EP0825333B1 - Coolable turbine blade - Google Patents

Coolable turbine blade Download PDF

Info

Publication number
EP0825333B1
EP0825333B1 EP97810561A EP97810561A EP0825333B1 EP 0825333 B1 EP0825333 B1 EP 0825333B1 EP 97810561 A EP97810561 A EP 97810561A EP 97810561 A EP97810561 A EP 97810561A EP 0825333 B1 EP0825333 B1 EP 0825333B1
Authority
EP
European Patent Office
Prior art keywords
blade
cooling
cavity
hollow space
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97810561A
Other languages
German (de)
French (fr)
Other versions
EP0825333A1 (en
Inventor
Kenneth Hall
Bernhard Dr. Weigand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Asea Brown Boveri Ltd
ABB AB
Original Assignee
ABB Asea Brown Boveri Ltd
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Publication of EP0825333A1 publication Critical patent/EP0825333A1/en
Application granted granted Critical
Publication of EP0825333B1 publication Critical patent/EP0825333B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid

Definitions

  • the invention is based on a coolable blade according to the preamble of first claim.
  • Such coolable blades are known from GB 2 165 315.
  • cooling fluid is conducted from the trailing edge area of the blade to the leading edge area via turns formed by partition walls and then blown out via openings in the blade head.
  • air is blown out of the rear edge of the blade.
  • this method cannot be used for trailing edges with small radii for manufacturing reasons.
  • a large number of film cooling holes are also necessary, which makes the manufacture of the blade very complex.
  • the trailing edge blow-out can lead to a reduction in the aerodynamic efficiency of the blade, since a larger trailing edge radius is required.
  • a cooled blade is also known from DE 1 601 627, which has at its trailing edge region a radially extending cooling channel which diverges towards the tip of the blade.
  • the cooling duct is fed with cooling air via a larger inlet opening.
  • the cross-sectional area of this cooling channel is approximately the same size as that of the main channel in the middle of the blade, and even larger than that of the main channel in the area of the blade tip.
  • the heat transfer rates in the rear edge area of the blade are therefore no better than those in the central part of the blade and adequate cooling of the rear edge areas of the blade can no longer be guaranteed in the case of a blade that is subjected to high thermal loads.
  • the invention is based, with a coolable blade the task at the beginning to improve the cooling of the trailing edge area of the blade and to achieve a high aerodynamic efficiency of the blade.
  • the essence of the invention is therefore that an essentially in the trailing edge area radially extending, increasing in area with increasing radius Cooling channel is arranged, which is connected to the cavity via an inlet opening and that the cooling channel with the cavity via at least one connecting channel connected is.
  • the advantages of the invention can be seen, inter alia, in the fact that the cooling fluid guided through the cooling channel is blown out of the blade in the region of the blade head and thus has no influence on the aerodynamics of the blade. Small trailing edge radii can also be achieved, since there is no need to blow out at the trailing edge of the blade. Due to the divergent design of the cooling channel, effective cooling of the trailing edge area of the blade is achieved. The cooling of local areas can be easily adjusted by designing the divergent channel. In addition, in the case of moving blades with cover plates, the upper area, which is at high risk of creep, can be cooled particularly well towards the blade head. When using the diverging cooling channel, significantly less cooling air is required than, for example, with film cooling of the rear edge. Buckets with the diverging cooling channel can also be produced using the casting process.
  • the cooling duct is to be connected to the cavity via at least one connecting duct.
  • the connecting channels between the cavity and the cooling channel act as suction points for cooling air from the cavity and intensify the heat transfer in the trailing edge area of the cavity.
  • the cooling fluid enters the cooling channel in a jet shape and generates extremely high heat transfer coefficients.
  • a blade 10 of a turbomachine is shown, consisting from a blade 1 and a blade root 11 with which the blade 10 can be mounted. Between blade 1 and blade root 11 is common A platform 12 is arranged, which the blade root of the Shields around flowing fluids.
  • the airfoil 1 has one Front edge area 3, a rear edge area 4, a suction-side wall 5 and a pressure side wall 6, the suction side and the pressure side Wall connected to each other in the area of the front edge 3 and the rear edge 4 are, whereby a cavity 2 is formed with a cross-sectional area A2.
  • the leading edge region 3 is in each case the one flowing around the airfoil 1 Apply fluids first.
