated rats, the astrocytic extensions around the vessels regressed or disappeared; a "depletion" of the vascular environment in astrocytes is also observed;
Fig. 3C : chez les rates traitées, a proximité de certains vaisseaux, des foyers de gliose astrocytaire se forment ; les astrocytes sont densément marqués à la GFAP ; les prolongements cytoplasmiques sont plus épais ;Fig. 3C: in treated rats, near certain vessels, foci of astrocytic gliosis are formed; astrocytes are densely labeled with GFAP; the cytoplasmic extensions are thicker;
Barre : 40 μmBar: 40 μm
La Figure 4 montre la distribution des astrocytes dans le cortex, 10 jours après lésion :Figure 4 shows the distribution of astrocytes in the cortex, 10 days after injury:
Fig. 4A : chez les animaux témoins, dans la zone marginale du cortex piriforme, les astrocytes ont un aspect de "chandelles" et leurs prolongements cytoplasmiques sont orientés vers la pia perpendiculairement à sa surface ;Fig. 4A: in the control animals, in the marginal zone of the piriform cortex, the astrocytes have an aspect of "candles" and their cytoplasmic extensions are oriented towards the pia perpendicular to its surface;
Fig. 4B : dans la couche I du cortex piriforme chez les rates traitées, on observe une modification structurale des cellules GFAP+ qui ont perdu leur orientation physiologique ; on observe une désorganisation de la glia limitans établie par les prolongements astrocytaires ;Fig. 4B: in layer I of the piriform cortex in the treated rats, there is a structural modification of the GFAP + cells which have lost their physiological orientation; there is a disorganization of the glia limitans established by the astrocytic prolongations;
Fig. 4C : chez les animaux témoins, dans les couches II et III du cortex, les cellules GFAP+ ont une forme étoilée ; les prolongements cytoplasmiques nombreux occupent l'espace intercellulaire ; Fig. 4D : chez les rates traitées, on observe une régression des prolongements cytoplasmiques, une augmentation de l'espace intercellulaire et une perte de la morphologie "étoilée" des astrocytes ; Barre : 40 μmFig. 4C: in control animals, in layers II and III of the cortex, the GFAP + cells have a star shape; numerous cytoplasmic extensions occupy the intercellular space; Fig. 4D: in the treated rats, a regression of the cytoplasmic prolongations is observed, an increase in the intercellular space and a loss of the "star" morphology of the astrocytes; Bar: 40 μm
La Figure 5 met en évidence la fragmentation de l'ADN cellulaire par la technique TUNEL après traitement par le facteur toxique :Figure 5 highlights the fragmentation of cellular DNA by the TUNEL technique after treatment with the toxic factor:
Fig. 5A : chez les rates traitées, on observe les cellules TUNEL+ dans la paroi des ventricules latéraux ;Fig. 5A: in the treated rats, the TUNEL + cells are observed in the wall of the lateral ventricles;
Fig. 5B : chez les rates traitées, observation dans la substance blanche du cervelet ;Fig. 5B: in treated rats, observation in the white matter of the cerebellum;
Fig. 5C : chez les rates traitées, observation dans la couche des grains du cervelet ; Fig. 5D : chez les rates traitées, observation au niveau des vaisseaux arachnoïdiens ;Fig. 5C: in the treated rats, observation in the layer of the cerebellum grains; Fig. 5D: in the treated rats, observation at the level of the arachnoid vessels;
Fig. 5E : chez les rates traitées, on observe que dans le cervelet, l'ADN fragmenté se retrouve dans le cytoplasme ; Fig. 5F : chez les rates traitées, on observe les cellules TUNEL"*" dans les plexus choroïdes, avec une contre coloration à l'hématoxyline ;Fig. 5E: in the treated rats, it is observed that in the cerebellum, the fragmented DNA is found in the cytoplasm; Fig. 5F: in the treated rats, the TUNEL " * " cells are observed in the choroid plexus, with hematoxylin counter staining;
Barre : 40 μmBar: 40 μm
La Figure 6 : chez des rates traitées par le facteur toxique, des cellules GFAP positives sont TUNEL positives ; des cellules endothéliales sont parfois aussi TUNEL positives :Figure 6: In rats treated with the toxic factor, GFAP positive cells are TUNEL positive; endothelial cells are sometimes also TUNEL positive:
Fig. 6A : cellules GFAP+ (bleu) , également TUNEL"1" (marron) dans le cortex ; Fig. 6B : dans le striatu ; on observe l'absence des prolongements cytoplasmiques et l'atténuation du marquage GFAP ;Fig. 6A: GFAP + cells (blue), also TUNEL "1" (brown) in the cortex; Fig. 6B: in the striatu; the absence of cytoplasmic extensions and the attenuation of the GFAP labeling are observed;
Fig. 6C : cellule doublement marquée GFAP/TUNEL dans le cervelet ; Fig. 6D : cellules doublement marquées (FVIII/TUNEL) dans la paroi vasculaire ; le marquage du FVIII est très faible ;Fig. 6C: doubly labeled GFAP / TUNEL cell in the cerebellum; Fig. 6D: doubly labeled cells (FVIII / TUNEL) in the vascular wall; the labeling of FVIII is very weak;
Barre : 40 μm La Figure 7 est une photographie montrant l'ouverture de la barrière hématoencéphalique chez les rates traitées par le facteur toxique :Bar: 40 μm Figure 7 is a photograph showing the opening of the blood-brain barrier in rats treated with the toxic factor:
Fig. 7A : dans une large zone périventriculaire, une diffusion d'im unoglobulines du sang s'observe ; 1* immunomarquage est diffus ;Fig. 7A: in a large periventricular zone, a diffusion of blood imoglobulins is observed; 1 * immunostaining is diffuse;
Fig. 7B : à plus fort grossissement, on observe une auréole d'IgG autour d'un vaisseau ;Fig. 7B: at higher magnification, an IgG halo is observed around a vessel;
Barre : A 20 μm, B 40 μmBar: At 20 μm, B 40 μm
La Figure 8 représente la réactivité microgliale- macrophagique :Figure 8 represents the microglial-macrophagic reactivity:
Fig. 8A : chez les témoins, on observe des cellules OX42+ dans le striatum ; la icroglie est sous forme quiescente, le marquage est faible ; très peu de cellules sont observées ; Fig. 8B : chez les animaux traités, on note une modification morphologique des cellules OX42+ et une augmentation de leur nombre ;Fig. 8A: in the controls, OX42 + cells are observed in the striatum; the microglia is in quiescent form, the marking is weak; very few cells are observed; Fig. 8B: in the treated animals, there is a morphological modification of the OX42 + cells and an increase in their number;
Fig. 8C : à plus fort grossissement de Fig. 8B, cellule microgliale quiescente ; Fig. 8D : à plus fort grossissement de Fig. 8B, cellule microgliale réactive de type ramifié ; barre : A, B, 20 μm C, D, 40 μmFig. 8C: at higher magnification of FIG. 8B, quiescent microglial cell; Fig. 8D: at higher magnification of FIG. 8B, reactive microglial branched type cell; bar: A, B, 20 μm C, D, 40 μm
La Figure 9 illustre des foyers de microglie réactive dans le tronc cérébral : Fig. 9A : foyer de cellules OX42+ dans le tronc cérébral ;Figure 9 illustrates foci of reactive microglia in the brainstem: Fig. 9A: focus of OX42 + cells in the brainstem;
Fig. 9B : à plus fort grossissement, les cellules OX42+ sont réactives de type ramifié et pseudopodique ;Fig. 9B: at higher magnification, the OX42 + cells are reactive of the branched and pseudopodic type;
Barres : A 10 μm B 20 μm La Figure 10 illustre la dégradation yélinique : Fig. 10A : substance blanche du cervelet où l'on note une atténuation de 1•immunomarquage dans une large zone bien délimitée ;Bars: A 10 μm B 20 μm Figure 10 illustrates the yelin degradation: Fig. 10A: white substance of the cerebellum where there is an attenuation of 1 • immunostaining in a large well defined area;
Fig. 10B : faisceau de myéline dans le cervelet où on observe une forte dégradation myélinique ;Fig. 10B: bundle of myelin in the cerebellum where a strong myelin degradation is observed;
Fig. 10C : agrandissement de Fig. 10B : dégra¬ dation myélinique très nette ;Fig. 10C: enlargement of Fig. 10B: very clear myelin degradation;
Barre : A, B, 10 μm C 20 μmBar: A, B, 10 μm C 20 μm
La Figure 11 représente une co-détection des astrocytes et des cellules TUNEL"*" par rapport aux astrocytes dans des biopsies de patients (SEP) :Figure 11 represents a co-detection of astrocytes and TUNEL " * " cells compared to astrocytes in patient biopsies (MS):
Fig. 11A : astrocyte réactif (bleu) entouré de cellules TUNEL"1" (marron) ;Fig. 11A: reactive astrocyte (blue) surrounded by TUNEL "1" cells (brown);
Fig. 11B : cellules GFAP+ de petite taille, faiblement marquées par l'anti-GFAP, dépourvues de prolongements cytoplasmiques et situées à la périphérie de la plaque ;Fig. 11B: small GFAP + cells, weakly labeled by anti-GFAP, lacking cytoplasmic extensions and located at the periphery of the plate;
Fig. 11C : cellules TUNEL"*" dans la paroi vasculaire, à phénotype endothélial ; Barre : 40 μmFig. 11C: TUNEL " * " cells in the vascular wall, with endothelial phenotype; Bar: 40 μm
EXEMPLE 1 DESCRIPTION DU MATERIEL ET DES TECHNIQUES UTILISES a) Le facteur gliotoxique Les échantillons de LCR ou d'urine, ou les monocytes sont prélevés chez des patients atteints de SEP. Le facteur toxique est purifié partiellement après traitement sur une colonne échangeuse d'ions, puis sur une colonne de séparation par exclusion, conformément à l'Exemple 11 de la demande de brevet PCT/FR95/00178. Le facteur gliotoxique est constitué majoritairement par une fraction légère de 17 Kd et par une fraction lourde de 21 Kd, qui ont toutes deux une forte affinité pour la concanava1ine. La séparation du facteur gliotoxique est ci-après détaillée, à partir de surnageants bruts de culture de monocytes/macrophages de patients atteints de SEP.EXAMPLE 1 DESCRIPTION OF THE MATERIAL AND THE TECHNIQUES USED a) The gliotoxic factor CSF or urine samples, or monocytes, are taken from patients suffering from MS. The toxic factor is partially purified after treatment on an ion exchange column, then on an exclusion separation column, in accordance with Example 11 of patent application PCT / FR95 / 00178. The gliotoxic factor consists mainly of a light fraction of 17 Kd and a heavy fraction of 21 Kd, both of which have a strong affinity for concanavaulin. The separation of the gliotoxic factor is detailed below, from crude culture supernatants of monocytes / macrophages from patients suffering from MS.
* Préparation des cultures de monocytes/macrophages de patients atteints de SEP* Preparation of monocyte / macrophage cultures of MS patients
