EP0825333B1 - Coolable turbine blade - Google Patents
Coolable turbine blade Download PDFInfo
- Publication number
- EP0825333B1 EP0825333B1 EP97810561A EP97810561A EP0825333B1 EP 0825333 B1 EP0825333 B1 EP 0825333B1 EP 97810561 A EP97810561 A EP 97810561A EP 97810561 A EP97810561 A EP 97810561A EP 0825333 B1 EP0825333 B1 EP 0825333B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- blade
- cooling
- cavity
- hollow space
- channel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/187—Convection cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/201—Heat transfer, e.g. cooling by impingement of a fluid
Definitions
- the invention is based on a coolable blade according to the preamble of first claim.
- Such coolable blades are known from GB 2 165 315.
- cooling fluid is conducted from the trailing edge area of the blade to the leading edge area via turns formed by partition walls and then blown out via openings in the blade head.
- air is blown out of the rear edge of the blade.
- this method cannot be used for trailing edges with small radii for manufacturing reasons.
- a large number of film cooling holes are also necessary, which makes the manufacture of the blade very complex.
- the trailing edge blow-out can lead to a reduction in the aerodynamic efficiency of the blade, since a larger trailing edge radius is required.
- a cooled blade is also known from DE 1 601 627, which has at its trailing edge region a radially extending cooling channel which diverges towards the tip of the blade.
- the cooling duct is fed with cooling air via a larger inlet opening.
- the cross-sectional area of this cooling channel is approximately the same size as that of the main channel in the middle of the blade, and even larger than that of the main channel in the area of the blade tip.
- the heat transfer rates in the rear edge area of the blade are therefore no better than those in the central part of the blade and adequate cooling of the rear edge areas of the blade can no longer be guaranteed in the case of a blade that is subjected to high thermal loads.
- the invention is based, with a coolable blade the task at the beginning to improve the cooling of the trailing edge area of the blade and to achieve a high aerodynamic efficiency of the blade.
- the essence of the invention is therefore that an essentially in the trailing edge area radially extending, increasing in area with increasing radius Cooling channel is arranged, which is connected to the cavity via an inlet opening and that the cooling channel with the cavity via at least one connecting channel connected is.
- the advantages of the invention can be seen, inter alia, in the fact that the cooling fluid guided through the cooling channel is blown out of the blade in the region of the blade head and thus has no influence on the aerodynamics of the blade. Small trailing edge radii can also be achieved, since there is no need to blow out at the trailing edge of the blade. Due to the divergent design of the cooling channel, effective cooling of the trailing edge area of the blade is achieved. The cooling of local areas can be easily adjusted by designing the divergent channel. In addition, in the case of moving blades with cover plates, the upper area, which is at high risk of creep, can be cooled particularly well towards the blade head. When using the diverging cooling channel, significantly less cooling air is required than, for example, with film cooling of the rear edge. Buckets with the diverging cooling channel can also be produced using the casting process.
- the cooling duct is to be connected to the cavity via at least one connecting duct.
- the connecting channels between the cavity and the cooling channel act as suction points for cooling air from the cavity and intensify the heat transfer in the trailing edge area of the cavity.
- the cooling fluid enters the cooling channel in a jet shape and generates extremely high heat transfer coefficients.
- a blade 10 of a turbomachine is shown, consisting from a blade 1 and a blade root 11 with which the blade 10 can be mounted. Between blade 1 and blade root 11 is common A platform 12 is arranged, which the blade root of the Shields around flowing fluids.
- the airfoil 1 has one Front edge area 3, a rear edge area 4, a suction-side wall 5 and a pressure side wall 6, the suction side and the pressure side Wall connected to each other in the area of the front edge 3 and the rear edge 4 are, whereby a cavity 2 is formed with a cross-sectional area A2.
- the leading edge region 3 is in each case the one flowing around the airfoil 1 Apply fluids first.
- the cavity 2 is essentially radial Direction through the blade 10 and serves as a cooling fluid passage for a cooling fluid 20th
- the cooling channel 7 is via connecting channels 8 with a cross-sectional area A8 and an inlet opening 9 in one
- the airfoil center region 14 is connected to the cavity 2.
- the inlet opening 9 of the cooling channel is also arranged at any location can be, for example, closer to the blade root or in the blade root.
- the cooling channel 7 is in the downstream part of the Blade arranged approximately from the center 14 of the airfoil, since there the Load and danger of creep is greatest.