  • the cavity 2 is essentially radial Direction through the blade 10 and serves as a cooling fluid passage for a cooling fluid 20th
  • the cooling channel 7 is via connecting channels 8 with a cross-sectional area A8 and an inlet opening 9 in one
  • the airfoil center region 14 is connected to the cavity 2.
  • the inlet opening 9 of the cooling channel is also arranged at any location can be, for example, closer to the blade root or in the blade root.
  • the cooling channel 7 is in the downstream part of the Blade arranged approximately from the center 14 of the airfoil, since there the Load and danger of creep is greatest.
  • Cooling fluid 20 flows through the cavity 20 and via the inlet opening 9 and the connecting channels 8 into the cooling channel 7. This stimulates the flow circulation in the region of the trailing edge in the cavity 2. Heated cooling fluid, which tends to get stuck in the area of the rear edge due to the locally increased friction, is thereby mixed with cooler cooling fluid, especially also with the cooling fluid entering the cooling channel 7.
  • the trailing edge region is cooled by the cooling fluid passed through the cooling channel 7, the heat transfer coefficient in the cooling channel 7 increasing from the center of the airfoil to the blade head. This is due to the increasing cooling fluid mass flow in the cooling channel 7, which is brought about by the further feeding of cooling fluid via the connecting channels 8. This improves the cooling of the airfoil head 13.
  • the flow circulation in the trailing edge area of the cavity and the cooling capacity of the trailing edge area can be set by the design of the cooling channel, the inlet opening and the connecting channels.
  • the divergence angle of the cooling channel with the number of connecting channels from the cavity is adjusted so that the cooling of the blade is optimal.
  • the cross-sectional area A8 of the connecting channels 8 is smaller than the cross-sectional area A7 of the cooling channel 7 and this in turn is much smaller than the cross-sectional area A2 of the cavity 2 (A8 ⁇ A7 ⁇ A2).
  • A8 to A2 is preferably a few percent, in particular 1-5%
  • A8 to A7 is preferably several tenths, in particular 30-100%
  • A7 to A2 is preferably a few percent, in particular 1-10%.
  • the flow velocity of the fluids through the connecting channels as well as in the diverging channel 7 is much greater than that in the selected geometry Cooling duct A2.
  • By appropriate design of the cross sections A8, A7 and A2 it is achieved that the flow velocity of the fluids in the cooling channel 7 remains approximately the same or increases slightly with increasing radius.
  • FIG. 3 shows the increase in the cross-sectional area of the cooling channel 7 towards the blade head 13 and the connecting channel 8.
  • a Nusselt number Nu is defined as the ratio of the convectively dissipated to the conducted amount of heat.
  • V-shaped ribs 30 with a tip 31 and legs 32, 33 are arranged in the cavity 2 on the suction side wall.
  • the legs of the ribs are angled at an angle 34 to the main flow direction of the cooling fluid 20.
  • the angle 34 is 30 to 60 °, preferably 40 to 50 ° and in particular 45 °.
  • the ratio of rib height to cavity height is essentially the same at every point of the rib and is between 5 to 50%.
  • the tip of the rib 30 is located at the point where the rib height is at a maximum. In the areas where the cavity 2 merges into the front and rear edge area, the rib 30 tapers in order not to inhibit the passage of the cooling fluid in these areas.
  • the ribs, not shown, arranged on the inside of the pressure-side wall 6 are also V-shaped.
  • the tip is also at the point where the rib height is maximum.
  • the ribs are arranged offset on the pressure side and the suction side wall in the flow direction, so that the flow successively meets a rib 30 on the suction side 5 and a rib on the pressure side.
  • the ribs are advantageously arranged in the middle between the ribs of the opposite wall.
  • the ribs in combination with the cooling channel 7 ensure cooling of the blade, which leads to an even wall temperature distribution.
  • the Cooling fluid 20 is here from turns formed by partitions 40, 41
  • the trailing edge area of the blade is directed to the leading edge area and then Blown out through an opening 42 in the blade head 13.
  • a diverging cooling channel 7 for cooling the trailing edge area is arranged.
  • the invention is not limited to the exemplary embodiment shown and described.
  • the cavity and thus the cooling fluid passage can also be configured differently than shown, for example as a plurality of individual cooling channels.
  • the formation of the diverging cooling duct in connection with the connecting ducts between the diverging duct and the main duct is essential.
  • the cross-sectional areas A2, A7 and A8 are each measured perpendicular to the direction of flow of the fluids flowing through the cavities.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