Le milieu de culture comprend du RPMI1640 (Boehringer) , de la pénicilline-streptomycine (bioMérieux) , de la L-glutamine (bioMérieux) , du pyruvate de sodium (Boehringer) , des acides aminés non-essentiels lOOx (Boehringer) , du sérum humain AB prélevé chez des donneurs sains et séronégatifs pour tous les virus transmissibles par les dérivés sanguins connus (voir PERRON et al., The Lancet, vol 337, pages 862-863, 6 Avril 1991) . Les cellules lymphoïdes sont cultivées dans des flacons de culture de 75 cm3 Primaria (Falcon) après avoir été séparées du plasma et des autres éléments figurés sanguins par centrifugation sur gradient de Ficoll (Lymphoprep®, Flow) . Pour obtenir ces cellules lymphoïdes, 50 ml de sang sont prélevés par ponction veineuse sur tube stérile héparine (lithium héparine). Le sang et l'héparine sont bien mélangés aussitôt le sang prélevé. Alternativement, le sang peut être prélevé dans des tubes contenant de l'EDTA. Il est important ensuite, de transporter immédiatement les tubes maintenus à +4°C au laboratoire, où ceux-ci seront manipulés sous hotte de culture à flux laminaire "biohazard" dans des conditions stériles. Pour une culture de monocytes, on prépare un milieu "RPMI" qui comprend 100-150 ml de milieu RPMI 1640, un mélange de pénicilline et streptomycine, 4% de L- glutamine, 1% de pyruvate de sodium, 1% d'acides aminés non-essentiels Boehringer (100X) . On prépare également 3 tubes stériles à fond conique de 50 ml (Falcon) contenant 10 ml du milieu "RPMI" sus-décrit, et 4 tubes stériles de 50 ml avec 20 ml de Ficoll au fond. Les tubes héparinés sont ouverts pour pipeter le sang, le déposer dans les tubes contenant du milieu et le mélanger doucement au milieu sus-décrit. On prélève 5 ml de milieu "RPMI" et l'on rince la paroi des tubes héparinés. Il faut accompagner ce rinçage d'un grattage léger à l'aide du bout de la pipette plastique afin de décoller des cellules ayant éventuellement adhéré aux parois du tube, et le déposer dans les tubes contenant le sang dilué dans le milieu "RPMI", en mélangeant doucement le contenu par aspirations/refoulements successifs. Il faut répéter ces opérations jusqu'à ce que les tubes héparinés soient propres. Il faut ensuite déposer très doucement (sans remous) le sang dilué dans le milieu "RPMI", à la surface du Ficoll dans les tubes de 50 ml puis utiliser du milieu "RPMI" pour rincer le reste de sang dilué et le récupérer comme précédemment pour le déposer délicatement à la surface des tubes avec le Ficoll. Ensuite, et sans secouer le Ficoll, il faut placer les tubes dans des godets pour centrifugeuse, équilibrer à l'aide de tubes remplis d'eau, et centrifuger à +15°C pendant 20 minutes à 1800 trs/min, avec un mode de décélération lente. Après centrifugation, on récupère les tubes dans lesquels on enfonce doucement une pipette jusqu'à hauteur de l'interface supérieure "Ficoll/plasma" et l'on aspire doucement la couche blanchâtre située au dessus du Ficoll en décrivant des cercles concentriques depuis les parois, puis en décrivant des "zig-zags" d'un côté à l'autre de la surface du Ficoll. On place le milieu aspiré dans des tubes de 50 ml, on le dilue dans au moins 3 fois le volume de milieu RPMI et l'on mélange doucement par inversion des tubes bouchés stérilement. On centrifuge ensuite les tubes à +15°C pendant 10 minutes à 1800 trs/min, avec un mode de décélération lente. Après centrifugation, on jette en versant lentement mais régulièrement le surnageant de ces tubes, tout en veillant à ce que le culot blanchâtre de cellules ne se détache pas. On resuspend le culot dans 10 ml de milieu "RPMI" par aspirations/refoulements successifs et on centrifuge la suspension à +15°C pendant 10 minutes à 1800 trs/min, avec un mode de décélération lente. Par prélèvement ou par 50 ml de sang prélevé, on prépare deux petits flacons de culture en plastique électropositif (Falcon "PRIMARIA") de 75 cm3 et 10 ml de milieu "RPMI" auquel on aura ajouté 15% de sérum humain "AB" (SH) sus-décrit. Après centrifugation, on élimine le surnageant comme précédemment, on resuspend doucement le culot dans 5 ml de milieu "RPMI" avec 15% de SH et l'on répartit les cellules resuspendues dans les flacons placés à plat et à peine soulevés. La suspension est aussitôt répartie en remuant chaque flacon à plat. Les tubes de centrifugation sont rincés avec 5 ml de milieu "RPMI" à 15% SH, et la suspension est ajoutée et répartie dans les deux flacons, comme précédemment. Avantageusement, tous les milieux utilisés pour ces étapes sont à 37°C (réchauffés au bain marie) . Une fois les flacons refermés, ils sont tenus à plat dans une étuve humide à 37°C avec 5% de C02 jusqu'au lendemain matin. Le lendemain matin, il convient de bien aspirer tout le surnageant avec les cellules en suspension, de rincer les flacons deux fois avec 4 ml de RPMI seul, en laissant "tremper" 5 minutes à chaque fois et en relevant lentement le flacon avant d'aspirer tout le milieu restant, afin d'éliminer les cellules non-adhérentes. On remplit ensuite les flacons de 5 ml de milieu RPMI à 15% de SH, on les replace à l'étuve et l'on veille à ne pas les bouger pendant 4 h. Dès cette étape, il convient de toujours remplir les flacons placés debout en dirigeant le jet sur la paroi supérieure afin de ne pas détacher les cellules en cours d'adhésion, puis, par la suite, affectées par un effet cytopathogène éventuel. Les suspensions cellulaires ainsi recueillies 24 h après la mise en culture, sont centrifugées à +15°C pendant 10 minutes à 1800 trs/min, avec un mode de décélération lente. Eventuellement, le culot de cellules peut être repris dans du sérum de veau foetal avec 10% de DMSO (Diméthyl sulfoxide) pour être congelé à -80°C ou dans l'azote liquide selon une procédure de maintien de cellules viables. Le surnageant correspondant est ensuite centrifugé à 3000 trs/min pendant 30 min afin d'éliminer les débris cellulaires, et le surnageant clarifié est aliquoté, répertorié comme échantillon à 24 h de culture, soit Jl, puis stocké au congélateur à -80°C. Après 48 h dans l 'étuve, on sort les flacons, le surnageant est aspiré délicatement, et, comme précédemment, centrifugé à 3000 trs/min pendant 30 minutes afin d'éliminer les débris cellulaires. Le surnageant clarifié est aliquoté, répertorié comme échantillon à 3 jours de culture, soit J3 , puis stocké au congélateur à -80°C. Les flacons sont aussitôt remplis avec 5 ml de milieu RPMI à 5% SH et replacés dans l'étuve. A partir de ce moment, le milieu de culture ne contient plus que 5% de SH et cette proportion sera utilisée pour tous les renouvellements de milieu. Les milieux des flacons sont ensuite prélevés, stockés sous aliquots de milieu clarifié des débris cellulaires, à -80°C comme précédemment, et remplacés par du milieu "RPMI" à 5% de SH, tous les trois ou quatre jours, jusqu'à ce que ne persiste plus aucune cellule adhérente et réfringente à l'observation microscopique dans le flacon. * Séparation du facteur gliotoxique Les échantillons de surnageants de culture sont regroupés (Jl à J final) après décongélation et sont préalablement chauffés 30 min à 56°C et centrifugés 10 min à 1500 trs/min, puis le surnageant est récupéré et, éventuellement, dialyse à 4°C dans 2 fois 20 volumes de tampon D-PBS, une première fois pendant 2 h, et une deuxième durant la nuit. Le surnageant ainsi recueilli constitue l'échantillon à partir duquel le facteur gliotoxique sera séparé, selon la technique décrite dans la demande de brevet PCT/FR95/00178. b) Injections cérébrales intraventriculaires Les expériences sont réalisées sur des rates Lewis, adultes (2 mois) , pesant entre 200-250 g au début de l'expérience. Les animaux sont anesthésiés à l'hydrate de chloral (400 mg/kg) injecté par voie intrapéritonéale. Les injections de la solution toxique, 5 à 10 μg de protéines actives dans 5 μl d'une solution de PBS (tampon phosphate salin) stérile sont réalisées par des méthodes stéréotaxiques, dans le ventricule latéral gauche, (AP:0,8, L:l,5. P:4) . Les injections se font à l'aide d'une micropipette (22 μm de diamètre) accrochée à une seringue Hamilton de 25 μl.Culture medium includes RPMI1640 (Boehringer), penicillin-streptomycin (bioMérieux), L-glutamine (bioMérieux), sodium pyruvate (Boehringer), non-essential amino acids lOOx (Boehringer), serum human AB taken from healthy donors and seronegative for all viruses transmissible by known blood derivatives (see PERRON et al., The Lancet, vol 337, pages 862-863, 6 April 1991). Lymphoid cells are grown in culture flasks of 75 cm 3 Primaria (Falcon) after being separated from the plasma and other blood cellular components by centrifugation on Ficoll (Lymphoprep ®, Flow). To obtain these lymphoid cells, 50 ml of blood are taken by venipuncture on a sterile heparin tube (lithium heparin). The blood and heparin are well mixed as soon as the blood is drawn. Alternatively, blood can be drawn into tubes containing EDTA. It is then important to immediately transport the tubes maintained at + 4 ° C to the laboratory, where they will be handled under a "biohazard" laminar flow culture hood under sterile conditions. For a monocyte culture, an "RPMI" medium is prepared which comprises 100-150 ml of RPMI 1640 medium, a mixture of penicillin and streptomycin, 4% L-glutamine, 1% sodium pyruvate, 1% acids non-essential amino Boehringer (100X). Also prepared are 3 sterile 50 ml conical bottom tubes (Falcon) containing 10 ml of the "RPMI" medium described above, and 4 sterile 50 ml tubes with 20 ml of Ficoll at the bottom. The heparinized tubes are opened to pipette the blood, deposit it in the tubes containing medium and mix it gently with the medium described above. 5 ml of "RPMI" medium are taken and the wall of the heparinized tubes is rinsed. This rinsing must be accompanied by a light scraping using the end of the plastic pipette in order to detach cells which may have adhered to the walls of the tube, and place it in the tubes containing the blood diluted in the "RPMI" medium, by gently mixing the contents by successive aspirations / repressions. These operations should be repeated until the heparinized tubes are clean. It is then necessary to deposit very gently (without swirling) the blood diluted in the medium "RPMI", on the surface of the Ficoll in the 50 ml tubes then use medium "RPMI" to rinse the rest of the diluted blood and recover it as previously to gently place it on the surface of the tubes with the Ficoll. Then, and without shaking the Ficoll, the tubes must be placed in centrifuge cups, equilibrated using tubes filled with water, and centrifuged at + 15 ° C for 20 minutes at 1800 rpm, with a mode slow deceleration. After centrifugation, the tubes are recovered in which a pipette is gently inserted up to the top of the "Ficoll / plasma" interface and the whitish layer located above the Ficoll is gently sucked in by concentric circles from the walls , then by describing "zig-zags" from one side to the other of the surface of the Ficoll. The aspirated medium is placed in 50 ml tubes, diluted in at least 3 times the volume of RPMI medium and mixed gently by inverting the sterile stoppered tubes. The tubes are then centrifuged at + 15 ° C for 10 minutes at 1800 rpm, with a slow deceleration mode. After centrifugation, the supernatant from these tubes is discarded by pouring slowly but regularly, while ensuring that the whitish pellet of cells does not come off. The pellet is resuspended in 10 ml of "RPMI" medium by suction / discharge successive and the suspension is centrifuged at + 15 ° C for 10 minutes at 1800 rpm, with a slow deceleration mode. By sampling or by 50 ml of blood drawn, two small electropositive plastic culture flasks (Falcon "PRIMARIA") of 75 cm 3 and 10 ml of "RPMI" medium are prepared, to which 15% of human serum "AB" will have been added. (SH) described above. After centrifugation, the supernatant is removed as above, the pellet is gently resuspended in 5 ml of "RPMI" medium with 15% SH and