- Cooling fluid 20 flows through the cavity 20 and via the inlet opening 9 and the connecting channels 8 into the cooling channel 7. This stimulates the flow circulation in the region of the trailing edge in the cavity 2. Heated cooling fluid, which tends to get stuck in the area of the rear edge due to the locally increased friction, is thereby mixed with cooler cooling fluid, especially also with the cooling fluid entering the cooling channel 7.
- the trailing edge region is cooled by the cooling fluid passed through the cooling channel 7, the heat transfer coefficient in the cooling channel 7 increasing from the center of the airfoil to the blade head. This is due to the increasing cooling fluid mass flow in the cooling channel 7, which is brought about by the further feeding of cooling fluid via the connecting channels 8. This improves the cooling of the airfoil head 13.
- the flow circulation in the trailing edge area of the cavity and the cooling capacity of the trailing edge area can be set by the design of the cooling channel, the inlet opening and the connecting channels.
- the divergence angle of the cooling channel with the number of connecting channels from the cavity is adjusted so that the cooling of the blade is optimal.
- the cross-sectional area A8 of the connecting channels 8 is smaller than the cross-sectional area A7 of the cooling channel 7 and this in turn is much smaller than the cross-sectional area A2 of the cavity 2 (A8 ⁇ A7 ⁇ A2).
- A8 to A2 is preferably a few percent, in particular 1-5%
- A8 to A7 is preferably several tenths, in particular 30-100%
- A7 to A2 is preferably a few percent, in particular 1-10%.
- the flow velocity of the fluids through the connecting channels as well as in the diverging channel 7 is much greater than that in the selected geometry Cooling duct A2.
- By appropriate design of the cross sections A8, A7 and A2 it is achieved that the flow velocity of the fluids in the cooling channel 7 remains approximately the same or increases slightly with increasing radius.
- FIG. 3 shows the increase in the cross-sectional area of the cooling channel 7 towards the blade head 13 and the connecting channel 8.
- a Nusselt number Nu is defined as the ratio of the convectively dissipated to the conducted amount of heat.
- V-shaped ribs 30 with a tip 31 and legs 32, 33 are arranged in the cavity 2 on the suction side wall.
- the legs of the ribs are angled at an angle 34 to the main flow direction of the cooling fluid 20.
- the angle 34 is 30 to 60 °, preferably 40 to 50 ° and in particular 45 °.
- the ratio of rib height to cavity height is essentially the same at every point of the rib and is between 5 to 50%.
- the tip of the rib 30 is located at the point where the rib height is at a maximum. In the areas where the cavity 2 merges into the front and rear edge area, the rib 30 tapers in order not to inhibit the passage of the cooling fluid in these areas.
- the ribs, not shown, arranged on the inside of the pressure-side wall 6 are also V-shaped.
- the tip is also at the point where the rib height is maximum.
- the ribs are arranged offset on the pressure side and the suction side wall in the flow direction, so that the flow successively meets a rib 30 on the suction side 5 and a rib on the pressure side.
- the ribs are advantageously arranged in the middle between the ribs of the opposite wall.
- the ribs in combination with the cooling channel 7 ensure cooling of the blade, which leads to an even wall temperature distribution.
- the Cooling fluid 20 is here from turns formed by partitions 40, 41
- the trailing edge area of the blade is directed to the leading edge area and then Blown out through an opening 42 in the blade head 13.
- a diverging cooling channel 7 for cooling the trailing edge area is arranged.
- the invention is not limited to the exemplary embodiment shown and described.
- the cavity and thus the cooling fluid passage can also be configured differently than shown, for example as a plurality of individual cooling channels.
- the formation of the diverging cooling duct in connection with the connecting ducts between the diverging duct and the main duct is essential.
- the cross-sectional areas A2, A7 and A8 are each measured perpendicular to the direction of flow of the fluids flowing through the cavities.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Description
Die Erfindung geht aus von einer kühlbaren Schaufel nach dem Oberbegriff des ersten Anspruches.The invention is based on a coolable blade according to the preamble of first claim.
Derartige kühlbare Schaufel sind bekannt aus GB 2 165 315. Dort wird Kühlfluid
über durch Trennwände gebildete Windungen vom Hinterkantenbereich der
Schaufel zum Vorderkantenbereich geleitet und dann über Oeffnungen im
Schaufelkopf ausgeblasen. Um den Hinterkantenbereich der Schaufel ausreichend
zu kühlen, bläst man Luft aus der Hinterkante der Schaufel aus.