Technisches GebietTechnical field

Die Erfindung geht aus von einer kühlbaren Schaufel nach dem Oberbegriff des ersten Anspruches.The invention is based on a coolable blade according to the preamble of first claim.

Stand der TechnikState of the art

Derartige kühlbare Schaufel sind bekannt aus GB 2 165 315. Dort wird Kühlfluid über durch Trennwände gebildete Windungen vom Hinterkantenbereich der Schaufel zum Vorderkantenbereich geleitet und dann über Oeffnungen im Schaufelkopf ausgeblasen. Um den Hinterkantenbereich der Schaufel ausreichend zu kühlen, bläst man Luft aus der Hinterkante der Schaufel aus.
Diese Methode kann jedoch bei Hinterkanten mit kleinen Radii aus Fertigungsgründen nicht angewendet werden. Um eine Kühlung der Hinterkante zu erreichen, ist zudem eine grosse Anzahl von Filmkühlungslöchern notwendig, was die Herstellung der Schaufel sehr aufwendig macht. Weiter kann die Hinterkantenausblasung zu einer Verringerung des aerodynamischen Wirkungsgrades der Schaufel führen, da ein grösserer Hinterkantenradius benötigt wird.
Aus der DE 1 601 627 ist ebenfalls eine gekühlte Schaufel bekannt, die an ihrem Hinterkantenbereich einen radial verlaufenden, zur Schaufelspitze hin divergierenden Kühlkanal aufweist. Ueber eine grössere Eintrittsöffnung wird der Kühlkanal mit Kühlluft gespeist. Die Querschnittsfläche dieses Kühlkanales ist dabei in der Schaufelmitte ungefähr gleich gross wie derjenige des Hauptkanales, im Bereich der Schaufelspitze sogar grösser als derjenige des Hauptkanales. Die Wärmeübertragungsraten im Hinterkantenbereich der Schaufel sind deshalb nicht besser als diejenigen im Mittelteil der Schaufel und eine genügende Kühlung der Hinterkantenbereiche der Schaufel lässt sich bei einer thermisch stark belasteten Schaufel nicht mehr gewährleisten.
Such coolable blades are known from GB 2 165 315. There, cooling fluid is conducted from the trailing edge area of the blade to the leading edge area via turns formed by partition walls and then blown out via openings in the blade head. In order to cool the rear edge area of the blade sufficiently, air is blown out of the rear edge of the blade.
However, this method cannot be used for trailing edges with small radii for manufacturing reasons. In order to cool the trailing edge, a large number of film cooling holes are also necessary, which makes the manufacture of the blade very complex. Furthermore, the trailing edge blow-out can lead to a reduction in the aerodynamic efficiency of the blade, since a larger trailing edge radius is required.
A cooled blade is also known from DE 1 601 627, which has at its trailing edge region a radially extending cooling channel which diverges towards the tip of the blade. The cooling duct is fed with cooling air via a larger inlet opening. The cross-sectional area of this cooling channel is approximately the same size as that of the main channel in the middle of the blade, and even larger than that of the main channel in the area of the blade tip. The heat transfer rates in the rear edge area of the blade are therefore no better than those in the central part of the blade and adequate cooling of the rear edge areas of the blade can no longer be guaranteed in the case of a blade that is subjected to high thermal loads.

Darstellung der ErfindungPresentation of the invention

Der Erfindung liegt die Aufgabe zugrunde, bei einer kühlbaren Schaufel der eingangs genannten Art die Kühlung des Hinterkantenbereiches der Schaufel zu verbessern und einen hohen aerodynamischen Wirkungsgrad der Schaufel zu erzielen.The invention is based, with a coolable blade the task at the beginning to improve the cooling of the trailing edge area of the blade and to achieve a high aerodynamic efficiency of the blade.

Erfindungsgemäss wird dies durch die Merkmale des ersten Anspruches erreicht.According to the invention, this is achieved by the features of the first claim.

Kern der Erfindung ist es also, dass im Hinterkantenbereich ein im wesentlichen radial verlaufender, mit wachsendem Radius in der Fläche sich vergrössernder Kühlkanal angeordnet ist, der über eine Eintrittsöffnung mit dem Hohlraum verbunden ist und dass der Kühlkanal mit dem Hohlraum über mindestens einen Verbindungskanal verbunden ist.The essence of the invention is therefore that an essentially in the trailing edge area radially extending, increasing in area with increasing radius Cooling channel is arranged, which is connected to the cavity via an inlet opening and that the cooling channel with the cavity via at least one connecting channel connected is.

Die Vorteile der Erfindung sind unter anderem darin zu sehen, dass das durch den Kühlkanal geleitete Kühlfluid im Bereich des Schaufelkopfes aus der Schaufel ausgeblasen wird und somit keinen Einfluss auf die Aerodynamik der Schaufel nimmt. Weiter lassen sich kleine Hinterkantenradien verwirklichen, da nicht an der Hinterkante der Schaufel ausgeblasen werden muss. Durch die divergente Ausgestaltung des Kühlkanales wird eine effektive Kühlung des Hinterkantenbereiches der Schaufel erzielt. Durch die Ausgestaltung des divergenten Kanals lässt sich die Kühlung lokaler Gebiete gut einstellen. Zudem kann bei Laufschaufeln mit Deckplatten der stark kriechgefährdete obere Bereich zum Schaufelkopf hin besonders gut gekühlt werden.
Unter Verwendung des divergierenden Kühlkanales wird deutlich weniger Kühlluft benötigt als beispielsweise bei einer Filmkühlung der Hinterkante. Schaufeln mit dem divergierenden Kühlkanal können zudem im Gussverfahren hergestellt werden.
The advantages of the invention can be seen, inter alia, in the fact that the cooling fluid guided through the cooling channel is blown out of the blade in the region of the blade head and thus has no influence on the aerodynamics of the blade. Small trailing edge radii can also be achieved, since there is no need to blow out at the trailing edge of the blade. Due to the divergent design of the cooling channel, effective cooling of the trailing edge area of the blade is achieved. The cooling of local areas can be easily adjusted by designing the divergent channel. In addition, in the case of moving blades with cover plates, the upper area, which is at high risk of creep, can be cooled particularly well towards the blade head.
When using the diverging cooling channel, significantly less cooling air is required than, for example, with film cooling of the rear edge. Buckets with the diverging cooling channel can also be produced using the casting process.