the resuspended cells are distributed in the bottles placed flat and barely raised. The suspension is immediately distributed, stirring each bottle flat. The centrifuge tubes are rinsed with 5 ml of "RPMI" medium at 15% SH, and the suspension is added and distributed in the two bottles, as before. Advantageously, all the media used for these stages are at 37 ° C. (reheated in a water bath). Once the bottles are closed, they are kept flat in a humid oven at 37 ° C with 5% C0 2 until the next morning. The following morning, it is advisable to aspirate well all the supernatant with the cells in suspension, to rinse the flasks twice with 4 ml of RPMI alone, leaving to "soak" for 5 minutes each time and slowly raising the flask before aspirate all the remaining medium, in order to eliminate the non-adherent cells. The bottles are then filled with 5 ml of RPMI medium containing 15% of SH, they are replaced in the oven and care is taken not to move them for 4 h. From this stage, it is always necessary to fill the bottles placed upright by directing the jet on the upper wall so as not to detach the cells in the course of adhesion, then, subsequently, affected by a possible cytopathogenic effect. The cell suspensions thus collected 24 h after the cultivation, are centrifuged at + 15 ° C for 10 minutes at 1800 rpm, with a slow deceleration mode. Optionally, the cell pellet can be taken up in fetal calf serum with 10% DMSO (Dimethyl sulfoxide) to be frozen at -80 ° C or in liquid nitrogen according to a procedure for maintaining viable cells. The corresponding supernatant is then centrifuged at 3000 rpm for 30 min in order to remove the cellular debris, and the clarified supernatant is aliquoted, listed as a 24 h culture sample, ie Jl, then stored in the freezer at -80 ° C. . After 48 h in the oven, the bottles are taken out, the supernatant is gently aspirated, and, as before, centrifuged at 3000 rpm for 30 minutes in order to remove cellular debris. The clarified supernatant is aliquoted, listed as a sample after 3 days of culture, ie D3, then stored in the freezer at -80 ° C. The flasks are immediately filled with 5 ml of RPMI medium at 5% SH and replaced in the oven. From this moment, the culture medium contains only 5% of SH and this proportion will be used for all medium renewals. The media from the flasks are then removed, stored under aliquots of clarified medium of cellular debris, at -80 ° C. as previously, and replaced by "RPMI" medium at 5% SH, every three or four days, until which no longer adheres any cell adherent and refractive to microscopic observation in the flask. * Separation of the gliotoxic factor The samples of culture supernatants are combined (Jl to J final) after thawing and are previously heated 30 min at 56 ° C and centrifuged 10 min at 1500 rpm, then the supernatant is recovered and, optionally, dialysis at 4 ° C in 2 times 20 volumes of D-PBS buffer, a first time for 2 h, and a second overnight. The supernatant thus collected constitutes the sample from which the gliotoxic factor will be separated, according to the technique described in patent application PCT / FR95 / 00178. b) Intraventricular brain injections The experiments are carried out on Lewis rats, adults (2 months), weighing between 200-250 g at the start of the experiment. The animals are anesthetized with chloral hydrate (400 mg / kg) injected intraperitoneally. The injections of the toxic solution, 5 to 10 μg of active proteins in 5 μl of a sterile PBS (saline phosphate buffer) solution are carried out by stereotaxic methods, in the left lateral ventricle, (AP: 0.8, L : 1.5, P: 4). The injections are made using a micropipette (22 μm in diameter) attached to a 25 μl Hamilton syringe.
Les animaux sont sacrifiés, 10 jours (n=9) après l'opération. Six animaux témoins sont soumis à des injections dans les mêmes conditions par 5 μl d'une solution de PBS stérile, et sont sacrifiés au même temps. Tous les animaux reçoivent une dose létale d'hydrate de chloral (0,5 g/kg), puis perfusés par voie transcardiaque à travers l'aorte ascendante, par une solution de paraformaldéhyde 4 % dans du tampon phosphate 0,12 M. Les cerveaux avec moelles cervicales sont postfixés dans le même fixateur pendant une heure à 4°C, ensuite cryoprotégés dans une solution de sucrose 10 % dans du tampon phosphate 0,12 M pendant 2 jours, puis congelés dans de l'isopentane refroidi dans l'azote liquide à -40°C et stockés à -80°C. Des coupes au cryostat verticofrontales, de 10 μm d'épaisseur, sériées toutes les 100 μm sont recueillies sur des lames gélatinées 1 %.The animals are sacrificed 10 days (n = 9) after the operation. Six control animals are subjected to injections under the same conditions with 5 μl of a sterile PBS solution, and are sacrificed at the same time. All animals receive a lethal dose of chloral hydrate (0.5 g / kg), then perfused transcardially through the ascending aorta with a solution of 4% paraformaldehyde in 0.12 M phosphate buffer. brains with cervical marrow are postfixed in the same fixative for one hour at 4 ° C, then cryoprotected in a 10% sucrose solution in 0.12 M phosphate buffer for 2 days, then frozen in isopentane cooled in the liquid nitrogen at -40 ° C and stored at -80 ° C. Slices with a vertical-frontal cryostat, 10 μm thick, serialized every 100 μm are collected on 1% gelatinized slides.
Certaines coupes sont colorées au violet de Crésyl, ou à 1 'hématoxyline éosine. c) AnticorpsSome sections are stained with Cresyl violet, or 1 hematoxylin eosin. c) Antibodies
Pour marquer les astrocytes, on utilise un anticorps monoclonal anti-protéine gliale fibrillaire acide (anti-GFAP) (BOEHRINGER) dilué au 1/200. La myéline est visualisée par un anticorps anti-protéine basique de myéline (anti-MBP) (BOEHRINGER) dilué au 1/500. Des anticorps monoclonaux 0X42 dilués au 1/500 (SEROTEC) sont utilisés pour identifier les cellules microgliales- macrophagiques.To mark the astrocytes, an anti-glial acid fibrillar glial protein (anti-GFAP) monoclonal antibody (BOEHRINGER) diluted to 1/200 is used. Myelin is visualized by an anti-basic myelin protein antibody (anti-MBP) (BOEHRINGER) diluted to 1/500. 0X42 monoclonal antibodies diluted 1/500 (SEROTEC) are used to identify microglial-macrophagic cells.
Lors d'une ouverture de la BHE, des éléments spécifiques du sang sont détectés dans le parenchyme cérébral telles que les immunoglobulines (Dusart & col 1993) . Un anticorps anti-immunoglobuline de rat (AMERSHAM) dilué au 1/200 est utilisé pour visualiser une éventuelle rupture de la BHE.When the BBB is opened, specific elements of the blood are detected in the brain parenchyma such as immunoglobulins (Dusart & col 1993). A rat anti-immunoglobulin antibody (AMERSHAM) diluted to 1/200 is used to visualize a possible rupture of the BBB.
Un anticorps anti-FVIII est utilisé pour visualiser les cellules endothéliales.An anti-FVIII antibody is used to visualize endothelial cells.
Dans tous les cas, les coupes sont incubées avec les anticorps primaires aux concentrations indiquées durant une nuit à 4°C, ils sont dilués dans du PBS 0,1 M 2 % BSA (sérumalbumine bovine), 0,3% Triton-X. Les coupes destinées à être marquées par l'anti-MBP sont préalablement dégraissées dans de l'alcool absolu contenant 5 % d'acide acétique, pendant 25 minutes à 4°C, ensuite immergées dans des bains d'alcools à 95 puis à 70, pendant 5 minutes pour chacun, et rincées plusieurs fois dans du PBS.In all cases, the sections are incubated with the primary antibodies at the concentrations indicated overnight at 4 ° C., they are diluted in PBS 0.1 M 2% BSA (bovine serum albumin), 0.3% Triton-X. The sections intended to be marked with anti-MBP are degreased beforehand in absolute alcohol containing 5% acetic acid, for 25 minutes at 4 ° C., then immersed in alcohol baths at 95 and then at 70 , for 5 minutes for each, and rinsed several times in PBS.
L'anticorps secondaire (Anti-IgG de souris biotinylé, AMERSHAM) dilué au 1/200 est mis en présence des coupes, pendant environ 2 heures à température ambiante. Les coupes sont ensuite incubées avec le complexe streptavidine-biotine / peroxydase (1/200) . L'activité peroxydase est révélée en présence de son substrat spécifique H202 et de la DAB. Pour saturer les peroxydases endogènes, les coupes sont incubées pendant 10 minutes dans du tampon phosphate 0,1 M (pH = 7,4) contenant 0,4 % d'eau oxygénée, ensuite sont immergées dans une solution de PBS contenant 2% de BSA pendant 30 minutes avant d'être incubées avec les anticorps primaires.The secondary antibody (anti-biotinylated mouse IgG, AMERSHAM) diluted to 1/200 is placed in the presence of the sections, for approximately 2 hours at room temperature. The sections are then incubated with the streptavidin-biotin / peroxidase complex (1/200). The peroxidase activity is revealed in the presence of its specific substrate H 2 0 2 and of DAB. To saturate endogenous peroxidases, the sections are incubated for 10 minutes in 0.1 M phosphate buffer (pH = 7.4) containing 0.4% hydrogen peroxide, then are immersed in a PBS solution containing 2% of BSA for 30 minutes before being incubated with primary antibodies.
Certaines coupes traitées par les anticorps anti- GFAP, anti-FVIII sont révélées selon la technique ABC-AP. Ces coupes sont ensuite traitées selon la méthode TUNEL ci-après décrite.Certain sections treated with anti-GFAP, anti-FVIII antibodies are revealed according to the ABC-AP technique. These cuts are then treated according to the TUNEL method described below.
d) Méthode TUNEL (Gavrieli & col 1992) Les coupes sont traitées à la protéinase Kd) TUNEL method (Gavrieli & col 1992) The sections are treated with proteinase K
(BOEHRINGER) (20 μg/ml) pendant 15 minutes, ensuite incubées avec la TdT et l'UTP biotinylé, pendant une heure à 37°. Les coupes sont ensuite mises en présence du complexe streptavidine-biotine / peroxydase (1/200) (AMERSHAM) . L'activité peroxydase est révélée en présence de H202 et de la DAB.(BOEHRINGER) (20 μg / ml) for 15 minutes, then incubated with TdT and biotinylated UTP, for one hour at 37 °. The sections are then placed in the presence of the streptavidin-biotin / peroxidase complex (1/200) (AMERSHAM). The peroxidase activity is revealed in the presence of H 2 0 2 and of DAB.
Certaines coupes traitées selon la méthode TUNEL seront contre-colorées à 1 'hé atoxyline.Certain sections treated according to the TUNEL method will be counter-colored with 1 he atoxyline.
EXEMPLE 2 : RESULTATSEXAMPLE 2: RESULTS
Les résultats présentés dans cet exemple portent sur les observations réalisées sur des rates sacrifiées 10 jours après l'opération. On cherche en particulier à établir si le facteur gliotoxique induit une mort de cellules gliales et de cellules endothéliales. A cet effet on décrit la progression de la réponse microgliale macrophagique, l'état de la BHE, de la myéline et de la morphologie astrocytaire.The results presented in this example relate to the observations carried out on rats sacrificed 10 days after the operation. We are looking in particular to establish whether the gliotoxic factor induces death of glial cells and endothelial cells. For this purpose we describe the progression of the macrophagic microglial response, the state of the BBB, myelin and astrocytic morphology.