Diese Methode kann jedoch bei Hinterkanten mit kleinen Radii aus Fertigungsgründen
nicht angewendet werden. Um eine Kühlung der Hinterkante zu erreichen,
ist zudem eine grosse Anzahl von Filmkühlungslöchern notwendig, was die
Herstellung der Schaufel sehr aufwendig macht. Weiter kann die Hinterkantenausblasung
zu einer Verringerung des aerodynamischen Wirkungsgrades der
Schaufel führen, da ein grösserer Hinterkantenradius benötigt wird.
Aus der DE 1 601 627 ist ebenfalls eine gekühlte Schaufel bekannt, die an ihrem
Hinterkantenbereich einen radial verlaufenden, zur Schaufelspitze hin divergierenden
Kühlkanal aufweist. Ueber eine grössere Eintrittsöffnung wird der Kühlkanal
mit Kühlluft gespeist. Die Querschnittsfläche dieses Kühlkanales ist dabei in der
Schaufelmitte ungefähr gleich gross wie derjenige des Hauptkanales, im Bereich
der Schaufelspitze sogar grösser als derjenige des Hauptkanales. Die Wärmeübertragungsraten
im Hinterkantenbereich der Schaufel sind deshalb nicht besser
als diejenigen im Mittelteil der Schaufel und eine genügende Kühlung der Hinterkantenbereiche
der Schaufel lässt sich bei einer thermisch stark belasteten
Schaufel nicht mehr gewährleisten.Such coolable blades are known from
However, this method cannot be used for trailing edges with small radii for manufacturing reasons. In order to cool the trailing edge, a large number of film cooling holes are also necessary, which makes the manufacture of the blade very complex. Furthermore, the trailing edge blow-out can lead to a reduction in the aerodynamic efficiency of the blade, since a larger trailing edge radius is required.
A cooled blade is also known from
Der Erfindung liegt die Aufgabe zugrunde, bei einer kühlbaren Schaufel der eingangs genannten Art die Kühlung des Hinterkantenbereiches der Schaufel zu verbessern und einen hohen aerodynamischen Wirkungsgrad der Schaufel zu erzielen.The invention is based, with a coolable blade the task at the beginning to improve the cooling of the trailing edge area of the blade and to achieve a high aerodynamic efficiency of the blade.
Erfindungsgemäss wird dies durch die Merkmale des ersten Anspruches erreicht.According to the invention, this is achieved by the features of the first claim.
Kern der Erfindung ist es also, dass im Hinterkantenbereich ein im wesentlichen radial verlaufender, mit wachsendem Radius in der Fläche sich vergrössernder Kühlkanal angeordnet ist, der über eine Eintrittsöffnung mit dem Hohlraum verbunden ist und dass der Kühlkanal mit dem Hohlraum über mindestens einen Verbindungskanal verbunden ist.The essence of the invention is therefore that an essentially in the trailing edge area radially extending, increasing in area with increasing radius Cooling channel is arranged, which is connected to the cavity via an inlet opening and that the cooling channel with the cavity via at least one connecting channel connected is.
Die Vorteile der Erfindung sind unter anderem darin zu sehen, dass das durch den
Kühlkanal geleitete Kühlfluid im Bereich des Schaufelkopfes aus der Schaufel
ausgeblasen wird und somit keinen Einfluss auf die Aerodynamik der Schaufel
nimmt. Weiter lassen sich kleine Hinterkantenradien verwirklichen, da nicht an der
Hinterkante der Schaufel ausgeblasen werden muss. Durch die divergente Ausgestaltung
des Kühlkanales wird eine effektive Kühlung des Hinterkantenbereiches
der Schaufel erzielt. Durch die Ausgestaltung des divergenten Kanals lässt sich
die Kühlung lokaler Gebiete gut einstellen. Zudem kann bei Laufschaufeln mit
Deckplatten der stark kriechgefährdete obere Bereich zum Schaufelkopf hin besonders
gut gekühlt werden.
Unter Verwendung des divergierenden Kühlkanales wird deutlich weniger Kühlluft
benötigt als beispielsweise bei einer Filmkühlung der Hinterkante. Schaufeln mit
dem divergierenden Kühlkanal können zudem im Gussverfahren hergestellt werden.The advantages of the invention can be seen, inter alia, in the fact that the cooling fluid guided through the cooling channel is blown out of the blade in the region of the blade head and thus has no influence on the aerodynamics of the blade. Small trailing edge radii can also be achieved, since there is no need to blow out at the trailing edge of the blade. Due to the divergent design of the cooling channel, effective cooling of the trailing edge area of the blade is achieved. The cooling of local areas can be easily adjusted by designing the divergent channel. In addition, in the case of moving blades with cover plates, the upper area, which is at high risk of creep, can be cooled particularly well towards the blade head.