Der Kühlkanal ist mit dem Hohlraum über mindestens einen Verbindungskanal zu verbinden. Die Verbindungskanäle zwischen dem Hohlraum und dem Kühlkanal wirken als Absaugstellen für Kühlluft aus dem Hohlraum und intensivieren die Wärmeübertragung im Hinterkantenbereich des Hohlraumes. Durch die Verbindungskanäle tritt das Kühlfluid strahlförmig in den Kühlkanal ein und erzeugt extrem hohe Wärmeübergangszahlen. The cooling duct is to be connected to the cavity via at least one connecting duct. The connecting channels between the cavity and the cooling channel act as suction points for cooling air from the cavity and intensify the heat transfer in the trailing edge area of the cavity. Through the connecting channels, the cooling fluid enters the cooling channel in a jet shape and generates extremely high heat transfer coefficients.

Kurze Beschreibung der ZeichnungBrief description of the drawing

In der Zeichnung ist ein Ausführungsbeispiel der Erfindung anhand einer schematischen Darstellung einer Schaufel einer Strömungsmaschine dargestellt.
Es zeigen:

Fig. 1
einen Teillängsschnitt durch die Schaufel;
Fig. 2
einen Teilquerschnitt durch die Schaufel entlang der Linie ll-ll in Fig. 1
Fig. 3
einen Teilquerschnitt durch die Schaufel entlang der Linie III-III in Fig. 1
Fig. 4
einen Teillängsschnitt durch eine weitere erfindungsgemässe Schaufel;
Fig. 5
einen Teillängsschnitt durch eine weitere erfindungsgemässe Schaufel.
In the drawing, an embodiment of the invention is shown using a schematic representation of a blade of a turbomachine.
Show it:
Fig. 1
a partial longitudinal section through the blade;
Fig. 2
a partial cross section through the blade along the line II-II in Fig. 1st
Fig. 3
a partial cross section through the blade along the line III-III in Fig. 1st
Fig. 4
a partial longitudinal section through a further blade according to the invention;
Fig. 5
a partial longitudinal section through a further blade according to the invention.

Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt.Only the elements essential for understanding the invention are shown.

Weg zur Ausführung der ErfindungWay of carrying out the invention

In Fig. 1 und 2 ist eine Schaufel 10 einer Strömungsmaschine dargestellt, bestehend aus einem Schaufelblatt 1 und einem Schaufelfuss 11, mit dem die Schaufel 10 montiert werden kann. Zwischen Schaufelblatt 1 und Schaufelfuss 11 ist üblicherweise eine Plattform 12 angeordnet, welche den Schaufelfuss von den das Schaufelblatt umströmenden Fluiden abschirmt. Das Schaufelblatt 1 weist einen Vorderkantenbereich 3, einen Hinterkantenbereich 4, eine saugseitige Wand 5 und eine druckseitige Wand 6 auf, wobei die saugseitige und die druckseitige Wand im Bereich der Vorderkante 3 und der Hinterkante 4 miteinander verbunden sind, wodurch ein Hohlraum 2 mit einer Querschnittsfläche A2 gebildet wird. Der Vorderkantenbereich 3 wird jeweils von den das Schaufelblatt 1 umströmenden Fluiden zuerst beaufschlagt. Der Hohlraum 2 verläuft im wesentlichen in radialer Richtung durch die Schaufel 10 und dient als Kühlfluiddurchlass für ein Kühlfluid 20.1 and 2, a blade 10 of a turbomachine is shown, consisting from a blade 1 and a blade root 11 with which the blade 10 can be mounted. Between blade 1 and blade root 11 is common A platform 12 is arranged, which the blade root of the Shields around flowing fluids. The airfoil 1 has one Front edge area 3, a rear edge area 4, a suction-side wall 5 and a pressure side wall 6, the suction side and the pressure side Wall connected to each other in the area of the front edge 3 and the rear edge 4 are, whereby a cavity 2 is formed with a cross-sectional area A2. The The leading edge region 3 is in each case the one flowing around the airfoil 1 Apply fluids first. The cavity 2 is essentially radial Direction through the blade 10 and serves as a cooling fluid passage for a cooling fluid 20th

Im Bereich der Hinterkante 4 ist ein radial verlaufender Kühlkanal 7 mit einer Querschnittsfläche A7 angeordnet, der in Strömungsrichtung zu einem Schaufelkopf 13 der Schaufel 10 hin divergiert.In the area of the rear edge 4 there is a radially extending cooling duct 7 with a Cross-sectional area A7 arranged in the direction of flow to a blade head 13 of the blade 10 diverges out.