a) Impact du facteur toxique sur les astrocytesa) Impact of the toxic factor on astrocytes
La lésion est bilatérale, et affecte la distribution, l'orientation et l'organisation de l'ensemble des astrocytes du SNC du rat. Les astrocytes présentent de profondes modifications morphologiques variables selon leurs localisations. Les lésions seront décrites, en partant des espaces périventriculaires vers les espaces subpiaux.The lesion is bilateral, and affects the distribution, orientation and organization of all of the rat's CNS astrocytes. Astrocytes show profound morphological changes which vary according to their location. The lesions will be described, starting from the periventricular spaces towards the subpial spaces.
Conformément aux figures 1B, 2B, 2C, 3B et 3C, on distingue plusieurs cas : - les cellules GFAP-positives (GFAP+) de morphologie anormale, avec de longs prolongements cytoplasmiques, s'organisent en palissades et sont orientées vers les ventricules latéraux (Fig. 1B) ;In accordance with Figures 1B, 2B, 2C, 3B and 3C, there are several cases: - GFAP-positive cells (GFAP + ) of abnormal morphology, with long extensions cytoplasmic, organize in palisades and are oriented towards the lateral ventricles (Fig. 1B);
- en s'écartant des espaces ventriculaires, notamment dans le striatum, on observe des cellules GFAP d'aspect fibreux densement imbriquées les unes dans les autres, formant des nodules (Fig. 2B, 2C) . Ces nodules sont observés dans l'ensemble des régions télencéphaliques ;- by moving away from the ventricular spaces, in particular in the striatum, one observes GFAP cells of fibrous appearance densely nested one inside the other, forming nodules (Fig. 2B, 2C). These nodules are observed in all of the telencephalic regions;
- les zones immunoréactives, formées normalement par les prolongements astrocytaires autour des vaisseaux, ne sont pas visibles autour de la plupart des vaisseaux chez les rates traitées par le facteur toxique (Fig. 3B) ;- the immunoreactive zones, normally formed by astrocytic extensions around the vessels, are not visible around most of the vessels in rats treated with the toxic factor (Fig. 3B);
- on observe des astrocytes présentant des formes réactives, caractérisés par une hypertrophie de leurs somas et un épaississement de leurs prolongements, ils sont densement marqués à la GFAP et se disposent souvent en foyers cellulaires à proximité de certains vaisseaux (Fig. 3C) ;- we observe astrocytes presenting reactive forms, characterized by an enlargement of their somas and a thickening of their extensions, they are densely marked with GFAP and often have cell foci near certain vessels (Fig. 3C);
- dans le cortex, les cellules GFAP"*" situées dans les couches profondes perdent leurs prolongements et se raréfient ; dans les couches superficielles, les astrocytes dont les prolongements cytoplasmiques s'orientent vers la pia normalement ont une morphologie anormale et une orientation anarchique (Fig. 4B) . La distribution des astrocytes chez les rats témoins est normale et comparable à celle décrite par Kal an & Hajos 1989. L'astrogliose, chez les témoins sans gliotoxine (c'est-à-dire auxquels a été injecté un placebo) , est limitée au niveau du site d'injection. b) Fragmentation de l'ADN cellulaire induite par le facteur toxique dans le SNC du rat (mise en évidence par la méthode TUNEL)- in the cortex, the GFAP " * " cells located in the deep layers lose their extensions and become scarce; in the surface layers, the astrocytes whose cytoplasmic prolongations orient themselves towards the pia normally have an abnormal morphology and an anarchic orientation (Fig. 4B). The distribution of astrocytes in control rats is normal and comparable to that described by Kal an & Hajos 1989. Astrogliosis, in controls without gliotoxin (that is to say to which a placebo was injected), is limited to level of the injection site. b) Fragmentation of cellular DNA induced by the toxic factor in the CNS of the rat (demonstrated by the TUNEL method)
Des cellules donnant une réponse positive dans la méthode de TUNEL (TUNEL+) sont observées dans tout le SNC du rat. Elles sont plus fréquentes dans la paroi des ventricules où elles correspondent à des cellules de type épendymaire (Fig. 5A) . On les observe dans le cervelet (Fig. 5B) , quelques-unes sont localisées dans la couche des grains (Fig. 5C) , d'autres dans les parois des vaisseaux sanguins situés dans les espaces subarachnoïdiens (Fig. 5D) et intraparenchymateux, et aussi dans les plexus choroïdes (Fig. 5E) . Certaines cellules TUNEL"*" possèdent de l'ADN fragmenté dans leur cytoplasme. D'autres cellules TUNEL"*" sont observées dans les plexus choroïdes (Fig. 5F) . Des cellules GFAP4" sont TUNEL4". Elles sont observées dans l'ensemble du SNC (Fig. 6A, 6B, 6C) . Des cellules TUNEL4" marquées au FVIII sont aussi observées (Fig. 6D) . Il faut noter que le marquage du FVIII dans ce cas-là est très faible. Aucun cas de fragmentation d'ADN n'est observée chez les animaux témoins. Une ou deux cellules TUNEL4" sont parfois visibles au site d'injection de la solution placebo. Mais la présence des cellules TUNEL" disséminées dans le parenchyme cérébral est spécifique des animaux gliotoxine4". c) Ouverture de la barrière hématoencéphalique Une diffusion d'immunoglobulines du sang est observée dans le parenchyme cérébral, chez tous les animaux traités par le facteur toxique. Elle est plus marquée dans les espaces périventriculaires, autour de certains vaisseaux (Fig. 7A, 7B) . Ce phénomène n'est pas observé chez les témoins. d) Réactivité microgliale-macrophagiqueCells giving a positive response in the method of TUNEL (TUNEL + ) are observed throughout the CNS of the rat. They are more frequent in the wall of the ventricles where they correspond to type cells ependymal (Fig. 5A). They are observed in the cerebellum (Fig. 5B), some are localized in the layer of grains (Fig. 5C), others in the walls of the blood vessels located in the subarachnoid spaces (Fig. 5D) and intraparenchymatous, and also in the choroid plexus (Fig. 5E). Some TUNEL " * " cells have fragmented DNA in their cytoplasm. Other TUNEL " *" cells are observed in the choroid plexus (Fig. 5F). GFAP 4 " cells are TUNEL 4" . They are observed throughout the CNS (Fig. 6A, 6B, 6C). TUNEL 4 " cells labeled with FVIII are also observed (FIG. 6D). It should be noted that the labeling of FVIII in this case is very weak. No case of DNA fragmentation is observed in the control animals. One or two 4 " TUNEL cells are sometimes visible at the injection site of the placebo solution. However, the presence of TUNEL cells " disseminated in the cerebral parenchyma is specific to gliotoxin 4 animals " . c) Opening of the blood-brain barrier A diffusion of immunoglobulins from the blood is observed in the cerebral parenchyma in all animals treated with the toxic factor. It is more marked in the periventricular spaces, around certain vessels (Fig. 7A, 7B). This phenomenon was not observed in the controls. d) Microglial-macrophagic reactivity
Les cellules OX424" présentent des formes réactives caractéristiques, on distingue des formes ramifiées et pseudopodiques. Elles sont plus nombreuses par rapport à ce qui est observé chez les rates témoins (Fig. 8B) . Dans certaines régions du tronc cérébral et du cervelet, on observe des petits foyers de cellules OX424" (Fig. 9A, 9B) . e) Démyélinisation induite par le facteur toxique chez le rat Des aires de démyélinisation sont visualisées par une atténuation du marquage de la MBP dans des foyers bien délimités. Ces foyers sont très nettement observables dans le tronc cérébral ainsi que la substance blanche cérébelleuse (Fig. 10A) . Des cas de dégradation myelinique sont également observés épars dans pratiquement tout le SNC du rat (Fig. 10B, 10C) .The OX42 4 " cells have characteristic reactive forms, a distinction is made between branched and pseudopodic forms. They are more numerous than what is observed in the control rats (FIG. 8B). In certain regions of the brainstem and of the cerebellum, small foci of 4 " OX42 cells are observed (Fig. 9A, 9B). e) Toxic factor-induced demyelination in rats Demyelination areas are visualized by attenuation of the labeling of MBP in well-defined foci. These foci are very clearly observable in the brainstem as well as the cerebellar white matter (Fig. 10A). Cases of myelin degradation are also observed scattered throughout practically the whole CNS of the rat (Fig. 10B, 10C).
EXEMPLE 3 : INTERPRETATION DES RESULTATS ACQUIS Le facteur toxique isolé et purifié à partir duEXAMPLE 3 INTERPRETATION OF ACQUIRED RESULTS The toxic factor isolated and purified from
LCR, d'urine ou de culture de monocytes, de patients atteints de SEP, injecté dans le LCR du rat induit des lésions affectant des cellules de type glial et aussi endothélial du SNC. Le facteur toxique est probablement distribué par le LCR qui circule dans les ventricules, puis dans les espaces εubarachnoïdiens. Il est absorbé par les vaisseaux arachnoïdiens, puis les sinus veineux. Des cellules TUNEL4" se situent dans les parois ventriculaires (cellules de type épendymaire) et dans les vaisseaux arachnoïdiens. Une atteinte des cellules épendymaires modifierait l'interface entre le LCR et le cerveau, ce qui est susceptible de favoriser la formation de lésions dans les espaces périventriculaires. Dans la SEP, les plaques de lésion sont situées à proximité du système ventriculaire et sont fréquentes autour des veinules.CSF, urine or monocyte culture, from MS patients, injected into the rat CSF induces lesions affecting glial and also endothelial CNS cells. The toxic factor is probably distributed by the CSF which circulates in the ventricles, then in the εubarachnoid spaces. It is absorbed by the arachnoid vessels, then the venous sinuses. TUNEL 4 " cells are located in the ventricular walls (ependymal type cells) and arachnoid vessels. Involvement of the ependymal cells would modify the interface between the CSF and the brain, which is likely to promote the formation of lesions in periventricular spaces In MS, lesion plaques are located near the ventricular system and are frequent around the venules.
Certains auteurs ont évoqué l'existence d'un agent de nature enzymatique, ou immunitaire ou autre, diffusant du LCR ou du sang, dans le cerveau (voir Marburg 1936, Lumsden 1970) . Le facteur toxique injecté semble circuler dans le LCR, et a une action ciblée sur certains types cellulaires. Il serait donc diffusible du LCR vers le parenchyme cérébral où il touche certaines populations cellulaires.Some authors have mentioned the existence of an agent of an enzymatic, or immune or other nature, diffusing CSF or blood, in the brain (see Marburg 1936, Lumsden 1970). The injected toxic factor seems to circulate in the CSF, and has a targeted action on certain cell types. It would therefore be diffusible from the CSF to the cerebral parenchyma where it affects certain cell populations.