When using the diverging cooling channel, significantly less cooling air is required than, for example, with film cooling of the rear edge. Buckets with the diverging cooling channel can also be produced using the casting process.
Der Kühlkanal ist mit dem Hohlraum über mindestens einen Verbindungskanal zu verbinden. Die Verbindungskanäle zwischen dem Hohlraum und dem Kühlkanal wirken als Absaugstellen für Kühlluft aus dem Hohlraum und intensivieren die Wärmeübertragung im Hinterkantenbereich des Hohlraumes. Durch die Verbindungskanäle tritt das Kühlfluid strahlförmig in den Kühlkanal ein und erzeugt extrem hohe Wärmeübergangszahlen. The cooling duct is to be connected to the cavity via at least one connecting duct. The connecting channels between the cavity and the cooling channel act as suction points for cooling air from the cavity and intensify the heat transfer in the trailing edge area of the cavity. Through the connecting channels, the cooling fluid enters the cooling channel in a jet shape and generates extremely high heat transfer coefficients.
In der Zeichnung ist ein Ausführungsbeispiel der Erfindung anhand einer schematischen
Darstellung einer Schaufel einer Strömungsmaschine dargestellt.
Es zeigen:
- Fig. 1
- einen Teillängsschnitt durch die Schaufel;
- Fig. 2
- einen Teilquerschnitt durch die Schaufel entlang der Linie ll-ll in Fig. 1
- Fig. 3
- einen Teilquerschnitt durch die Schaufel entlang der Linie III-III in Fig. 1
- Fig. 4
- einen Teillängsschnitt durch eine weitere erfindungsgemässe Schaufel;
- Fig. 5
- einen Teillängsschnitt durch eine weitere erfindungsgemässe Schaufel.
Show it:
- Fig. 1
- a partial longitudinal section through the blade;
- Fig. 2
- a partial cross section through the blade along the line II-II in Fig. 1st
- Fig. 3
- a partial cross section through the blade along the line III-III in Fig. 1st
- Fig. 4
- a partial longitudinal section through a further blade according to the invention;
- Fig. 5
- a partial longitudinal section through a further blade according to the invention.
Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt.Only the elements essential for understanding the invention are shown.
In Fig. 1 und 2 ist eine Schaufel 10 einer Strömungsmaschine dargestellt, bestehend
aus einem Schaufelblatt 1 und einem Schaufelfuss 11, mit dem die Schaufel
10 montiert werden kann. Zwischen Schaufelblatt 1 und Schaufelfuss 11 ist üblicherweise
eine Plattform 12 angeordnet, welche den Schaufelfuss von den das
Schaufelblatt umströmenden Fluiden abschirmt. Das Schaufelblatt 1 weist einen
Vorderkantenbereich 3, einen Hinterkantenbereich 4, eine saugseitige Wand 5
und eine druckseitige Wand 6 auf, wobei die saugseitige und die druckseitige
Wand im Bereich der Vorderkante 3 und der Hinterkante 4 miteinander verbunden
sind, wodurch ein Hohlraum 2 mit einer Querschnittsfläche A2 gebildet wird. Der
Vorderkantenbereich 3 wird jeweils von den das Schaufelblatt 1 umströmenden
Fluiden zuerst beaufschlagt. Der Hohlraum 2 verläuft im wesentlichen in radialer
Richtung durch die Schaufel 10 und dient als Kühlfluiddurchlass für ein Kühlfluid
20.1 and 2, a
Im Bereich der Hinterkante 4 ist ein radial verlaufender Kühlkanal 7 mit einer
Querschnittsfläche A7 angeordnet, der in Strömungsrichtung zu einem Schaufelkopf
13 der Schaufel 10 hin divergiert.In the area of the
Der Kühlkanal 7 ist über Verbindungskanäle
8 mit einer Querschnittsfläche A8 und eine Eintrittsöffnung 9 in einem
Schaufelblattmittenbereich 14 mit dem Hohlraum 2 verbunden. Nicht dargestellt
ist, dass die Eintrittsöffnung 9 des Kühlkanales auch an beliebigen Orten angeordnet
werden kann, beispielsweise näher beim Schaufelfuss oder im Schaufelfuss.