Der Kühlkanal 7 ist über Verbindungskanäle 8 mit einer Querschnittsfläche A8 und eine Eintrittsöffnung 9 in einem Schaufelblattmittenbereich 14 mit dem Hohlraum 2 verbunden. Nicht dargestellt ist, dass die Eintrittsöffnung 9 des Kühlkanales auch an beliebigen Orten angeordnet werden kann, beispielsweise näher beim Schaufelfuss oder im Schaufelfuss. Ueblicherweise wird der Kühlkanal 7 jedoch im stromabwärtigen Teil der Schaufel ungefähr ab der Mitte 14 des Schaufelblattes angeordnet, da dort die Belastung und Kriechgefährdung am grössten ist.The cooling channel 7 is via connecting channels 8 with a cross-sectional area A8 and an inlet opening 9 in one The airfoil center region 14 is connected to the cavity 2. Not shown is that the inlet opening 9 of the cooling channel is also arranged at any location can be, for example, closer to the blade root or in the blade root. Usually, however, the cooling channel 7 is in the downstream part of the Blade arranged approximately from the center 14 of the airfoil, since there the Load and danger of creep is greatest.

Kühlfluid 20 strömt durch den Hohlraum 20 und über die Eintrittsöffnung 9 und die Verbindungskanäle 8 in den Kühlkanal 7. Dadurch wird die Strömungszirkulation im Bereich der Hinterkante im Hohlraum 2 angeregt. Erhitztes Kühlfluid, welches die Tendenz hat im Bereich der Hinterkante wegen der örtlich erhöhten Reibung hängenzubleiben, wird dadurch mit kühlerem Kühlfluid gemischt, speziell auch mit dem in den Kühlkanal 7 eintretenden Kühlfluid.
Der Hinterkantenbereich wird durch das durch den Kühlkanal 7 geleitete Kühlfluid gekühlt, wobei der Wärmeübergangskoeffizient im Kühlkanal 7 von der Schaufelblattmitte zum Schaufelkopf hin zunimmt. Dies ist bedingt durch den ansteigenden Kühlfluidmassenfluss im Kühlkanal 7, der durch die weitere Einspeisung von Kühlfluid über die Verbindungskanäle 8 bewirkt wird. Dies verbessert die Kühlung des Schaufelblattkopfes 13.
Durch die Auslegung des Kühlkanales, der Eintrittsöffnung sowie der Verbindungskanäle kann die Strömungszirkulation im Hinterkantenbereich des Hohlraumes sowie die Kühlleistung des Hinterkantenbereiches eingestellt werden. Zudem wird der Divergenzwinkel des Kühlkanales mit der Anzahl der Verbindungskanäle vom Hohlraum so angepasst, dass die Kühlung der Schaufel optimal ist.
Die Querschnittsfläche A8 der Verbindungskanäle 8 ist dabei kleiner als die Querschnittsfläche A7 des Kühlkanales 7 und diese wiederum ist viel kleiner als die Querschnittsfläche A2 des Hohlraumes 2 (A8 < A7 << A2). A8 zu A2 beträgt dabei vorzugsweise einige Prozent, insbesondere 1 - 5%, A8 zu A7 beträgt dabei vorzugsweise mehrere Zehntel, insbesondere 30 - 100%, A7 zu A2 beträgt dabei vorzugsweise einige Prozent, insbesondere 1 - 10%.
Die Strömungsgeschwindigkeit der Fluide durch die Verbindungskanäle als auch im divergierenden Kanal 7 ist durch die gewählte Geometrie viel grösser als diejenige im
Kühlkanal A2.
Durch entsprechende Auslegung der Querschnitte A8, A7 und A2 wird erreicht, dass die Strömungsgeschwindigkeit der Fluide im Kühlkanal 7 ungefähr gleich schnell bleibt oder mit wachsendem Radius leicht ansteigt.
Cooling fluid 20 flows through the cavity 20 and via the inlet opening 9 and the connecting channels 8 into the cooling channel 7. This stimulates the flow circulation in the region of the trailing edge in the cavity 2. Heated cooling fluid, which tends to get stuck in the area of the rear edge due to the locally increased friction, is thereby mixed with cooler cooling fluid, especially also with the cooling fluid entering the cooling channel 7.
The trailing edge region is cooled by the cooling fluid passed through the cooling channel 7, the heat transfer coefficient in the cooling channel 7 increasing from the center of the airfoil to the blade head. This is due to the increasing cooling fluid mass flow in the cooling channel 7, which is brought about by the further feeding of cooling fluid via the connecting channels 8. This improves the cooling of the airfoil head 13.
The flow circulation in the trailing edge area of the cavity and the cooling capacity of the trailing edge area can be set by the design of the cooling channel, the inlet opening and the connecting channels. In addition, the divergence angle of the cooling channel with the number of connecting channels from the cavity is adjusted so that the cooling of the blade is optimal.
The cross-sectional area A8 of the connecting channels 8 is smaller than the cross-sectional area A7 of the cooling channel 7 and this in turn is much smaller than the cross-sectional area A2 of the cavity 2 (A8 <A7 << A2). A8 to A2 is preferably a few percent, in particular 1-5%, A8 to A7 is preferably several tenths, in particular 30-100%, A7 to A2 is preferably a few percent, in particular 1-10%.
The flow velocity of the fluids through the connecting channels as well as in the diverging channel 7 is much greater than that in the selected geometry
Cooling duct A2.
By appropriate design of the cross sections A8, A7 and A2 it is achieved that the flow velocity of the fluids in the cooling channel 7 remains approximately the same or increases slightly with increasing radius.