La lésion affectant les astrocytes est complexe. On observe une fragmentation d'ADN d'astrocytes suggérant une mort par apoptose de ces cellules. Les astrocytes induisent la formation et le maintien de la BHE, par le biais de leurs extensions cytoplasmiques périvasculaires (pieds astrocytaires), même s'ils ne la constituent pas (Stewart & Wiley 1981) . L'altération des astrocytes périvasculaires suggère une rétraction des pieds astrocytaires pouvant par conséquent modifier l'étanchéité de la BHE. Aussi la fragmentation de l'ADN de cellules endothéliales cérébrales suggère des modifications des propriétés intrinsèques de ces cellules qui pourraient conduire à une ouverture de la BHE. La détection d'immunoglobulines du sang dans le cerveau du rat en constitue une preuve. Il est possible gue ce soit les modifications morphologiques des astrocytes périvasculaires, qui se produisent très tôt, qui conduisent à la modification du phénotype des cellules endothéliales et donc à l'altération de la BHE.The lesion affecting astrocytes is complex. A fragmentation of astrocyte DNA is observed suggesting death by apoptosis of these cells. Astrocytes induce the formation and maintenance of the BBB, through their perivascular cytoplasmic extensions (astrocytic feet), even if they do not constitute it (Stewart & Wiley 1981). The alteration of the perivascular astrocytes suggests a retraction of the astrocytic feet which can consequently modify the tightness of the BBB. Also the fragmentation of the DNA of cerebral endothelial cells suggests modifications of the intrinsic properties of these cells which could lead to an opening of the BBB. The detection of blood immunoglobulins in the rat brain is proof of this. It is possible that it is the morphological modifications of the perivascular astrocytes, which occur very early, which lead to the modification of the phenotype of the endothelial cells and therefore to the alteration of the BBB.
Plusieurs auteurs insistent sur des anomalies au niveau des vaisseaux sanguins dans les plaques chroniques de SEP (Jellinger 1969, Weller 1985, Gay & Esiri 1991). Les cellules endothéliales des capillaires contiennent des immunoglobulines et 1 'αl-antiglobuline indiquant l'augmentation du transport vésiculaire transendothélial à la périphérie des plaques. On a noté également le passage de médiateurs immunitaires humoraux et cellulaires, témoignant aussi d'une ouverture de la BHE (Compston & col 1989) .Several authors insist on anomalies at the level of the blood vessels in the chronic plaques of MS (Jellinger 1969, Weller 1985, Gay & Esiri 1991). The endothelial cells of the capillaries contain immunoglobulins and the αl-antiglobulin indicating the increase in transendothelial vesicular transport at the periphery of the plates. We also noted the passage of humoral and cellular immune mediators, also testifying to an opening of the BBB (Compston & col 1989).
On a également observé une astrogliose, à proximité de certains vaisseaux, et une prolifération très marquée d'astrocytes fibreux dans l'ensemble du SNC du rat. Les astrocytes après stimulation, produisent une variété de molécules immunorégulatrices. Elles incluent IL-1 (Fontana & col 1982), l'IL-6 (Frei & col 1989), IFN-y (Tedeschi & col 1986) et aussi du TNF- (Robbins & col 1987, Sawada & col 1989, Chung & col 1990). Le TNF-α est toxique pour les cellules endothéliales (Deguchi & col 1989, Ishii & col 1992) . Il a un rôle important dans la progression des lésions dans la SEP (Sharief & col 1991) . Il existe une corrélation entre l'ouverture de la BHE et le taux de production de TNF-α chez les patients atteints de SEP (Sharief & Tompson 1992) . Le TNF-α a un effet cytotoxique direct sur les oligodendrocytes et provoque les destructions yéliniques (Sel aj & Raine 1988) . Il induit une prolifération d'astrocytes in vitro (Barna & col 1990) .Astrogliosis has also been observed near certain vessels and a very marked proliferation of fibrous astrocytes throughout the rat's CNS. Astrocytes, after stimulation, produce a variety of immunoregulatory molecules. They include IL-1 (Fontana & col 1982), IL-6 (Frei & col 1989), IFN-y (Tedeschi & col 1986) and also TNF- (Robbins & col 1987, Sawada & col 1989, Chung & col 1990). TNF-α is toxic to endothelial cells (Deguchi & col 1989, Ishii & col 1992). It has an important role in the progression of lesions in MS (Sharief & col 1991). There is a correlation between the opening of the BBB and the rate of TNF-α production in patients with MS (Sharief & Tompson 1992). TNF-α has a direct cytotoxic effect on oligodendrocytes and causes yelin destruction (Salt aj & Raine 1988). It induces proliferation of astrocytes in vitro (Barna & col 1990).
On sait aussi que les astrocytes se retrouvent au carrefour des réactions inflammatoires. Ils représentent les cellules immunocompétentes résidentes dans le SNC (Fontana & col 1987) . Une altération primaire des astrocytes dans les processus lésionnels de la SEP pourrait à la fois déstabiliser l'équilibre ho éostatique du SNC, et déclencher une cascade d'événements de type inflammatoire qui aboutiraient à une démyélinisation.We also know that astrocytes are found at the crossroads of inflammatory reactions. They represent the resident immunocompetent cells in the CNS (Fontana & col 1987). A primary alteration of the astrocytes in the lesional processes of MS could both destabilize the hoostostatic balance of the CNS, and trigger a cascade of inflammatory events which would lead to demyelination.
Des facteurs solubles d'origine monocytaire ou lymphoïde pourraient altérer l'activité biologique des astrocytes (Chung & col 1990) et induire des cytokines, certaines potentiellement démyélinisantes.Soluble factors of monocytic or lymphoid origin could alter the biological activity of astrocytes (Chung & col 1990) and induce cytokines, some potentially demyelinating.
On a observé une prolifération microgliale acrophagique chez les rates traitées par le facteur toxique. Cette réactivité s'observe sous forme de foyers OX424" localisés dans la substance blanche, et plus dans le tronc cérébral. La microglie activée produit aussi des cytokines, tel le TNF-α (Frei & Fontana 1989, Hetier & col 1990), l'IL-6 (Frei & col 1989) et autres. Une réactivité microgliale macrophagique a été décrite dans la SEP et pourrait participer aux processus de démyélinisation ( oodroofe & col 1986, Esiri & col 1987) .Acrophagic microglial proliferation was observed in rats treated with the toxic factor. This reactivity is observed in the form of OX42 4 " foci located in the white matter, and no longer in the brainstem. The activated microglia also produces cytokines, such as TNF-α (Frei & Fontana 1989, Hetier & col 1990), IL-6 (Frei & col 1989) et al. Macrophagic microglial reactivity has been described in MS and could participate in demyelination processes (oodroofe & col 1986, Esiri & col 1987).
On observe également une démyélinisation. Les aires de démyélinisation sont très nettement délimitées dans le tronc cérébral et la substance blanche cérébelleuse. Ces aspects sont très proches de ceux qui sont observés dans la SEP. Les résultats obtenus suggèrent que le facteur toxique isolé à partir du LCR de patients SEP induit des lésions à large étendue dans le SNC du rat. Ces lésions se rapprochent par leur nature et leur distribution de certaines des lésions observées dans la SEP, notamment la démyélinisation, 1 'astrogliose fibrillaire, la réactivité microgliale macrophagique et l'ouverture de la BHE avec formation d'un oedème objectivé par la diffusion d' immunoglobulines plasmatiques intra- parenchymateuse.Demyelination is also observed. The demyelination areas are very clearly delimited in the brainstem and the cerebellar white matter. These aspects are very close to those observed in MS. The results obtained suggest that the toxic factor isolated from the CSF of patients MS induces large lesions in the CNS of the rat. These lesions are similar in nature and distribution to some of the lesions observed in MS, in particular demyelination, fibrillar astrogliosis, macrophagic microglial reactivity and the opening of the BBB with the formation of an edema objectified by the diffusion of intraparenchymal plasma immunoglobulins.
Ces résultats montrent l'intérêt d'utiliser ce nouveau modèle animal expérimental pour étudier la neuropathologie de la SEP et mettre au point des stratégies à visée thérapeutique pour inhiber la synthèse ou bloquer l'action du facteur gliotoxique et à contrecarrer ses effets dans un modèle in vivo.These results show the interest of using this new experimental animal model to study the neuropathology of MS and to develop therapeutic strategies to inhibit the synthesis or block the action of the gliotoxic factor and to counteract its effects in a model. in vivo.
EXEMPLE 4 : EVALUATION DE L'EFFICACITE THERAPEUTIQUE D'UN TRAITEMENT DE LA SCLEROSE EN PLAQUES A L'AIDE DU MODELE ANIMAL INDUIT PAR LA GLIOTOXINEEXAMPLE 4 EVALUATION OF THE THERAPEUTIC EFFICACY OF A TREATMENT OF MULTIPLE SCLEROSIS USING THE ANIMAL MODEL INDUCED BY GLIOTOXIN
Premièrement, un échantillon de facteur gliotoxique purifié est préparé selon la description faite dans l'Exemple 1 et dans la demande de brevet PCT/FR95/00178.First, a sample of purified gliotoxic factor is prepared according to the description made in Example 1 and in patent application PCT / FR95 / 00178.
Deuxièmement, une série de rats Lewis femelles est sélectionnée selon les critères décrits dans l'Exemple 1. Une trentaine ou plus de ces animaux reçoivent au jour 0, une dose de facteur gliotoxique en injection stéréotaxique intraventriculaire, selon le protocole décrit dans l'Exemple 1. Aux jours 0, 1, 3, 8, et 10 (par exemple) après injection du facteur gliotoxique, ils reçoivent une dose adéquate d'un agent thérapeutique tel que le Rolipram®, 1 ' interféron β, 1 •azathioprine, le cyclophosphamide, un antisérum anti-gliotoxine, ou tout autre moyen thérapeutique à évaluer. Cette série "A" correspond aux animaux malades (gliotoxine +) traités avec un produit ou procédé actif, et est susceptible d'être reproduite en plusieurs variantes pour évaluer un protocole d'administration quantitatif et qualitatif optimal parmi toutes les variantes.Secondly, a series of female Lewis rats is selected according to the criteria described in Example 1. Thirty or more of these animals receive on day 0, a dose of gliotoxic factor by stereotaxic intraventricular injection, according to the protocol described in Example 1. On days 0, 1, 3, 8, and 10 (for example) after injection of the gliotoxic factor, they receive an adequate dose of a therapeutic agent such as Rolipram ® , 1 β interferon, 1 • azathioprine, cyclophosphamide, an anti-gliotoxin antiserum, or any other therapeutic means to be evaluated. This series "A" corresponds to sick animals (gliotoxin +) treated with an active product or process, and can be reproduced in several variants to assess a optimal quantitative and qualitative administration protocol among all variants.