Ueblicherweise wird der Kühlkanal 7 jedoch im stromabwärtigen Teil der
Schaufel ungefähr ab der Mitte 14 des Schaufelblattes angeordnet, da dort die
Belastung und Kriechgefährdung am grössten ist.The
Kühlfluid 20 strömt durch den Hohlraum 20 und über die Eintrittsöffnung 9 und die
Verbindungskanäle 8 in den Kühlkanal 7. Dadurch wird die Strömungszirkulation
im Bereich der Hinterkante im Hohlraum 2 angeregt. Erhitztes Kühlfluid, welches
die Tendenz hat im Bereich der Hinterkante wegen der örtlich erhöhten Reibung
hängenzubleiben, wird dadurch mit kühlerem Kühlfluid gemischt, speziell auch mit
dem in den Kühlkanal 7 eintretenden Kühlfluid.
Der Hinterkantenbereich wird durch das durch den Kühlkanal 7 geleitete Kühlfluid
gekühlt, wobei der Wärmeübergangskoeffizient im Kühlkanal 7 von der Schaufelblattmitte
zum Schaufelkopf hin zunimmt. Dies ist bedingt durch den ansteigenden
Kühlfluidmassenfluss im Kühlkanal 7, der durch die weitere Einspeisung von Kühlfluid
über die Verbindungskanäle 8 bewirkt wird. Dies verbessert die Kühlung des
Schaufelblattkopfes 13.
Durch die Auslegung des Kühlkanales, der Eintrittsöffnung sowie der Verbindungskanäle
kann die Strömungszirkulation im Hinterkantenbereich des Hohlraumes
sowie die Kühlleistung des Hinterkantenbereiches eingestellt werden. Zudem
wird der Divergenzwinkel des Kühlkanales mit der Anzahl der Verbindungskanäle
vom Hohlraum so angepasst, dass die Kühlung der Schaufel optimal ist.
Die Querschnittsfläche A8 der Verbindungskanäle 8 ist dabei kleiner als die Querschnittsfläche
A7 des Kühlkanales 7 und diese wiederum ist viel kleiner als die
Querschnittsfläche A2 des Hohlraumes 2 (A8 < A7 << A2). A8 zu A2 beträgt dabei
vorzugsweise einige Prozent, insbesondere 1 - 5%, A8 zu A7 beträgt dabei vorzugsweise
mehrere Zehntel, insbesondere 30 - 100%, A7 zu A2 beträgt dabei
vorzugsweise einige Prozent, insbesondere 1 - 10%.
Die Strömungsgeschwindigkeit der Fluide durch die Verbindungskanäle als auch
im divergierenden Kanal 7 ist durch die gewählte Geometrie viel grösser
als diejenige im
Kühlkanal A2.
Durch entsprechende Auslegung der Querschnitte A8, A7 und A2 wird erreicht,
dass die Strömungsgeschwindigkeit der Fluide im Kühlkanal 7 ungefähr gleich
schnell bleibt oder mit wachsendem Radius leicht ansteigt.
The trailing edge region is cooled by the cooling fluid passed through the cooling
The flow circulation in the trailing edge area of the cavity and the cooling capacity of the trailing edge area can be set by the design of the cooling channel, the inlet opening and the connecting channels. In addition, the divergence angle of the cooling channel with the number of connecting channels from the cavity is adjusted so that the cooling of the blade is optimal.
The cross-sectional area A8 of the connecting
The flow velocity of the fluids through the connecting channels as well as in the diverging
Cooling duct A2.
By appropriate design of the cross sections A8, A7 and A2 it is achieved that the flow velocity of the fluids in the
In Fig. 3 ist die Zunahme der Querschnittsfläche des Kühlkanales 7 zum Schaufelkopf
13 hin sowie der Verbindungskanal 8 dargestellt.
Eine Nusselt-Zahl Nu ist definiert als das Verhältnis der konvektiv abgeführten zur
geleiteten Wärmemenge. Die Nusselt-Zahl des Kühlkanales NuKühlkanal ist hierbei
um ein mehrfaches höher als die Nusselt-Zahl in einem glatten Hohlraum (A2)
NUHohlraum. So wurde beispielsweise experimentell festgestellt, dass NuKühlkanal /
NuHohlraum.= 10 - 15 beträgt.FIG. 3 shows the increase in the cross-sectional area of the cooling
A Nusselt number Nu is defined as the ratio of the convectively dissipated to the conducted amount of heat. The Nusselt number of the cooling channel Nu cooling channel is several times higher than the Nusselt number in a smooth cavity (A2) NU cavity . For example, it was found experimentally that Nu cooling channel / Nu cavity = 10 - 15.
In Fig. 4 sind im Hohlraum 2 an der saugseitigen Wand 5 V-förmige Rippen 30 mit
einer Spitze 31 und Schenkeln 32, 33 angeordnet. Die Schenkel der Rippen sind
dabei in einem Winkel 34 zur Hauptströmungsrichtung des Kühlfluides 20 angewinkelt.