In Fig. 3 ist die Zunahme der Querschnittsfläche des Kühlkanales 7 zum Schaufelkopf 13 hin sowie der Verbindungskanal 8 dargestellt.
Eine Nusselt-Zahl Nu ist definiert als das Verhältnis der konvektiv abgeführten zur geleiteten Wärmemenge. Die Nusselt-Zahl des Kühlkanales NuKühlkanal ist hierbei um ein mehrfaches höher als die Nusselt-Zahl in einem glatten Hohlraum (A2) NUHohlraum. So wurde beispielsweise experimentell festgestellt, dass NuKühlkanal / NuHohlraum.= 10 - 15 beträgt.
FIG. 3 shows the increase in the cross-sectional area of the cooling channel 7 towards the blade head 13 and the connecting channel 8.
A Nusselt number Nu is defined as the ratio of the convectively dissipated to the conducted amount of heat. The Nusselt number of the cooling channel Nu cooling channel is several times higher than the Nusselt number in a smooth cavity (A2) NU cavity . For example, it was found experimentally that Nu cooling channel / Nu cavity = 10 - 15.

In Fig. 4 sind im Hohlraum 2 an der saugseitigen Wand 5 V-förmige Rippen 30 mit einer Spitze 31 und Schenkeln 32, 33 angeordnet. Die Schenkel der Rippen sind dabei in einem Winkel 34 zur Hauptströmungsrichtung des Kühlfluides 20 angewinkelt. Der Winkel 34 beträgt dabei 30 bis 60°, vorzugsweise 40 bis 50° und insbesondere 45°. Das Verhältnis von Rippenhöhe zu Hohlraumhöhe ist an jeder Stelle der Rippe im wesentlichen gleich und liegt zwischen 5 bis 50%. Die Spitze der Rippe 30 ist an der Stelle angeordnet, wo die Rippenhöhe maximal ist. In den Bereichen wo der Hohlraum 2 in den Vorder- und Hinterkantenbereich übergeht, verjüngt sich die Rippe 30, um den Durchtritt des Kühlfluides in diesen Bereichen nicht zu hemmen.
Die nicht dargestellten, auf der Innenseite der druckseitigen Wand 6 angeordneten Rippen sind ebenfalls V-förmig. Die Spitze liegt ebenfalls an der Stelle wo die Rippenhöhe maximal ist. Die Rippen sind auf der druck- und der saugseitigen Wand gegeneinander in Strömungsrichtung versetzt angeordnet, so dass die Strömung nacheinander auf eine Rippe 30 der Saugseite 5 und eine Rippe der Druckseite trifft. Vorteilhafterweise werden die Rippen jeweils in der Mitte zwischen den Rippen der gegenüberliegenden Wand angeordnet. Durch die Rippen in Kombination mit dem Kühlkanal 7 wird eine Kühlung der Schaufel gewährleistet, die zu einer gleichmässigen Wandtemperaturverteilung führt.
In Fig. 4 5 V-shaped ribs 30 with a tip 31 and legs 32, 33 are arranged in the cavity 2 on the suction side wall. The legs of the ribs are angled at an angle 34 to the main flow direction of the cooling fluid 20. The angle 34 is 30 to 60 °, preferably 40 to 50 ° and in particular 45 °. The ratio of rib height to cavity height is essentially the same at every point of the rib and is between 5 to 50%. The tip of the rib 30 is located at the point where the rib height is at a maximum. In the areas where the cavity 2 merges into the front and rear edge area, the rib 30 tapers in order not to inhibit the passage of the cooling fluid in these areas.
The ribs, not shown, arranged on the inside of the pressure-side wall 6 are also V-shaped. The tip is also at the point where the rib height is maximum. The ribs are arranged offset on the pressure side and the suction side wall in the flow direction, so that the flow successively meets a rib 30 on the suction side 5 and a rib on the pressure side. The ribs are advantageously arranged in the middle between the ribs of the opposite wall. The ribs in combination with the cooling channel 7 ensure cooling of the blade, which leads to an even wall temperature distribution.

In Fig. 5 ist eine weitere mögliche Ausgestaltung des Hohlraumes 2 dargestellt, wie sie beispielsweise aus der eingangs erwähnten GB 2 165 315 bekannt ist. Das Kühlfluid 20 wird hier über durch Trennwände 40, 41 gebildete Windungen vom Hinterkantenbereich der Schaufel zum Vorderkantenbereich geleitet und dann über eine Oeffnung 42 im Schaufelkopf 13 ausgeblasen. Auch hier ist im Hinterkantenbereich ein divergierender Kühlkanal 7 zur Kühlung des Hinterkantenbereiches angeordnet.5 shows a further possible embodiment of the cavity 2, as is known, for example, from GB 2 165 315 mentioned at the outset. The Cooling fluid 20 is here from turns formed by partitions 40, 41 The trailing edge area of the blade is directed to the leading edge area and then Blown out through an opening 42 in the blade head 13. Here too is in the rear edge area a diverging cooling channel 7 for cooling the trailing edge area arranged.