Une trentaine (ou plus) de ces animaux reçoivent au jour 0 une dose de facteur gliotoxique en injection stéréotaxique intraventriculaire, selon le protocole décrit dans l'Exemple 1, mais reçoivent un placebo inactif du traitement défini dans la série A, dans des conditions rigoureusement équivalentes. Cette série "B" correspond aux animaux malades (gliotoxine +) constituant un contrôle positif non-traité.Thirty (or more) of these animals receive on day 0 a dose of gliotoxic factor by stereotaxic intraventricular injection, according to the protocol described in Example 1, but receive an inactive placebo of the treatment defined in series A, under strictly conditions equivalent. This series "B" corresponds to sick animals (gliotoxin +) constituting an untreated positive control.
Une trentaine (ou plus) de ces animaux reçoivent au jour 0, une injection placebo de facteur gliotoxique (tampon d'injection avec de la sérum-albumine), mais reçoivent le protocole thérapeutique actif défini dans la série A. Cette série "C" correspond aux animaux sains (gliotoxine -) constituant un contrôle négatif traité qui permet d'évaluer les effets éventuellement liés au traitement actif, en dehors de l'effet du facteur gliotoxique. L'efficacité thérapeutique est évaluée en sacrifiant des animaux des séries A, B et C, au jour 10, à un mois, trois mois, six mois, voire un an si nécessaire, après l'injection du facteur gliotoxique ou de son placebo, selon le protocole décrit l'Exemple 1. Les cerveaux des animaux sont étudiés selon les descriptions techniques de l'Exemple 1.Thirty (or more) of these animals receive a placebo injection of gliotoxic factor on day 0 (injection buffer with serum albumin), but receive the active therapeutic protocol defined in series A. This series "C" corresponds to healthy animals (gliotoxin -) constituting a treated negative control which makes it possible to evaluate the effects possibly linked to the active treatment, apart from the effect of the gliotoxic factor. Therapeutic efficacy is evaluated by sacrificing animals of series A, B and C, on day 10, one month, three months, six months, or even a year if necessary, after the injection of the gliotoxic factor or its placebo according to the protocol described in Example 1. The brains of the animals are studied according to the technical descriptions of Example 1.
Les critères suivants sont notamment retenus pour la comparaison entre les animaux des séries A, B et C: Aspects généraux : - état généralThe following criteria are used in particular for the comparison between animals of series A, B and C: General aspects: - general condition
- perte de poids- weightloss
- modifications comportementales. Histopathologie cérébrale (à distance du point d' injection) : - anomalies morphologiques et histologiques des astrocytes (tels que décrites dans les exemples précédents) ; fragmentation de l'ADN (technique TUNEL positive) dans des cellules astrocytaires principalement, mais éventuellement et notamment épendymaires ou endothéliales ;- behavioral changes. Brain histopathology (away from the injection site): - morphological and histological anomalies of the astrocytes (as described in the previous examples); DNA fragmentation (TUNEL positive technique) mainly in astrocytic cells, but possibly and in particular ependymal or endothelial;
- ouverture de la BHE visualisée par au moins une zone de diffusion intra-parenchymateuse d'immunoglobulines sériques ; activation macrophagique des cellules microgliales;- opening of the BBB visualized by at least one zone of intra-parenchymal diffusion of serum immunoglobulins; macrophagic activation of microglial cells;
- anomalies morphologiques et histologiques des structures myéliniques et/ou des oligodendrocytes ; - présence ou absence d'infiltrats lymphocytaires, notamment péri-vasculaires.- morphological and histological anomalies of the myelin structures and / or of the oligodendrocytes; - presence or absence of lymphocyte infiltrates, in particular perivascular.
L'efficacité thérapeutique est démontrée si une différence significative (reproductible sur un nombre d'animaux statistiquement analysable) existe entre la fréquence, l'intensité, la surface, la sommation, des anomalies sus-décrites observées chez les animaux de la série A (gliotoxine "*"/traitement actif) et ceux de la série B (gliotoxine "*"/traitement placebo) .Therapeutic efficacy is demonstrated if a significant difference (reproducible in a number of statistically analyzable animals) exists between the frequency, intensity, surface area, summation, of the above-described anomalies observed in animals of series A ( gliotoxin " *" / active treatment) and those of series B (gliotoxin " * " / placebo treatment).
L'efficacité thérapeutique est d'autant meilleure que la différence entre les observations rapportées dans la série A et celles rapportées dans la série C, devient non-significative selon les mêmes critères que précédemment.The therapeutic efficacy is all the better as the difference between the observations reported in series A and those reported in series C, becomes non-significant according to the same criteria as above.
Cette efficacité peut être ainsi évaluée selon les différents protocoles d'application des traitements (séries "A" avec variantes) et l'efficacité à terme, en fonction du temps écoulé après injection du facteur gliotoxique, est évaluée en sacrifiant des animaux de chaque série à des temps croissants comme mentionné ci- dessus. EXEMPLE 5 : OBTENTION D'ANTICORPS SPECIFIQUES ANTI-FACTEUR GLIOTOXIQUE ET/OU DIRIGES CONTRE DES MOLECULES INDUITES OU MODIFIEES PAR LES EFFETS DU FACTEUR GLIOTOXIQUE Injection de facteur gliotoxique (intracérébrale, intrapéritonéale, ou IP, intraveineuse, ou IV, intramusculaire, ou IM, ou intradermique, ou ID) à une série d'animaux selon Exemple 1.This efficiency can thus be evaluated according to the different treatment application protocols (series "A" with variants) and the efficacy over time, as a function of the time elapsed after injection of the gliotoxic factor, is evaluated by sacrificing animals of each series at increasing times as mentioned above. EXAMPLE 5 OBTAINING SPECIFIC ANTIBODIES FOR ANTI-GLIOTOXIC FACTOR AND / OR DIRECTED AGAINST MOLECULES INDUCED OR MODIFIED BY THE EFFECTS OF THE GLIOTOXIC FACTOR Injection of gliotoxic factor (intracerebral, intraperitoneal, or PI, intravenous, or IV, intramuscular) or intradermal, or ID) to a series of animals according to Example 1.
Rappels par injections IP, IV, ID ou IM après un mois, deux mois, trois mois, voire plus.Recalls by IP, IV, ID or IM injections after one month, two months, three months or more.
Prélèvement de la rate (organe) de l'animal après un mois, deux mois, trois mois, quatre mois, voire plus.Removal of the animal's spleen (organ) after one month, two months, three months, four months or more.
Vérification des atteintes neuropathologiques selon l'Exemple 1. Conservation de coupes de cerveau fixées pour l'étude des anticorps produits.Verification of neuropathological damage according to Example 1. Conservation of fixed brain sections for the study of the antibodies produced.
Extraction des lymphocytes de la rate et reprise dans milieu de culture en vue de fusion avec cellules transformées adéquates pour l'obtention d'hybridomes sécréteurs d• immunoglobulines. Sélection des clones fusionnés viables.Extraction of lymphocytes from the spleen and recovery in culture medium with a view to fusion with transformed cells suitable for obtaining hybridomas secreting immunoglobulins. Selection of viable merged clones.
Screening des spécificités des anticorps produits par les hybridomes : Gliotoxine :Screening of the specificities of the antibodies produced by the hybridomas: Gliotoxin:
1- test d'inhibition d'activité: Les suspensions d'anticorps produits par les différents clones sont ajoutées dans des puits de cultures contenant une solution de facteur gliotoxique tel que défini pour le bio-essai décrit dans la demande de brevet1- activity inhibition test: The antibody suspensions produced by the different clones are added to culture wells containing a solution of gliotoxic factor as defined for the bioassay described in the patent application
PCT/FR95/00178. Des suspensions d'anticorps contrôles d'animaux injectés avec un placebo de gliotoxine sont ajoutées à des puits témoins. L'activité gliotoxique est mesurée dans chaque puits conformément à la description de la demande de brevet précitée. Toute différence significative obtenue avec une suspension d'anticorps montrant une activité gliotoxique inférieure à la valeur témoin "plancher" (moyenne des puits avec anticorps témoins moins trois écart-types) , montre une activité anti-gliotoxine inhibitrice.PCT / FR95 / 00178. Suspensions of control antibodies from animals injected with a gliotoxin placebo are added to control wells. The gliotoxic activity is measured in each well in accordance with the description of the aforementioned patent application. Any significant difference obtained with an antibody suspension showing a gliotoxic activity lower than the "floor" control value (average of the wells with antibodies controls minus three standard deviations), shows inhibitory anti-gliotoxin activity.
Ces anticorps inhibiteurs ont un intérêt pour la détection du facteur gliotoxique (ELISA, etc...), mais aussi pour la thérapeutique anti-gliotoxine (éventuellement, après humanisation des anticorps en substituant la partie constante de l'anticorps avec une chaîne d'Ig humaine et en conservant la partie variable de l'anticorps animal). 2- Test sérologiqueThese inhibiting antibodies are of interest for the detection of the gliotoxic factor (ELISA, etc.), but also for anti-gliotoxin therapy (possibly, after humanization of the antibodies by substituting the constant part of the antibody with a chain of Human Ig and retaining the variable part of the animal antibody). 2- Serological test
Une fraction de gliotoxine est exposée aux différentes suspensions d'anticorps selon une technique sérologique adaptée et les anticorps spécifiques sont révélés par une réaction positive. Alternativement, une source de gliotoxine recombinante ou des peptides synthétiques dérivés de sa séquence peuvent être utilisés pour ce screening.A fraction of gliotoxin is exposed to the various antibody suspensions according to an appropriate serological technique and the specific antibodies are revealed by a positive reaction. Alternatively, a source of recombinant gliotoxin or synthetic peptides derived from its sequence can be used for this screening.
Les clones d'hybridome intéressants sont cultivés ultérieurement pour produire des anticorps monoclonaux. Antigènes tissulaires :The hybridoma clones of interest are subsequently cultured to produce monoclonal antibodies. Tissue antigens:
Les tests sérologiques peuvent être appliqués à des antigènes extraits des tissus des animaux malades et comparés avec des tissus équivalents d'animaux témoins pour identifier des molécules induites ou modifiées par l'effet du facteur gliotoxique.Serological tests can be applied to antigens extracted from the tissues of sick animals and compared with equivalent tissues from control animals to identify molecules induced or modified by the effect of the gliotoxic factor.
Ces anticorps peuvent avoir un intérêt diagnostique, voire thérapeutique. These antibodies may have a diagnostic or even therapeutic interest.