Der Winkel 34 beträgt dabei 30 bis 60°, vorzugsweise 40 bis 50° und insbesondere
45°. Das Verhältnis von Rippenhöhe zu Hohlraumhöhe ist an jeder
Stelle der Rippe im wesentlichen gleich und liegt zwischen 5 bis 50%. Die Spitze
der Rippe 30 ist an der Stelle angeordnet, wo die Rippenhöhe maximal ist. In den
Bereichen wo der Hohlraum 2 in den Vorder- und Hinterkantenbereich übergeht,
verjüngt sich die Rippe 30, um den Durchtritt des Kühlfluides in diesen Bereichen
nicht zu hemmen.
Die nicht dargestellten, auf der Innenseite der druckseitigen Wand 6 angeordneten
Rippen sind ebenfalls V-förmig. Die Spitze liegt ebenfalls an der Stelle wo die Rippenhöhe
maximal ist. Die Rippen sind auf der druck- und der saugseitigen Wand
gegeneinander in Strömungsrichtung versetzt angeordnet, so dass die Strömung
nacheinander auf eine Rippe 30 der Saugseite 5 und eine Rippe der Druckseite
trifft. Vorteilhafterweise werden die Rippen jeweils in der Mitte zwischen den Rippen
der gegenüberliegenden Wand angeordnet. Durch die Rippen in Kombination
mit dem Kühlkanal 7 wird eine Kühlung der Schaufel gewährleistet, die zu einer
gleichmässigen Wandtemperaturverteilung führt.In Fig. 4 5 V-shaped
The ribs, not shown, arranged on the inside of the pressure-
In Fig. 5 ist eine weitere mögliche Ausgestaltung des Hohlraumes 2 dargestellt,
wie sie beispielsweise aus der eingangs erwähnten GB 2 165 315 bekannt ist. Das
Kühlfluid 20 wird hier über durch Trennwände 40, 41 gebildete Windungen vom
Hinterkantenbereich der Schaufel zum Vorderkantenbereich geleitet und dann
über eine Oeffnung 42 im Schaufelkopf 13 ausgeblasen. Auch hier ist im Hinterkantenbereich
ein divergierender Kühlkanal 7 zur Kühlung des Hinterkantenbereiches
angeordnet.5 shows a further possible embodiment of the
Selbstverständlich ist die Erfindung nicht auf das gezeigte und beschriebene Ausführungsbeispiel beschränkt. Die Ausgestaltung des Hohlraumes und damit des Kühlfluiddurchlasses kann auch anders erfolgen als dargestellt, beispielsweise als mehrere einzelne Kühlkanäle. Wesentlich ist die Ausbildung des divergierenden Kühlkanales in Verbindung mit den Verbindungskanälen zwischen divergierendem Kanal und Hauptkanal. Die Querschnittsflächen A2, A7 und A8 werden jeweils senkrecht zur Strömungsrichtung der die Hohlräume durchströmenden Fluide gemessen.Of course, the invention is not limited to the exemplary embodiment shown and described. The cavity and thus the cooling fluid passage can also be configured differently than shown, for example as a plurality of individual cooling channels. The formation of the diverging cooling duct in connection with the connecting ducts between the diverging duct and the main duct is essential. The cross-sectional areas A2, A7 and A8 are each measured perpendicular to the direction of flow of the fluids flowing through the cavities.
- 11
- SchaufelblattAirfoil
- 22nd
- Hohlraumcavity
- 33rd
- VorderkantenbereichLeading edge area
- 44th
- Hinterkantenbereich Trailing edge area
- 55
- saugseitige Wandsuction side wall
- 66
- druckseitige Wandpressure side wall
- 77
- KühlkanalCooling channel
- 88th
- VerbindungskanalConnecting channel
- 99
- EintrittsöffnungEntrance opening
- 1010th
- Schaufelshovel
- 1111
- SchaufelfussBlade root
- 1212th
- Plattformplatform
- 1313
- SchaufelkopfBucket head
- 1414
- SchaufelblattmittenbereichAerofoil center area
- 2020th
- KühlfluidCooling fluid
- 3030th
- Ripperib
- 3131
- Spitzetop
- 32, 3332, 33
- Schenkelleg
- 3434
- AnstellwinkelAngle of attack
- 40, 4140, 41
- Trennwandpartition wall
- 4242
- OeffnungOpening
- A2A2
- Querschnittsfläche HohlraumCross-sectional area cavity
- A7A7
- Querschnittsfläche KühlkanalCross-sectional area cooling channel
- A8A8
- Querschnittsfläche VerbindungskanalCross-sectional area of connection channel
Claims (2)
- Coolable blade (10), essentially comprising a blade root (11) and a blade body (1), which is composed of a pressure-side wall (6) and a suction-side wall (5), which are connected to one another essentially via a trailing-edge region (4) and a leading-edge region (3) in such a way that at least one hollow space (2) used as a cooling-fluid passage is formed, the hollow space being supplied with coolant from the blade root, and an essentially radially running, diverging cooling passage (7) being arranged in the trailing-edge region (4), which cooling passage (7) extends up to the blade head (13) and is connected to the hollow space (2) via an inlet opening (9), characterized in that the cooling passage (7) is connected to the hollow space (2) via at least one further connecting passage (8), which is arranged between inlet opening (9) and blade head (13).