Selbstverständlich ist die Erfindung nicht auf das gezeigte und beschriebene Ausführungsbeispiel beschränkt. Die Ausgestaltung des Hohlraumes und damit des Kühlfluiddurchlasses kann auch anders erfolgen als dargestellt, beispielsweise als mehrere einzelne Kühlkanäle. Wesentlich ist die Ausbildung des divergierenden Kühlkanales in Verbindung mit den Verbindungskanälen zwischen divergierendem Kanal und Hauptkanal. Die Querschnittsflächen A2, A7 und A8 werden jeweils senkrecht zur Strömungsrichtung der die Hohlräume durchströmenden Fluide gemessen.Of course, the invention is not limited to the exemplary embodiment shown and described. The cavity and thus the cooling fluid passage can also be configured differently than shown, for example as a plurality of individual cooling channels. The formation of the diverging cooling duct in connection with the connecting ducts between the diverging duct and the main duct is essential. The cross-sectional areas A2, A7 and A8 are each measured perpendicular to the direction of flow of the fluids flowing through the cavities.

BezugszeichenlisteReference list

11
SchaufelblattAirfoil
22nd
Hohlraumcavity
33rd
VorderkantenbereichLeading edge area
44th
Hinterkantenbereich Trailing edge area
55
saugseitige Wandsuction side wall
66
druckseitige Wandpressure side wall
77
KühlkanalCooling channel
88th
VerbindungskanalConnecting channel
99
EintrittsöffnungEntrance opening
1010th
Schaufelshovel
1111
SchaufelfussBlade root
1212th
Plattformplatform
1313
SchaufelkopfBucket head
1414
SchaufelblattmittenbereichAerofoil center area
2020th
KühlfluidCooling fluid
3030th
Ripperib
3131
Spitzetop
32, 3332, 33
Schenkelleg
3434
AnstellwinkelAngle of attack
40, 4140, 41
Trennwandpartition wall
4242
OeffnungOpening
A2A2
Querschnittsfläche HohlraumCross-sectional area cavity
A7A7
Querschnittsfläche KühlkanalCross-sectional area cooling channel
A8A8
Querschnittsfläche VerbindungskanalCross-sectional area of connection channel

Claims (2)

  1. Coolable blade (10), essentially comprising a blade root (11) and a blade body (1), which is composed of a pressure-side wall (6) and a suction-side wall (5), which are connected to one another essentially via a trailing-edge region (4) and a leading-edge region (3) in such a way that at least one hollow space (2) used as a cooling-fluid passage is formed, the hollow space being supplied with coolant from the blade root, and an essentially radially running, diverging cooling passage (7) being arranged in the trailing-edge region (4), which cooling passage (7) extends up to the blade head (13) and is connected to the hollow space (2) via an inlet opening (9), characterized in that the cooling passage (7) is connected to the hollow space (2) via at least one further connecting passage (8), which is arranged between inlet opening (9) and blade head (13).
  2. Coolable blade according to Claim 1, characterized in that, in the hollow space (2), at least one rib (30) is configured in such a way that it has an apex (31) and two legs (32, 33), and in that the legs of the rib are bent at an acute angle (34) relative to the main flow direction of a cooling fluid (20) .
EP97810561A 1996-08-23 1997-08-08 Coolable turbine blade Expired - Lifetime EP0825333B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19634237 1996-08-23
DE19634237A DE19634237A1 (en) 1996-08-23 1996-08-23 Coolable shovel

Publications (2)

Publication Number Publication Date
EP0825333A1 EP0825333A1 (en) 1998-02-25
EP0825333B1 true EP0825333B1 (en) 2001-05-23

Family

ID=7803585

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97810561A Expired - Lifetime EP0825333B1 (en) 1996-08-23 1997-08-08 Coolable turbine blade

Country Status (6)

Country Link
US (1) US5934874A (en)
EP (1) EP0825333B1 (en)
JP (1) JP4152458B2 (en)
CN (1) CN1105228C (en)
CZ (1) CZ267997A3 (en)
DE (2) DE19634237A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103089335A (en) * 2013-01-21 2013-05-08 上海交通大学 W-shaped rib channel cooling structure suitable for turbine blade backside cooling cavity
US10400608B2 (en) * 2016-11-23 2019-09-03 General Electric Company Cooling structure for a turbine component
US11248471B2 (en) 2020-01-22 2022-02-15 General Electric Company Turbine rotor blade with angel wing with coolant transfer passage between adjacent wheel space portions by additive manufacture
US11242760B2 (en) 2020-01-22 2022-02-08 General Electric Company Turbine rotor blade with integral impingement sleeve by additive manufacture
US11220916B2 (en) 2020-01-22 2022-01-11 General Electric Company Turbine rotor blade with platform with non-linear cooling passages by additive manufacture
US11492908B2 (en) 2020-01-22 2022-11-08 General Electric Company Turbine rotor blade root with hollow mount with lattice support structure by additive manufacture