REFERENCES Barna B.P., Estes M.L., Jacobs B.S., Hudson S. (1990) Humain astrocytes proliferate in response to tumor necrosis factor alpha J. Neuroimmunol. 30, 239-243. Chung I.Y. et E.N. Benveniste (1990) Tumor necrosis factor-alpha production by astrocytes. Induction by lipopolysaccharide, IFN-gamma and IL-lbeta. J. Immunol, Vol 144 n°8 pp 2999-3007.REFERENCES Barna B.P., Estes M.L., Jacobs B.S., Hudson S. (1990) Human astrocytes proliferate in response to tumor necrosis factor alpha J. Neuroimmunol. 30, 239-243. Chung I.Y. and E.N. Benveniste (1990) Tumor necrosis factor-alpha production by astrocytes. Induction by lipopolysaccharide, IFN-gamma and IL-lbeta. J. Immunol, Vol 144 n ° 8 pp 2999-3007.
Compston D.A.S., Morgan, B.P., Campbell, A.K., ilkins, P, Gole, G., Thomas, N.D. et Jasani B. (1989)Compston D.A.S., Morgan, B.P., Campbell, A.K., ilkins, P, Gole, G., Thomas, N.D. and Jasani B. (1989)
Im unocytochemical localization of the terminal complément complex in multiple sclerosis. Neuropathol. Appl.Im unocytochemical localization of the terminal complement complex in multiple sclerosis. Neuropathol. Appl.
Neurobiol. 15, 307-316.Neurobiol. 15, 307-316.
Deguchi Y., Shibata, N. , et Kishimoto, S. (1989) Enhanced transcription of TNF in symétrie vasculitis. Lancet ii, 745-746.Deguchi Y., Shibata, N., and Kishimoto, S. (1989) Enhanced transcription of TNF in symmetry vasculitis. Lancet ii, 745-746.
Esiri M.M. et Reading, M.C. (1987) Macrophage populations associated with multiple sclerosis plaques. Neuropathol. Appl. Neurobiol. 13. 451-465. Fontana A., F. Kristensen, R. Dubs, D. Gemsa, etEsiri M.M. and Reading, M.C. (1987) Macrophage populations associated with multiple sclerosis plaques. Neuropathol. Appl. Neurobiol. 13. 451-465. Fontana A., F. Kristensen, R. Dubs, D. Gemsa, and
E. Weber (1982) Production of prostaglandin E and an interleukin - I - like factor by cultured astrocytes and C6 glio a cells. J. Immunol 129-2413.E. Weber (1982) Production of prostaglandin E and an interleukin - I - like factor by cultured astrocytes and C6 glio a cells. J. Immunol 129-2413.
Fontana (1987) Antigen présentation and tumor cytotoxicity by interferon-treated microglial cells. Eur J. Immunol. 17, 1271.Fontana (1987) Antigen presentation and tumor cytotoxicity by interferon-treated microglial cells. Eur J. Immunol. 17, 1271.
Frei K. , U.V. Malipiero, T.P. Leist, R. M.Frei K., U.V. Malipiero, T.P. Leist, R. M.
Zinkernagel. M.E. Schwab, et A. Fontana (1989) . On the cellular source and function of interleukin-6 produced in the central nervous system in viral diseases. Eur. J.Zinkernagel. M.E. Schwab, and A. Fontana (1989). On the cellular source and function of interleukin-6 produced in the central nervous system in viral diseases. Eur. J.
Immunol. 19:689.Immunol. 19: 689.
Frei K. , et Fontana, A., (1989) Im une regulatory functions of astrocytes and microglial cells within the central nervous System, Neuroimmuno-networks: physiology and diseases, Alan R. Liss Inc., : 127-136. Gabriel! Y, Sherman Y, Ben-Sasson S.A. (1992) Identification of programmed cell death in situ via spécifie labelling of nuclear DNA fragmentation. J. Cell. Biol. 119, 493-501. Gay D. et Esiri M. (1991) Blood-brain barrier damage in acute multiple sclerosis plaques. An immunocytological study. Brain 114, 557-572.Frei K., and Fontana, A., (1989) Im a regulatory functions of astrocytes and microglial cells within the central nervous System, Neuroimmuno-networks: physiology and diseases, Alan R. Liss Inc.,: 127-136. Gabriel! Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specifies labeling of nuclear DNA fragmentation. J. Cell. Biol. 119, 493-501. Gay D. and Esiri M. (1991) Blood-brain barrier damage in acute multiple sclerosis plaques. An immunocytological study. Brain 114, 557-572.
Hawkins C.P., Mackenzie F., Toffts P., McDonald .I., (1991) Patterns of blood- brain barrier breakdown in inflammatory de yelination. Brain 114, 801-810.Hawkins C.P., Mackenzie F., Toffts P., McDonald .I., (1991) Patterns of blood- brain barrier breakdown in inflammatory de yelination. Brain 114, 801-810.
Hétier E. , Ayala J., Rousseau A., Denèfle P., et Prochiantz A., (1990) Amoeboid microglial cells and not astrocytes synthesize TNF-a in Swiss mouse brain cell cultures. European J. Neurosci., 2 : 762-768. Ishii Y., Partridge C.A. , Del Vacchio P.J. , etHétier E., Ayala J., Rousseau A., Denèfle P., and Prochiantz A., (1990) Amoeboid microglial cells and not astrocytes synthesize TNF-a in Swiss mouse brain cell cultures. European J. Neurosci., 2: 762-768. Ishii Y., Partridge C.A., Del Vacchio P.J., and
Malik A.B. (1992) Tumor necrosis factor-alpha- ediated decrease in glutathione increases the sensitivity of pulmonary vascular endothelial cells to H202. J. Clin. Invest. 89, 794-802. Jellinger K. (1969) Einige morphologische Aspekte der multiplen Sklerose. Wien. Z. Nervenheil. Suppl. II, 12-37.Malik A.B. (1992) Tumor necrosis factor-alpha- ediated decrease in glutathione increases the sensitivity of pulmonary vascular endothelial cells to H202. J. Clin. Invest. 89, 794-802. Jellinger K. (1969) Einige morphologische Aspekte der multiplen Sklerose. Wien. Z. Nervenheil. Suppl. II, 12-37.
Kalman M., et Hajos F., (1989), Distribution of glial figrillary acidic protein (GFAP) -immunoreactive astrocytes in the rat brain. I Forebrain, Exp. Brain Res., 78: 147-163.Kalman M., and Hajos F., (1989), Distribution of glial figrillary acidic protein (GFAP) -immunoreactive astrocytes in the rat brain. I Forebrain, Exp. Brain Res., 78: 147-163.
Lumsden CE. (1970) The pathology of multiple sclerosis. IN/ P.J. Vinken and G. . Bruyn (Eds) , Handbook of clinical Neurol. Vol. 19 North-holland Publishers. Amsterdam, PP. 217-309.Lumsden CE. (1970) The pathology of multiple sclerosis. IN / P.J. Vinken and G.. Bruyn (Eds), Handbook of clinical Neurol. Flight. 19 North-Holland Publishers. Amsterdam, PP. 217-309.
Marburg O. (1936) In/ O. Bumk et O. Foerster (Eds) Handbuch der Neurologie, Berlin, pp 546.Marburg O. (1936) In / O. Bumk and O. Foerster (Eds) Handbuch der Neurologie, Berlin, pp 546.
Perron H., Geny C, Laurent A., et al (1989) Leptomeningeal cell line fro multiple sclerosis with reverse transcriptase activity and viral particles. Res. Virol. ; 140; 551-561. Perron H., Geny C. , Gratacap B. Laurent A., Lalande B., Perret J. , Pellat J. , Seigneurin J.M. (1991) Isolation of an unknow retrovirus from CSF. Blood and brain cells of patients with multiple sclerosis. Elsevier Science Publishers B.V. Current concepts in multiple sclerosis H. Wiethôler et al., editors.Perron H., Geny C, Laurent A., et al (1989) Leptomeningeal cell line fro multiple sclerosis with reverse transcriptase activity and viral particles. Res. Virol. ; 140; 551-561. Perron H., Geny C., Gratacap B. Laurent A., Lalande B., Perret J., Pellat J., Seigneurin JM (1991) Isolation of an unknow retrovirus from CSF. Blood and brain cells of patients with multiple sclerosis. Elsevier Science Publishers BV Current concepts in multiple sclerosis H. Wiethôler et al., Editors.
Perron H., Lalande B. , Gratacap B. et coll. Isolation of retrovirus from patients with multiple sclerosis. Lancet, 1991, 337, 862-863. Poser CM. (1993) The pathogenesis of multiple sclerosis. Additional considérations. J. Neurol. Sciences 115 (Suppl.) S3-S15.Perron H., Lalande B., Gratacap B. et al. Isolation of retrovirus from patients with multiple sclerosis. Lancet, 1991, 337, 862-863. Ask CM. (1993) The pathogenesis of multiple sclerosis. Additional considerations. J. Neurol. Sciences 115 (Suppl.) S3-S15.
Robbins D.S., Y. Shirazi, B.E. Drysdale A. Leiberman, H.S. Shin, et M.L. Shin (1987) Production of cytotoxic factor for oligodendrocytes by stimulated astrocytes. J. Immuno. 139:2593.Robbins D.S., Y. Shirazi, B.E. Drysdale A. Leiberman, H.S. Shin, and M.L. Shin (1987) Production of cytotoxic factor for oligodendrocytes by stimulated astrocytes. J. Immuno. 139: 2593.
Sawada M., N. Kondo, A. Suzumura, et T. Marunouchi (1989) Production of tumor necrosis factor-alpha by microglia and astrocytes in culture. Brain Res. 491:394. Selmaj, K.W. et Raine CS. (1988) Tumor necrosis factor médiates myelin and oligodendrocytes damage in vitro. Ann. Neurol. 23,339-346.Sawada M., N. Kondo, A. Suzumura, and T. Marunouchi (1989) Production of tumor necrosis factor-alpha by microglia and astrocytes in culture. Brain Res. 491: 394. Selmaj, K.W. and Raine CS. (1988) Tumor necrosis factor mediates myelin and oligodendrocytes damage in vitro. Ann. Neurol. 23,339-346.
Sharief M.K. et Hentges R. (1991) Association between tumor necrosis factor-alpha and disease progression in patients with multiple sclerosis. N. Eng. J. Med. 325, 467-472.Sharief M.K. and Hentges R. (1991) Association between tumor necrosis factor-alpha and disease progression in patients with multiple sclerosis. N. Eng. J. Med. 325, 467-472.
Sharief M.K. et Thompson E.J. (1992) Association between tumor necrosis factor to blood-brain damage in patients with active multiple sclerosis. J. Neuroimmunol. 38,27-34.Sharief M.K. and Thompson E.J. (1992) Association between tumor necrosis factor to blood-brain damage in patients with active multiple sclerosis. J. Neuroimmunol. 38,27-34.
Stewart W.J. et iley M.J. , (1981), Developping nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: a study using quail-chick transplantation chimeras, Dev. Biol., 84: 183-192. Tedeschi B., J.N. Barrett, et R.W. Keane (1986) Astrocytes produce interferon that enhances the expression of H-2 antigens on a subpopulation of brain cells. J. Cell. Biol. 102:2244. Thompson A.I., Miller D. , Youl & al (1992) Sériai gadolinium-enhanced MRi in relapsing/remitting multiple sclerosis of varying disease duration. Neurology 42, 285- 390. aksman B.H. Mechanis s in multiple sclerosis. Nature 1985. 104-105. eller R.O. (1985) Pathology of multiple sclerosis. In: .B. Matthews, F.D. Acheson, J.R. Batchelor et R.O. Weller (Eds.), McAlpine•s Multiple sclerosis. Churchill Living-stone, Edinburgh, pp. 301-343. Woodroofe M.N. Bellamy, A.S. Feldmann, M. Davison,Stewart WJ and iley MJ, (1981), Developping nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: a study using quail-chick transplantation chimeras, Dev. Biol., 84: 183-192. Tedeschi B., JN Barrett, and RW Keane (1986) Astrocytes produce interferon that enhances the expression of H-2 antigens on a subpopulation of brain cells. J. Cell. Biol. 102: 2244. Thompson AI, Miller D., Youl & al (1992) Sériai gadolinium-enhanced MRi in relapsing / remitting multiple sclerosis of varying disease duration. Neurology 42, 285-390. Aksman BH Mechanis s in multiple sclerosis. Nature 1985. 104-105. eller RO (1985) Pathology of multiple sclerosis. In: .B. Matthews, FD Acheson, JR Batchelor and RO Weller (Eds.), McAlpine • s Multiple sclerosis. Churchill Living-stone, Edinburgh, pp. 301-343. Woodroofe MN Bellamy, AS Feldmann, M. Davison,
A.N. et Cuzner M.L. (1986) Immunocytoche ical characterisation of the immune reaction in the central nervous system in multiple sclerosis: possible rôle for microglia in lésion growth, J. Neurol. Sci. 74, 135-152. A.N. and Cuzner M.L. (1986) Immunocytoche ical characterization of the immune reaction in the central nervous system in multiple sclerosis: possible role for microglia in lesion growth, J. Neurol. Sci. 74, 135-152.