- Coolable blade according to Claim 1, characterized in that, in the hollow space (2), at least one rib (30) is configured in such a way that it has an apex (31) and two legs (32, 33), and in that the legs of the rib are bent at an acute angle (34) relative to the main flow direction of a cooling fluid (20) .
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19634237 | 1996-08-23 | ||
DE19634237A DE19634237A1 (en) | 1996-08-23 | 1996-08-23 | Coolable shovel |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0825333A1 EP0825333A1 (en) | 1998-02-25 |
EP0825333B1 true EP0825333B1 (en) | 2001-05-23 |
Family
ID=7803585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97810561A Expired - Lifetime EP0825333B1 (en) | 1996-08-23 | 1997-08-08 | Coolable turbine blade |
Country Status (6)
Country | Link |
---|---|
US (1) | US5934874A (en) |
EP (1) | EP0825333B1 (en) |
JP (1) | JP4152458B2 (en) |
CN (1) | CN1105228C (en) |
CZ (1) | CZ267997A3 (en) |
DE (2) | DE19634237A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103089335A (en) * | 2013-01-21 | 2013-05-08 | 上海交通大学 | W-shaped rib channel cooling structure suitable for turbine blade backside cooling cavity |
US10400608B2 (en) * | 2016-11-23 | 2019-09-03 | General Electric Company | Cooling structure for a turbine component |
US11248471B2 (en) | 2020-01-22 | 2022-02-15 | General Electric Company | Turbine rotor blade with angel wing with coolant transfer passage between adjacent wheel space portions by additive manufacture |
US11242760B2 (en) | 2020-01-22 | 2022-02-08 | General Electric Company | Turbine rotor blade with integral impingement sleeve by additive manufacture |
US11220916B2 (en) | 2020-01-22 | 2022-01-11 | General Electric Company | Turbine rotor blade with platform with non-linear cooling passages by additive manufacture |
US11492908B2 (en) | 2020-01-22 | 2022-11-08 | General Electric Company | Turbine rotor blade root with hollow mount with lattice support structure by additive manufacture |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3171631A (en) * | 1962-12-05 | 1965-03-02 | Gen Motors Corp | Turbine blade |
GB1070130A (en) * | 1966-01-31 | 1967-05-24 | Rolls Royce | Aeofoil shaped blade for a fluid flow machine such as a gas turbine engine |
SU364747A1 (en) * | 1971-07-08 | 1972-12-28 | COOLED TURBOATING TILE BLADE | |
US4288201A (en) * | 1979-09-14 | 1981-09-08 | United Technologies Corporation | Vane cooling structure |
GB2165315B (en) * | 1984-10-04 | 1987-12-31 | Rolls Royce | Improvements in or relating to hollow fluid cooled turbine blades |
WO1986002406A1 (en) * | 1984-10-10 | 1986-04-24 | Paul Marius A | Gas turbine engine |
US4820123A (en) * | 1988-04-25 | 1989-04-11 | United Technologies Corporation | Dirt removal means for air cooled blades |
US5122033A (en) * | 1990-11-16 | 1992-06-16 | Paul Marius A | Turbine blade unit |
US5695321A (en) * | 1991-12-17 | 1997-12-09 | General Electric Company | Turbine blade having variable configuration turbulators |
US5536143A (en) * | 1995-03-31 | 1996-07-16 | General Electric Co. | Closed circuit steam cooled bucket |
-
1996
- 1996-08-23 DE DE19634237A patent/DE19634237A1/en not_active Withdrawn
-
1997
- 1997-08-08 DE DE59703585T patent/DE59703585D1/en not_active Expired - Lifetime
- 1997-08-08 EP EP97810561A patent/EP0825333B1/en not_active Expired - Lifetime
- 1997-08-22 JP JP22623097A patent/JP4152458B2/en not_active Expired - Lifetime
- 1997-08-22 CZ CZ972679A patent/CZ267997A3/en unknown
- 1997-08-23 CN CN97119332A patent/CN1105228C/en not_active Expired - Lifetime
- 1997-08-25 US US08/916,789 patent/US5934874A/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
EP0825333A1 (en) | 1998-02-25 |
US5934874A (en) | 1999-08-10 |
CN1105228C (en) | 2003-04-09 |
JP4152458B2 (en) | 2008-09-17 |
CZ267997A3 (en) | 1998-03-18 |
CN1177676A (en) | 1998-04-01 |
DE19634237A1 (en) | 1998-02-26 |
JPH1089007A (en) | 1998-04-07 |
DE59703585D1 (en) | 2001-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69822100T2 (en) | turbine blade | |
EP1267039B1 (en) | Cooling configuration for an airfoil trailing edge | |
EP3762587B1 (en) | Airfoil for a turbine blade | |