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3171631A (en) * 1962-12-05 1965-03-02 Gen Motors Corp Turbine blade
GB1070130A (en) * 1966-01-31 1967-05-24 Rolls Royce Aeofoil shaped blade for a fluid flow machine such as a gas turbine engine
SU364747A1 (en) * 1971-07-08 1972-12-28 COOLED TURBOATING TILE BLADE
US4288201A (en) * 1979-09-14 1981-09-08 United Technologies Corporation Vane cooling structure
GB2165315B (en) * 1984-10-04 1987-12-31 Rolls Royce Improvements in or relating to hollow fluid cooled turbine blades
WO1986002406A1 (en) * 1984-10-10 1986-04-24 Paul Marius A Gas turbine engine
US4820123A (en) * 1988-04-25 1989-04-11 United Technologies Corporation Dirt removal means for air cooled blades
US5122033A (en) * 1990-11-16 1992-06-16 Paul Marius A Turbine blade unit
US5695321A (en) * 1991-12-17 1997-12-09 General Electric Company Turbine blade having variable configuration turbulators
US5536143A (en) * 1995-03-31 1996-07-16 General Electric Co. Closed circuit steam cooled bucket

Also Published As

Publication number Publication date
EP0825333A1 (en) 1998-02-25
US5934874A (en) 1999-08-10
CN1105228C (en) 2003-04-09
JP4152458B2 (en) 2008-09-17
CZ267997A3 (en) 1998-03-18
CN1177676A (en) 1998-04-01
DE19634237A1 (en) 1998-02-26
JPH1089007A (en) 1998-04-07
DE59703585D1 (en) 2001-06-28

Similar Documents

Publication Publication Date Title
DE69822100T2 (en) turbine blade
EP1267039B1 (en) Cooling configuration for an airfoil trailing edge
EP3762587B1 (en) Airfoil for a turbine blade
EP2087206B1 (en) Turbine blade
DE60218776T2 (en) Film-cooled turbine blade
DE60018817T2 (en) Chilled gas turbine blade
DE3248162C2 (en) Coolable shovel
EP1223308B1 (en) Turbomachine component
DE60213328T2 (en) Chilled hollow shovel top cover of a turbine shovel
EP0528138B1 (en) Blade shroud for axial turbine
EP2304185B1 (en) Turbine vane for a gas turbine and casting core for the production of such
EP0825332B1 (en) Coolable blade
DE102009003327B4 (en) Turbine blade tip shroud
EP0698725A2 (en) Impingement cooling of wall portion
DE102006004437A1 (en) Blade of a gas turbine blade, method of making a blade, gasket plate and gas turbine
DE2906366A1 (en) TURBINE SHOVEL
EP0798448A2 (en) System and device to cool a wall which is heated on one side by hot gas
WO2010086419A1 (en) Cooled vane for a gas turbine
EP0892149B1 (en) Cooling system for the leading edge of a hollow blade for a gas turbine engine
DE19904229A1 (en) Cooled turbine blade has shroud formed by sealing rib with integrated cooling channels connected to coolant channel in blade
DE69821443T2 (en) Cooling of the trailing edge in gas turbine blades
EP1456505A1 (en) Thermally loaded component
EP1292760B1 (en) Configuration of a coolable turbine blade
EP0825333B1 (en) Coolable turbine blade
EP0892151A1 (en) Cooling system for the leading edge of a hollow blade for gas turbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970812

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

AKX Designation fees paid

Free format text: DE FR GB IT

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

R17P Request for examination filed (corrected)

Effective date: 19980707

17Q First examination report despatched

Effective date: 19990528

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20010523

REF Corresponds to:

Ref document number: 59703585

Country of ref document: DE

Date of ref document: 20010628

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010803

ET Fr: translation filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120802 AND 20120808

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: ALSTOM TECHNOLOGY LTD., CH

Effective date: 20120918

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59703585

Country of ref document: DE

Representative=s name: ROESLER PATENTANWALTSKANZLEI, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59703585

Country of ref document: DE

Representative=s name: ROESLER PATENTANWALTSKANZLEI, DE

Effective date: 20130508

Ref country code: DE

Ref legal event code: R081

Ref document number: 59703585

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM, PARIS, FR

Effective date: 20130508

Ref country code: DE

Ref legal event code: R081

Ref document number: 59703585

Country of ref document: DE

Owner name: ALSTOM TECHNOLOGY LTD., CH

Free format text: FORMER OWNER: ALSTOM, PARIS, FR

Effective date: 20130508

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59703585

Country of ref document: DE

Representative=s name: ROESLER PATENTANWALTSKANZLEI, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59703585

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160822

Year of fee payment: 20

Ref country code: GB

Payment date: 20160819

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160822

Year of fee payment: 20

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: ALSTOM TECHNOLOGY LTD, CH

Effective date: 20161110

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59703585

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20170807

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170824 AND 20170830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170807

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Effective date: 20171221