Claims

REVENDICATIONS
1. Animal mammifère, non humain, modifié sans affecter son génome, caractérisé en ce qu'il possède au moins deux quelconques des signes pathologiques suivants : (a) une barrière hématoencéphalique ouverte ou perméable aux molécules hydrosolubles du sang non spécifiques du parenchyme cérébral ; (b) une atteinte astrocytaire notamment révélée par la désorganisation des réseaux physiologiques, par une disparition des pieds astrocytaires autour des vaisseaux capillaires et par une gliose ; (c) une activation des cellules microgliales ; (d) des plaques de démyélinisation, notamment présentes dans le tronc cérébral et/ou la substance blanche cérébelleuse ; (e) des lésions des cellules gliales et des cellules endothéliales du système nerveux central.1. A mammalian, non-human animal, modified without affecting its genome, characterized in that it has at least any two of the following pathological signs: (a) a blood-brain barrier open or permeable to water-soluble molecules of the blood not specific for the cerebral parenchyma; (b) an astrocytic attack notably revealed by the disorganization of physiological networks, by a disappearance of the astrocytic feet around the capillary vessels and by gliosis; (c) activation of microglial cells; (d) demyelination plaques, especially present in the brainstem and / or the cerebellar white matter; (e) damage to glial cells and endothelial cells of the central nervous system.
2. Animal selon la revendication 1, caractérisé en ce que les lésions selon (e) consistent en une modification de la morphologie et/ou une fragmentation au moins partielle de l'ADN des cellules gliales de type astrocytaire.2. Animal according to claim 1, characterized in that the lesions according to (e) consist in a modification of the morphology and / or at least partial fragmentation of the DNA of glial cells of the astrocytic type.
3. Animal selon la revendication 1 ou 2, caractérisé en ce qu'il possède au moins deux des signes pathologiques (a) , (d) et (e) .3. Animal according to claim 1 or 2, characterized in that it has at least two of the pathological signs (a), (d) and (e).
4. Animal mammifère, non humain, modifié sans affecter son génome, caractérisé en ce qu'il est susceptible d'être obtenu par inoculation du facteur gliotoxique tel qu'obtenu dans un liquide biologique de patients atteints de sclérose en plaques.4. A mammalian, non-human animal, modified without affecting its genome, characterized in that it is capable of being obtained by inoculation of the gliotoxic factor as obtained in a biological fluid from patients suffering from multiple sclerosis.
5. Animal selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il appartient à la famille des uridéε, en particulier l'animal est un rat.5. Animal according to any one of the preceding claims, characterized in that it belongs to the family of uridae, in particular the animal is a rat.
6. Procédé d'obtention d'un animal selon l'une quelconque des revendications précédentes, comprenant les étapes consiεtant à : disposer d'une quantité infectante de facteur gliotoxique, tel qu'obtenu à partir d'un liquide biologique d'un patient atteint de sclérose en plaques, inoculer ladite quantité infectante à l'animal.6. Method for obtaining an animal according to any one of the preceding claims, comprising the steps of: have an infectious amount of gliotoxic factor, as obtained from a biological fluid from a patient suffering from multiple sclerosis, inoculate said infectious amount with the animal.
7. Utilisation d'un animal selon l'une quelconque des revendications l à 5, pour mesurer l'efficacité thérapeutique d'un procédé thérapeutique, notamment d'un agent médicamenteux, anti-inflammatoire. 7. Use of an animal according to any one of claims 1 to 5, for measuring the therapeutic effectiveness of a therapeutic process, in particular of a medicinal, anti-inflammatory agent.
8. Utilisation d'un animal selon l'une quelconque des revendications 1 à 5, pour mesurer l'efficacité thérapeutique d'un procédé thérapeutique, notamment d'un agent médicamenteux, destiné au traitement de la sclérose en plaques. 8. Use of an animal according to any one of claims 1 to 5, for measuring the therapeutic efficacy of a therapeutic process, in particular of a medicinal agent, intended for the treatment of multiple sclerosis.
9. Utilisation d'un animal selon l'une quelconque des revendications 1 à 5, pour déterminer la nocuité ou l'innocuité d'un procédé thérapeutique, notamment d'un agent médicamenteux, sur le cerveau pathologique de l'animal. 9. Use of an animal according to any one of claims 1 to 5, for determining the harmlessness or harmlessness of a therapeutic process, in particular of a medicinal agent, on the pathological brain of the animal.
10. Procédé pour mesurer l'efficacité d'un procédé thérapeutique, notamment d'un agent médicamenteux, anti-inflammatoire, caractérisé en ce qu'il comprend les étapes consistant à : disposer d'un animal tel que défini selon l'une quelconque des revendications 1 à 5, administrer ledit procédé thérapeutique notamment agent médicamenteux à l'animal, mesurer l'efficacité du procédé thérapeutique en observant la réduction ou l'absence du ou des signes pathologiques définis dans les revendications 1 à 3, par rapport à un animal témoin malade ayant reçu du facteur gliotoxique, mais n'ayant pas reçu le procédé thérapeutique, et en référence à un témoin normal traité par ledit procédé thérapeutique mais n'ayant pas reçu de facteur gliotoxique. 10. Method for measuring the effectiveness of a therapeutic process, in particular of a medicinal, anti-inflammatory agent, characterized in that it comprises the steps consisting in: having an animal as defined according to any one of claims 1 to 5, administering said therapeutic process, in particular a medicinal agent to the animal, measuring the effectiveness of the therapeutic process by observing the reduction or absence of the pathological sign or signs defined in claims 1 to 3, compared with a sick control animal having received gliotoxic factor, but not having received the therapeutic process, and with reference to a normal control treated by said therapeutic process but not having received gliotoxic factor.
11. Procédé pour mesurer l'efficacité d'un procédé thérapeutique, notamment d'un agent médicamenteux, destiné au traitement de la sclérose en plaques, caractérisé en ce qu'il comprend les étapes consistant à : - disposer d'un animal tel que défini selon l'une quelconque des revendications 1 à 5,11. Method for measuring the effectiveness of a therapeutic process, in particular of a medicinal agent, intended for the treatment of multiple sclerosis, characterized in that it comprises the stages consisting in: - having an animal such as defined according to any one of claims 1 to 5,
- administrer ledit procédé thérapeutique à 1 'animal, mesurer l'efficacité du procédé thérapeutique en observant la réduction ou l'absence du ou des signes pathologiques définis dans les revendications 1 à 3, par rapport à un animal témoin malade ayant reçu du facteur gliotoxique, mais n'ayant pas reçu le procédé thérapeutique, et en référence à un témoin normal traité par ledit procédé thérapeutique mais n'ayant pas reçu de facteur gliotoxique.administering said therapeutic process to the animal, measuring the effectiveness of the therapeutic process by observing the reduction or absence of the pathological sign or signs defined in claims 1 to 3, compared with a sick control animal having received gliotoxic factor , but not having received the therapeutic process, and with reference to a normal control treated by said therapeutic process but not having received gliotoxic factor.
12. Procédé pour déterminer la nocuité ou l'innocuité d'un procédé thérapeutique, notamment d'un agent médicamenteux, sur le cerveau pathologique d'un animal tel que défini selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'il comprend les étapes consistant à : disposer dudit animal, administrer ledit procédé thérapeutique à l'animal, mesurer la réponse du procédé thérapeutique par une observation histopathologique du ou des signes pathologiques définis dans les revendications 1 à 3.12. Method for determining the harmlessness or harmlessness of a therapeutic process, in particular of a medicinal agent, on the pathological brain of an animal as defined in any one of claims 1 to 5, characterized in that 'It comprises the steps consisting in: disposing of said animal, administering said therapeutic process to the animal, measuring the response of the therapeutic process by histopathological observation of the pathological sign or signs defined in claims 1 to 3.
13. Procédé de production d'anticorps monoclonaux dirigés contre le facteur gliotoxique et/ou contre des molécules induites ou modifiées par les effets du facteur gliotoxique, comprenant les étapes consistant à fusionner des lymphocytes B prélevés sur un animal tel que défini à l'une quelconque des revendications 1 à 5, avec des cellules tumorales adaptées à l'obtention d'hybridomes, et à faire produire par l'hybridome issu sélectionné lesdits anticorps.13. Process for the production of monoclonal antibodies directed against gliotoxic factor and / or against molecules induced or modified by the effects of gliotoxic factor, comprising the steps consisting in fusing B lymphocytes taken from an animal as defined in one any one of claims 1 to 5, with tumor cells suitable for obtaining of hybridomas, and to produce by the hybridoma derived from selected said antibodies.
14. Anticorps monoclonal dirigé contre le facteur gliotoxique et/ou contre des molécules induites ou modifiées par les effets du facteur gliotoxique, susceptible d'être obtenu par le procédé selon la revendication 13. 14. Monoclonal antibody directed against gliotoxic factor and / or against molecules induced or modified by the effects of gliotoxic factor, capable of being obtained by the method according to claim 13.
EP97914408A 1996-03-14 1997-03-14 Non-genetically modified mammal as a model for multiple sclerosis Withdrawn EP0825811A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9603417A FR2745974B1 (en) 1996-03-14 1996-03-14 MODIFIED ANIMAL, USES AND METHOD FOR MEASURING THE EFFECTIVENESS OF A THERAPEUTIC PROCESS
FR9603417 1996-03-14
PCT/FR1997/000469 WO1997033466A1 (en) 1996-03-14 1997-03-14 Non-genetically modified mammal as a model for multiple sclerosis

Publications (1)

Publication Number Publication Date
EP0825811A1 true EP0825811A1 (en) 1998-03-04

Family

ID=9490322

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97914408A Withdrawn EP0825811A1 (en) 1996-03-14 1997-03-14 Non-genetically modified mammal as a model for multiple sclerosis

Country Status (6)

Country Link
EP (1) EP0825811A1 (en)
JP (1) JPH11512623A (en)
AU (1) AU2165897A (en)
CA (1) CA2221028A1 (en)
FR (1) FR2745974B1 (en)
WO (1) WO1997033466A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2797402B1 (en) 1999-07-15 2004-03-12 Biomerieux Stelhys USE OF A POLYPEPTIDE FOR DETECTING, PREVENTING OR TREATING A CONDITION ASSOCIATED WITH A DEGENERATIVE, NEUROLOGICAL OR AUTOIMMUNE DISEASE
WO2005067708A2 (en) * 2004-01-14 2005-07-28 Daniolabs Limited Zebrafish model for autoimmune diseases
WO2016022387A2 (en) * 2014-08-07 2016-02-11 Tisch Multiple Sclerosis Research Center Of New York A mouse model for multiple sclerosis

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2716198B1 (en) * 1994-02-15 1996-04-19 Bio Merieux Cytotoxic factor as associated with multiple sclerosis, its detection and quantification.
EP0685558A1 (en) * 1994-05-27 1995-12-06 Bayer Ag Transgenic animals lacking proteolipid protein and method of making such animals

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9733466A1 *

Also Published As

Publication number Publication date
AU2165897A (en) 1997-10-01
CA2221028A1 (en) 1997-09-18
JPH11512623A (en) 1999-11-02
FR2745974A1 (en) 1997-09-19
FR2745974B1 (en) 1998-04-17
WO1997033466A1 (en) 1997-09-18

Similar Documents

Publication Publication Date Title
Jacobsen et al. Current concepts in therapeutic strategies targeting cognitive decline and disease modification in Alzheimer's disease
Graves et al. Inflammation in amyotrophic lateral sclerosis spinal cord and brain is mediated by activated macrophages, mast cells and T cells
Matyszak Inflammation in the CNS: balance between immunological privilege and immune responses
Raine et al. Demyelination in primate autoimmune encephalomyelitis and acute multiple sclerosis lesions: a case for antigen‐specific antibody mediation
Aguzzi Prions and the immune system: a journey through gut, spleen, and nerves
McAlpine et al. Inhibition of soluble TNF signaling in a mouse model of Alzheimer's disease prevents pre-plaque amyloid-associated neuropathology
Ludwig et al. Borna disease (BD), a slow virus infection biological properties of the virus
Grassi et al. Pα-syn* mitotoxicity is linked to MAPK activation and involves tau phosphorylation and aggregation at the mitochondria
KR20040084911A (en) Myelination of congenitally dysmyelinated forebrains using oligodendrocyte progenitor cells
UA123390C2 (en) THERAPY AND DIAGNOSIS BASED ON PROTEIN-MEDIATED PATHOLOGY IN ALZGEIMER'S DISEASE
US20190249145A1 (en) IgG TYPE MONOCLONAL ANTIBODIES SPECIFICALLY BINDING TO ODONTOBLAST SURFACE
JP2001501972A (en) Amyloid beta protein (globular assembly and its use)
EP3133087A1 (en) Assay of cytokines associated with msrv/herv-w
Louboutin et al. HIV-1 gp120-induced neuroinflammation: relationship to neuron loss and protection by rSV40-delivered antioxidant enzymes
WO1997033466A1 (en) Non-genetically modified mammal as a model for multiple sclerosis
EP0667354B1 (en) Multiple sclerosis associated cytotoxic factor, its detection and quantification
JP2022523680A (en) B cell immunotherapy
CA1268600A (en) Molecules comprising at least one peptidic sequence carrying an epitope characteristic of a protein produced by cells infected with the malaria parasites and compositions comprising the same
WO2008133546A1 (en) Method for producing an antitumoral vaccine based on surface endothelial cell antigens
Souan et al. Self prion protein peptides are immunogenic in Lewis rats
FR2507478A1 (en) PROCESS FOR PREPARING THE SURFACE ANTIGEN OF PURE HEPATITIS B FROM HUMAN PLASMA
FR2657784A1 (en) CEREBRAL ENDOGENIC FACTOR, PROCESS FOR OBTAINING THERAPEUTIC AND DIAGNOSTIC APPLICATIONS.
WO2000057185A1 (en) Method for detecting superantigen activity in a biological sample
RU2283666C2 (en) Agent for accelerated repairing of structure and function of damaged tissues and organs
Zheng et al. Border-associated macrophages: From physiology to therapeutic targets in Alzheimer's disease

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971015

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 20020205