EP2087206B1 (en) | Turbine blade | |
DE60218776T2 (en) | Film-cooled turbine blade | |
DE60018817T2 (en) | Chilled gas turbine blade | |
DE3248162C2 (en) | Coolable shovel | |
EP1223308B1 (en) | Turbomachine component | |
DE60213328T2 (en) | Chilled hollow shovel top cover of a turbine shovel | |
EP0528138B1 (en) | Blade shroud for axial turbine | |
EP2304185B1 (en) | Turbine vane for a gas turbine and casting core for the production of such | |
EP0825332B1 (en) | Coolable blade | |
DE102009003327B4 (en) | Turbine blade tip shroud | |
EP0698725A2 (en) | Impingement cooling of wall portion | |
DE102006004437A1 (en) | Blade of a gas turbine blade, method of making a blade, gasket plate and gas turbine | |
DE2906366A1 (en) | TURBINE SHOVEL | |
EP0798448A2 (en) | System and device to cool a wall which is heated on one side by hot gas | |
WO2010086419A1 (en) | Cooled vane for a gas turbine | |
EP0892149B1 (en) | Cooling system for the leading edge of a hollow blade for a gas turbine engine | |
DE19904229A1 (en) | Cooled turbine blade has shroud formed by sealing rib with integrated cooling channels connected to coolant channel in blade | |
DE69821443T2 (en) | Cooling of the trailing edge in gas turbine blades | |
EP1456505A1 (en) | Thermally loaded component | |
EP1292760B1 (en) | Configuration of a coolable turbine blade | |
EP0825333B1 (en) | Coolable turbine blade | |
EP0892151A1 (en) | Cooling system for the leading edge of a hollow blade for gas turbine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19970812 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
AKX | Designation fees paid |
Free format text: DE FR GB IT |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT |
|
R17P | Request for examination filed (corrected) |
Effective date: 19980707 |
|
17Q | First examination report despatched |
Effective date: 19990528 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT Effective date: 20010523 |
|
REF | Corresponds to: |
Ref document number: 59703585 Country of ref document: DE Date of ref document: 20010628 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20010803 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Ref country code: FR Ref legal event code: CA |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20120802 AND 20120808 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Owner name: ALSTOM TECHNOLOGY LTD., CH Effective date: 20120918 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59703585 Country of ref document: DE Representative=s name: ROESLER PATENTANWALTSKANZLEI, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59703585 Country of ref document: DE Representative=s name: ROESLER PATENTANWALTSKANZLEI, DE Effective date: 20130508 Ref country code: DE Ref legal event code: R081 Ref document number: 59703585 Country of ref document: DE Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH Free format text: FORMER OWNER: ALSTOM, PARIS, FR Effective date: 20130508 Ref country code: DE Ref legal event code: R081 Ref document number: 59703585 Country of ref document: DE Owner name: ALSTOM TECHNOLOGY LTD., CH Free format text: FORMER OWNER: ALSTOM, PARIS, FR Effective date: 20130508 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59703585 Country of ref document: DE Representative=s name: ROESLER PATENTANWALTSKANZLEI, DE Ref country code: DE Ref legal event code: R081 Ref document number: 59703585 Country of ref document: DE Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20160822 Year of fee payment: 20 Ref country code: GB Payment date: 20160819 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20160822 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Owner name: ALSTOM TECHNOLOGY LTD, CH Effective date: 20161110 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59703585 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20170807 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20170824 AND 20170830 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20170807 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Owner name: ANSALDO ENERGIA IP UK LIMITED, GB Effective date: 20171221 |